Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK
Winter 2011

Left Over Homework

- Exercise 3 in Chapter 3, that is
[...] We let $\mathrm{Seq}_{2}(x)$ denote that x is sequence number. We let $(x, y) \in z$ denote that the pair (x, y) is a member of the sequence, numbered by z. Finally let $\left(x_{1}, y_{1}\right) \prec_{z}\left(x_{2}, y_{2}\right)$ denote that $\left(x_{1}, y_{1}\right)$ occurs in z before $\left(x_{2}, y_{2}\right)$.

Left Over Homework

- Exercise 3 in Chapter 3, that is
[...] We let $\mathrm{Seq}_{2}(x)$ denote that x is sequence number. We let $(x, y) \in z$ denote that the pair (x, y) is a member of the sequence, numbered by z. Finally let $\left(x_{1}, y_{1}\right) \prec_{z}\left(x_{2}, y_{2}\right)$ denote that $\left(x_{1}, y_{1}\right)$ occurs in z before $\left(x_{2}, y_{2}\right)$.
- Exercise 5 in Chapter 3, that is:
[...] Let $M(x, y, z)$ be the relation " E_{x} is substitutable for E_{y} in $E_{z} "$ and show that this is Arithmetic.

Left Over Homework

- Exercise 3 in Chapter 3, that is
[...] We let $\mathrm{Seq}_{2}(x)$ denote that x is sequence number.
We let $(x, y) \in z$ denote that the pair (x, y) is a member of the sequence, numbered by z. Finally let $\left(x_{1}, y_{1}\right) \prec_{z}\left(x_{2}, y_{2}\right)$ denote that $\left(x_{1}, y_{1}\right)$ occurs in z before $\left(x_{2}, y_{2}\right)$.
- Exercise 5 in Chapter 3, that is:
[...] Let $M(x, y, z)$ be the relation " E_{x} is substitutable for E_{y} in $E_{z} "$ and show that this is Arithmetic.
- Exercise 6 in Chapter 3, that is:
[...] Show that the set of Gödel numbers of the axioms of
L_{5}^{\prime} is Arithmetic.

Outline of the Lecture

General Idea Behind Gödel's Proof

 abstract forms of Gödel's, Tarski's theorems, undecidable sentences of \mathcal{L}Tarski's Theorem for Arithmetic
the language \mathcal{L}_{E}, concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_{1}-relations

Gödel's Proof
ω-consistency, a basic incompleteness theorem, ω-consistency lemma, Σ_{0-} complete subsystems, ω-incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Outline of the Lecture

General Idea Behind Gödel's Proof

 abstract forms of Gödel's, Tarski's theorems, undecidable sentences of \mathcal{L}Tarski's Theorem for Arithmetic
the language \mathcal{L}_{E}, concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_{1}-relations

Gödel's Proof
ω-consistency, a basic incompleteness theorem, ω-consistency lemma, Σ_{0-} complete subsystems, ω-incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Σ_{0}-relations

Definition

an atomic Σ_{0}-formula is a formula of the form

$$
s=t \quad s+t=u \quad s \cdot t=u \quad s \leqslant t
$$

where s, t, u are variables or numerals

$\Sigma_{0 \text {-relations }}$

Definition

an atomic Σ_{0}-formula is a formula of the form

$$
s=t \quad s+t=u \quad s \cdot t=u \quad s \leqslant t
$$

where s, t, u are variables or numerals

Definition

the Σ_{0}-formulas are defined inductively:
1 every atomic Σ_{0}-formula is a Σ_{0}-formula
2 if A, B are Σ_{0}-formulas, v_{i} a variable, t a numeral or variable $\neq v_{i}$, then

$$
\neg A \quad A \rightarrow B \quad \forall v_{i}\left(v_{i} \leqslant t \rightarrow A\right)
$$

are Σ_{0}-formulas

Convention

- as before we write $A \wedge B, A \vee B,\left(\forall v_{i} \leqslant t\right) A$ as abbreviations of

$$
\neg(A \rightarrow \neg B) \quad \neg A \rightarrow B \quad \forall v_{i}\left(v_{i} \leqslant t \rightarrow A\right)
$$

