

Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK

Winter 2011

Left Over Homework

Exercise 3 in Chapter 3, that is

[...] We let $Seq_2(x)$ denote that x is sequence number. We let $(x, y) \in z$ denote that the pair (x, y) is a member of the sequence, numbered by z. Finally let $(x_1, y_1) \prec_z (x_2, y_2)$ denote that (x_1, y_1) occurs in z before (x_2, y_2) .

Left Over Homework

Exercise 3 in Chapter 3, that is

[...] We let $Seq_2(x)$ denote that x is sequence number. We let $(x,y) \in z$ denote that the pair (x,y) is a member of the sequence, numbered by z. Finally let $(x_1,y_1) \prec_z (x_2,y_2)$ denote that (x_1,y_1) occurs in z before (x_2,y_2) .

• Exercise 5 in Chapter 3, that is:

[...] Let M(x, y, z) be the relation " E_x is substitutable for E_y in E_z " and show that this is Arithmetic.

Left Over Homework

Exercise 3 in Chapter 3, that is

[...] We let $Seq_2(x)$ denote that x is sequence number. We let $(x, y) \in z$ denote that the pair (x, y) is a member of the sequence, numbered by z. Finally let $(x_1, y_1) \prec_z (x_2, y_2)$ denote that (x_1, y_1) occurs in z before (x_2, y_2) .

• Exercise 5 in Chapter 3, that is:

[...] Let M(x, y, z) be the relation " E_x is substitutable for E_y in E_z " and show that this is Arithmetic.

Exercise 6 in Chapter 3, that is:

[...] Show that the set of Gödel numbers of the axioms of L_5' is Arithmetic.

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of ${\cal L}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 ω -consistency, a basic incompleteness theorem, ω -consistency lemma, Σ_0 -complete subsystems, ω -incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of ${\cal L}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 ω -consistency, a basic incompleteness theorem, ω -consistency lemma, Σ_0 -complete subsystems, ω -incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Σ_0 -relations

Definition

an atomic Σ_0 -formula is a formula of the form

$$s = t$$
 $s + t = u$ $s \cdot t = u$ $s \leqslant t$

where s, t, u are variables or numerals

Σ_0 -relations

Definition

an atomic Σ_0 -formula is a formula of the form

$$s = t$$
 $s + t = u$ $s \cdot t = u$ $s \leqslant t$

where s, t, u are variables or numerals

Definition

the Σ_0 -formulas are defined inductively:

- 1 every atomic Σ_0 -formula is a Σ_0 -formula
- 2 if A, B are Σ_0 -formulas, v_i a variable, t a numeral or variable $\neq v_i$, then

$$\neg A$$
 $A \rightarrow B$ $\forall v_i (v_i \leqslant t \rightarrow A)$

are Σ_0 -formulas

Convention

• as before we write $A \wedge B$, $A \vee B$, $(\forall v_i \leq t)$ A as abbreviations of

$$\neg (A \rightarrow \neg B)$$
 $\neg A \rightarrow B$ $\forall v_i (v_i \leqslant t \rightarrow A)$

• we write $(\exists v_i \leq t)$ A as abbreviation for

$$\neg(\forall v_i \leqslant t)\neg A$$

Convention

• as before we write $A \wedge B$, $A \vee B$, $(\forall v_i \leq t)$ A as abbreviations of

$$\neg (A \rightarrow \neg B)$$
 $\neg A \rightarrow B$ $\forall v_i (v_i \leqslant t \rightarrow A)$

• we write $(\exists v_i \leqslant t)$ A as abbreviation for

$$\neg(\forall v_i \leqslant t)\neg A$$

- **1** the quantifiers $\exists v_i \leqslant t$ and $\forall v_i \leqslant t$ are called bounded quantifiers
- ${\color{red} {f 2}}$ a relation is a ${\color{gray} {f \Sigma}_0}$ -relation if expressible by a ${\color{gray} {f \Sigma}_0}$ -formula
- Σ_0 -relations are called constructive arithmetic relations

Convention

• as before we write $A \wedge B$, $A \vee B$, $(\forall v_i \leq t)$ A as abbreviations of

$$\neg (A \rightarrow \neg B)$$
 $\neg A \rightarrow B$ $\forall v_i (v_i \leqslant t \rightarrow A)$

• we write $(\exists v_i \leqslant t)$ A as abbreviation for

$$\neg(\forall v_i \leqslant t)\neg A$$

Definition

- **1** the quantifiers $\exists v_i \leqslant t$ and $\forall v_i \leqslant t$ are called bounded quantifiers
- **2** a relation is a Σ_0 -relation if expressible by a Σ_0 -formula
- Σ_0 -relations are called constructive arithmetic relations

