Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK
Winter 2011

Homework

- Chapter IV, Exercise 1, that is:
[...] Since G is a true sentence, the system $\mathrm{PA} \cup\{G\}$ is also a correct system. Is it complete?

Outline of the Lecture

General Idea Behind Gödel's Proof

 abstract forms of Gödel's, Tarski's theorems, undecidable sentences of \mathcal{L}Tarski's Theorem for Arithmetic
the language \mathcal{L}_{E}, concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_{1}-relations

Gödel's Proof
ω-consistency, a basic incompleteness theorem, ω-consistency lemma, Σ_{0-} complete subsystems, ω-incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Outline of the Lecture

General Idea Behind Gödel's Proof

 abstract forms of Gödel's, Tarski's theorems, undecidable sentences of \mathcal{L}Tarski's Theorem for Arithmetic
the language \mathcal{L}_{E}, concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_{1}-relations

Gödel's Proof
ω-consistency, a basic incompleteness theorem, ω-consistency lemma, Σ_{0-} complete subsystems, ω-incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

More on Σ_{1}-Relations

Lemma
1 any Σ_{0}-relation is Σ_{1}

Proof.

More on Σ_{1}-Relations

Lemma
1 any Σ_{0}-relation is Σ_{1}
2 if $R\left(x_{1}, \ldots, x_{n}, y\right)$ is Σ_{1}, then the following relation is Σ_{1} :

$$
\exists y R\left(x_{1}, \ldots, x_{n}, y\right)
$$

Proof.

More on Σ_{1}-Relations

Lemma

1 any Σ_{0}-relation is Σ_{1}
2 if $R\left(x_{1}, \ldots, x_{n}, y\right)$ is Σ_{1}, then the following relation is Σ_{1} :

$$
\exists y R\left(x_{1}, \ldots, x_{n}, y\right)
$$

3 if $R_{1}\left(x_{1}, \ldots, x_{n}\right)$ and $R_{2}\left(x_{1}, \ldots, x_{n}\right)$ are Σ_{1}, then so are the relations:

$$
R_{1}\left(x_{1}, \ldots, x_{n}\right) \vee R_{2}\left(x_{1}, \ldots, x_{n}\right) \quad R_{1}\left(x_{1}, \ldots, x_{n}\right) \wedge R_{2}\left(x_{1}, \ldots, x_{n}\right)
$$

Proof.

More on Σ_{1}-Relations

Lemma

1 any Σ_{0}-relation is Σ_{1}
2 if $R\left(x_{1}, \ldots, x_{n}, y\right)$ is Σ_{1}, then the following relation is Σ_{1} :

$$
\exists y R\left(x_{1}, \ldots, x_{n}, y\right)
$$

3 if $R_{1}\left(x_{1}, \ldots, x_{n}\right)$ and $R_{2}\left(x_{1}, \ldots, x_{n}\right)$ are Σ_{1}, then so are the relations:

$$
R_{1}\left(x_{1}, \ldots, x_{n}\right) \vee R_{2}\left(x_{1}, \ldots, x_{n}\right) \quad R_{1}\left(x_{1}, \ldots, x_{n}\right) \wedge R_{2}\left(x_{1}, \ldots, x_{n}\right)
$$

4 if R is Σ_{0}, S is Σ_{1}, then $R \rightarrow S$ is Σ_{1}

Proof.

More on Σ_{1}-Relations

Lemma

1 any Σ_{0}-relation is Σ_{1}
2 if $R\left(x_{1}, \ldots, x_{n}, y\right)$ is Σ_{1}, then the following relation is Σ_{1} :

$$
\exists y R\left(x_{1}, \ldots, x_{n}, y\right)
$$

3 if $R_{1}\left(x_{1}, \ldots, x_{n}\right)$ and $R_{2}\left(x_{1}, \ldots, x_{n}\right)$ are Σ_{1}, then so are the relations:

$$
R_{1}\left(x_{1}, \ldots, x_{n}\right) \vee R_{2}\left(x_{1}, \ldots, x_{n}\right) \quad R_{1}\left(x_{1}, \ldots, x_{n}\right) \wedge R_{2}\left(x_{1}, \ldots, x_{n}\right)
$$

