Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK

Winter 2011

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of ${\cal L}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 ω -consistency, a basic incompleteness theorem, ω -consistency lemma, Σ_0 complete subsystems, ω -incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Gödel's Incompleteness Theorem

Homework

• Chapter IV, Exercise 1, that is:

[...] Since G is a true sentence, the system $PA \cup \{G\}$ is also a correct system. Is it complete?

GM (Institute of Computer Science @ UIBK)

Gödel's Incompleteness Theorem

More on Σ_1 -Relations

More on Σ_1 -Relations

Lemma

- 1 any Σ_0 -relation is Σ_1
- **2** if $R(x_1, ..., x_n, y)$ is Σ_1 , then the following relation is Σ_1 :

$$\exists y R(x_1,\ldots,x_n,y)$$

- \exists if $R_1(x_1,\ldots,x_n)$ and $R_2(x_1,\ldots,x_n)$ are Σ_1 , then so are the relations: $R_1(x_1,\ldots,x_n) \vee R_2(x_1,\ldots,x_n)$ $R_1(x_1,\ldots,x_n) \wedge R_2(x_1,\ldots,x_n)$
- **4** if R is Σ_0 , S is Σ_1 , then $R \to S$ is Σ_1
- **5** if $R(x_1, \ldots, x_n, y, z)$ is Σ_1 , then so are the relations:

$$(\exists y \leqslant z)R(x_1,\ldots,x_n,y,z)$$
 $(\forall y \leqslant z)R(x_1,\ldots,x_n,y,z)$

Proof.

on the whiteboard

Lemma (revisited)

the Σ -relations are exactly the Σ_1 -relations

Proof.

by induction on the degree of formulas representing the relations using the above lemma

Corollary

- 1 if A is Σ_1 , then so is A^*
- 2 the sets $(P_A)^*$ and $(R_A)^*$ are Σ_1

Recursive Sets

Definition

- a set or relation R is called recursive if R and $\sim R$ is Σ_1
- a function $f(x_1, \dots, x_n)$ is recursive if the relation $f(x_1, \dots, x_n) = y$ is recursive

Lemma

we define $\pi(x) := 13^{x^2+x+1}$, then $\pi(x)$ is recursive

Theorem

 $\forall n \in \mathbb{N}, k \leq n$, sequence (a_1, \ldots, a_k) such that $a_i \in K_{11}$ and $a_i \leq n$, then we have: $\delta a_1 \delta \dots \delta a_k \delta \leqslant \pi(n)$

Proof.

on whiteboard

84/94 GM (Institute of Computer Science @ UIBK)

Recursive Sets

Gödel's Proof Based on $\omega ext{-}\mathsf{Consistency}$

Lemma (revisited)

let $M = \{n \mid P(\overline{n})\}$, where P is a Σ -relations; then M is recursively enumerable

Proof.

- let M be a Turing machine (TM)
- let α , β be configurations of a TM
- let \xrightarrow{n}_{M} denote the *n*-step relation of a TM and recall:

$$\alpha \xrightarrow{*} \beta : \Leftrightarrow \exists n \ \alpha \xrightarrow{n} \beta$$

- the relation $\alpha \xrightarrow{n} \beta$ is recursive
- recall

$$\mathsf{L}(M) = \{ x \in \Sigma^* \mid (s, \vdash x \sqcup^{\infty}, 0) \xrightarrow{*}_{M} (t, y, n) \}$$

• the set L(M) is Σ_1

Corollary

the system PA is incomplete

Proof.

- $(\sim P_A)^*$ is arithmetic
- \exists arithmetic formula $H(v_1)$ expressing $(\sim P_A)^*$
- let $h := \lceil H(v_1) \rceil$ and let $H[\overline{h}]$ be the Gödel sentence of $(\sim P_A)^*$
- we obtain:

$$H[\overline{h}]$$
 holds $\iff h \in (\sim P_A)^* \iff d(h,h) \notin P_A \iff H[\overline{h}]$ is not provable

- as PA is correct $H[\overline{h}]$ cannot be provable otherwise $H[\overline{h}]$ would be false and provable
- hence $H[\overline{h}]$ is true, but not provable

Definition

we consider an axiom system ${\mathcal S}$ over the language of PA such that

- \square S includes axioms for first-order with equality
- ${\bf 2}$ ${\bf \mathcal{S}}$ has rules *modus ponens* and generalisation
- 3 in addition S has arbitrary non-logical axioms

Definition

- S is consistent if $\neg(S \vdash F \text{ and } S \vdash \neg F)$
- S is ω -inconsistent if

$$S \vdash \exists w F(w) \text{ and } S \vdash \neg F(\overline{0}), \dots, S \vdash \neg F(\overline{n}), S \vdash \neg F(\overline{n+1}), \dots$$

• S is ω -consistent if $\neg(\omega$ -inconsistent)

