

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\mathcal L$ Tarski's Theorem for Arithmetic the language \mathcal{L}_{F} , concatenation and Gödel numbering, Tarski's theorem, Gödel's Incompleteness Theorem the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations Georg Moser Gödel's Proof ω -consistency, a basic incompleteness theorem, ω -consistency lemma, Σ_0 -Institute of Computer Science @ UIBK complete subsystems, ω -incompleteness of PA Winter 2011 Rosser Systems abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theoren Incompleteness of PA with Exponentiation Arithmetisation of the Axiom System Lemma Definition for any $b \ge 2$, $n \ge 2$ • x begins y in base b notation if xB_by **1** the relations xB_{by} , xE_{by} , and xP_{by} are Arithmetic base b notation of x is prefix of base b notation of y**2** furthermore the following relation is Arithmetic • x ends y in base b notation if xE_by $x_1 *_b x_2 *_b \cdots *_b x_p P_b V \leftrightarrow$ base b notation of x is suffix of base b notation of y $(\exists z \leq y)(x_1 *_h x_2 *_h \cdots *_h x_n = z) \land (zP_h y)$ • x is part of y in base b notation if xP_by if x ends some number that begins yNotation Arithmetisation in the following we fix b = 13 and simply write $xB_{b}y \leftrightarrow x = y \lor (x \neq 0 \land (\exists z \leq y)(\exists w \leq y))$ $1 \times By, \times Ey, \times Py$ $(\operatorname{Pow}_{b}(w) \land (x \cdot w) *_{b} z = y))$ 2 xy instead of $x *_{13} y$ $x E_b y \leftrightarrow x = y \lor (\exists z \leq y)(z *_b x = y)$

 $xP_by \leftrightarrow (\exists z \leq y)(zE_by \wedge xB_bz)$

3 $x_1 \cdots x_n Py$ for $x_1 *_{13} \cdots *_{13} x_n Py$

Outline of the Lecture

General Idea Behind Gödel's Proof

completeness of PA with Exponentiation ncompleteness of PA with Exponentiation **Representing Sequences** Formation Sequences Definition (Formal Finite Sequences) Lemma the relations Seq x, $x \in y$, $x \prec_z y$ are Arithmetic • we represent the tuple (X_1, \ldots, X_n) as $\#X_1 \# \cdots \# X_n \#$ • $\lceil \#X_1 \# \cdots \# X_n \# \rceil$ will be the sequence number of the tuple Proof. • we define K_{11} : on the whiteboard $K_{11} := \{n \in \mathbb{N} \mid (n)_{13} \text{ does not contain } \delta\}$ • for $(a_1,\ldots,a_n) \in K_{11}^n$, define Some More Notation $\delta a_1 \delta \cdots \delta a_n \delta$ we write $(\forall x \in y)$ [some formula] instead of as the sequence number of (a_1, \ldots, a_n) $\forall x \ (x \in y \rightarrow \text{[some formula]})$ • x is a sequence number if $x = \delta a_1 \delta \cdots \delta a_n \delta$ for $a_i \in K_{11}$ and we write $(\exists x, y \prec_w z)$ [some formula] instead of • Seq x denotes that x is a sequence number $\exists x \exists y (x \prec_w z \land y \prec_w z \land [some formula])$ • $x \in y$ denotes that x is a member of a sequence encoded by y • $x \prec_z y$ denotes that $x \in z, y \in z$ and x occurs first Institute of Computer Science @ UIBK Gödel's Incompleteness Theorem GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem completeness of PA with Exponentiation Incompleteness of PA with Exponentiation Towards Expressing Provability Definition (Terms (explicit)) And Even More Notation • for expressions X, Y, Z we define $\mathcal{R}_t(X, Y, Z)$ iff we refer to the Gödel numbers of $(E_x + E_y)$, $(E_x \cdot E_y)$, $(E_x \exp E_y)$, E'_x as $Z = (X + Y) \lor Z = (X \cdot Y) \lor Z = (X \exp Y) \lor Z = X'$ $x \operatorname{pl} y = x \operatorname{tim} y = x \operatorname{expon} y = \operatorname{s}(x)$ • $\mathcal{R}_t(X, Y, Z)$ is called the formation relation for terms and to the Gödel numbers of $E_x = E_y$, $E_x \leq E_y$, $\neg E_x$, and $(E_x \rightarrow E_y)$ as • a formation sequence for terms is a finite sequence of expressions x id y x le y neg(x) x impl y X_1, X_2, \ldots, X_n such that X_i is **1** either a variable $((v_{1}...))$ or a numeral (0'...)l emma **2** or $\exists X_i, X_k (j, k < i)$ such that $\mathcal{R}_t(X_i, X_k, X_i)$ holds all above functions are Arithmetic • an expression t is a term, if \exists a formation sequence for terms of which t is a member Definition **1** Sb(x): E_x is a string of subscripts Definition (Formulas (explicit)) $(\forall y \leq x) (yPx \rightarrow 5Py)$

(as above)

ompleteness of PA with Exponentiation	Incompleteness of PA with Exponentiation
Definition (Terms (formal)) 1 Var(x): E_x is a variable $(\exists y \leq x) (Sb(y) \land x = 26y3)$ 2 Num(x): E_x is a numeral Pow ₁₃ (x) 3 R ₁ (x, y, z): $\mathcal{R}_t(E_x, E_y, E_z)$ holds $(z = x \text{ pl } y) \lor (z = x \text{ tim } y) \lor (z = x \text{ expon } y) \lor (z = s(x))$ 4 Seqt(x): E_x is a formation sequence for terms Seq(x) $\land (\forall y \in x)(Var(y) \lor Num(y) \lor (\exists z, w \prec_x y) R_1(z, w, y))$ 5 term(x): E_x is a term $\exists y(\text{Seqt}(y) \land x \in y)$	Definition (Formulas (formal)) atom(x): E_x is an atom $(\exists y \leq x)(\exists z \leq x) (term(y) \land term(z) \land (x = y \text{ id } z \lor x = y \text{ le } z))$ Gen(x, y): $E_y = \forall w E_x$ for some variable w $(\exists z \leq y)(Var(z) \land y = 9zx)$ R2(x, y, z): $\mathcal{R}_f(E_x, E_y, E_z)$ holds $(z = neg(x)) \lor (z = x \text{ impl } y) \lor \text{Gen}(x, z)$ Seqf(x): E_x is a formation sequence for formulas $Seq(x) \land (\forall y \in x) (atom(y) \lor (\exists z, w \prec_x y) R2(z, w, y))$ formula(x): E_x is a formula $\exists y(Seqf(y) \land x \in y)$
(Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem 27/ ompleteness of PA with Exponentiation Definition (Provable and Refutable)	30 GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem Incompleteness of PA with Exponentiation Gödel's Incompleteness Theorem
1 Axiom(x): E_x is an axiom	all conditions are Arithmetic
 on white board 2 MP(x, y, z): E_z follows by Modus Ponens from E_x and E_y y = x impl z 3 Deriv(x, y, z): E_z is derivable from E_x and E_y MP(x, y, z) ∨ Gen(x, z) 4 Proof(x): E_x is a proof in PE 	 Theorem the axiom system PE is incomplete Proof. let P_E (R_E) denote the set of Gödel numbers of provable (refutable formulas of PE let P(v₁) (R(v₁)) express these sets in L_E