4 if R is Σ_{0}, S is Σ_{1}, then $R \rightarrow S$ is Σ_{1}
5 if $R\left(x_{1}, \ldots, x_{n}, y, z\right)$ is Σ_{1}, then so are the relations:

$$
(\exists y \leqslant z) R\left(x_{1}, \ldots, x_{n}, y, z\right) \quad(\forall y \leqslant z) R\left(x_{1}, \ldots, x_{n}, y, z\right)
$$

Proof.

on the whiteboard

Lemma (revisited)

the \sum-relations are exactly the Σ_{1}-relations

Proof.

by induction on the degree of formulas representing the relations using the above lemma

Lemma (revisited)

the \sum-relations are exactly the Σ_{1}-relations

Proof.

by induction on the degree of formulas representing the relations using the above lemma

Corollary
1 if A is Σ_{1}, then so is A^{*}
2 the sets $\left(\mathrm{P}_{\mathrm{A}}\right)^{*}$ and $\left(\mathrm{R}_{\mathrm{A}}\right)^{*}$ are Σ_{1}

Lemma (revisited)

the \sum-relations are exactly the Σ_{1}-relations

Proof.

by induction on the degree of formulas representing the relations using the above lemma

Corollary
1 if A is Σ_{1}, then so is A^{*}
2 the sets $\left(\mathrm{P}_{\mathrm{A}}\right)^{*}$ and $\left(\mathrm{R}_{\mathrm{A}}\right)^{*}$ are Σ_{1} what is this?

Recursive Sets

Definition

- a set or relation R is called recursive if R and $\sim R$ is Σ_{1}
- a function $f\left(x_{1}, \ldots, x_{n}\right)$ is recursive if the relation $f\left(x_{1}, \ldots, x_{n}\right)=y$ is recursive

Recursive Sets

Definition

- a set or relation R is called recursive if R and $\sim R$ is Σ_{1}
- a function $f\left(x_{1}, \ldots, x_{n}\right)$ is recursive if the relation $f\left(x_{1}, \ldots, x_{n}\right)=y$ is recursive

Lemma

we define $\pi(x):=13^{x^{2}+x+1}$, then $\pi(x)$ is recursive

Recursive Sets

Definition

- a set or relation R is called recursive if R and $\sim R$ is Σ_{1}
- a function $f\left(x_{1}, \ldots, x_{n}\right)$ is recursive if the relation $f\left(x_{1}, \ldots, x_{n}\right)=y$ is recursive

Lemma

we define $\pi(x):=13^{x^{2}+x+1}$, then $\pi(x)$ is recursive

Theorem
$\forall n \in \mathbb{N}, k \leqslant n$, sequence $\left(a_{1}, \ldots, a_{k}\right)$ such that $a_{i} \in K_{11}$ and $a_{i} \leqslant n$, then we have: $\delta a_{1} \delta \ldots \delta a_{k} \delta \leqslant \pi(n)$

Proof.
on whiteboard

Lemma (revisited)

let $M=\{n \mid P(\bar{n})\}$, where P is a \sum-relations; then M is recursively enumerable

Proof.

- let M be a Turing machine (TM)
- let α, β be configurations of a TM
- let $\xrightarrow[M]{n}$ denote the n-step relation of a TM and recall:

$$
\alpha \xrightarrow[M]{*} \beta: \Leftrightarrow \exists n \alpha \xrightarrow[M]{n} \beta
$$

- the relation $\alpha \xrightarrow[M]{n} \beta$ is recursive
- recall

$$
\mathrm{L}(M)=\left\{x \in \Sigma^{*} \mid\left(s, \vdash x \sqcup^{\infty}, 0\right) \xrightarrow[M]{*}(t, y, n)\right\}
$$

- the set $\mathrm{L}(M)$ is Σ_{1}

Corollary

the system PA is incomplete

Corollary

the system PA is incomplete

Proof.