Fact

 ω -consistency implies consistency

GM (Institute of Computer Science @ UIBK)

ödel's Incompleteness Theorem

88/

GM (Institute of Computer Science @ L ${\sf G\ddot{o}del's}$ Proof Based on $\omega ext{-Consistency}$

Gödel's Incompleteness Theorem

89/94

Towards Gödel's Incompleteness Proof

Theorem ①

If S is any axiomatisable ω -consistent system in which all true Σ_0 -sentences are provable, then S is incomplete

Theorem ②

all true Σ_0 -sentences (of PA) are provable in PA

Definition

- $F(v_1)$ represents A if for all $n \in \mathbb{N}$: $F(\overline{n})$ is provable $\iff n \in A$
- $F(v_1, \ldots, v_n)$ represents R if for all $(m_1, \ldots, m_n) \in \mathbb{N}^n$:

$$F(\overline{m}_1,\ldots,\overline{m}_n)$$
 is provable \iff $(m_1,\ldots,m_n) \in R$

we also say that $F(v_1, \ldots, v_n)$ represents the relation $R(x_1, \ldots, x_n)$

Gödel's Original Formulation

Definition

 ${\cal S}$ is recursively axiomatisable (axiomatisable) if the set of Gödel numbers of theorems in ${\cal S}$ is Σ_1

Example

PA is recursively axiomatisable

Definition

given two systems S_1 , S_2 we say that S_1 is a subsystem of S_2 (S_2 is an extension) of S_1), if all provable formulas of S_1 are provable in S_2

Theorem

if PA is ω -consistent, then it is incomplete

let P denote the set of Gödel numbers of provable formulas in S and R the set of Gödel numbers of refutable formulas in S

Lemma

for any formula $H(v_1)$ with Gödel number h

- **I** $H(\overline{h})$ is provable in S iff $h \in P^*$
- \blacksquare $H(\overline{h})$ is refutable in S iff $h \in R^*$

Theorem

- 1 suppose S is consistent
- **2** the negation of $H(v_1)$ represents P^* in S
- $\exists let h := \lceil H(v_1) \rceil$

then the sentence $H(\overline{h})$ is neither provable or refutable in S

Proof.

on the whiteboard

90/94 GM (Institute of Computer Science @ UIBK)

 ω -consistency Lemma

Corollary

if P^* is representable in S and S is consistent, then S is incomplete

Theorem (a dual of the above theorem)

if R^* is representable in S and S is consistent, then S is incomplete

Proof.

as above

Definition

- a formula $F(v_1, v_2)$ enumerate a set A in S if $\forall n \in \mathbb{N}$:
- **1** if $n \in A$, $\exists m \in \mathbb{N}$ such that $S \vdash F(\overline{n}, \overline{m})$
- 2 if $n \notin A$, $\forall m \in \mathbb{N}$ we have $S \vdash \neg F(\overline{n}, \overline{m})$
- a set A is enumerable if \exists formula $F(v_1, v_2)$ that enumerates A

Definition

a formula $F(v_1, \ldots, v_n, v_{n+1})$ enumerate a relation $R(x_1, \ldots, x_n)$ in S if $\forall n \in \mathbb{N}$:

- **1** if $R(k_1, \ldots, k_n)$ holds, $\exists m \in \mathbb{N}$ such that $S \vdash F(\overline{k_1}, \ldots, \overline{k_n}, \overline{m})$
- **2** if $R(k_1, \ldots, k_n)$ does not hold, $\forall m \in \mathbb{N}$ we have $S \vdash \neg F(\overline{k_1}, \ldots, \overline{k_n}, \overline{m})$

a relation $R(x_1, \ldots, x_n)$ is enumerable if \exists formula $F(v_1, \ldots, v_n, v_{n+1})$ that enumerates $R(x_1, \ldots, x_n)$

Lemma (ω -consistency Lemma)

if S is ω -consistent, and if set A is enumerable by $F(v_1, v_2)$, then A is representable by $\exists v_2 F(v_1, v_2)$ in S

ödel's Proof Based on ω -Consistency

Theorem

if either P^* or R^* is enumerable in ω -consistent S, then S is incomplete

Theorem

suppose $F(v_1, v_2)$ enumerate P^* in S; let $f := \lceil \forall v_2 \neg F(v_1, v_2) \rceil$ and let $G := \forall v_2 \neg F(\overline{f}, v_2)$, then:

- \blacksquare if S is consistent, then G is not provable in S
- **2** if S is ω -consistent, then S is incomplete

Theorem (a dual of the above theorem)

suppose $F'(v_1, v_2)$ enumerate R^* in S; let $f' := \lceil \exists v_2 F'(v_1, v_2) \rceil$ and let $G' := \exists v_2 F'(\overline{f}, v_2)$, then:

- I if S is consistent, then G' is not provable in S
- **2** if S is ω -consistent, then S is incomplete