

Gödel's Incompleteness Theorem

Georg Moser

Institute of Computer Science @ UIBK

Winter 2011

• Chapter IV, Appendix, Exercise 1.

- Chapter IV, Appendix, Exercise 1.
- Chapter IV, Appendix, Exercise 2.

- Chapter IV, Appendix, Exercise 1.
- Chapter IV, Appendix, Exercise 2.
- Chapter IV, Appendix, Exercise 3.

- Chapter IV, Appendix, Exercise 1.
- Chapter IV, Appendix, Exercise 2.
- Chapter IV, Appendix, Exercise 3.
- Chapter IV, Appendix, Exercise 4.

- Chapter IV, Appendix, Exercise 1.
- Chapter IV, Appendix, Exercise 2.
- Chapter IV, Appendix, Exercise 3.
- Chapter IV, Appendix, Exercise 4.
- Chapter IV, Appendix, Exercise 5.

- Chapter IV, Appendix, Exercise 1.
- Chapter IV, Appendix, Exercise 2.
- Chapter IV, Appendix, Exercise 3.
- Chapter IV, Appendix, Exercise 4.
- Chapter IV, Appendix, Exercise 5.
- Chapter IV, Appendix, Exercise 6.

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\ensuremath{\mathcal{L}}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

 $\omega\text{-}consistency,$ a basic incompleteness theorem, $\omega\text{-}consistency$ lemma, $\Sigma_0\text{-}$ complete subsystems, $\omega\text{-}incompleteness$ of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Outline of the Lecture

General Idea Behind Gödel's Proof

abstract forms of Gödel's, Tarski's theorems, undecidable sentences of $\ensuremath{\mathcal{L}}$

Tarski's Theorem for Arithmetic

the language \mathcal{L}_E , concatenation and Gödel numbering, Tarski's theorem, the axiom system PE, arithmetisation of the axiom system, arithmetic without exponentiation, incompleteness of PA, Σ_1 -relations

Gödel's Proof

ω-consistency, a basic incompleteness theorem, ω-consistency lemma, $Σ_0$ complete subsystems, ω-incompleteness of PA

Rosser Systems

abstract incompleteness theorems after Rosser, general separation principle, Rosser's undecidable sentence, Gödel and Rosser sentences compared, more on separation

Proof of Theorem

Recall Theorem 1

If S is any axiomatisable ω -consistent system in which all true Σ_0 -sentences are provable, then S is incomplete

Proof of Theorem

Recall Theorem 1

If S is any axiomatisable ω -consistent system in which all true Σ_0 -sentences are provable, then S is incomplete

Theorem (almost Theorem ①)

if S is an axiomatisable ω -consistent system such that all Σ_1 -sets are enumerable, then S is incomplete

Proof of Theorem

Recall Theorem 1

If S is any axiomatisable ω -consistent system in which all true Σ_0 -sentences are provable, then S is incomplete

Theorem (almost Theorem ①)

if S is an axiomatisable ω -consistent system such that all Σ_1 -sets are enumerable, then S is incomplete

Lemma

if all true Σ_0 -sentences are provable in \mathcal{S} , then all Σ_1 -sets are enumerable in \mathcal{S}

Proof.

on the whiteboard

if S is any axiomatisable ω -consistent system in which no false Σ_0 -sentence is provable, then S is incomplete

Proof.

if S is any axiomatisable ω -consistent system in which no false Σ_0 -sentence is provable, then S is incomplete

Proof.

• theorem follows as a corollary of Theorem ${\rm \textcircled{O}}$

if S is any axiomatisable ω -consistent system in which no false Σ_0 -sentence is provable, then S is incomplete

Proof.

- theorem follows as a corollary of Theorem ①
- on the other hand the theorem can be proven directly, then Theorem ① follows as corollary

if S is any axiomatisable ω -consistent system in which no false Σ_0 -sentence is provable, then S is incomplete

Proof.

- theorem follows as a corollary of Theorem ①
- on the other hand the theorem can be proven directly, then Theorem ① follows as corollary

Recall Theorem 2

all true Σ_0 -sentences (of PA) are provable in PA

if S is any axiomatisable ω -consistent system in which no false Σ_0 -sentence is provable, then S is incomplete

Proof.