- we write $\left(\exists v_{i} \leqslant t\right) A$ as abbreviation for

$$
\neg\left(\forall v_{i} \leqslant t\right) \neg A
$$

Convention

- as before we write $A \wedge B, A \vee B,\left(\forall v_{i} \leqslant t\right) A$ as abbreviations of

$$
\neg(A \rightarrow \neg B) \quad \neg A \rightarrow B \quad \forall v_{i}\left(v_{i} \leqslant t \rightarrow A\right)
$$

- we write $\left(\exists v_{i} \leqslant t\right) A$ as abbreviation for

$$
\neg\left(\forall v_{i} \leqslant t\right) \neg A
$$

Definition

1 the quantifiers $\exists v_{i} \leqslant t$ and $\forall v_{i} \leqslant t$ are called bounded quantifiers
2 a relation is a Σ_{0}-relation if expressible by a Σ_{0}-formula
$3 \Sigma_{0}$-relations are called constructive arithmetic relations

Convention

- as before we write $A \wedge B, A \vee B,\left(\forall v_{i} \leqslant t\right) A$ as abbreviations of

$$
\neg(A \rightarrow \neg B) \quad \neg A \rightarrow B \quad \forall v_{i}\left(v_{i} \leqslant t \rightarrow A\right)
$$

- we write $\left(\exists v_{i} \leqslant t\right) A$ as abbreviation for

$$
\neg\left(\forall v_{i} \leqslant t\right) \neg A
$$

Definition

1 the quantifiers $\exists v_{i} \leqslant t$ and $\forall v_{i} \leqslant t$ are called bounded quantifiers
2 a relation is a Σ_{0}-relation if expressible by a Σ_{0}-formula
$3 \Sigma_{0}$-relations are called constructive arithmetic relations

Fact
 truthhood of Σ_{0}-sentences is decidable

Definition

11 a Σ_{1}-formula is a formula of the form

$$
\exists v_{n+1} F\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)
$$

where $F\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)$ is a Σ_{0}-formula
2 a relation is a Σ_{1}-relation if expressible by a Σ_{1}-formula

Definition

1 a Σ_{1}-formula is a formula of the form

$$
\exists v_{n+1} F\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)
$$

where $F\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)$ is a Σ_{0}-formula
2 a relation is a Σ_{1}-relation if expressible by a Σ_{1}-formula

Definition

we inductively define the class of Σ-formulas
1 every Σ_{0}-formula is a Σ-formula
2 if A, B are Σ-formula, v_{i} a variable, then
$A \vee B, A \wedge B$, and $\exists v_{i} A$ are Σ-formulas
3 if A is a Σ_{0}-formula and B a Σ-formula, then $A \rightarrow B$ is a Σ-formula
4 if A is a \sum-formula, v_{i}, v_{j} a distinct variables, and \bar{n} a numeral

$$
\left(\exists v_{i} \leqslant v_{j}\right) A \quad\left(\forall v_{i} \leqslant v_{j}\right) A \quad\left(\exists v_{i} \leqslant \bar{n}\right) A \quad\left(\forall v_{i} \leqslant \bar{n}\right) A
$$

Σ_{1}-relations

Definition
 a relation is called a Σ-relation if expressible by a Σ-formula

Σ_{1}-relations

Definition

a relation is called a Σ-relation if expressible by a Σ-formula

Lemma

- the \sum-relations are exactly the Σ_{1}-relations
- let $M=\{n \mid P(\bar{n})\}$, where P is a Σ-relations; then M is recursively enumerable

Σ_{1}-relations

Definition
 a relation is called a Σ-relation if expressible by a Σ-formula

Lemma

- the \sum-relations are exactly the Σ_{1}-relations
- let $M=\{n \mid P(\bar{n})\}$, where P is a \sum-relations; then M is recursively enumerable

Fact

the relation $x<y$ is Σ_{0}, as $x<y$ holds iff $x \leqslant y \wedge x \neq y$; hence we can make use of the bounded quantifiers $\exists x<t$ and $\forall x<t$

Concatenation to a Prime Basis

Lemma

for any prime number p, the following conditions is Σ_{0}
$1 \times \operatorname{div} y$, that is, $x \mid y$
$2 \operatorname{Pow}_{p}(x)$, that is x is a power of p
3 $y=p^{|x|_{p}}$, that is y is the smallest positive power of $p \geqslant x$
Proof.
on the whiteboard

