Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK
Winter 2011

Outline of the Lecture

General Idea Behind Gödel's Proof

 abstract forms of Gödel's, Tarski's theorems, undecidable sentences of \mathcal{L}Tarski's Theorem for Arithmetic
the language \mathcal{L}_{E}, concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_{1}-relations

Gödel's Proof
ω-consistency, a basic incompleteness theorem, ω-consistency lemma, Σ_{0-} complete subsystems, ω-incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Outline of the Lecture

General Idea Behind Gödel's Proof

 abstract forms of Gödel's, Tarski's theorems, undecidable sentences of \mathcal{L}Tarski's Theorem for Arithmetic
the language \mathcal{L}_{E}, concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_{1}-relations

Gödel's Proof
ω-consistency, a basic incompleteness theorem, ω-consistency lemma, Σ_{0-} complete subsystems, ω-incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Arithmetisation of the Axiom System

Definition

- x begins y in base b notation if base b notation of x is prefix of base b notation of y

Arithmetisation of the Axiom System

Definition

- x begins y in base b notation if $x B_{b} y$ base b notation of x is prefix of base b notation of y
- x ends y in base b notation if
base b notation of x is suffix of base b notation of y

Arithmetisation of the Axiom System

Definition

- x begins y in base b notation if
base b notation of x is prefix of base b notation of y
- x ends y in base b notation if
base b notation of x is suffix of base b notation of y
- x is part of y in base b notation if
$x P_{b y}$ if x ends some number that begins y

Arithmetisation of the Axiom System

Definition

- x begins y in base b notation if
base b notation of x is prefix of base b notation of y
- x ends y in base b notation if
base b notation of x is suffix of base b notation of y
- x is part of y in base b notation if
$x P_{b} y$ if x ends some number that begins y

Arithmetisation

$$
\begin{aligned}
x B_{b} y \leftrightarrow & x=y \vee(x \neq 0 \wedge(\exists z \leqslant y)(\exists w \leqslant y) \\
& \left.\left(\operatorname{Pow}_{b}(w) \wedge(x \cdot w) *_{b} z=y\right)\right) \\
x E_{b} y \leftrightarrow & x=y \vee(\exists z \leqslant y)\left(z *_{b} x=y\right) \\
x P_{b} y \leftrightarrow & (\exists z \leqslant y)\left(z E_{b} y \wedge x B_{b} z\right)
\end{aligned}
$$

Lemma
for any $b \geqslant 2, n \geqslant 2$
1 the relations $x B_{b} y, x E_{b} y$, and $x P_{b} y$ are Arithmetic
2 furthermore the following relation is Arithmetic

$$
\begin{gathered}
x_{1} *_{b} x_{2} *_{b} \cdots *_{b} x_{n} P_{b} y \leftrightarrow \\
(\exists z \leqslant y)\left(x_{1} *_{b} x_{2} *_{b} \cdots *_{b} x_{n}=z\right) \wedge\left(z P_{b} y\right)
\end{gathered}
$$

Lemma

for any $b \geqslant 2, n \geqslant 2$
1 the relations $x B_{b} y, x E_{b} y$, and $x P_{b} y$ are Arithmetic
2 furthermore the following relation is Arithmetic

$$
\begin{gathered}
x_{1} *_{b} x_{2} *_{b} \cdots *_{b} x_{n} P_{b} y \leftrightarrow \\
(\exists z \leqslant y)\left(x_{1} *_{b} x_{2} *_{b} \cdots *_{b} x_{n}=z\right) \wedge\left(z P_{b} y\right)
\end{gathered}
$$

Notation

in the following we fix $b=13$ and simply write
1 xBy, xEy, xPy
$2 x y$ instead of $x *_{13} y$
$3 x_{1} \cdots x_{n} P y$ for $x_{1} *_{13} \cdots *_{13} x_{n} P y$