Fact

truthhood of Σ_0 -sentences is decidable

1 a Σ_1 -formula is a formula of the form

$$\exists v_{n+1} F(v_1, \ldots, v_n, v_{n+1})$$

where $F(v_1,\ldots,v_n,v_{n+1})$ is a Σ_0 -formula

2 a relation is a Σ_1 -relation if expressible by a Σ_1 -formula

1 a Σ_1 -formula is a formula of the form

$$\exists v_{n+1} F(v_1, \ldots, v_n, v_{n+1})$$

where $F(v_1, \ldots, v_n, v_{n+1})$ is a Σ_0 -formula

2 a relation is a Σ_1 -relation if expressible by a Σ_1 -formula

Definition

we inductively define the class of Σ -formulas

- 1 every Σ_0 -formula is a Σ -formula
- \square if A, B are Σ -formula, v_i a variable, then $A \vee B$, $A \wedge B$, and $\exists v_i A$ are Σ -formulas
- if A is a Σ_0 -formula and B a Σ -formula, then $A \to B$ is a Σ -formula
- 4 if A is a Σ-formula, v_i , v_i a distinct variables, and \overline{n} a numeral

$$(\exists v_i \leqslant v_i)A$$
 $(\forall v_i \leqslant v_i)A$ $(\exists v_i \leqslant \overline{n})A$ $(\forall v_i \leqslant \overline{n})A$

$$(\forall v_i \leq v_i)A$$

$$(\exists v_i \leqslant \overline{n})A$$

$$(\forall v_i \leqslant \overline{n})A$$

Σ_1 -relations

Definition

a relation is called a Σ -relation if expressible by a Σ -formula

Σ_1 -relations

Definition

a relation is called a Σ -relation if expressible by a Σ -formula

Lemma

- the Σ -relations are exactly the Σ_1 -relations
- let $M = \{n \mid P(\overline{n})\}$, where P is a Σ -relations; then M is recursively enumerable

Σ_1 -relations

Definition

a relation is called a Σ -relation if expressible by a Σ -formula

Lemma

- the Σ -relations are exactly the Σ_1 -relations
- let $M = \{n \mid P(\overline{n})\}$, where P is a Σ -relations; then M is recursively enumerable

Fact

the relation x < y is Σ_0 , as x < y holds iff $x \leqslant y \land x \neq y$; hence we can make use of the bounded quantifiers $\exists x < t$ and $\forall x < t$

Concatenation to a Prime Basis

Lemma

for any prime number p, the following conditions is Σ_0

- 1 x div y, that is, $x \mid y$
- $Pow_p(x)$, that is x is a power of p
- **3** $y = p^{|x|_p}$, that is y is the smallest positive power of $p \ge x$

Proof.

Concatenation to a Prime Basis

Lemma

for any prime number p, the following conditions is Σ_0

- $\mathbf{1} \times \text{div } y$, that is, $x \mid y$
- $Pow_p(x)$, that is x is a power of p
- 3 $y = p^{|x|_p}$, that is y is the smallest positive power of $p \geqslant x$

Proof.

on the whiteboard

Lemma

for any prime p, the relation $x *_p y = z$ is Σ_0

Proof.

for any prime p, the following relations are Σ_0 :

- $\blacksquare xB_py$, xE_py , and xP_py
- **2** $\forall n \geqslant 2: x_1 *_p x_2 *_p \cdots *_p x_n = y$
- $\exists \forall n \ge 2: x_1 *_p x_2 *_p \cdots *_p x_n P_p y$

Proof.

for any prime p, the following relations are Σ_0 :

- $\blacksquare xB_py, xE_py, and xP_py$
- 2 $\forall n \ge 2: x_1 *_p x_2 *_p \cdots *_p x_n = y$
- 3 $\forall n \ge 2: x_1 *_p x_2 *_p \cdots *_p x_n P_p y$

Proof.

on the whiteboard

Corollary

• the sets P_E , R_E are arithmetic; more precisely they are Σ

GM (Institute of Computer Science @ UIBK)

for any prime p, the following relations are Σ_0 :

- $\blacksquare xB_py, xE_py, and xP_py$
- 2 $\forall n \ge 2: x_1 *_p x_2 *_p \cdots *_p x_n = y$
- $\exists \forall n \ge 2: x_1 *_p x_2 *_p \cdots *_p x_n P_p y$

Proof.

- the sets P_E, R_E are arithmetic; more precisely they are Σ
- as P_E is arithmetic, so is $\sim P_E$

for any prime p, the following relations are Σ_0 :

- 1 xB_py , xE_py , and xP_py
- 2 $\forall n \ge 2: x_1 *_p x_2 *_p \cdots *_p x_n = y$
- 3 $\forall n \ge 2: x_1 *_p x_2 *_p \cdots *_p x_n P_p y$

Proof.

on the whiteboard

- the sets P_E , R_E are arithmetic; more precisely they are Σ
- as P_E is arithmetic, so is $\sim P_E$

Definition

the axiom system PA is defined as $PA = PE - \{exp\}$

Exponentiation is arithmetic

Lemma (The Finite Set Lemma)

