
OLCmputational
gic

Introduction to Model Checking

René Thiemann

Institute of Computer Science
University of Innsbruck

WS 2011/2012

RT (ICS @ UIBK) Chapter 5 1/52

Outline

Program Graphs

Channel systems

Promela
Promela - Syntax and Intuitive Meaning
Formal semantics

The State-Space Explosion Problem

RT (ICS @ UIBK) Chapter 5 2/52

Model checking overview

requirements

formalizing

property
specification

model checking

system

modeling

system model

satisfied

insufficient
memory

violated +
counterexample

this chapter

RT (ICS @ UIBK) Chapter 5 3/52

Motivation

• so far, input to model checker is transition system and formula

• for modeling want higher-level description as transition system
• use variables
⇒ program graphs

• use communication
⇒ channel systems

• use textual format
⇒ Promela

RT (ICS @ UIBK) Chapter 5 4/52

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws10/imc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Graphs

Outline

Program Graphs

Channel systems

Promela
Promela - Syntax and Intuitive Meaning
Formal semantics

The State-Space Explosion Problem

RT (ICS @ UIBK) Chapter 5 5/52

Program Graphs

Beverage vending machine revisited

transitions (with variables, conditions, and actions):

start −→ select start refill−−−→ start

select nsprite>0:sget−−−−−−−−−→ start select nbeer>0:bget−−−−−−−−−→ start

select nsprite=0∧ nbeer=0−−−−−−−−−−−−−→ start

Action Effect on variables

sget nsprite := nsprite − 1

bget nbeer := nbeer − 1

refill nsprite := max ; nbeer := max

RT (ICS @ UIBK) Chapter 5 6/52

Program Graphs

Program graph representation

start

refill

select

nsprite > 0 : sget

nbeer = nsprite = 0

nbeer > 0 : bget

RT (ICS @ UIBK) Chapter 5 7/52

Program Graphs

Some preliminaries

• typed variables Var with evaluation η that assigns values of domain D
to variables

• e.g., η(x) = 17 and η(y) = green

• the set of Boolean conditions over Var
• propositional logic formulas whose propositions are of the form “x ∈ D”
• (nsprite > 1) ∧ (y = yellow) ∧ (x 6 2·x ′)

• effect of the actions is formalized by means of a mapping:

Effect : Act× Eval(Var)→ Eval(Var)

• e.g., for action α use update x := y == yellow ? 2 · x : x − 1, and
evaluation η is given by η(x) = 17 and η(y) = red

• Effect(α, η)(x) = η(x)− 1 = 16, and Effect(α, η)(y) = η(y) = red

RT (ICS @ UIBK) Chapter 5 8/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Graphs

Program graphs

a program graph PG over set Var of typed variables is tuple

(Loc,Act,Effect,−→, Loc0, g0) where

• Loc is a set of locations with initial locations Loc0 ⊆ Loc

• Act is a set of actions including the empty action , usually not written

• Effect : Act× Eval(Var)→ Eval(Var) is the effect function
• has never an effect, i.e., Effect(, η) = η

• −→ ⊆ Loc× (Cond(Var)× Act)× Loc, transition relation
• Cond(Var): Boolean conditions over Var true is not written

• g0 ∈ Cond(Var) is the initial condition

notation: ` g :α−−−→ `′ denotes (`, g , α, `′) ∈ −→

RT (ICS @ UIBK) Chapter 5 9/52

Program Graphs

Beverage vending machine

NOT IN HANDOUT, GRAPH IN PRESENTATION

• Loc = { start, select } with Loc0 = { start }
• Act = { bget, sget, refill }
• Var = { nsprite, nbeer } with domain { 0, 1, . . . ,max }

•
Effect(sget, η) = η[nsprite := nsprite−1]

Effect(bget, η) = η[nbeer := nbeer−1]

Effect(refill , η) = [nsprite := max , nbeer := max]

• g0 = (nsprite = max ∧ nbeer = max)