Representing Sequences
Definition (Formal Finite Se

$$
\text { mol } \text { init }
$$

Definition (Formal Finite Sequences)
presenting sequences
Definition (Formal Finite Sequences)

Representing Sequences

Definition (Formal Finite Sequences)

- we represent the tuple $\left(X_{1}, \ldots, X_{n}\right)$ as $\# X_{1} \# \cdots \# X_{n} \#$

Representing Sequences

Definition (Formal Finite Sequences)

- we represent the tuple $\left(X_{1}, \ldots, X_{n}\right)$ as $\# X_{1} \# \cdots \# X_{n} \#$
- $\left\ulcorner \# X_{1} \# \cdots \# X_{n} \#\right\urcorner$ will be the sequence number of the tuple

Representing Sequences

Definition (Formal Finite Sequences)

- we represent the tuple $\left(X_{1}, \ldots, X_{n}\right)$ as $\# X_{1} \# \cdots \# X_{n} \#$
- $\left\ulcorner \# X_{1} \# \cdots \# X_{n} \#\right\urcorner$ will be the sequence number of the tuple
- we define K_{11} :

$$
K_{11}:=\left\{n \in \mathbb{N} \mid(n)_{13} \text { does not contain } \delta\right\}
$$

Representing Sequences

Definition (Formal Finite Sequences)

- we represent the tuple $\left(X_{1}, \ldots, X_{n}\right)$ as $\# X_{1} \# \cdots \# X_{n} \#$
- $\left\ulcorner \# X_{1} \# \cdots \# X_{n} \#\right\urcorner$ will be the sequence number of the tuple
- we define K_{11} :

$$
K_{11}:=\left\{n \in \mathbb{N} \mid(n)_{13} \text { does not contain } \delta\right\}
$$

- for $\left(a_{1}, \ldots, a_{n}\right) \in K_{11}^{n}$, define

$$
\delta a_{1} \delta \cdots \delta a_{n} \delta
$$

as the sequence number of $\left(a_{1}, \ldots, a_{n}\right)$

Representing Sequences

Definition (Formal Finite Sequences)

- we represent the tuple $\left(X_{1}, \ldots, X_{n}\right)$ as $\# X_{1} \# \cdots \# X_{n} \#$
- $\left\ulcorner \# X_{1} \# \cdots \# X_{n} \#\right\urcorner$ will be the sequence number of the tuple
- we define K_{11} :

$$
K_{11}:=\left\{n \in \mathbb{N} \mid(n)_{13} \text { does not contain } \delta\right\}
$$

- for $\left(a_{1}, \ldots, a_{n}\right) \in K_{11}^{n}$, define

$$
\delta a_{1} \delta \cdots \delta a_{n} \delta
$$

as the sequence number of $\left(a_{1}, \ldots, a_{n}\right)$

- x is a sequence number if $x=\delta a_{1} \delta \cdots \delta a_{n} \delta$ for $a_{i} \in K_{11}$

Representing Sequences

Definition (Formal Finite Sequences)

- we represent the tuple $\left(X_{1}, \ldots, X_{n}\right)$ as $\# X_{1} \# \cdots \# X_{n} \#$
- $\left\ulcorner \# X_{1} \# \cdots \# X_{n} \#\right\urcorner$ will be the sequence number of the tuple
- we define K_{11} :

$$
K_{11}:=\left\{n \in \mathbb{N} \mid(n)_{13} \text { does not contain } \delta\right\}
$$

- for $\left(a_{1}, \ldots, a_{n}\right) \in K_{11}^{n}$, define

$$
\delta a_{1} \delta \cdots \delta a_{n} \delta
$$

as the sequence number of $\left(a_{1}, \ldots, a_{n}\right)$

- x is a sequence number if $x=\delta a_{1} \delta \cdots \delta a_{n} \delta$ for $a_{i} \in K_{11}$
- Seq x denotes that x is a sequence number

Representing Sequences

Definition (Formal Finite Sequences)

