I G-

Introduction to Model Checking

René Thiemann

Institute of Computer Science
University of Innsbruck

WS 2011/2012

\ ~" RT |cs e UIBK) Chapter 5

;// / ’ y/ f///
e Ao\

dAn\N ¥ 4
-~ ‘Model %ﬁecklng overview

requirements

formalizing

_ this chapter

property
specification

model checking

RT (ICS @ UIBK) Chapter 5

3/52

]
Outline

@ Program Graphs
@ Channel systems

@ Promela
e Promela - Syntax and Intuitive Meaning
e Formal semantics

@ The State-Space Explosion Problem

T (ICS @ UIBK) Chapter 5 2/52

Motivation

e so far, input to model checker is transition system and formula
e for modeling want higher-level description as transition system
e use variables
= program graphs
e use communication
= channel systems

e use textual format
= Promela

RT (ICS @ UIBK) Chapter 5 4/52

http://cl-informatik.uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws10/imc
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline Beverage vending machine revisited

transitions (with variables, conditions, and actions):

@ Program Graphs start — select start €1y start
select —prite=0isget oy py select —beer=0:bget y yapy
select nsprite=0 A nbeer=0 start
| Action | Effect on variables
sget nsprite := nsprite — 1
bget nbeer := nbeer — 1
refill nsprite := max; nbeer := max
RT (ICS @ UIBK) Chapter 5 5/52 RT (ICS @ UIBK) Chapter 5 6/52

Program graph representation Some preliminaries

e typed variables Var with evaluation 7 that assigns values of domain D
to variables

e eg., n(x) =17 and n(y) = green
e the set of Boolean conditions over Var

refill

e propositional logic formulas whose propositions are of the form "x € D"
nbeer = nsprite = 0 o (nsprite > 1) A (y = yellow) A (x < 2-x')

o effect of the actions is formalized by means of a mapping:
nsprite > 0 : sget

Effect : Act x Eval(Var) — Eval(Var)

e e.g., for action a use update x :=y == yellow 72-x: x —1, and
evaluation 7 is given by n(x) = 17 and n(y) = red
® Effect(a,n)(x) = 77(X) —1=16, and EffeCt(CVaU)()’) = 7]()/) = red

COEER) Chapter 5 7/52 COEER) Chapter 5 8/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Program graphs Beverage vending machine

a program graph PG over set Var of typed variables is tuple

(Loc, Act, Effect, —s, Loco, go) where NOT IN HANDOUT, GRAPH IN PRESENTATION
o Loc = {start, select } with Locy = { start }
Act = { bget, sget, refill }

e Loc is a set of locations with initial locations Locg C Loc

e Var = { nsprite, nbeer } with domain {0,1,..., max}
e Act is a set of actions including the empty action ., usually not written Effect(sget.) [nsprite sprite—1]
= n[nsprite := nsprite—
o Effect: Act x Eval(Var) — Eval(Var) is the effect function sen nnsp P
. o [Effect(bget,n) = mn[nbeer := nbeer—1]
e _ has never an effect, i.e., Effect(_,n) =17]]
Effect(refill,n) = [nsprite := max, nbeer := max|

— C Loc x (Cond(Var) x Act) x Loc, transition relation

o Cond(Var): Boolean conditions over Var true is not written * go = (nsprite = max A nbeer = max)

e go € Cond(Var) is the initial condition
notation: ¢ £ (' denotes (¢, g,a,l') € —

RT (ICS @ UIBK) [9/52 RT (ICS @ UIBK) [10/52
From program graphs to transition systems Structured operational semantics
e basic strategy: unfolding e notation —_Premse L eans:
conclusion

e state = location ¢ + evaluation 7

e initial state = initial location satisfying the initial condition gy if the proposition above the “solid line” (i.e., the premise) holds, then

o propositions and labeling the proposition under the fraction bar (i.e., the conclusion) holds

e propositions: “at £" and “x € D" for D C dom(x) e such “if ... then ..."” propositions are also called inference rules
e (¢,m) is labeled with “at ¢" and all conditions that hold in 7 e if the premise is a tautology, it may be omitted
o if {-£% ¢ and g holds in 7 then (¢,n) — (¢, Effect(a,n)) e in the latter case, the rule is also called an axiom

OEER) Chapter 5 11/52 COEER) Chapter 5 12/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Transition systems for program graphs

the transition system TS(PG) of program graph
PG = (Loc, Act, Effect,—, Locy, go)

over set Var of variables is the tuple (S, —,/, AP, L) where
e S = Loc x Eval(Var)

g, gl
e —5CSxSis defined by the rule: —— 0 N 18

(0,m) — (', Effect(c, n))
o I ={{t,;m | €€ Loc,n |~ &}
e AP = Loc U Cond(Var) and