RT (ICS @ UIBK) Chapter 5 10/52

Program Graphs

From program graphs to transition systems

• basic strategy: unfolding
• state = location ` + evaluation η
• initial state = initial location satisfying the initial condition g0

• propositions and labeling
• propositions: “at `” and “x ∈ D” for D ⊆ dom(x)
• 〈`, η〉 is labeled with “at `” and all conditions that hold in η

• if ` g :α−−−→ `′ and g holds in η then 〈`, η〉−→〈`′,Effect(α, η)〉

RT (ICS @ UIBK) Chapter 5 11/52

Program Graphs

Structured operational semantics

• notation
premise

conclusion
means:

if the proposition above the “solid line” (i.e., the premise) holds, then
the proposition under the fraction bar (i.e., the conclusion) holds

• such “if . . . then . . .” propositions are also called inference rules

• if the premise is a tautology, it may be omitted

• in the latter case, the rule is also called an axiom

RT (ICS @ UIBK) Chapter 5 12/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program Graphs

Transition systems for program graphs

the transition system TS(PG) of program graph

PG = (Loc,Act,Effect,−→, Loc0, g0)

over set Var of variables is the tuple (S ,−→, I ,AP, L) where

• S = Loc× Eval(Var)

• −→⊆ S × S is defined by the rule:
` g :α−−−→ `′ ∧ η |= g

〈`, η〉−→〈`′,Effect(α, η)〉
• I = {〈`, η〉 | ` ∈ Loc0, η |= g0}
• AP = Loc ∪ Cond(Var) and

L(〈`, η〉) = {`} ∪ {g ∈ Cond(Var) | η |= g}

RT (ICS @ UIBK) Chapter 5 13/52

Program Graphs

start

select

1 beer

RT (ICS @ UIBK) Chapter 5 14/52

Channel systems

Outline

Program Graphs

Channel systems

Promela
Promela - Syntax and Intuitive Meaning
Formal semantics

The State-Space Explosion Problem

RT (ICS @ UIBK) Chapter 5 15/52

Channel systems

Concurrent systems

• program graphs
• suited for modeling sequential data-dependent systems

• what about concurrent systems?
• threading
• distributed algorithms and communication protocols

• can we model:
• synchronous communication?
• asynchronous communication?

RT (ICS @ UIBK) Chapter 5 16/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Channel systems

Interleaving

• construct concurrent system from several (sequential) components

• actions of independent components are merged or interleaved
• a single or more processors are available

(perhaps on different computers)
• on which the actions of the processes are interlocked

• no assumptions on the order of processes
• possible orders for independent processes P and Q:

P Q P Q P Q Q Q P . . .

P P Q P P Q P P Q . . .

P Q P P Q P P P Q . . .

• justification for interleaving:
• the effect of concurrently executed, independent actions α and β equals

the effect when α and β are successively executed in arbitrary order

P: x++;... Q: y++ ..., parallel execution = sequential execution

RT (ICS @ UIBK) Chapter 5 17/52

Channel systems

Channels

usually, processes exchange data in some way ⇒ channels

• processes communicate via channels (c ∈ Chan)

• channels are first-in, first-out buffers

• channels are typed (wrt. their content — dom(c))

• channels buffer messages (of appropriate type)

• channel capacity = maximum # messages that can be stored
• c is a channel with finite capacity cap(c)
• if cap(c) > 0, there is some “delay” between sending and receiving
• if cap(c) = 0, then communication via c amounts to handshaking

RT (ICS @ UIBK) Chapter 5 18/52

Channel systems

Channels

• process Pi = program graph PGi + communication actions

c!v transmit the value v along channel c

c?x receive message via channel c and assign it to variable x

• Comm =

{ c!v , c?x | c ∈ Chan, v ∈ dom(c), x ∈ Var. dom(x) ⊇ dom(c) }
• sending and receiving a message

• c!v puts the value v at the rear of the buffer c (if c is not full)
• c?x retrieves the front element of the buffer and assigns it to x