- we represent the tuple $\left(X_{1}, \ldots, X_{n}\right)$ as $\# X_{1} \# \cdots \# X_{n} \#$
- $\left\ulcorner \# X_{1} \# \cdots \# X_{n} \#\right\urcorner$ will be the sequence number of the tuple
- we define K_{11} :

$$
K_{11}:=\left\{n \in \mathbb{N} \mid(n)_{13} \text { does not contain } \delta\right\}
$$

- for $\left(a_{1}, \ldots, a_{n}\right) \in K_{11}^{n}$, define

$$
\delta a_{1} \delta \cdots \delta a_{n} \delta
$$

as the sequence number of $\left(a_{1}, \ldots, a_{n}\right)$

- x is a sequence number if $x=\delta a_{1} \delta \cdots \delta a_{n} \delta$ for $a_{i} \in K_{11}$
- Seq x denotes that x is a sequence number
- $x \in y$ denotes that x is a member of a sequence encoded by y

Representing Sequences

Definition (Formal Finite Sequences)

- we represent the tuple $\left(X_{1}, \ldots, X_{n}\right)$ as $\# X_{1} \# \cdots \# X_{n} \#$
- $\left\ulcorner \# X_{1} \# \cdots \# X_{n} \#\right\urcorner$ will be the sequence number of the tuple
- we define K_{11} :

$$
K_{11}:=\left\{n \in \mathbb{N} \mid(n)_{13} \text { does not contain } \delta\right\}
$$

- for $\left(a_{1}, \ldots, a_{n}\right) \in K_{11}^{n}$, define

$$
\delta a_{1} \delta \cdots \delta a_{n} \delta
$$

as the sequence number of $\left(a_{1}, \ldots, a_{n}\right)$

- x is a sequence number if $x=\delta a_{1} \delta \cdots \delta a_{n} \delta$ for $a_{i} \in K_{11}$
- Seq x denotes that x is a sequence number
- $x \in y$ denotes that x is a member of a sequence encoded by y
- $x \prec_{z} y$ denotes that $x \in z, y \in z$ and x occurs first

Formation Sequences

Lemma
 the relations $\operatorname{Seq} x, x \in y, x \prec_{z} y$ are Arithmetic

Proof.
on the whiteboard

Formation Sequences

Lemma
 the relations Seq $x, x \in y, x \prec_{z} y$ are Arithmetic

Proof. on the whiteboard

Some More Notation we write $(\forall x \in y)$ [some formula] instead of

$$
\forall x(x \in y \rightarrow \text { [some formula] })
$$

Formation Sequences

Lemma

the relations $\operatorname{Seq} x, x \in y, x \prec_{z} y$ are Arithmetic

Proof.
on the whiteboard

Some More Notation
we write $(\forall x \in y)$ [some formula] instead of

$$
\forall x(x \in y \rightarrow \text { [some formula] })
$$

and we write $\left(\exists x, y \prec_{w} z\right)$ [some formula] instead of

$$
\exists x \exists y\left(x \prec_{w} z \wedge y \prec_{w} z \rightarrow[\text { some formula }]\right)
$$

Formation Sequences

Lemma
 the relations $\operatorname{Seq} x, x \in y, x \prec_{z} y$ are Arithmetic

Proof.
on the whiteboard

Some More Notation
we write $(\forall x \in y)$ [some formula] instead of

$$
\forall x(x \in y \rightarrow \text { [some formula }])
$$

and we write $\left(\exists x, y \prec_{w} z\right)$ [some formula] instead of

$$
\exists x \exists y\left(x \prec_{w} z \wedge y \prec_{w} z \wedge[\text { some formula] })\right.
$$

Definition (Terms (explicit))

- for expressions X, Y, Z we define $\mathcal{R}_{\mathrm{t}}(X, Y, Z)$ iff

$$
Z=(X+Y) \vee Z=(X \cdot Y) \vee Z=(X \exp Y) \vee Z=X^{\prime}
$$

Definition (Terms (explicit))