L((¢,m) = {£} U {g € Cond(Var) | n |- &}

RT (ICS @ UIBK) Chapter 5

Outline

@ Channel systems

COEER) Chapter 5

13/52

15/52

1 beer

EEER) [14/52

Concurrent systems

e program graphs

o suited for modeling sequential data-dependent systems

e what about concurrent systems?

e threading
e distributed algorithms and communication protocols

e can we model:

e synchronous communication?
e asynchronous communication?

RT (ICS @ UIBK) Chapter 5 16/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Interleaving

construct concurrent system from several (sequential) components
actions of independent components are merged or interleaved

e a single or more processors are available
(perhaps on different computers)
e on which the actions of the processes are interlocked

e no assumptions on the order of processes
e possible orders for independent processes P and Q:

P Q@ P Q P Q@ Q@ QP
PP QP Q
P

P P P Q
P QP P Q P P Q

justification for interleaving:
o the effect of concurrently executed, independent actions « and 3 equals
the effect when « and (8 are successively executed in arbitrary order

P: x++;... Q: y++ ..., parallel execution = sequential execution

O EER) Chapter 5 17/52

Channels

e process P; = program graph PG; + communication actions

clv transmit the value v along channel ¢

c?x receive message via channel ¢ and assign it to variable x

e Comm =
{ clv, ¢?x | ¢ € Chan, v € dom(c), x € Var. dom(x) 2D dom(c) }
e sending and receiving a message
e clv puts the value v at the rear of the buffer ¢ (if ¢ is not full)
e C7x retrieves the front element of the buffer and assigns it to x
(if ¢ is not empty)
e if cap(c) = 0, channel ¢ has no buffer
e if cap(c) =0, sending and receiving can takes place simultaneously
this is called synchronous message passing or handshaking
e if cap(c) > 0, sending and receiving can never take place simultaneously
this is called asynchronous message passing

COEER) Chapter 5 19/52

Channels

usually, processes exchange data in some way =- channels
e processes communicate via channels (¢ € Chan)
e channels are first-in, first-out buffers

e channels are typed (wrt. their content — dom(c))

channels buffer messages (of appropriate type)

channel capacity = maximum # messages that can be stored

e c is a channel with finite capacity cap(c)
e if cap(c) > 0, there is some “delay” between sending and receiving
e if cap(c) = 0, then communication via ¢ amounts to handshaking

O EIER) Chapter 5

Example: Traffic Light

{orange} {red, orange}

{green}

say that channel only has one value: token, say that cap(c) =0

COEER) Chapter 5

18/52

20/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Channel systems Example: Traffic lights

a program graph over (Var, Chan) is a tuple

PG = (Loc, Act, Effect,—, Locy,
(0 £0) NOT IN HANDOUT, GRAPH IN PRESENTATION

where
Crossing = |[TrafficLight | TrafficLight | Starter|

— C Locx(Cond(Var)xAct)xLoc U Loc x (Cond(Var) x Comm) x Loc

communication actions - . . e
e only two traffic lights = both wait for input infinitely long

a channel system CS over (Uo<i<n Varj, Chan): e therefore use additional “starter” to send one input

|
CS = [PGy || PG,] —(init) citoken (done)

with program graphs PG; over (Var;, Chan)

RT (ICS @ UIBK) Chapter 5 21/52 RT (ICS @ UIBK) Chapter 5 22/52
Communication actions Transition system semantics of a channel system
let CS=[PG; |---| PGp] be a channel system over (Chan, Var) with

Handshaking

e if cap(c) = 0, then process P; can perform ¢; L!V)E:- only PG; = (Locj, Act;, Effectj, —i, Loco i, 80,i), for 0 <i<n

e ... if P, say, can perform {; LC?XW} and ... TS(CS) is the transition system (S, —, I, AP, L) where:
e if both g and g’ are satisfied, and e S = (Locy x -+ x Locp) x Eval(Var) x Eval(Chan)
e the effect corresponds to the (atomic) distributed assignment x := v. e — is defined by the inference rules on the next slides

I = { (1. ln,m60) | Vi. (4 € Locgi A [= go,i) AVc. &o(c) = 5}
AP =y i<, Loci & Cond(Var)
later ... (01, b1, €) = {f1eeeila} U {g € Cond(Var) | n = g}