(if c is not empty)
• if cap(c) = 0, channel c has no buffer
• if cap(c) = 0, sending and receiving can takes place simultaneously

this is called synchronous message passing or handshaking
• if cap(c) > 0, sending and receiving can never take place simultaneously

this is called asynchronous message passing

RT (ICS @ UIBK) Chapter 5 19/52

Channel systems

Example: Traffic Light

phase 1

{red}

phase 2 {red , orange}

c?x

phase 3

{green}

phase 4{orange}

c!token

say that channel only has one value: token, say that cap(c) = 0

RT (ICS @ UIBK) Chapter 5 20/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Channel systems

Channel systems

a program graph over (Var,Chan) is a tuple

PG = (Loc,Act,Effect,→, Loc0, g0)

where

→ ⊆ Loc×(Cond(Var)×Act)×Loc ∪ Loc× (Cond(Var)× Comm)× Loc︸ ︷︷ ︸
communication actions

a channel system CS over (
⋃

0<i6n Vari ,Chan):

CS = [PG1 | · · · | PGn]

with program graphs PGi over (Vari ,Chan)

RT (ICS @ UIBK) Chapter 5 21/52

Channel systems

Example: Traffic lights

NOT IN HANDOUT, GRAPH IN PRESENTATION

Crossing = [TrafficLight | TrafficLight | Starter]

• only two traffic lights ⇒ both wait for input infinitely long

• therefore use additional “starter” to send one input

init done
c!token

RT (ICS @ UIBK) Chapter 5 22/52

Channel systems

Communication actions

Handshaking

• if cap(c) = 0, then process Pi can perform `i
g :c!v−−−−→ `′i only

• . . . if Pj , say, can perform `j
g ′:c?x−−−−→ `′j and . . .

• if both g and g ′ are satisfied, and

• the effect corresponds to the (atomic) distributed assignment x := v .

Asynchronous message passing
later . . .

RT (ICS @ UIBK) Chapter 5 23/52

Channel systems

Transition system semantics of a channel system

let CS = [PG1 | · · · | PGn] be a channel system over (Chan,Var) with

PGi = (Loci ,Acti ,Effecti ,→i , Loc0,i , g0,i) , for 0 < i 6 n

TS(CS) is the transition system (S ,→, I ,AP, L) where:

• S = (Loc1 × · · · × Locn)× Eval(Var)× Eval(Chan)

• → is defined by the inference rules on the next slides

• I =
{
〈`1, . . . , `n, η, ξ0〉 | ∀i . (`i ∈ Loc0,i ∧ η |= g0,i)∧∀c . ξ0(c) = ε

}
• AP =

⊎
0<i6n Loci] Cond(Var)

• L(〈`1, . . . , `n, η, ξ〉) = { `1, . . . , `n } ∪ { g ∈ Cond(Var) | η |= g }

RT (ICS @ UIBK) Chapter 5 24/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Channel systems

Inference rules (I)

• interleaving for α ∈ Acti :

`i
g :α−−−→ i `

′
i ∧ η |= g

〈`1, . . . , `i , . . . , `n, η, ξ〉−→〈`1, . . . , `′i , . . . , `n, η
′, ξ〉

where η′ = Effect(α, η)

• synchronous message passing over c ∈ Chan, cap(c) = 0:

`i
g :c?x−−−−→ i `

′
i ∧ `j

g ′:c!v−−−−→ j `
′
j ∧ (η |= g ∧ g ′) ∧ i 6= j

〈`1, . . . , `i , . . . , `j , . . . , `n, η, ξ〉−→〈`1, . . . , `′i , . . . , `′j , . . . , `n, η
′, ξ〉

where η′ = η[x := v]

RT (ICS @ UIBK) Chapter 5 25/52

Channel systems

Example: Traffic lights
NOT IN HANDOUT, PROGRAM GRAPH IN PRESENTATION

(p1, p1, i)

(p1, p2, d)(p2, p1, d)

(p1, p3, d)

(p1, p4, d)

(p3, p1, d)

(p4, p1, d)

mention unreachable states, no evaluation, no channel evaluations
RT (ICS @ UIBK) Chapter 5 26/52

