

Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK

Winter 2011

Homework

• Chapter IV, Exercise 1, that is:

[...] Since G is a true sentence, the system $PA \cup \{G\}$ is also a correct system. Is it complete?

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\ensuremath{\mathcal{L}}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 $\omega\text{-}consistency,$ a basic incompleteness theorem, $\omega\text{-}consistency$ lemma, $\Sigma_0\text{-}$ complete subsystems, $\omega\text{-}incompleteness$ of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of ${\cal L}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof ω -consistency, a basic incompleteness theorem, ω -consistency lemma, Σ_0 complete subsystems, ω -incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Lemma

1 any Σ_0 -relation is Σ_1

Proof.

Lemma

- **1** any Σ_0 -relation is Σ_1
- **2** if $R(x_1, \ldots, x_n, y)$ is Σ_1 , then the following relation is Σ_1 :

 $\exists y R(x_1,\ldots,x_n,y)$

Proof.

Lemma

- **1** any Σ_0 -relation is Σ_1
- **2** if $R(x_1, \ldots, x_n, y)$ is Σ_1 , then the following relation is Σ_1 :

 $\exists y R(x_1,\ldots,x_n,y)$

3 if $R_1(x_1, \ldots, x_n)$ and $R_2(x_1, \ldots, x_n)$ are Σ_1 , then so are the relations: $R_1(x_1, \ldots, x_n) \lor R_2(x_1, \ldots, x_n)$ $R_1(x_1, \ldots, x_n) \land R_2(x_1, \ldots, x_n)$

Proof.

Lemma

- **1** any Σ_0 -relation is Σ_1
- **2** if $R(x_1, \ldots, x_n, y)$ is Σ_1 , then the following relation is Σ_1 :

 $\exists y R(x_1,\ldots,x_n,y)$

- 3 if $R_1(x_1, \ldots, x_n)$ and $R_2(x_1, \ldots, x_n)$ are Σ_1 , then so are the relations: $R_1(x_1, \ldots, x_n) \lor R_2(x_1, \ldots, x_n)$ $R_1(x_1, \ldots, x_n) \land R_2(x_1, \ldots, x_n)$
- 4 if R is Σ_0 , S is Σ_1 , then $R \to S$ is Σ_1

Proof.

Lemma

- **1** any Σ_0 -relation is Σ_1
- **2** if $R(x_1, \ldots, x_n, y)$ is Σ_1 , then the following relation is Σ_1 :

 $\exists y R(x_1,\ldots,x_n,y)$

- 3 if $R_1(x_1, \ldots, x_n)$ and $R_2(x_1, \ldots, x_n)$ are Σ_1 , then so are the relations: $R_1(x_1, \ldots, x_n) \lor R_2(x_1, \ldots, x_n)$ $R_1(x_1, \ldots, x_n) \land R_2(x_1, \ldots, x_n)$
- 4 if R is Σ_0 , S is Σ_1 , then $R \to S$ is Σ_1
- 5 if $R(x_1, \ldots, x_n, y, z)$ is Σ_1 , then so are the relations:

 $(\exists y \leq z)R(x_1, \ldots, x_n, y, z)$ $(\forall y \leq z)R(x_1, \ldots, x_n, y, z)$

Proof.

the Σ -relations are exactly the Σ_1 -relations

Proof.

by induction on the degree of formulas representing the relations using the above lemma

the Σ -relations are exactly the Σ_1 -relations

Proof.

by induction on the degree of formulas representing the relations using the above lemma

Corollary

- 1 if A is Σ_1 , then so is A^*
- **2** the sets $(P_A)^*$ and $(R_A)^*$ are Σ_1

the Σ -relations are exactly the Σ_1 -relations

Proof.

by induction on the degree of formulas representing the relations using the above lemma

```
Corollary

1 if A is \Sigma_1, then so is A*

2 the sets (P<sub>A</sub>)* and (R<sub>A</sub>)* are \Sigma_1

what is this?
```

Recursive Sets

Definition

- a set or relation R is called recursive if R and $\sim R$ is Σ_1
- a function $f(x_1, ..., x_n)$ is recursive if the relation $f(x_1, ..., x_n) = y$ is recursive

Recursive Sets

Definition

- a set or relation R is called recursive if R and $\sim R$ is Σ_1
- a function $f(x_1, ..., x_n)$ is recursive if the relation $f(x_1, ..., x_n) = y$ is recursive