- \exists a Σ_0 -relation K(x, y, z) such that
 - If \forall finite sequences $(a_1, b_1), \ldots, (a_n, b_n)$ of pairs of natural numbers $\exists z \in \mathbb{N}$ such that $\forall x, y \in \mathbb{N}$, K(x, y, z) holds iff $(x, y) = (a_i, b_i)$ for some $i \in \{1, \ldots, n\}$
 - 2 if K(x, y, z) holds, then $x, y \leq z$

Exponentiation is arithmetic

Lemma (The Finite Set Lemma)

- \exists a Σ_0 -relation K(x, y, z) such that
 - If \forall finite sequences $(a_1, b_1), \ldots, (a_n, b_n)$ of pairs of natural numbers $\exists z \in \mathbb{N}$ such that $\forall x, y \in \mathbb{N}$, K(x, y, z) holds iff $(x, y) = (a_i, b_i)$ for some $i \in \{1, \ldots, n\}$
 - 2 if K(x, y, z) holds, then $x, y \leq z$

Theorem

the relation $x^y = z$ is Σ_1

Proof.

on the whiteboard using the above lemma

Convention

we identify numbers with their base 13 representation

Convention

we identify numbers with their base 13 representation

Definition

• a frame is a number of the form

 $21 \cdots 13$

Convention

we identify numbers with their base 13 representation

Definition

a frame is a number of the form

$$21 \cdots 13$$

• 1(x) denotes that $x = 1 \cdots 1$, 1(x) is Σ_0

$$1(x) : \Leftrightarrow x \neq 0 \land (\forall y \leqslant x)(yPx \rightarrow 1Py)$$

Convention

we identify numbers with their base 13 representation

Definition

a frame is a number of the form

$$21 \cdot \cdot \cdot 13$$

• 1(x) denotes that $x = 1 \cdots 1$, 1(x) is Σ_0

$$1(x) : \Leftrightarrow x \neq 0 \land (\forall y \leqslant x)(yPx \rightarrow 1Py)$$

• let $\theta = ((a_1, b_1), \dots, (a_n, b_n))$ and let f be the any frame which is longer than any frame that is part of any of the numbers in θ , then a sequence number of θ is

$$ffa_1 fb_1 ff \cdots ffa_n fb_n ff$$

Convention

we identify numbers with their base 13 representation

Definition

a frame is a number of the form

$$21 \cdots 13$$

• 1(x) denotes that $x = 1 \cdots 1$, 1(x) is Σ_0

$$1(x) : \Leftrightarrow x \neq 0 \land (\forall y \leqslant x)(yPx \rightarrow 1Py)$$

• let $\theta = ((a_1, b_1), \dots, (a_n, b_n))$ and let f be the any frame which is longer than any frame that is part of any of the numbers in θ , then a sequence number of θ is

$$ffa_1 fb_1 ff \cdots ffa_n fb_n ff$$

- x is maximal frame of y if
 - 1 x is a frame
 - 2 x is part of y
 - $3 \times is$ as a long as any frame in y

- x is maximal frame of y if
 - 1 x is a frame
 - 2 x is part of y
 - $3 \times is$ as a long as any frame in y
- let $x \operatorname{mf} y$ express that x is a maximal frame of y

- x is maximal frame of y if
 - 1 x is a frame
 - 2 x is part of y
 - 3 x is as a long as any frame in y
- let x mf y express that x is a maximal frame of y
- $x \text{ mf } y \text{ is } \Sigma_0$:

$$xPy \wedge (\exists z \leqslant y)(1(z) \wedge x = 2z3 \wedge \neg (\exists w \leqslant y)(1(w) \wedge 2zw3Py))$$

- x is maximal frame of y if
 - 1 x is a frame
 - 2 x is part of y
 - $3 \times is$ as a long as any frame in y
- let x mf y express that x is a maximal frame of y
- $x \operatorname{mf} y \text{ is } \Sigma_0$:

$$xPy \wedge (\exists z \leqslant y)(1(z) \wedge x = 2z3 \wedge \neg (\exists w \leqslant y)(1(w) \wedge 2zw3Py))$$

Definition

we define the relation K(x, y, z):

$$(\exists w \leqslant z)(w \text{ mf } z \land wwxwywwPz \land \neg(wPx) \land \neg(wPy))$$

Theorem

the relation $x^y = z$ is Σ_1

Theorem

the relation $x^y = z$ is Σ_1

Corollary

for any arithmetic set A, the set A^* is arithmetic; moreover if A is Σ , so is A^*

Theorem

the relation $x^y = z$ is Σ_1

Corollary

for any arithmetic set A, the set A^* is arithmetic; moreover if A is Σ , so is A^*

Corollary

the set of Gödel numbers of true arithmetic sentences is not arithmetic

Theorem

the relation $x^y = z$ is Σ_1

Corollary

for any arithmetic set A, the set A^* is arithmetic; moreover if A is Σ , so is A^*

Corollary

the set of Gödel numbers of true arithmetic sentences is not arithmetic

Corollary

the system PA is incomplete