Channel systems

Example protocol

• two clients, one scheduler, one printer

• clients send data to scheduler which sends this data further to printer

• before sending data, clients have to initialize connection by sending id

• after data has been delivered by printer, scheduler sends ack. to client

• scheduler should always be able to receive data
⇒ proper modeling requires asynchronous message passing

• if cap(c) > 0, then process Pi can perform `i
g :c!v−−−−→ `′i

• . . . iff g is satisfied and less than cap(c) messages are stored in c

• Pj may perform `j
g :c?x−−−−→ `′j iff g is satisfied and c is not empty

• then the first element v of the buffer is extracted and assigned to x
(atomically)

executable if . . . effect

g : c!v g is sat. and c is not full Enqueue(c , v)

g : c?x g is sat. and c is not empty x := Front(c) ; Dequeue(c);

RT (ICS @ UIBK) Chapter 5 27/52

Channel systems

c1

c2

c3

ic ! i

dc ! di

aci ? ack

s1

s2

s3

s4

ic ? x

dc ? d

pc ! d

x=1 : ac1 ! ack x=2 : ac2 ! ack

p1

p2

pc ? d

CLIENTi :

SCHEDULER:

PRINTER:

RT (ICS @ UIBK) Chapter 5 28/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Channel systems

Channel evaluations

• a channel evaluation ξ is
• a mapping from channel c ∈ Chan onto a sequence ξ(c) ∈ dom(c)∗

such that
• current length cannot exceed the capacity of c : len(ξ(c)) 6 cap(c)
• ξ(c) = v1 v2 . . . vk (cap(c) > k) denotes v1 is at front of buffer etc.

• ξ[c := v1 . . . vk] denotes the channel evaluation

ξ[c := v1 . . . vk](c ′) =

{
ξ(c ′) if c 6= c ′

v1 . . . vk if c = c ′

• initial channel evaluation ξ0 equals ξ0(c) = ε for any c

RT (ICS @ UIBK) Chapter 5 29/52

Channel systems

Inference rules (II)

asynchronous message passing for c ∈ Chan, cap(c) > 0:

• receive a value along channel c and assign it to variable x :

`i
g :c?x−−−−→ i `

′
i ∧ ξ(c) = v1 . . . vk ∧ k > 0 ∧ η |= g

〈`1, . . . , `i , . . . , `n, η, ξ〉−→〈`1, . . . , `′i , . . . , `n, η
′, ξ′〉

where η′ = η[x := v1] and ξ′ = ξ[c := v2 . . . vk]

• transmit value v ∈ dom(c) over channel c:

`i
g :c!v−−−−→ i `

′
i ∧ ξ(c) = v1 . . . vk ∧ k < cap(c) ∧ η |= g

〈`1, . . . , `i , . . . , `n, η, ξ〉−→〈`1, . . . , `′i , . . . , `n, η, ξ
′〉

where ξ′ = ξ[c := v1 v2 . . . vk v]

RT (ICS @ UIBK) Chapter 5 30/52

Channel systems

Transition system of example protocol

let c(ac1) = c(ac2) = c(pc) = 0 and c(ic) = c(dc) > 0
CHANNEL SYSTEM SHOWN IN PRESENTATION

CL1 CL2 SC PR x SC .d PR.d ic dc

c1 c1 s1 p1 ? ? ? ε ε

c2 c1 s1 p1 ? ? ? 1 ε

c2 c1 s2 p1 1 ? ? ε ε

c2 c2 s2 p1 1 ? ? 2 ε

c2 c3 s2 p1 1 ? ? 2 d2

c2 c3 s3 p1 1 d2 ? 2 ε

c2 c3 s4 p2 1 d2 d2 2 ε

c3 c3 s4 p2 1 d2 d2 2 d1

c1 c3 s1 p2 1 d2 d2 2 d1

problem: client 1 gets acknowledge although data 2 is send to printer

RT (ICS @ UIBK) Chapter 5 31/52

Promela

Outline

Program Graphs

Channel systems

Promela
Promela - Syntax and Intuitive Meaning
Formal semantics

The State-Space Explosion Problem

RT (ICS @ UIBK) Chapter 5 32/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Promela Promela - Syntax and Intuitive Meaning

nanoPromela

• Promela (Process Meta Language) is modeling language for SPIN
• most widely used model checker SPIN
• developed by Gerard Holzmann (Bell Labs, NASA JPL)
• ACM Software Award 2002