- for expressions X, Y, Z we define $\mathcal{R}_{\mathrm{t}}(X, Y, Z)$ iff

$$
Z=(X+Y) \vee Z=(X \cdot Y) \vee Z=(X \exp Y) \vee Z=X^{\prime}
$$

- $\mathcal{R}_{\mathrm{t}}(X, Y, Z)$ is called the formation relation for terms

Definition (Terms (explicit))

- for expressions X, Y, Z we define $\mathcal{R}_{\mathrm{t}}(X, Y, Z)$ iff

$$
Z=(X+Y) \vee Z=(X \cdot Y) \vee Z=(X \exp Y) \vee Z=X^{\prime}
$$

- $\mathcal{R}_{\mathrm{t}}(X, Y, Z)$ is called the formation relation for terms
- a formation sequence for terms is a finite sequence of expressions

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

Definition (Terms (explicit))

- for expressions X, Y, Z we define $\mathcal{R}_{\mathrm{t}}(X, Y, Z)$ iff

$$
Z=(X+Y) \vee Z=(X \cdot Y) \vee Z=(X \exp Y) \vee Z=X^{\prime}
$$

- $\mathcal{R}_{\mathrm{t}}(X, Y, Z)$ is called the formation relation for terms
- a formation sequence for terms is a finite sequence of expressions

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

such that X_{i} is
1 either a variable $\left((\mathrm{v}, \ldots,)^{\prime}\right)$) or a numeral $\left(0^{\prime} \ldots{ }^{\prime}\right)$
2 or $\exists X_{j}, X_{k}(j, k<i)$ such that $\mathcal{R}_{\mathrm{t}}\left(X_{j}, X_{k}, X_{i}\right)$ holds

Definition (Terms (explicit))

- for expressions X, Y, Z we define $\mathcal{R}_{\mathrm{t}}(X, Y, Z)$ iff

$$
Z=(X+Y) \vee Z=(X \cdot Y) \vee Z=(X \exp Y) \vee Z=X^{\prime}
$$

- $\mathcal{R}_{\mathrm{t}}(X, Y, Z)$ is called the formation relation for terms
- a formation sequence for terms is a finite sequence of expressions

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

such that X_{i} is
1 either a variable $((\mathrm{v}, \ldots)$,$) or a numeral \left(0^{\prime} \ldots{ }^{\prime}\right)$
2 or $\exists X_{j}, X_{k}(j, k<i)$ such that $\mathcal{R}_{\mathrm{t}}\left(X_{j}, X_{k}, X_{i}\right)$ holds

- an expression t is a term, if \exists a formation sequence for terms of which t is a member

Definition (Terms (explicit))

- for expressions X, Y, Z we define $\mathcal{R}_{\mathrm{t}}(X, Y, Z)$ iff

$$
Z=(X+Y) \vee Z=(X \cdot Y) \vee Z=(X \exp Y) \vee Z=X^{\prime}
$$

- $\mathcal{R}_{\mathrm{t}}(X, Y, Z)$ is called the formation relation for terms
- a formation sequence for terms is a finite sequence of expressions

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

such that X_{i} is
1 either a variable $((\mathrm{v}, \ldots)$,$) or a numeral \left(0^{\prime} \ldots{ }^{\prime}\right)$
2 or $\exists X_{j}, X_{k}(j, k<i)$ such that $\mathcal{R}_{\mathrm{t}}\left(X_{j}, X_{k}, X_{i}\right)$ holds

- an expression t is a term, if \exists a formation sequence for terms of which t is a member

Definition (Formulas (explicit))
(as above)

Towards Expressing Provability

And Even More Notation
we refer to the Gödel numbers of $\left(E_{x}+E_{y}\right),\left(E_{x} \cdot E_{y}\right),\left(E_{x} \exp E_{y}\right), E_{x}^{\prime}$ as

$$
x \text { pl } y \quad x \operatorname{tim} y \quad x \text { expon } y \quad \mathrm{~s}(x)
$$