Lemma

we define
$$\pi(x):=13^{x^2+x+1}$$
, then $\pi(x)$ is recursive

Recursive Sets

Definition

- a set or relation R is called recursive if R and \sim R is Σ_1
- a function $f(x_1, ..., x_n)$ is recursive if the relation $f(x_1, ..., x_n) = y$ is recursive

Lemma

we define
$$\pi(x):=13^{x^2+x+1}$$
, then $\pi(x)$ is recursive

Theorem

 $\forall n \in \mathbb{N}, k \leq n$, sequence (a_1, \ldots, a_k) such that $a_i \in K_{11}$ and $a_i \leq n$, then we have: $\delta a_1 \delta \ldots \delta a_k \delta \leq \pi(n)$

Proof.

on whiteboard

let $M = \{n \mid P(\overline{n})\}$, where P is a Σ -relations; then M is recursively enumerable

Proof.

- let *M* be a Turing machine (TM)
- let α , β be configurations of a TM
- let $\xrightarrow{n}{M}$ denote the *n*-step relation of a TM and recall: $\alpha \xrightarrow{*} \beta :\Leftrightarrow \exists n \ \alpha \xrightarrow{n} \beta$

$$a \xrightarrow{*} \beta : \Leftrightarrow \exists n \; \alpha \xrightarrow{n} \beta$$

- the relation $\alpha \xrightarrow[M]{n} \beta$ is recursive
- recall

$$\mathsf{L}(M) = \{x \in \Sigma^* \mid (s, \vdash x \sqcup^{\infty}, 0) \xrightarrow{*}_{M} (t, y, n)\}$$

the set L(M) is Σ₁

Corollary the system PA is incomplete

the system PA is incomplete

Proof.

- $(\sim P_A)^*$ is arithmetic
- \exists arithmetic formula $H(v_1)$ expressing $(\sim P_A)^*$
- let $h := \ulcorner H(v_1) \urcorner$ and let $H[\overline{h}]$ be the Gödel sentence of $(\sim \mathsf{P}_{\mathsf{A}})^*$
- we obtain:

- as PA is correct H[h] cannot be provable otherwise H[h] would be false and provable
- hence $H[\overline{h}]$ is true, but not provable

the system PA is incomplete

Proof.

- $(\sim P_A)^*$ is arithmetic
- \exists arithmetic formula $H(v_1)$ expressing $(\sim P_A)^*$
- let $h := \ulcorner H(v_1) \urcorner$ and let $H[\overline{h}]$ be the Gödel sentence of $(\sim \mathsf{P}_{\mathsf{A}})^*$
- we obtain:

- as PA is correct H[h] cannot be provable otherwise H[h] would be false and provable
- hence $H[\overline{h}]$ is true, but not provable

we consider an axiom system ${\mathcal S}$ over the language of PA such that

- **1** S includes axioms for first-order with equality
- **2** \mathcal{S} has rules *modus ponens* and generalisation
- 3 in addition $\mathcal S$ has arbitrary non-logical axioms

we consider an axiom system ${\mathcal S}$ over the language of PA such that

- **1** S includes axioms for first-order with equality
- **2** \mathcal{S} has rules *modus ponens* and generalisation
- 3 in addition $\mathcal S$ has arbitrary non-logical axioms

Definition

• S is consistent if $\neg(S \vdash F \text{ and } S \vdash \neg F)$

we consider an axiom system ${\mathcal S}$ over the language of PA such that

- **1** S includes axioms for first-order with equality
- **2** \mathcal{S} has rules *modus ponens* and generalisation
- 3 in addition $\mathcal S$ has arbitrary non-logical axioms

Definition

- S is consistent if $\neg(S \vdash F \text{ and } S \vdash \neg F)$
- S is ω -inconsistent if

 $\mathcal{S} \vdash \exists w F(w) \text{ and } \mathcal{S} \vdash \neg F(\overline{0}), \dots, \mathcal{S} \vdash \neg F(\overline{n}), \mathcal{S} \vdash \neg F(\overline{n+1}), \dots$

we consider an axiom system ${\mathcal S}$ over the language of PA such that

- 1 $\mathcal S$ includes axioms for first-order with equality
- **2** \mathcal{S} has rules *modus ponens* and generalisation
- 3 in addition $\mathcal S$ has arbitrary non-logical axioms