• nanoPromela is the core of Promela
• shared variables and channel-based communication
• formal semantics of a Promela model is a channel system
• processes are defined by means of a guarded command language

• no explicit actions, statements describe effect of actions

RT (ICS @ UIBK) Chapter 5 33/52

Promela Promela - Syntax and Intuitive Meaning

nanoPromela

nanoPromela-program P = [P1| . . . |Pn] with Pi processes
a process is specified by a statement:

stmt ::= skip
∣∣ x := expr

∣∣ c?x
∣∣ c!expr

∣∣
stmt1 ; stmt2

∣∣ atomic{assignments}
∣∣

if :: g1 ⇒ stmt1 . . . :: gn ⇒ stmtn fi |

do :: g1 ⇒ stmt1 . . . :: gn ⇒ stmtn od

assignments ::= x1 := expr1 ; x2 := expr2 ; . . . ; xm := exprm

• x is a variable in Var, expr an expression and c a channel, gi a guard

• assume the Promela specification is type-consistent

RT (ICS @ UIBK) Chapter 5 34/52

Promela Promela - Syntax and Intuitive Meaning

Conditional statements

if :: g1 ⇒ stmt1 . . . :: gn ⇒ stmtn fi

• nondeterministic choice between statements stmti for which gi holds

• test-and-set semantics: (deviation from Promela)

• guard evaluation + selection of enabled command + execution first
atomic step of selected statement is all performed atomically

• if–fi–command blocks if no guard holds
• parallel processes may unblock a process by changing shared variables
• e.g., when y=0, if :: y > 0 ⇒ x := 42 fi waits until y exceeds 0

• standard abbreviations:
• if g then stmt1 else stmt2 fi ≡ if :: g ⇒ stmt1 :: ¬g ⇒ stmt2 fi
• if g then stmt1 fi ≡ if :: g ⇒ stmt1 :: ¬g ⇒ skip fi

RT (ICS @ UIBK) Chapter 5 35/52

Promela Promela - Syntax and Intuitive Meaning

Iteration statements

do :: g1 ⇒ stmt1 . . . :: gn ⇒ stmtn od

• iterative execution of nondeterministic choice among gi ⇒ stmti

• where guard gi holds in the current state

• no blocking if all guards are violated; instead, loop is aborted

• while g do stmt od ≡ do :: g ⇒ stmt od

• no break-statements to abort a loop

RT (ICS @ UIBK) Chapter 5 36/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Promela Promela - Syntax and Intuitive Meaning

Beverage vending machine

the following nanoPromela program describes its behaviour:

atomic { nbeer := max; nsprite := max };

do :: true => skip; // insert coin

if :: nsprite > 0 => nsprite := nsprite - 1

:: nbeer > 0 => nbeer := nbeer - 1

:: nsprite = nbeer = 0 => skip

fi

:: true => atomic { nbeer := max; nsprite := max }

od

RT (ICS @ UIBK) Chapter 5 37/52

Promela Promela - Syntax and Intuitive Meaning

Client-scheduler-printer example

------- CLIENT i ------------

do :: true => ic ! i;
dc ! di;

aci ? ack

od

------- SCHEDULER -----------

do :: true => ic ? x;

dc ? d;

pc ! d;

if :: x = 1 => ac1 ! ack

:: x = 2 => ac2 ! ack

fi

od

------- PRINTER -------------

do :: true => pc ? d; skip

od

RT (ICS @ UIBK) Chapter 5 38/52

Promela Formal semantics

Formal semantics

the semantics of a nanoPromela-statement over (Var,Chan) is a program
graph over (Var,Chan).

