

Gödel's Incompleteness Theorem

Georg Moser

Winter 2011

Outline of the Lecture

General Idea Behind Gödel's Proof abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\mathcal L$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 ω -consistency, a basic incompleteness theorem, ω -consistency lemma, Σ_0 complete subsystems, ω -incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Homework

Left Over Homework

• Exercise 3 in Chapter 3, that is

[...] We let $Seq_2(x)$ denote that x is sequence number. We let $(x, y) \in z$ denote that the pair (x, y) is a member of the sequence, numbered by z. Finally let $(x_1, y_1) \prec_z (x_2, y_2)$ denote that (x_1, y_1) occurs in z before $(x_2, y_2).$

• Exercise 5 in Chapter 3, that is:

[...] Let M(x, y, z) be the relation " E_x is substitutable for E_v in E_z " and show that this is Arithmetic.

• Exercise 6 in Chapter 3, that is:

[...] Show that the set of Gödel numbers of the axioms of L'_{5} is Arithmetic.

Σ_0 -relations

∑₁-relations

GM (Institute of Computer Science @ UIBK)

Definition

an atomic Σ_0 -formula is a formula of the form

s = t s + t = u $s \cdot t = u$ $s \leq t$

Gödel's Incompleteness Theorem

where s, t, u are variables or numerals

Definition

the Σ_0 -formulas are defined inductively:

- **1** every atomic Σ_0 -formula is a Σ_0 -formula
- **2** if A, B are Σ_0 -formulas, v_i a variable, t a numeral or variable $\neq v_i$, then

```
\neg A \qquad A \rightarrow B \qquad \forall v_i (v_i \leq t \rightarrow A)
```

are Σ_0 -formulas

	Σ_1 -relations
<section-header> Convention as before we write A ∧ B, A ∨ B, (∀v_i ≤ t) A as abbreviations of ¬(A → ¬B) ¬A → B ∀v_i(v_i ≤ t → A) we write (∃v_i ≤ t) A as abbreviation for ¬(∀v_i ≤ t)¬A Definition the quantifiers ∃v_i ≤ t and ∀v_i ≤ t are called bounded quantifiers a relation is a Σ₀-relation if expressible by a Σ₀-formula Σ₀-relations are called constructive arithmetic relations Fact truthhood of Σ₀-sentences is decidable</section-header>	 Definition a Σ₁-formula is a formula of the form
Σ_1 -relations	Concatenation to a Prime Basis Concatenation to a Prime Basis
Definition a relation is called a Σ -relation if expressible by a Σ -formula Lemma • the Σ -relations are exactly the Σ_1 -relations • let $M = \{n \mid P(\overline{n})\}$, where P is a Σ -relations; then M is recursively enumerable	Lemma for any prime number p, the following conditions is Σ_0 1 x div y, that is, x y 2 Pow _p (x), that is x is a power of p 3 $y = p^{ x _p}$, that is y is the smallest positive power of $p \ge x$ Proof. on the whiteboard

oncatenation to a Prime Basis	The Finite Set Lemma
Lemma for any prime p, the following relations are Σ_0 : 1 xB_py , xE_py , and xP_py 2 $\forall n \ge 2$: $x_1 *_p x_2 *_p \cdots *_p x_n = y$ 3 $\forall n \ge 2$: $x_1 *_p x_2 *_p \cdots *_p x_n P_py$ Proof. on the whiteboard Corollary • the sets P _E , R _E are arithmetic; more precisely they are Σ	Exponentiation is arithmetic Lemma (The Finite Set Lemma) $\exists a \Sigma_0$ -relation $K(x, y, z)$ such that $\blacksquare \forall$ finite sequences $(a_1, b_1), \ldots, (a_n, b_n)$ of pairs of natural numbers $\exists z \in \mathbb{N}$ such that $\forall x, y \in \mathbb{N}$, $K(x, y, z)$ holds iff $(x, y) = (a_i, b_i)$ for some $i \in \{1, \ldots, n\}$ \supseteq if $K(x, y, z)$ holds, then $x, y \leq z$ Theorem the relation $x^y = z$ is Σ_1
• as P_E is arithmetic, so is $\sim P_E$ Definition the axiom system PA is defined as $PA = PE - \{exp\}$	Proof. on the whiteboard using the above lemma
A (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem 76/8 ne Finite Set Lemma	6 GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem 77 The Finite Set Lemma
Proof of The Finite Set Lemma Convention we identify numbers with their base 13 representation	 Definition x is maximal frame of y if x is a frame
Definition • a frame is a number of the form $21 \cdots 13$ • $1(x)$ denotes that $x = 1 \cdots 1$, $1(x)$ is Σ_0 $1(x) :\Leftrightarrow x \neq 0 \land (\forall y \leq x)(yPx \rightarrow 1Py)$	 2 x is part of y 3 x is as a long as any frame in y let x mf y express that x is a maximal frame of y x mf y is Σ₀: xPy ∧ (∃z ≤ y)(1(z) ∧ x = 2z3 ∧ ¬(∃w ≤ y)(1(w) ∧ 2zw3Py))
 let θ = ((a₁, b₁),, (a_n, b_n)) and let f be the any frame which is longer than any frame that is part of any of the numbers in θ, then a sequence number of θ is <i>ffa</i>₁<i>fb</i>₁<i>ff</i> ··· <i>ffa</i>_n<i>fb</i>_n<i>ff</i> the frame f plays the role previously played by δ 	Definition we define the relation $K(x, y, z)$: $(\exists w \leq z)(w \text{ mf } z \land wwxwywwPz \land \neg(wPx) \land \neg(wPy))$

completeness of PA

Incompleteness of PA

Theorem

the relation $x^y = z$ is Σ_1

Corollary

for any arithmetic set A, the set A^* is arithmetic; moreover if A is Σ , so is A^*

Corollary

the set of Gödel numbers of true arithmetic sentences is not arithmetic

80/86

Corollary

the system PA is incomplete

GM (Institute of Computer Science @ UIBK) Gödel's Incompleteness Theorem