Definition

- S is consistent if $\neg(S \vdash F \text{ and } S \vdash \neg F)$
- S is ω -inconsistent if
 - $\mathcal{S} \vdash \exists w F(w) \text{ and } \mathcal{S} \vdash \neg F(\overline{0}), \dots, \mathcal{S} \vdash \neg F(\overline{n}), \mathcal{S} \vdash \neg F(\overline{n+1}), \dots$
- S is ω -consistent if $\neg(\omega$ -inconsistent)

we consider an axiom system ${\mathcal S}$ over the language of PA such that

- 1 $\mathcal S$ includes axioms for first-order with equality
- **2** \mathcal{S} has rules *modus ponens* and generalisation
- 3 in addition ${\mathcal S}$ has arbitrary non-logical axioms

Definition

- S is consistent if $\neg(S \vdash F \text{ and } S \vdash \neg F)$
- S is ω -inconsistent if
 - $\mathcal{S} \vdash \exists w F(w) \text{ and } \mathcal{S} \vdash \neg F(\overline{0}), \dots, \mathcal{S} \vdash \neg F(\overline{n}), \mathcal{S} \vdash \neg F(\overline{n+1}), \dots$
- S is ω -consistent if $\neg(\omega$ -inconsistent)

Fact

 ω -consistency implies consistency

Definition

 ${\cal S}$ is recursively axiomatisable (axiomatisable) if the set of Gödel numbers of theorems in ${\cal S}$ is Σ_1

Definition

 ${\cal S}$ is recursively axiomatisable (axiomatisable) if the set of Gödel numbers of theorems in ${\cal S}$ is Σ_1

Example PA is recursively axiomatisable

Definition

 ${\cal S}$ is recursively axiomatisable (axiomatisable) if the set of Gödel numbers of theorems in ${\cal S}$ is Σ_1

Example PA is recursively axiomatisable

Definition

given two systems S_1 , S_2 we say that S_1 is a subsystem of S_2 (S_2 is an extension) of S_1), if all provable formulas of S_1 are provable in S_2

Definition

 ${\cal S}$ is recursively axiomatisable (axiomatisable) if the set of Gödel numbers of theorems in ${\cal S}$ is Σ_1

Example PA is recursively axiomatisable

Definition

given two systems S_1 , S_2 we say that S_1 is a subsystem of S_2 (S_2 is an extension) of S_1), if all provable formulas of S_1 are provable in S_2

Theorem

if PA is ω -consistent, then it is incomplete

Theorem 1

If S is any axiomatisable ω -consistent system in which all true Σ_0 -sentences are provable, then S is incomplete

Theorem 1

If S is any axiomatisable ω -consistent system in which all true Σ_0 -sentences are provable, then S is incomplete

Theorem 2

all true Σ_0 -sentences (of PA) are provable in PA

Theorem 1

If S is any axiomatisable ω -consistent system in which all true Σ_0 -sentences are provable, then S is incomplete

Theorem 2

all true Σ_0 -sentences (of PA) are provable in PA

Definition

• $F(v_1)$ represents A if for all $n \in \mathbb{N}$: $F(\overline{n})$ is provable $\iff n \in A$

Theorem 1

If S is any axiomatisable ω -consistent system in which all true Σ_0 -sentences are provable, then S is incomplete

Theorem 2

all true Σ_0 -sentences (of PA) are provable in PA

Definition

- $F(v_1)$ represents A if for all $n \in \mathbb{N}$: $F(\overline{n})$ is provable $\iff n \in A$
- $F(v_1, \ldots, v_n)$ represents R if for all $(m_1, \ldots, m_n) \in \mathbb{N}^n$:

$$F(\overline{m}_1,\ldots,\overline{m}_n)$$
 is provable $\iff (m_1,\ldots,m_n) \in R$

we also say that $F(v_1, \ldots, v_n)$ represents the relation $R(x_1, \ldots, x_n)$

let P denote the set of Gödel numbers of provable formulas in S and R the set of Gödel numbers of refutable formulas in S

Lemma

for any formula $H(v_1)$ with Gödel number h

- **1** $H(\overline{h})$ is provable in S iff $h \in P^*$
- **2** $H(\overline{h})$ is refutable in S iff $h \in R^*$

let P denote the set of Gödel numbers of provable formulas in S and R the set of Gödel numbers of refutable formulas in S

Lemma

for any formula $H(v_1)$ with Gödel number h

- **1** $H(\overline{h})$ is provable in S iff $h \in P^*$
- 2 $H(\overline{h})$ is refutable in S iff $h \in R^*$