Asynchronous message passing

COEER) Chapter 5 23/52 RT (ICS @ UIBK) Chapter 5 24/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Inference rules (1) Example: Traffic lights

NOT IN HANDOUT, PROGRAM GRAPH IN PRESENTATION

e interleaving for o € Act;:

(&5 0 N nEg
T R I o R (4 PN (Y Y o

where 1)’ = Effect(a, 1))

(p17p27 d)

o

(p17 P4, d)

e synchronous message passing over ¢ € Chan, cap(c) = 0:

L7 I
0ESS N S G N (nEgAg) A
Wl

I #J
,Ej,...,f,,,r],Q—><€1,...,€§,...,€;,...,6,,,7/’,5)

where 7/ = 1)[x := V]
(p47 P1, d)

mention unreachable states, no evaluation, no channel evaluations

O EER) Chapter 5 25/52 O EIER) Chapter 5

Example protocol CLIENT;: —(a) PRINTER: —(P1)
e two clients, one scheduler, one printer ic ! . pc?d
e clients send data to scheduler which sends this data further to printer ac; 7 ack @ @
e before sending data, clients have to initialize connection by sending id dc 1 d;
e after data has been delivered by printer, scheduler sends ack. to client
e scheduler should always be able to receive data e
= proper modeling requires asynchronous message passing
e if cap(c) > 0, then process P; can perform ¢; g:—d"hﬁ; SCHEDULER:

O EER)

. iff g is satisfied and less than cap(c) messages are stored in ¢
P; may perform ¢; L‘u)éj’- iff g is satisfied and c is not empty
then the first element v of the buffer is extracted and assigned to x

(atomically)

‘ ‘ executable if ... ‘ effect ‘ x=1 : acy ! ack x=2 acy ! ack
g:clv | gissat. and c is not full Enqueue(c, v) pc ! d
g :c?x | gissat. and c is not empty | x := Front(c); Dequeue(c); (o

Chapter 5

27/52

COEER)

Chapter 5

28/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Channel evaluations Inference rules (I1)

asynchronous message passing for ¢ € Chan, cap(c) > 0:

e a channel evaluation £ is e receive a value along channel ¢ and assign it to variable x:
e a mapping from channel ¢ € Chan onto a sequence £(c) € dom(c)* =
such that (S 0 N E()=vi.ovik A k>0 ANEg
e current length cannot exceed the capacity of c: len(¢(c)) < cap(c) U,y b 1, E) = (l1s ol 1] €
o &(c)=wvivy...v (cap(c) > k) denotes v is at front of buffer etc.
o &[c = vi...vg] denotes the channel evaluation where 1) = 1j[x 1= vi] and {' = ¢[c = va. ..]
/ H /
flci=vi...v](c) = &(<’) ifc#c e transmit value v € dom(c) over channel c:
Vi... Vg if c=c

ﬁ,-LC!‘S,-ﬂ- ANE&c)=vi...vx N k<cap(c) N nE=g
e initial channel evaluation &y equals &y(c) = ¢ for any ¢ e iy ln € =8, s o)

where & =¢[c:=viva... v V]

UEEER) Chapter 5 20/52 RT (ICS © UIBK) Chapter 5 30/52

Transition system of example protocol Outline

let c(ac1) = c(acz) = c(pc) = 0 and c(ic) = c(dc) >0
CHANNEL SYSTEM SHOWN IN PRESENTATION

Cly ClL, SC PR x SC.d PR.d ic dc

1 1 S1 P1 ? ? ? € €

1)) a s o pr ? ? ? 1 €

C a s p1 1 ? ? € €

@ o s p 1 7 72 € ® Promela L .
e Promela - Syntax and Intuitive Meaning

Co C3 So P1 1 ? ? 2 C/2 .
e Formal semantics

Co c3 S3 P1 1 d2 ? 2 €

(&) C3 sa p 1 d> ds 2 €

g @ s p2 1 b 2 &

C1 C3 51 P2 1 d2 d2 2 d1

problem: client 1 gets acknowledge although data 2 is send to printer

COEER) Chapter 5 31/52 RT (ICS @ UIBK) Chapter 5 32/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

nanoPromela nanoPromela

nanoPromela-program P = [Py]...|P,] with P; processes
a process is specified by a statement:
e Promela (Process Meta Language) is modeling language for SPIN

e most widely used model checker SPIN
e developed by Gerard Holzmann (Bell Labs, NASA JPL)
o ACM Software Award 2002