- $\left(\sim P_{A}\right)^{*}$ is arithmetic
- \exists arithmetic formula $H\left(v_{1}\right)$ expressing $\left(\sim \mathrm{P}_{\mathrm{A}}\right)^{*}$
- let $h:=\left\ulcorner H\left(v_{1}\right)\right\urcorner$ and let $H[\bar{h}]$ be the Gödel sentence of $\left(\sim \mathrm{P}_{\mathrm{A}}\right)^{*}$
- we obtain:
$H[\bar{h}]$ holds $\Longleftrightarrow h \in\left(\sim \mathrm{P}_{\mathrm{A}}\right)^{*} \Longleftrightarrow d(h, h) \notin \mathrm{P}_{\mathrm{A}} \Longleftrightarrow$ $\Longleftrightarrow H[\bar{h}]$ is not provable
- as PA is correct $H[\bar{h}]$ cannot be provable otherwise $H[\bar{h}]$ would be false and provable
- hence $H[\bar{h}]$ is true, but not provable

Corollary

the system PA is incomplete

Proof.

- $\left(\sim P_{A}\right)^{*}$ is arithmetic
- \exists arithmetic formula $H\left(v_{1}\right)$ expressing $\left(\sim \mathrm{P}_{\mathrm{A}}\right)^{*}$
- let $h:=\left\ulcorner H\left(v_{1}\right)\right\urcorner$ and let $H[\bar{h}]$ be the Gödel sentence of $\left(\sim \mathrm{P}_{\mathrm{A}}\right)^{*}$
- we obtain:
$H[\bar{h}]$ holds $\Longleftrightarrow h \in\left(\sim \mathrm{P}_{\mathrm{A}}\right)^{*} \Longleftrightarrow d(h, h) \notin \mathrm{P}_{\mathrm{A}} \Longleftrightarrow$ $\Longleftrightarrow H[\bar{h}]$ is not provable
- as PA is correct $H[\bar{h}]$ cannot be provable otherwise $H[\bar{h}]$ would be false and provable
- hence $H[\bar{h}]$ is true, but not provable

Definition

we consider an axiom system \mathcal{S} over the language of PA such that
$1 \mathcal{S}$ includes axioms for first-order with equality
$2 \mathcal{S}$ has rules modus ponens and generalisation
3 in addition \mathcal{S} has arbitrary non-logical axioms

Definition

we consider an axiom system \mathcal{S} over the language of PA such that
$1 \mathcal{S}$ includes axioms for first-order with equality
$2 \mathcal{S}$ has rules modus ponens and generalisation
3 in addition \mathcal{S} has arbitrary non-logical axioms

Definition

- \mathcal{S} is consistent if $\neg(\mathcal{S} \vdash F$ and $\mathcal{S} \vdash \neg F)$

Definition

we consider an axiom system \mathcal{S} over the language of PA such that
$1 \mathcal{S}$ includes axioms for first-order with equality
$2 \mathcal{S}$ has rules modus ponens and generalisation
3 in addition \mathcal{S} has arbitrary non-logical axioms

Definition

- \mathcal{S} is consistent if $\neg(\mathcal{S} \vdash F$ and $\mathcal{S} \vdash \neg F)$
- \mathcal{S} is ω-inconsistent if

$$
\mathcal{S} \vdash \exists w F(w) \text { and } \mathcal{S} \vdash \neg F(\overline{0}), \ldots, \mathcal{S} \vdash \neg F(\bar{n}), \mathcal{S} \vdash \neg F(\overline{n+1}), \ldots
$$

Definition

we consider an axiom system \mathcal{S} over the language of PA such that
$1 \mathcal{S}$ includes axioms for first-order with equality
$2 \mathcal{S}$ has rules modus ponens and generalisation
3 in addition \mathcal{S} has arbitrary non-logical axioms

