

Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK

Winter 2011

Homework

- For any set A of natural numbers and any function f(x) (from natural numbers to natural numbers) by f⁻¹(A), we mean the set of all n such that f(n) ∈ A. Prove that if A and f are Arithmetic, then so is f⁻¹(A). Show the same for arithmetic.
- •
- 1 Given two Arithmetic functions f(x) and g(y), show that the function f(g(y)) is Arithmetic.
- **2** Given two Arithmetic functions f(x) and g(x, y), show that the functions g(f(y), y), g(x, f(y)) and f(g(x, y)) are all Arithmetic.
- Let A be an infinite Arithmetic set. Then for any number y
 (whether in A or not), there must be an element x of A which is
 greater than y. Let R(x, y) be the relation: x is the smallest
 element of A greater than y. Prove that R(x, y) is Arithmetic.

Summary

Summary of Last Lecture

Definition

let $F(v_1)$ be a formula, $F(v_1, \ldots, v_n)$ a regular formula, A be a set, and $R \subseteq \mathbb{N}^n$

1 $F(v_1)$ expresses A if for all $n \in \mathbb{N}$: $F(\overline{n})$ is true $\iff n \in A$

2 $F(v_1, \ldots, v_n)$ expresses R if for all $(m_1, \ldots, m_n) \in \mathbb{N}^n$:

 $F(\overline{m}_1,\ldots,\overline{m}_n)$ is true $\iff (m_1,\ldots,m_n) \in R$

we also say that $F(v_1, \ldots, v_n)$ expresses the relation $R(x_1, \ldots, x_n)$

Definition

- **1** a set or relation is Arithmetic if expressible in \mathcal{L}_E
- 2 a set or relation is arithmetic if expressible in \mathcal{L}_E without exp

GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\ensuremath{\mathcal{L}}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 $\omega\text{-}consistency,$ a basic incompleteness theorem, $\omega\text{-}consistency$ lemma, $\Sigma_0\text{-}$ complete subsystems, $\omega\text{-}incompleteness$ of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

arski's Theorem	Tarski's Theorem
Gödel Numbering	A Clever Trick by Tarski
DefinitionI to every symbol in \mathcal{L}_E we assign a number ≤ 12 0 ' () f ' v $\neg \rightarrow \forall = \leq \#$ 1 0 2 3 4 5 6 7 8 9 10 11 12 $\eta \in \delta$ 2 for any expression E : $\[E^{\neg} := the concatenation of the Gödel numbers of the symbols to the base 13]3 E_n (n > 0) denotes the expression with Gödel number n; E_0 := '$	Definition (Tarski's Trick) let <i>E</i> be an formula and $e, n \in \mathbb{N}$ • set $E[\overline{n}] := \forall v_1(v_1 = \overline{n} \rightarrow E)$ • as <i>E</i> is a formula, $E[\overline{n}]$ is a formula • if <i>E</i> is a formula, whose only free variable is v_1 , then $E[\overline{n}]$ is even a sentence: $E[\overline{n}] = \forall v_1(v_1 = \overline{n} \rightarrow E(v_1))$ • clearly $E(\overline{n})$ and $E[\overline{n}]$ are equivalent
Example consider the numeral \overline{n} : $\[Gamma] \overline{n} = \[Gamma] 0 *_{13} \cdots *_{13} 0 = 13^n$	Definition (representation function) • set $r(e, n) := \ulcorner E[\overline{n}] \urcorner$, where $\ulcorner E \urcorner = e$ • thus the representation function $r(x, y)$ is the Gödel number of $E_x[\overline{y}]$
rski's Theorem 10	/30 GM (Institute of Computer Science @ UIBK) Godel's Incompleteness Theorem 11/3 Tarski's Theorem 11/3
Lemma the function r(x, y) is Arithmetic Proof. on the white board	Recall E_n is a Gödel sentence for a number set A , if E_n holds $\iff n \in A$ Theorem ① for every Arithmetic set A , there is a Gödel sentence for A
 Definition we define a concrete diagonal function: d(x) := r(x, x) for any set A, we define A* := {n ∈ N d(n) ∈ A} (as in the abstract setting) 	Proof. 1 suppose A is Arithmetic 2 by Lemma ①, A^* is Arithmetic 3 suppose $H(v_1)$ expresses A^* and let $h := \ulcorner H \urcorner$ 4 hence we obtain:
if A is Arithmetic, then so is A*	$H[\overline{h}] \text{ is true } \iff h \in A^* \iff d(h) \in A \iff \ulcorner H[\overline{h}] \urcorner \in A$
if A is Arithmetic, then so is A* Proof.	$H[\overline{h}] \text{ is true } \iff h \in A^* \iff d(h) \in A \iff \ulcorner H[\overline{h}] \urcorner \in A$ 5 we conclude that $H[\overline{h}]$ is a Gödel sentence for A

Tarski's Theorem	Tarski's Theorem
<section-header><section-header><section-header><section-header><section-header><section-header><text><text><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></text></text></section-header></section-header></section-header></section-header></section-header></section-header>	The Abstract Framework (revisited) Discussion ① compare to the abstract framework: $ \cdot \in $ are expressions of \mathcal{L}_E $ \cdot \in $ are sentences of \mathcal{L}_E $ \cdot \in $ formulas $F(v_1)$, where only v_1 is free $ \cdot \oplus (E, n) := E[n]$ $ \cdot \oplus (E, n) :=$
Tarski's Theorem in the Abstract Framework Recall let $T := \{g(S) \mid S \in T\}$ 1 $(\sim T)^*$ is not nameable in \mathcal{L} 2 if G1 holds, then $\sim T$ is not nameable in \mathcal{L} 3 if G1 & G2 hold, then T is not nameable in \mathcal{L} Discussion ② observe that 1 property G1 is expressed by Lemma ① and property G2 is trivial for the set of Arithmetic sentences 2 Theorem ① is the second part of the Diagonal Lemma thus Tarski's Theorem for \mathcal{L}_E is nothing but an instance of the abstract form of Tarski's Theorem	The Axiom System PE Definition (Propositional Logic) $L_1: F \rightarrow (G \rightarrow F)$ $L_2: F \rightarrow (G \rightarrow H)) \rightarrow ((F \rightarrow G) \rightarrow (F \rightarrow H))$ $L_3: (\neg F \rightarrow \neg G) \rightarrow (G \rightarrow F)$ Definition (First-Order Logic with Identity) $L_4: \forall v_i(F \rightarrow G) \rightarrow (\forall v_iF \rightarrow \forall v_iG)$ $L_5: F \rightarrow \forall v_iF$ $L_6: \exists v_i(v_i = t))$ $L_7: v_i = t \rightarrow (X_1v_iX_2 \rightarrow X_1tX_2)$ where v_i doesn't occur in F or in t and X_1, X_2 are expressions, such that $X_1v_iX_2$ is an atom