stmt = skip ‘ X 1= expr ‘ c?x ‘ clexpr ‘

stmty ; stmts ‘ atomic{assignments} |

e nanoPromela is the core of Promela if tg=stmti ... ug,=stmt, fi |
e shared variable.s and channel-based communication do gy =>stmty ... ::g,=>stmt, od
o formal semantics of a Promela model is a channel system
e processes are defined by means of a guarded command language assignments = Xj i=eXxpry; X2 ;= expry; ... ; Xm 1= €Xprp,

e no explicit actions, statements describe effect of actions

e x is a variable in Var, expr an expression and ¢ a channel, g; a guard

e assume the Promela specification is type-consistent

EEER) [T 33/52 EENER) [34/52
Conditional statements lteration statements
if .2 g = stmt; ... 1 g, = stmt, fi
o)] do :: gy = stmt; ... ;I g, = stmt, od
e nondeterministic choice between statements stmt; for which g; holds
e test-and-set semantics: (deviation from Promela) _ _ _ o _
e guard evaluation + selection of enabled command + execution first * iterative execution of nondeterministic choice among g; = stmt;
atomic step of selected statement is all performed atomically e where guard g; holds in the current state

no blocking if all guards are violated; instead, loop is aborted

if—fi—-command blocks if no guard holds

o parallel processes may unblock a process by changing shared variables
o eg., when y=0,if 1y >0 = x:= 42 fi waits until y exceeds 0

while g do stmt od = do :: g = stmt od

o no break-statements to abort a loop
standard abbreviations:

o if g then stmt; else stmt, fi = if ;1 g = stmt; 1 -g = stmt; fi
o if g then stmt; fi = if :: g = stmt; :: =g = skip fi

COENER) Chapter 5 35/52 COEER) Chapter 5 36/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Beverage vending machine

the following nanoPromela program describes its behaviour:

atomic { nbeer := max; nsprite := max };
do :: true => skip; // insert coin
if :: nsprite > 0 => nsprite

:: nbeer >0
:: nsprite = nbeer = 0 => skip

fi

:: true => atomic { nbeer :=

od

O EER)

Formal semantics

Chapter 5

=> nbeer

max; nsprite

nsprite
nbeer

:= max }

-1
-1

37/52

the semantics of a nanoPromela-statement over (Var, Chan) is a program

graph over (Var, Chan).

the program graphs PGy, ..

., PG, for the processes P41, ..

., P, of a

nanoPromela-program P = [Py] ... |P,] constitute a channel system over

(Var, Chan)

the locations of the program graph PG; are the sub-statements of the

nanoPromela-program P;

COEER)

Chapter 5

39/52

Client-scheduler-printer example

——————— CLIENT j ——==———————-
do :: true => ic ! i;
dc ! d;;
ac; 7 ack
od
------- SCHEDULER -----—-—-—-
do :: true => ic 7 x;
dc 7?7 d;
pc ! d;
if :: x =1 => acy ! ack
: X =2 =>acy ! ack
fi
od
——————— PRINTER -————-—-————-
do :: true => pc 7 d; skip
od
REEER) Chapter 5 38/52

Sub-statements

for statement stmt its sub-statements Sub(stmt) is smallest set of
statements such that

exit € Sub(stmt)

stmt € Sub(stmt)

if stmt’ € Sub(stmt) then Sub(stmt’) C Sub(stmt)

if stmt’ € Sub(stmty) then stmt’; stmty € Sub(stmty; stmty)
if stmt’ € Sub(stmty) then stmt’ € Sub(stmty; stmty)
(
(

if stmt’ € Sub(stmt;) then stmt’ € Sub(if... :: gi = stmt;...fi)
if stmt’ € Sub(stmt;) then stmt’; loop € Sub(loop) where
loop=do...: g = stmt;...od

RT (ICS @ UIBK) Chapter 5 40/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Inference rules Inference rules

atomic{x; 1= expry;...; xm 1= expr,,} —“2> exit
skip — exit where ag = id, aj = Effect(assign(x;, expr;), Effect(cj_1,m)) for 1 <i<m
assign(x, expr . : .
X 1= expr _assign(x, ep) ot stmt; &% stmt] # exit
assign(x, expr) denotes the action that only changes x, no other variables stmty; stmty —£°% stmt]; stmty
c?x <% exit clexpr _clexpr, axit stmt; &% exit

stmty; stmty &% stmt,

UEEER) Chapter 5 41/52 UEEER) Chapter 5 42/52
Inference rules Example: one step
stmt; ﬂ)stmt? let loop be a shortcut for
H .. - giNh«a /
if... g = stmt;...fi stmt; do true => ic ! i; dc ! d;; ac; ? ack od

stmt; e stmt, £ exit derive the following step in the program graph of the client

do...: gj = stmt;...od &/, stmt}; do...od
ic 1 Aetly exit
h: . . . i i
stmt; — exit ic ! i; dc ! d;; ac; ? ack =1y dc ! d;; ac; 7 ack
do...: g = stmt;...od -8 do. .. od loop 11y dc 1 d;; ac; ? ack; loop
T construct by going left-down, left-up, right-up, right-down
do...: g = stmt;...od —&=ny exit