Concatenation to a Prime Basis

Lemma

for any prime number p, the following conditions is Σ_{0}
$1 x \operatorname{div} y$, that is, $x \mid y$
$2 \operatorname{Pow}_{p}(x)$, that is x is a power of p
$3 y=p^{|x|_{p}}$, that is y is the smallest positive power of $p \geqslant x$
Proof.
on the whiteboard

Lemma
for any prime p, the relation $x *_{p} y=z$ is Σ_{0}
Proof.
on the whiteboard

Lemma

for any prime p, the following relations are Σ_{0} :
$1 x B_{p} y, x E_{p} y$, and $x P_{p} y$
$2 \forall n \geqslant 2: x_{1} *_{p} x_{2} *_{p} \cdots *_{p} x_{n}=y$
$3 \forall n \geqslant 2: x_{1} *_{p} x_{2} *_{p} \cdots *_{p} x_{n} P_{p} y$

Proof.

on the whiteboard

Lemma

for any prime p, the following relations are Σ_{0} :
$1 x B_{p} y, x E_{p} y$, and $x P_{p} y$
$2 \forall n \geqslant 2: x_{1} *_{p} x_{2} *_{p} \cdots *_{p} x_{n}=y$
$3 \forall n \geqslant 2: x_{1} *_{p} x_{2} *_{p} \cdots *_{p} x_{n} P_{p} y$
Proof.
on the whiteboard

Corollary

- the sets $\mathrm{P}_{\mathrm{E}}, \mathrm{R}_{\mathrm{E}}$ are arithmetic; more precisely they are Σ

Lemma

for any prime p, the following relations are Σ_{0} :
$1 x B_{p} y, x E_{p} y$, and $x P_{p} y$
$2 \forall n \geqslant 2: x_{1} *_{p} x_{2} *_{p} \cdots *_{p} x_{n}=y$
$3 \forall n \geqslant 2: x_{1} *_{p} x_{2} *_{p} \cdots *_{p} x_{n} P_{p} y$
Proof.
on the whiteboard

Corollary

- the sets $\mathrm{P}_{\mathrm{E}}, \mathrm{R}_{\mathrm{E}}$ are arithmetic; more precisely they are Σ
- as P_{E} is arithmetic, so is $\sim \mathrm{P}_{\mathrm{E}}$

Lemma

for any prime p, the following relations are Σ_{0} :
$1 x B_{p} y, x E_{p} y$, and $x P_{p} y$
$2 \forall n \geqslant 2: x_{1} *_{p} x_{2} *_{p} \cdots *_{p} x_{n}=y$
$3 \forall n \geqslant 2: x_{1} *_{p} x_{2} *_{p} \cdots *_{p} x_{n} P_{p} y$
Proof.
on the whiteboard
Corollary

- the sets $\mathrm{P}_{\mathrm{E}}, \mathrm{R}_{\mathrm{E}}$ are arithmetic; more precisely they are Σ
- as P_{E} is arithmetic, so is $\sim \mathrm{P}_{\mathrm{E}}$

Definition

the axiom system PA is defined as $P A=P E-\{\exp \}$

Exponentiation is arithmetic

Lemma (The Finite Set Lemma)
\exists a Σ_{0}-relation $K(x, y, z)$ such that
$1 \forall$ finite sequences $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ of pairs of natural numbers $\exists z \in \mathbb{N}$ such that $\forall x, y \in \mathbb{N}, K(x, y, z)$ holds iff $(x, y)=\left(a_{i}, b_{i}\right)$ for some $i \in\{1, \ldots, n\}$
2 if $K(x, y, z)$ holds, then $x, y \leqslant z$

Exponentiation is arithmetic

Lemma (The Finite Set Lemma)

\exists a Σ_{0}-relation $K(x, y, z)$ such that
$1 \forall$ finite sequences $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$ of pairs of natural numbers $\exists z \in \mathbb{N}$ such that $\forall x, y \in \mathbb{N}, K(x, y, z)$ holds iff $(x, y)=\left(a_{i}, b_{i}\right)$ for some $i \in\{1, \ldots, n\}$
2 if $K(x, y, z)$ holds, then $x, y \leqslant z$