Definition

- \mathcal{S} is consistent if $\neg(\mathcal{S} \vdash F$ and $\mathcal{S} \vdash \neg F)$
- \mathcal{S} is ω-inconsistent if

$$
\mathcal{S} \vdash \exists w F(w) \text { and } \mathcal{S} \vdash \neg F(\overline{0}), \ldots, \mathcal{S} \vdash \neg F(\bar{n}), \mathcal{S} \vdash \neg F(\overline{n+1}), \ldots
$$

- \mathcal{S} is ω-consistent if $\neg(\omega$-inconsistent $)$

Definition

we consider an axiom system \mathcal{S} over the language of PA such that
$1 \mathcal{S}$ includes axioms for first-order with equality
$2 \mathcal{S}$ has rules modus ponens and generalisation
3 in addition \mathcal{S} has arbitrary non-logical axioms

Definition

- \mathcal{S} is consistent if $\neg(\mathcal{S} \vdash F$ and $\mathcal{S} \vdash \neg F)$
- \mathcal{S} is ω-inconsistent if

$$
\mathcal{S} \vdash \exists w F(w) \text { and } \mathcal{S} \vdash \neg F(\overline{0}), \ldots, \mathcal{S} \vdash \neg F(\bar{n}), \mathcal{S} \vdash \neg F(\overline{n+1}), \ldots
$$

- \mathcal{S} is ω-consistent if $\neg(\omega$-inconsistent $)$

Fact
 ω-consistency implies consistency

Gödel's Original Formulation

Definition

\mathcal{S} is recursively axiomatisable (axiomatisable) if the set of Gödel numbers of theorems in \mathcal{S} is Σ_{1}

Gödel's Original Formulation

Definition

\mathcal{S} is recursively axiomatisable (axiomatisable) if the set of Gödel numbers of theorems in \mathcal{S} is Σ_{1}

Example

PA is recursively axiomatisable

Gödel's Original Formulation

Definition

\mathcal{S} is recursively axiomatisable (axiomatisable) if the set of Gödel numbers of theorems in \mathcal{S} is Σ_{1}

Example

PA is recursively axiomatisable

Definition

given two systems $\mathcal{S}_{1}, \mathcal{S}_{2}$ we say that \mathcal{S}_{1} is a subsystem of $\mathcal{S}_{2}\left(\mathcal{S}_{2}\right.$ is an extension) of \mathcal{S}_{1}), if all provable formulas of \mathcal{S}_{1} are provable in \mathcal{S}_{2}

Gödel's Original Formulation

Definition

\mathcal{S} is recursively axiomatisable (axiomatisable) if the set of Gödel numbers of theorems in \mathcal{S} is Σ_{1}

Example
PA is recursively axiomatisable

Definition

given two systems $\mathcal{S}_{1}, \mathcal{S}_{2}$ we say that \mathcal{S}_{1} is a subsystem of $\mathcal{S}_{2}\left(\mathcal{S}_{2}\right.$ is an extension) of \mathcal{S}_{1}), if all provable formulas of \mathcal{S}_{1} are provable in \mathcal{S}_{2}

Theorem
if PA is ω-consistent, then it is incomplete

Towards Gödel's Incompleteness Proof

Theorem (1)
If \mathcal{S} is any axiomatisable ω-consistent system in which all true Σ_{0}-sentences are provable, then \mathcal{S} is incomplete

Towards Gödel's Incompleteness Proof

Theorem (1)
If \mathcal{S} is any axiomatisable ω-consistent system in which all true Σ_{0}-sentences are provable, then \mathcal{S} is incomplete

Theorem (2)
all true Σ_{0}-sentences (of PA) are provable in PA

Towards Gödel's Incompleteness Proof

Theorem (1)
If \mathcal{S} is any axiomatisable ω-consistent system in which all true Σ_{0}-sentences are provable, then \mathcal{S} is incomplete

Theorem (2)
all true Σ_{0}-sentences (of PA) are provable in PA

Definition

- $F\left(v_{1}\right)$ represents A if for all $n \in \mathbb{N}: F(\bar{n})$ is provable $\Longleftrightarrow n \in A$