Theorem

- **1** suppose S is consistent
- **2** the negation of $H(v_1)$ represents P^* in S
- 3 let $h := \ulcorner H(v_1) \urcorner$

then the sentence $H(\overline{h})$ is neither provable or refutable in $\mathcal S$

Proof.

if P^* is representable in S and S is consistent, then S is incomplete

if P^* is representable in S and S is consistent, then S is incomplete

Theorem (a dual of the above theorem)

if R^* is representable in S and S is consistent, then S is incomplete

Proof.

as above

if P^* is representable in S and S is consistent, then S is incomplete

Theorem (a dual of the above theorem)

if R^* is representable in S and S is consistent, then S is incomplete

Proof.

as above

Definition

a formula $F(v_1, v_2)$ enumerate a set A in S if $\forall n \in \mathbb{N}$:

- 1 if $n \in A$, $\exists m \in \mathbb{N}$ such that $S \vdash F(\overline{n}, \overline{m})$
- **2** if $n \notin A$, $\forall m \in \mathbb{N}$ we have $S \vdash \neg F(\overline{n}, \overline{m})$

a set A is enumerable if \exists formula $F(v_1, v_2)$ that enumerates A

ω -consistency Lemma

Definition

a formula $F(v_1, \ldots, v_n, v_{n+1})$ enumerate a relation $R(x_1, \ldots, x_n)$ in S if $\forall n \in \mathbb{N}$:

- **1** if $R(k_1, \ldots, k_n)$ holds, $\exists m \in \mathbb{N}$ such that $S \vdash F(\overline{k_1}, \ldots, \overline{k_n}, \overline{m})$
- 2 if $R(k_1, \ldots, k_n)$ does not hold, $\forall m \in \mathbb{N}$ we have $\mathcal{S} \vdash \neg F(\overline{k_1}, \ldots, \overline{k_n}, \overline{m})$

a relation $R(x_1, \ldots, x_n)$ is enumerable if \exists formula $F(v_1, \ldots, v_n, v_{n+1})$ that enumerates $R(x_1, \ldots, x_n)$

ω -consistency Lemma

Definition

a formula $F(v_1, \ldots, v_n, v_{n+1})$ enumerate a relation $R(x_1, \ldots, x_n)$ in S if $\forall n \in \mathbb{N}$:

- **1** if $R(k_1, \ldots, k_n)$ holds, $\exists m \in \mathbb{N}$ such that $\mathcal{S} \vdash F(\overline{k_1}, \ldots, \overline{k_n}, \overline{m})$
- 2 if $R(k_1, \ldots, k_n)$ does not hold, $\forall m \in \mathbb{N}$ we have $\mathcal{S} \vdash \neg F(\overline{k_1}, \ldots, \overline{k_n}, \overline{m})$

a relation $R(x_1, \ldots, x_n)$ is enumerable if \exists formula $F(v_1, \ldots, v_n, v_{n+1})$ that enumerates $R(x_1, \ldots, x_n)$

Lemma (ω -consistency Lemma)

if S is ω -consistent, and if set A is enumerable by $F(v_1, v_2)$, then A is representable by $\exists v_2 F(v_1, v_2)$ in S

Theorem

if either P^* or R^* is enumerable in ω -consistent S, then S is incomplete

Theorem

if either P^* or R^* is enumerable in ω -consistent S, then S is incomplete

Theorem

suppose $F(v_1, v_2)$ enumerate P^* in S; let $f := \lceil \forall v_2 \neg F(v_1, v_2) \rceil$ and let $G := \forall v_2 \neg F(\overline{f}, v_2)$, then:

- **1** if S is consistent, then G is not provable in S
- **2** if S is ω -consistent, then S is incomplete

Theorem

if either P^* or R^* is enumerable in ω -consistent S, then S is incomplete

Theorem

suppose $F(v_1, v_2)$ enumerate P^* in S; let $f := \lceil \forall v_2 \neg F(v_1, v_2) \rceil$ and let $G := \forall v_2 \neg F(\overline{f}, v_2)$, then:

- **1** if S is consistent, then G is not provable in S
- **2** if S is ω -consistent, then S is incomplete

Theorem (a dual of the above theorem)

suppose $F'(v_1, v_2)$ enumerate R^* in S; let $f' := \lceil \exists v_2 F'(v_1, v_2) \rceil$ and let $G' := \exists v_2 F'(\overline{f}, v_2)$, then:

- **1** if S is consistent, then G' is not provable in S
- **2** if S is ω -consistent, then S is incomplete