Towards Expressing Provability

And Even More Notation
we refer to the Gödel numbers of $\left(E_{x}+E_{y}\right),\left(E_{x} \cdot E_{y}\right),\left(E_{x} \exp E_{y}\right), E_{x}^{\prime}$ as

$$
x \operatorname{pl} y \quad x \operatorname{tim} y \quad x \text { expon } y \quad \mathrm{~s}(x)
$$

and to the Gödel numbers of $E_{x}=E_{y}, E_{x} \leqslant E_{y}, \neg E_{x}$, and $\left(E_{x} \rightarrow E_{y}\right)$ as

$$
x \text { id } y \quad x \text { le } y \quad \operatorname{neg}(x) \quad x \text { impl } y
$$

Towards Expressing Provability

And Even More Notation
we refer to the Gödel numbers of $\left(E_{x}+E_{y}\right),\left(E_{x} \cdot E_{y}\right),\left(E_{x} \exp E_{y}\right), E_{x}^{\prime}$ as

$$
x \operatorname{pl} y \quad x \operatorname{tim} y \quad x \text { expon } y \quad \mathrm{~s}(x)
$$

and to the Gödel numbers of $E_{x}=E_{y}, E_{x} \leqslant E_{y}, \neg E_{x}$, and $\left(E_{x} \rightarrow E_{y}\right)$ as

$$
x \text { id } y \quad x \text { le } y \quad \operatorname{neg}(x) \quad x \text { impl } y
$$

Lemma
all above functions are Arithmetic

Towards Expressing Provability

And Even More Notation
we refer to the Gödel numbers of $\left(E_{x}+E_{y}\right),\left(E_{x} \cdot E_{y}\right),\left(E_{x} \exp E_{y}\right), E_{x}^{\prime}$ as

$$
x \operatorname{pl} y \quad x \operatorname{tim} y \quad x \text { expon } y \quad \mathrm{~s}(x)
$$

and to the Gödel numbers of $E_{x}=E_{y}, E_{x} \leqslant E_{y}, \neg E_{x}$, and $\left(E_{x} \rightarrow E_{y}\right)$ as

$$
x \text { id } y \quad x \text { le } y \quad \operatorname{neg}(x) \quad x \text { impl } y
$$

Lemma

all above functions are Arithmetic

Definition

$1 \mathrm{Sb}(x): E_{x}$ is a string of subscripts

$$
(\forall y \leqslant x)(y P x \rightarrow 5 P y)
$$

Definition (Terms (formal))

[1 $\operatorname{Var}(x): E_{x}$ is a variable

$$
(\exists y \leqslant x)(\mathrm{Sb}(y) \wedge x=26 y 3)
$$

Definition (Terms (formal))

$11 \operatorname{Var}(x): E_{x}$ is a variable

$$
(\exists y \leqslant x)(\mathrm{Sb}(y) \wedge x=26 y 3)
$$

$\left[2 \operatorname{Num}(x): E_{x}\right.$ is a numeral

$$
\operatorname{Pow}_{13}(x)
$$

Definition (Terms (formal))

$1 \operatorname{Var}(x): E_{X}$ is a variable

$$
(\exists y \leqslant x)(\mathrm{Sb}(y) \wedge x=26 y 3)
$$

$2 \operatorname{Num}(x): E_{X}$ is a numeral

$$
\operatorname{Pow}_{13}(x)
$$

$3 \mathrm{R}_{1}(x, y, z): \mathcal{R}_{\mathrm{t}}\left(E_{x}, E_{y}, E_{z}\right)$ holds

$$
(z=x \mathrm{pl} y) \vee(z=x \operatorname{tim} y) \vee(z=x \text { expon } y) \vee(z=\mathrm{s}(x))
$$

Definition (Terms (formal))