the program graphs PG1, . . . ,PGn for the processes P1, . . . ,Pn of a
nanoPromela-program P = [P1| . . . |Pn] constitute a channel system over
(Var,Chan)

the locations of the program graph PGi are the sub-statements of the
nanoPromela-program Pi

RT (ICS @ UIBK) Chapter 5 39/52

Promela Formal semantics

Sub-statements

for statement stmt its sub-statements Sub(stmt) is smallest set of
statements such that

• exit ∈ Sub(stmt)

• stmt ∈ Sub(stmt)

• if stmt′ ∈ Sub(stmt) then Sub(stmt′) ⊆ Sub(stmt)

• if stmt′ ∈ Sub(stmt1) then stmt′; stmt2 ∈ Sub(stmt1; stmt2)

• if stmt′ ∈ Sub(stmt2) then stmt′ ∈ Sub(stmt1; stmt2)

• if stmt′ ∈ Sub(stmti) then stmt′ ∈ Sub(if . . . :: gi ⇒ stmti . . .fi)

• if stmt′ ∈ Sub(stmti) then stmt′; loop ∈ Sub(loop) where
loop = do . . . :: gi ⇒ stmti . . . od

RT (ICS @ UIBK) Chapter 5 40/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Promela Formal semantics

Inference rules

skip−→ exit

x := expr
assign(x , expr)−−−−−−−−−−→ exit

assign(x , expr) denotes the action that only changes x , no other variables

c?x c?x−−−→ exit c!expr c!expr−−−−−→ exit

RT (ICS @ UIBK) Chapter 5 41/52

Promela Formal semantics

Inference rules

atomic{x1 := expr1; . . . ; xm := exprm} αm−−−→ exit

where α0 = id, αi = Effect(assign(xi , expri),Effect(αi−1, η)) for 1 6 i 6 m

stmt1
g :α−−−→ stmt′1 6= exit

stmt1; stmt2
g :α−−−→ stmt′1; stmt2

stmt1
g :α−−−→ exit

stmt1; stmt2
g :α−−−→ stmt2

RT (ICS @ UIBK) Chapter 5 42/52

Promela Formal semantics

Inference rules

stmti
h:α−−−→ stmt′i

if . . . :: gi ⇒ stmti . . .fi
gi∧h:α−−−−−→ stmt′i

stmti
h:α−−−→ stmt′i 6= exit

do . . . :: gi ⇒ stmti . . . od gi∧h:α−−−−−→ stmt′i ; do . . . od

stmti
h:α−−−→ exit

do . . . :: gi ⇒ stmti . . . od gi∧h:α−−−−−→ do . . . od

do . . . :: gi ⇒ stmti . . . od ¬g1∧...∧¬gn−−−−−−−−→ exit

RT (ICS @ UIBK) Chapter 5 43/52

Promela Formal semantics

Example: one step

let loop be a shortcut for

do :: true => ic ! i; dc ! di; aci ? ack od

derive the following step in the program graph of the client

ic ! i ic ! i−−−−−→ exit

ic ! i; dc ! di; aci ? ack ic ! i−−−−−→ dc ! di; aci ? ack

loop ic ! i−−−−−→ dc ! di; aci ? ack; loop

construct by going left-down, left-up, right-up, right-down

RT (ICS @ UIBK) Chapter 5 44/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Promela Formal semantics

Example: client and printer
do :: true => ic ! i; dc ! di; aci ? ack od

dc ! di; aci ? ack; do :: true => ic ! i; dc ! di; aci ? ack od

aci ? ack; do :: true => ic ! i; dc ! di; aci ? ack od

ic ! i

dc ! di

aci ? ack

do :: true => pc ? d; skip od

skip; do :: true => pc ? d; skip od

pc ? d

RT (ICS @ UIBK) Chapter 5 45/52

Promela Formal semantics

Example: scheduler

atomic { x := 0; d := "" }; do ... od

do :: true => ic ? x; dc ? d; pc ! d; if :: x = 1 => ac1 ! ack :: x = 2 => ac2 ! ack fi od