Towards Gödel's Incompleteness Proof

Theorem (1)
If \mathcal{S} is any axiomatisable ω-consistent system in which all true Σ_{0}-sentences are provable, then \mathcal{S} is incomplete

Theorem (2)
all true Σ_{0}-sentences (of PA) are provable in PA

Definition

- $F\left(v_{1}\right)$ represents A if for all $n \in \mathbb{N}: F(\bar{n})$ is provable $\Longleftrightarrow n \in A$
- $F\left(v_{1}, \ldots, v_{n}\right)$ represents R if for all $\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}$:
$F\left(\bar{m}_{1}, \ldots, \bar{m}_{n}\right)$ is provable $\Longleftrightarrow\left(m_{1}, \ldots, m_{n}\right) \in R$
we also say that $F\left(v_{1}, \ldots, v_{n}\right)$ represents the relation $R\left(x_{1}, \ldots, x_{n}\right)$
let P denote the set of Gödel numbers of provable formulas in \mathcal{S} and R the set of Gödel numbers of refutable formulas in \mathcal{S}

Lemma

for any formula $H\left(v_{1}\right)$ with Gödel number h
$1 H(\bar{h})$ is provable in \mathcal{S} iff $h \in P^{*}$
$2 H(\bar{h})$ is refutable in \mathcal{S} iff $h \in R^{*}$
let P denote the set of Gödel numbers of provable formulas in \mathcal{S} and R the set of Gödel numbers of refutable formulas in \mathcal{S}

Lemma

for any formula $H\left(v_{1}\right)$ with Gödel number h
$1 H(\bar{h})$ is provable in \mathcal{S} iff $h \in P^{*}$
$2 H(\bar{h})$ is refutable in \mathcal{S} iff $h \in R^{*}$

Theorem
1 suppose \mathcal{S} is consistent
2 the negation of $H\left(v_{1}\right)$ represents P^{*} in \mathcal{S}
3 let $h:=\left\ulcorner H\left(v_{1}\right)\right\urcorner$
then the sentence $H(\bar{h})$ is neither provable or refutable in \mathcal{S}

[^0]Corollary
if P^{*} is representable in \mathcal{S} and \mathcal{S} is consistent, then \mathcal{S} is incomplete

Corollary

if P^{*} is representable in \mathcal{S} and \mathcal{S} is consistent, then \mathcal{S} is incomplete

Theorem (a dual of the above theorem)
if R^{*} is representable in \mathcal{S} and \mathcal{S} is consistent, then \mathcal{S} is incomplete

Proof.

as above

Corollary

if P^{*} is representable in \mathcal{S} and \mathcal{S} is consistent, then \mathcal{S} is incomplete

Theorem (a dual of the above theorem)
if R^{*} is representable in \mathcal{S} and \mathcal{S} is consistent, then \mathcal{S} is incomplete

Proof.

as above

Definition

a formula $F\left(v_{1}, v_{2}\right)$ enumerate a set A in \mathcal{S} if $\forall n \in \mathbb{N}$:
1 if $n \in A, \exists m \in \mathbb{N}$ such that $\mathcal{S} \vdash F(\bar{n}, \bar{m})$
2 if $n \notin A, \forall m \in \mathbb{N}$ we have $\mathcal{S} \vdash \neg F(\bar{n}, \bar{m})$
a set A is enumerable if \exists formula $F\left(v_{1}, v_{2}\right)$ that enumerates A

ω-consistency Lemma

Definition

a formula $F\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)$ enumerate a relation $R\left(x_{1}, \ldots, x_{n}\right)$ in \mathcal{S} if $\forall n \in \mathbb{N}$:

1 if $R\left(k_{1}, \ldots, k_{n}\right)$ holds, $\exists m \in \mathbb{N}$ such that $\mathcal{S} \vdash F\left(\overline{k_{1}}, \ldots, \overline{k_{n}}, \bar{m}\right)$
2 if $R\left(k_{1}, \ldots, k_{n}\right)$ does not hold, $\forall m \in \mathbb{N}$ we have $\mathcal{S} \vdash \neg F\left(\overline{k_{1}}, \ldots, \overline{k_{n}}, \bar{m}\right)$
a relation $R\left(x_{1}, \ldots, x_{n}\right)$ is enumerable if \exists formula $F\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)$ that enumerates $R\left(x_{1}, \ldots, x_{n}\right)$

ω-consistency Lemma

Definition

a formula $F\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)$ enumerate a relation $R\left(x_{1}, \ldots, x_{n}\right)$ in \mathcal{S} if $\forall n \in \mathbb{N}$:
1 if $R\left(k_{1}, \ldots, k_{n}\right)$ holds, $\exists m \in \mathbb{N}$ such that $\mathcal{S} \vdash F\left(\overline{k_{1}}, \ldots, \overline{n_{n}}, \bar{m}\right)$
2 if $R\left(k_{1}, \ldots, k_{n}\right)$ does not hold, $\forall m \in \mathbb{N}$ we have $\mathcal{S} \vdash \neg F\left(\overline{k_{1}}, \ldots, \overline{k_{n}}, \bar{m}\right)$
a relation $R\left(x_{1}, \ldots, x_{n}\right)$ is enumerable if \exists formula $F\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)$ that enumerates $R\left(x_{1}, \ldots, x_{n}\right)$

Lemma (ω-consistency Lemma)

if \mathcal{S} is ω-consistent, and if set A is enumerable by $F\left(v_{1}, v_{2}\right)$, then A is representable by $\exists v_{2} F\left(v_{1}, v_{2}\right)$ in \mathcal{S}

```
Theorem
if either }\mp@subsup{P}{}{*}\mathrm{ or }\mp@subsup{R}{}{*}\mathrm{ is enumerable in }\omega\mathrm{ -consistent }\mathcal{S}\mathrm{ , then }\mathcal{S}\mathrm{ is incomplete
```


Theorem

if either P^{*} or R^{*} is enumerable in ω-consistent \mathcal{S}, then \mathcal{S} is incomplete

Theorem
suppose $F\left(v_{1}, v_{2}\right)$ enumerate P^{*} in \mathcal{S}; let $f:=\left\ulcorner\forall v_{2} \neg F\left(v_{1}, v_{2}\right)\right\urcorner$ and let $G:=\forall v_{2} \neg F\left(\bar{f}, v_{2}\right)$, then:
1 if \mathcal{S} is consistent, then G is not provable in \mathcal{S}
2 if \mathcal{S} is ω-consistent, then \mathcal{S} is incomplete

Theorem

if either P^{*} or R^{*} is enumerable in ω-consistent \mathcal{S}, then \mathcal{S} is incomplete

Theorem
suppose $F\left(v_{1}, v_{2}\right)$ enumerate P^{*} in \mathcal{S}; let $f:=\left\ulcorner\forall v_{2} \neg F\left(v_{1}, v_{2}\right)\right\urcorner$ and let $G:=\forall v_{2} \neg F\left(\bar{f}, v_{2}\right)$, then:
1 if \mathcal{S} is consistent, then G is not provable in \mathcal{S}
2 if \mathcal{S} is ω-consistent, then \mathcal{S} is incomplete

Theorem (a dual of the above theorem)
suppose $F^{\prime}\left(v_{1}, v_{2}\right)$ enumerate R^{*} in \mathcal{S}; let $f^{\prime}:=\left\ulcorner\exists v_{2} F^{\prime}\left(v_{1}, v_{2}\right)\right\urcorner$ and let $G^{\prime}:=\exists v_{2} F^{\prime}\left(\bar{f}, v_{2}\right)$, then:
1 if \mathcal{S} is consistent, then G^{\prime} is not provable in \mathcal{S}
2 if \mathcal{S} is ω-consistent, then \mathcal{S} is incomplete

[^0]: Proof.
 on the whiteboard