$1 \operatorname{Var}(x): E_{x}$ is a variable

$$
(\exists y \leqslant x)(\mathrm{Sb}(y) \wedge x=26 y 3)
$$

$2 \operatorname{Num}(x): E_{X}$ is a numeral

$$
\operatorname{Pow}_{13}(x)
$$

$3 \mathrm{R}_{1}(x, y, z): \mathcal{R}_{\mathrm{t}}\left(E_{x}, E_{y}, E_{z}\right)$ holds

$$
(z=x \mathrm{pl} y) \vee(z=x \operatorname{tim} y) \vee(z=x \text { expon } y) \vee(z=\mathrm{s}(x))
$$

$4 \operatorname{Seqt}(x): E_{X}$ is a formation sequence for terms

$$
\operatorname{Seq}(x) \wedge(\forall y \in x)\left(\operatorname{Var}(y) \vee \operatorname{Num}(y) \vee\left(\exists z, w \prec_{x} y\right) \mathrm{R}_{1}(z, w, y)\right)
$$

Definition (Terms (formal))

$1 \operatorname{Var}(x): E_{x}$ is a variable

$$
(\exists y \leqslant x)(\mathrm{Sb}(y) \wedge x=26 y 3)
$$

$2 \operatorname{Num}(x): E_{X}$ is a numeral

$$
\operatorname{Pow}_{13}(x)
$$

$3 \mathrm{R}_{1}(x, y, z): \mathcal{R}_{\mathrm{t}}\left(E_{x}, E_{y}, E_{z}\right)$ holds

$$
(z=x \mathrm{pl} y) \vee(z=x \operatorname{tim} y) \vee(z=x \text { expon } y) \vee(z=\mathrm{s}(x))
$$

$4 \operatorname{Seqt}(x): E_{X}$ is a formation sequence for terms

$$
\operatorname{Seq}(x) \wedge(\forall y \in x)\left(\operatorname{Var}(y) \vee \operatorname{Num}(y) \vee\left(\exists z, w \prec_{x} y\right) \mathrm{R}_{1}(z, w, y)\right)
$$

5 term (x) : E_{x} is a term

$$
\exists y(\operatorname{Seqt}(y) \wedge x \in y)
$$

Definition (Formulas (formal))

1 atom (x) : E_{x} is an atom

Definition (Formulas (formal))

1 atom (x) : E_{x} is an atom

$$
(\exists y \leqslant x)(\exists z \leqslant x)(\operatorname{term}(y) \wedge \operatorname{term}(z) \wedge(x=y \text { id } z \vee x=y \text { le } z))
$$

Definition (Formulas (formal))

1 atom (x) : E_{x} is an atom

$$
(\exists y \leqslant x)(\exists z \leqslant x)(\operatorname{term}(y) \wedge \operatorname{term}(z) \wedge(x=y \text { id } z \vee x=y \text { le } z))
$$

2 $\operatorname{Gen}(x, y): E_{y}=\forall w E_{x}$ for some variable w

$$
(\exists z \leqslant y)(\operatorname{Var}(z) \wedge y=9 z x)
$$

Definition (Formulas (formal))

1 atom $(x): E_{x}$ is an atom

$$
(\exists y \leqslant x)(\exists z \leqslant x)(\operatorname{term}(y) \wedge \operatorname{term}(z) \wedge(x=y \text { id } z \vee x=y \text { le } z))
$$

$2 \operatorname{Gen}(x, y): E_{y}=\forall w E_{x}$ for some variable w

$$
(\exists z \leqslant y)(\operatorname{Var}(z) \wedge y=9 z x)
$$

$3 \mathrm{R} 2(x, y, z): \mathcal{R}_{\mathrm{f}}\left(E_{x}, E_{y}, E_{z}\right)$ holds

$$
(z=\operatorname{neg}(x)) \vee(z=x \text { impl } y) \vee \operatorname{Gen}(x, z)
$$

Definition (Formulas (formal))