dc ? d; pc ! d; if :: x = 1 => ac1 ! ack :: x = 2 => ac2 ! ack fi; do ... od

pc ! d; if :: x = 1 => ac1 ! ack :: x = 2 => ac2 ! ack fi; do ... od

if :: x = 1 => ac1 ! ack :: x = 2 => ac2 ! ack fi; do ... od

assign(x = 0, d = "")

ic ? x

dc ? d

pc ! d

x=1 : ac1 ! ack x=2 : ac2 ! ack

RT (ICS @ UIBK) Chapter 5 46/52

The State-Space Explosion Problem

Outline

Program Graphs

Channel systems

Promela
Promela - Syntax and Intuitive Meaning
Formal semantics

The State-Space Explosion Problem

RT (ICS @ UIBK) Chapter 5 47/52

The State-Space Explosion Problem

Sequential programs

• # states of a simple program graph is:∣∣#program locations
∣∣ · ∏

variable x

| dom(x) |

⇒ number of states grows exponentially in number of program variables
• N variables with k possible values each yields kN states
• this is called the state-space explosion problem

• program with 10 locations, 3 bools, 4 integers (in range 0 . . . 9):

10 · 23 · 104 = 800, 000 states

• adding a single 50-positions bit-array yields 800, 000 · 250 states

RT (ICS @ UIBK) Chapter 5 48/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The State-Space Explosion Problem

Channel systems

• each channel c has a bounded capacity cap(c) and a domain dom(c)

• # states of system with N components and K channels is:

N∏
i=1

(∣∣#program locations
∣∣ ∏

variable x

| dom(x)|

)
·

K∏
j=1

|dom(cj)|cap(cj)+1

this is the underlying structure of Promela

RT (ICS @ UIBK) Chapter 5 49/52

The State-Space Explosion Problem

Client-scheduler-printer example
atomic { x := 0; d := "" }; do ... od

do :: true => ic ? x; dc ? d; pc ! d; if :: x = 1 => ac1 ! ack :: x = 2 => ac2 ! ack fi od

dc ? d; pc ! d; if :: x = 1 => ac1 ! ack :: x = 2 => ac2 ! ack fi; do ... od

pc ! d; if :: x = 1 => ac1 ! ack :: x = 2 => ac2 ! ack fi; do ... od

if :: x = 1 => ac1 ! ack :: x = 2 => ac2 ! ack fi; do ... od

assign(x = 0, d = "")

ic ? x

dc ? d

pc ! d

x=1 : ac1 ! ack x=2 : ac2 ! ack

for channel capacity 6 and binary data obtain
3︸︷︷︸

client 1

· 3︸︷︷︸
client 2

· 5 · 22︸ ︷︷ ︸
scheduler

· 2 · 2︸︷︷︸
printer

· 26+1︸︷︷︸
ic

· 26+1︸︷︷︸
dc

= 45 · 218 = 11, 796, 480 states

RT (ICS @ UIBK) Chapter 5 50/52

The State-Space Explosion Problem

The Need for Automated Verification

requirements

Formalizing

property
specification

Model Checking

system

Modeling

system model

satisfied

insufficient
memory

violated +
counterexample

huge!

RT (ICS @ UIBK) Chapter 5 51/52

The State-Space Explosion Problem

Summary of Modeling Concurrent Systems

• transition systems are fundamental for modeling software
should be generated from high-level modeling language

• program graphs = states with variables

• interleaving = execution of independent concurrent processes by
nondeterminism

• channel systems = program graphs + first-in first-out communication
• handshaking for channels of capacity 0
• asynchronous message passing when capacity exceeds 0
• semantical model of Promela

• formal semantic for Promela ⇒ know exactly which system is verified

• size of transition systems grows exponentially
• in the number of concurrent components, number of variables, and size

of channels

RT (ICS @ UIBK) Chapter 5 52/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Program Graphs
	Channel systems
	Promela
	Promela - Syntax and Intuitive Meaning
	Formal semantics

	The State-Space Explosion Problem