- theorem follows as a corollary of Theorem ①
- on the other hand the theorem can be proven directly, then Theorem ① follows as corollary

Recall Theorem 2

all true Σ_0 -sentences (of PA) are provable in PA

Definition

a system ${\mathcal S}$ is $\Sigma_0\text{-complete}$ if all true $\Sigma_0\text{-sentences}$ are provable in ${\mathcal S}$

$\Sigma_0\text{-}Completeness$

Definition

a $\Sigma_0\text{-sentence}$ is correctly decidable in $\mathcal S,$ if it is either true and provable or false and refutable in $\mathcal S$

$\Sigma_0\text{-}Completeness$

Definition

a $\Sigma_0\text{-sentence}$ is correctly decidable in $\mathcal S,$ if it is either true and provable or false and refutable in $\mathcal S$

Lemma

together the following two conditions are sufficient for $\mathcal S$ to be Σ_0 -complete:

 $C_1 \,\,\forall \,\, atomic \, \Sigma_0$ -sentence A, A is correctly decidable

$$C_2 \,\,\forall \, \Sigma_0$$
-formula $F(v_1)$, $\forall \,\, n \in \mathbb{N}$: if

$$\mathcal{S} \vdash F(\overline{0}), \ldots, \mathcal{S} \vdash F(\overline{n})$$

then $\mathcal{S} \vdash (\forall v_1 \leq \overline{n}) F(v_1)$

Proof.

on the whiteboard

Lemma

together the following three conditions are sufficient for S to be Σ_0 -complete:

 $\begin{array}{l} D_1 \ \forall \ true \ atomic \ \Sigma_0 \text{-sentence } A, \ A \ is \ provable \\ D_2 \ \forall m, n: \ m \neq n: \ \mathcal{S} \vdash \overline{m} \neq \overline{n} \\ D_3 \ \forall \ variable \ w, \ \forall n \in \mathbb{N}: \\ \mathcal{S} \vdash w \leqslant \overline{n} \rightarrow (w = \overline{0} \lor \cdots \lor w = \overline{n}) \end{array}$

more precisely: $D_1 - D_3$ imply C_1 and D_3 implies C_2

Proof.

on the whiteboard

A variant of Robinson's Q

Definition (Q) $v_1' = v_2' \rightarrow v_1 = v_2$ N_1 : $\overline{0} \neq v_1'$ N_2 : $(v_1 + \overline{0}) = v_1$ N3: $(v_1 + v_2') = (v_1 + v_2)'$ *N*[⊿] : $(v_1 \cdot \overline{0}) = \overline{0}$ N_5 : $(v_1 \cdot v_2') = ((v_1 \cdot v_2) + v_1)$ N_6 : $(v_1 \leq \overline{0}) \leftrightarrow (v_1 = \overline{0})$ N₇: N_8 : $(v_1 \leq v_2') \leftrightarrow (v_1 \leq v_2 \lor v_1 = v_2')$ N_0 : $(v_1 \leq v_2) \lor (v_2 \leq v_1)$

A variant of Robinson's Q

let Q_0 be Q without the axiom N_9

Definition (R)

$$\begin{array}{lll} \Omega_1: & \overline{m} + \overline{n} = \overline{k} & \text{if } m + n = k \\ \Omega_2: & \overline{m} \cdot \overline{n} = \overline{k} & \text{if } m \cdot n = k \\ \Omega_3: & \overline{m} \neq \overline{n} & \text{if } m \neq n \\ \Omega_4: & v_1 \leqslant \overline{n} \leftrightarrow (w = \overline{0} \lor \cdots \lor w = \overline{n}) \\ \Omega_5: & v_1 \leqslant \overline{n} \lor \overline{n} \leqslant v_1 \end{array}$$

Definition (R) $\Omega_{1}: \qquad \overline{m} + \overline{n} = \overline{k} \quad \text{if } m + n = k$ $\Omega_{2}: \qquad \overline{m} \cdot \overline{n} = \overline{k} \quad \text{if } m \cdot n = k$ $\Omega_{3}: \qquad \overline{m} \neq \overline{n} \quad \text{if } m \neq n$ $\Omega_{4}: \qquad v_{1} \leqslant \overline{n} \leftrightarrow (w = \overline{0} \lor \cdots \lor w = \overline{n})$ $\Omega_{5}: \qquad v_{1} \leqslant \overline{n} \lor \overline{n} \leqslant v_{1}$

let R_0 be R without the schema Ω_5