1 atom $(x): E_{x}$ is an atom

$$
(\exists y \leqslant x)(\exists z \leqslant x)(\operatorname{term}(y) \wedge \operatorname{term}(z) \wedge(x=y \text { id } z \vee x=y \text { le } z))
$$

$2 \operatorname{Gen}(x, y): E_{y}=\forall w E_{x}$ for some variable w

$$
(\exists z \leqslant y)(\operatorname{Var}(z) \wedge y=9 z x)
$$

$3 \mathrm{R} 2(x, y, z): \mathcal{R}_{\mathrm{f}}\left(E_{x}, E_{y}, E_{z}\right)$ holds

$$
(z=\operatorname{neg}(x)) \vee(z=x \text { impl } y) \vee \operatorname{Gen}(x, z)
$$

$4 \operatorname{Seqf}(x)$: E_{x} is a formation sequence for formulas

$$
\operatorname{Seq}(x) \wedge(\forall y \in x)\left(\operatorname{atom}(y) \vee\left(\exists z, w \prec_{x} y\right) \operatorname{R} 2(z, w, y)\right)
$$

Definition (Formulas (formal))

11 atom (x) : E_{x} is an atom

$$
(\exists y \leqslant x)(\exists z \leqslant x)(\operatorname{term}(y) \wedge \operatorname{term}(z) \wedge(x=y \text { id } z \vee x=y \text { le } z))
$$

2 $\operatorname{Gen}(x, y): E_{y}=\forall w E_{x}$ for some variable w

$$
(\exists z \leqslant y)(\operatorname{Var}(z) \wedge y=9 z x)
$$

3 R2 $(x, y, z): \mathcal{R}_{\mathrm{f}}\left(E_{x}, E_{y}, E_{z}\right)$ holds

$$
(z=\operatorname{neg}(x)) \vee(z=x \text { impl } y) \vee \operatorname{Gen}(x, z)
$$

$4 \operatorname{Seqf}(x)$: E_{x} is a formation sequence for formulas

$$
\operatorname{Seq}(x) \wedge(\forall y \in x)\left(\operatorname{atom}(y) \vee\left(\exists z, w \prec_{x} y\right) \operatorname{R} 2(z, w, y)\right)
$$

5 formula(x): E_{x} is a formula

$$
\exists y(\operatorname{Seqf}(y) \wedge x \in y)
$$

Definition (Provable and Refutable)

1 Axiom (x) : E_{X} is an axiom
on white board

Definition (Provable and Refutable)

1 Axiom (x) : E_{x} is an axiom on white board
$2 \mathrm{MP}(x, y, z): E_{z}$ follows by Modus Ponens from E_{x} and E_{y}

$$
y=x \operatorname{impl} z
$$

Definition (Provable and Refutable)

1 Axiom (x) : E_{X} is an axiom
on white board
$2 \mathrm{MP}(x, y, z): E_{z}$ follows by Modus Ponens from E_{x} and E_{y}

$$
y=x \operatorname{impl} z
$$

$3 \operatorname{Deriv}(x, y, z): E_{z}$ is derivable from E_{x} and E_{y}

$$
\operatorname{MP}(x, y, z) \vee \operatorname{Gen}(x, z)
$$

Definition (Provable and Refutable)

1 Axiom (x) : E_{X} is an axiom

on white board

$2 \mathrm{MP}(x, y, z): E_{z}$ follows by Modus Ponens from E_{x} and E_{y}

$$
y=x \operatorname{impl} z
$$

$3 \operatorname{Deriv}(x, y, z): E_{z}$ is derivable from E_{x} and E_{y}

$$
\operatorname{MP}(x, y, z) \vee \operatorname{Gen}(x, z)
$$

$4 \operatorname{Proof}(x): E_{x}$ is a proof in PE

$$
\operatorname{Seq}(x) \wedge(\forall y \in x)\left(\operatorname{Axiom}(y) \vee\left(\exists z, w \prec_{x} y\right) \operatorname{Deriv}(z, w, y)\right)
$$

