

Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK

Winter 2011

Homework

• Exercise 6 in Chapter 2, that is:

By the method we have studied but using base 10 Gödel numbering, find a Gödel sentence X for the set of even numbers. Then X is true if the Gödel number of X is even. Is the sentence X true or false?

Homework

• Exercise 6 in Chapter 2, that is:

By the method we have studied but using base 10 Gödel numbering, find a Gödel sentence X for the set of even numbers. Then X is true if the Gödel number of X is even. Is the sentence X true or false?

Exercise 7 in Chapter 2, that is:

Find an Arithmetic function f(x) such that for any number n, if n is the Gödel number of a formula $F(v_1)$ with just the free variable v_1 , f(n) is the Gödel number of a Gödel sentence for the set expressed by $F(v_1)$.

Homework

• Exercise 6 in Chapter 2, that is:

By the method we have studied but using base 10 Gödel numbering, find a Gödel sentence X for the set of even numbers. Then X is true if the Gödel number of X is even. Is the sentence X true or false?

• Exercise 7 in Chapter 2, that is:

Find an Arithmetic function f(x) such that for any number n, if n is the Gödel number of a formula $F(v_1)$ with just the free variable v_1 , f(n) is the Gödel number of a Gödel sentence for the set expressed by $F(v_1)$.

• Exercise 1 in Chapter 3, that is:

Let Fr(x, y) be the relation E_x is a variable, E_y is a formula and E_x has at least one free occurrence in E_y . Show that Fr(x, y) is Arithmetic.

More Homework

• Exercise 2 in Chapter 3, that is:

Use the above exercise to show the following: (a) The set of Gödel numbers of sentences is Arithmetic. (b) The set of Gödel number of provable sentences in PE is Arithmetic.

More Homework

• Exercise 2 in Chapter 3, that is:

Use the above exercise to show the following: (a) The set of Gödel numbers of sentences is Arithmetic. (b) The set of Gödel number of provable sentences in PE is Arithmetic.

• Exercise 3 in Chapter 3, that is

Given any finite sequence $(a_1, b_1), (a_2, b_2), \dots, (a_n, b_n)$ of ordered pairs of numbers in K_{11} , we assign the sequence number

 $\delta \delta a_1 \delta b_1 \delta \delta \cdots \delta \delta a_n \delta b_n \delta \delta$

We let Seq₂(x) denote that x is sequence number. We let $(x, y) \in z$ denote that the pair (x, y) is a member of the sequence, numbered by z. Finally let $(x_1, y_1) \prec_z (x_2, y_2)$ denote that (x_1, y_1) occurs in z before (x_2, y_2) .

And Even More Homework

• Exercise 4 in Chapter 3, that is:

[...] Now let Sub(E, w, t, F) be the relation "E is a term or formula, w is a variable, t is a term and $F = E\{w \mapsto t\}$ ". Let $sub(x_1, x_2, x_3, x_4)$ be the corresponding relation on Gödel numbers. [...] Show that $sub(x_1, x_2, x_3, x_4)$ is Arithmetic.