Theorem
the relation $x^{y}=z$ is Σ_{1}

Proof.
on the whiteboard using the above lemma

Proof of The Finite Set Lemma

Convention
we identify numbers with their base 13 representation

Proof of The Finite Set Lemma

Convention

we identify numbers with their base 13 representation

Definition

- a frame is a number of the form

$$
21 \cdots 13
$$

Proof of The Finite Set Lemma

Convention

we identify numbers with their base 13 representation

Definition

- a frame is a number of the form

$$
21 \cdots 13
$$

- $1(x)$ denotes that $x=1 \cdots 1,1(x)$ is Σ_{0}

$$
1(x): \Leftrightarrow x \neq 0 \wedge(\forall y \leqslant x)(y P x \rightarrow 1 P y)
$$

Proof of The Finite Set Lemma

Convention

we identify numbers with their base 13 representation

Definition

- a frame is a number of the form

$$
21 \cdots 13
$$

- $1(x)$ denotes that $x=1 \cdots 1,1(x)$ is Σ_{0}

$$
1(x): \Leftrightarrow x \neq 0 \wedge(\forall y \leqslant x)(y P x \rightarrow 1 P y)
$$

- let $\theta=\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)$ and let f be the any frame which is longer than any frame that is part of any of the numbers in θ, then a sequence number of θ is

$$
f f a_{1} f b_{1} f f \cdots f f a_{n} f b_{n} f f
$$

Proof of The Finite Set Lemma

Convention

we identify numbers with their base 13 representation

Definition

- a frame is a number of the form

$$
21 \cdots 13
$$

- $1(x)$ denotes that $x=1 \cdots 1,1(x)$ is Σ_{0}

$$
1(x): \Leftrightarrow x \neq 0 \wedge(\forall y \leqslant x)(y P x \rightarrow 1 P y)
$$

- let $\theta=\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right)$ and let f be the any frame which is longer than any frame that is part of any of the numbers in θ, then a sequence number of θ is

$$
f f a_{1} f b_{1} f f \cdots f f a_{n} f b_{n} f f
$$

the frame f plays the role previously played by δ

Definition

- x is maximal frame of y if
$1 x$ is a frame
$2 x$ is part of y
$3 x$ is as a long as any frame in y

Definition

- x is maximal frame of y if
$1 x$ is a frame
$2 x$ is part of y
$3 x$ is as a long as any frame in y
- let $x \mathrm{mf} y$ express that x is a maximal frame of y

Definition

- x is maximal frame of y if
$1 x$ is a frame
$2 x$ is part of y
$3 x$ is as a long as any frame in y
- let $x \mathrm{mf} y$ express that x is a maximal frame of y
- x mf y is Σ_{0} :

$$
x P y \wedge(\exists z \leqslant y)(1(z) \wedge x=2 z 3 \wedge \neg(\exists w \leqslant y)(1(w) \wedge 2 z w 3 P y))
$$

Definition

- x is maximal frame of y if
$1 x$ is a frame
$2 x$ is part of y
$3 x$ is as a long as any frame in y
- let $x \mathrm{mf} y$ express that x is a maximal frame of y
- $x \mathrm{mf} y$ is Σ_{0} :

$$
x P y \wedge(\exists z \leqslant y)(1(z) \wedge x=2 z 3 \wedge \neg(\exists w \leqslant y)(1(w) \wedge 2 z w 3 P y))
$$

Definition

we define the relation $K(x, y, z)$:

$$
(\exists w \leqslant z)(w \mathrm{mf} z \wedge w w x w y w w P z \wedge \neg(w P x) \wedge \neg(w P y))
$$

Incompleteness of PA

Theorem
the relation $x^{y}=z$ is Σ_{1}

Incompleteness of PA

Theorem the relation $x^{y}=z$ is Σ_{1}

Corollary

for any arithmetic set A, the set A^{*} is arithmetic; moreover if A is Σ, so is A^{*}

Incompleteness of PA

Theorem the relation $x^{y}=z$ is Σ_{1}

Corollary

for any arithmetic set A, the set A^{*} is arithmetic; moreover if A is Σ, so is A^{*}

Corollary

the set of Gödel numbers of true arithmetic sentences is not arithmetic

Incompleteness of PA

Theorem the relation $x^{y}=z$ is Σ_{1}

Corollary

for any arithmetic set A, the set A^{*} is arithmetic; moreover if A is Σ, so is A^{*}

Corollary

the set of Gödel numbers of true arithmetic sentences is not arithmetic

Corollary

the system PA is incomplete