Definition (Provable and Refutable)

1 Axiom (x) : E_{X} is an axiom

on white board

$2 \mathrm{MP}(x, y, z): E_{z}$ follows by Modus Ponens from E_{x} and E_{y}

$$
y=x \operatorname{impl} z
$$

$3 \operatorname{Deriv}(x, y, z): E_{z}$ is derivable from E_{x} and E_{y}

$$
\operatorname{MP}(x, y, z) \vee \operatorname{Gen}(x, z)
$$

$4 \operatorname{Proof}(x): E_{x}$ is a proof in PE

$$
\operatorname{Seq}(x) \wedge(\forall y \in x)\left(\operatorname{Axiom}(y) \vee\left(\exists z, w \prec_{x} y\right) \operatorname{Deriv}(z, w, y)\right)
$$

$5 \mathrm{P}_{\mathrm{E}}(x)$: E_{X} is provable in PE: $\exists y(\operatorname{Proof}(y) \wedge x \in y)$

Definition (Provable and Refutable)

1 Axiom (x) : E_{X} is an axiom

on white board

$2 \mathrm{MP}(x, y, z): E_{z}$ follows by Modus Ponens from E_{x} and E_{y}

$$
y=x \operatorname{impl} z
$$

$3 \operatorname{Deriv}(x, y, z): E_{z}$ is derivable from E_{x} and E_{y}

$$
\operatorname{MP}(x, y, z) \vee \operatorname{Gen}(x, z)
$$

$4 \operatorname{Proof}(x): E_{x}$ is a proof in PE

$$
\operatorname{Seq}(x) \wedge(\forall y \in x)\left(\operatorname{Axiom}(y) \vee\left(\exists z, w \prec_{x} y\right) \operatorname{Deriv}(z, w, y)\right)
$$

$5 \mathrm{P}_{\mathrm{E}}(x)$: E_{x} is provable in PE: $\exists y(\operatorname{Proof}(y) \wedge x \in y)$
$6 \mathrm{R}_{\mathrm{E}}(x)$: E_{x} is refutable in PE: $\mathrm{P}_{\mathrm{E}}(\operatorname{neg}(x))$

Lemma

all conditions are Arithmetic

Lemma
all conditions are Arithmetic

Theorem
the axiom system PE is incomplete

Lemma

all conditions are Arithmetic

Theorem the axiom system PE is incomplete

Proof.

- let $P_{E}\left(R_{E}\right)$ denote the set of Gödel numbers of provable (refutable) sentences of PE
- let $P\left(v_{1}\right)\left(R\left(v_{1}\right)\right)$ express these sets in \mathcal{L}_{E}
- $\neg P\left(v_{1}\right)$ expresses $\sim P_{E}$
- by Lemma (1) $\exists H\left(v_{1}\right)$ that expresses $\left(\sim P_{E}\right)^{*}$
- by Theorem ${ }^{(1)} H[\bar{h}]$ is Gödel sentence of $\left(\sim P_{E}\right)^{*}$
- hence $H[\bar{h}]$ is neither provable nor refutable

Lemma

all conditions are Arithmetic

Theorem the axiom system PE is incomplete

Proof.

- let $P_{E}\left(R_{E}\right)$ denote the set of Gödel numbers of provable (refutable) formulas of PE
- let $P\left(v_{1}\right)\left(R\left(v_{1}\right)\right)$ express these sets in \mathcal{L}_{E}
- $\neg P\left(v_{1}\right)$ expresses $\sim P_{E}$
- by Lemma (1) $\exists H\left(v_{1}\right)$ that expresses $\left(\sim P_{E}\right)^{*}$
- by Theorem ${ }^{(1)} H[\bar{h}]$ is Gödel sentence of $\left(\sim P_{E}\right)^{*}$
- hence $H[\bar{h}]$ is neither provable nor refutable