COEER) Chapter 5 43/52 RT (ICS @ UIBK) Chapter 5 44/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: client and printer

Example: scheduler
—>|do :: true => ic ! j; dc ! d;; ac; ? ack od

atomic x :=0;d:=""1}; do ... od
. Vo - ? ack _’| { }
ic @ |
assign(x = 0, d = "")
| o . P o 0o = g 1 fo 1 .. o P
|dc ! d;j; ac; 7 ack; do :: true => ic ! /; dc ! dj; ac; ? ack od do :: true => ic ? x; dc ? d; pc ! d; if :: x =1 => ac; ! ack :: x = 2 => acp ! ack fi od
dc ! d; ic 7 x
1
A B |dc?d;pc!d;if::x=1=>ac1!ack::x=2=>ac2!ackfi;do...od|
|ac,- ? ack; do :: true => ic ! j; dc ! d;; ac; ? ack od
dc 7 d
|pc !'d; if :: x =1 =>ac; ! ack :: x = 2 => acp ! ack fi; do ... od|
pc ! d
—>|do :: true => pc 7 d; skip 0d| |if i x=1=>ac; ! ack :: x =2 => acp ! ack fi; do ... od|
x=1 : acy; ! ack x=2 : acy ! ack
pc 7 d
|skip; do :: true => pc ? d; skip od|
RT (ICS @ UIBK) Chapter 5 45/52 RT (ICS @ UIBK) Chapter 5 46/52
Outline

Sequential programs

e 7 states of a simple program graph is:

| #program locations | - H | dom(x) |

variable x

= number of states grows exponentially in number of program variables
e N variables with k possible values each yields k" states
e this is called the state-space explosion problem

e program with 10 locations, 3 bools, 4 integers (in range 0...9):

10 - 23 - 10* = 800,000 states
@ The State-Space Explosion Problem

e adding a single 50-positions bit-array yields 800, 000 - 2°° states

COEER) Chapter 5

47/52 COEER) Chapter 5 48/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Channel systems

e each channel ¢ has a bounded capacity cap(c) and a domain dom(c)

e # states of system with N components and K channels is:

K
H |#program locations| H | dom(x)| | - H |dom(cj)|@P(e)+1
. i

i=1 variable x

this is the underlying structure of Promela

EEER) [49/52

The Need for Automated Verification

Formalizing

Modeling

e _]
omem mosel_>—— huge!

property
specification

Model Checking

COEER) Chapter 5 51/52

Client-scheduler-printer example

—)latomic {x:=0;d:=""}; do ... od
assign(x = 0, d = "")
do :: true => ic ? x; dc ? d; pc ! d; if :: x =1 => ac; ! ack :: x = 2 => acy ! ack fi od
ic 7 x
|dc?d; pc ! d; if :: x =1 =>ac; ! ack :: x = 2 => acp ! ack fi; do ... odl
dc 7d
|pc !'d; if :: x =1 =>ac; ! ack :: x = 2 => acp ! ack fi; do ... odl
pc ! d
|if ::x=1=>acy ! ack :: x = 2 => acp ! ack fi; do ... odl
x=1 : acy ! ack x=2 : acy ! ack

for channel capacity 6 and binary data obtain

3 .3 .5.22.0.0.0001. 0041 — 45.218 — 11 796,480 states
~ O~ Y~ N N =~

client 1 client 2 scheduler printer ic dc

RT (ICS @ UIBK) Chapter 5 50/52

Summary of Modeling Concurrent Systems

transition systems are fundamental for modeling software
should be generated from high-level modeling language
program graphs = states with variables
interleaving = execution of independent concurrent processes by
nondeterminism
channel systems = program graphs + first-in first-out communication
e handshaking for channels of capacity 0
e asynchronous message passing when capacity exceeds 0
e semantical model of Promela
formal semantic for Promela = know exactly which system is verified
size of transition systems grows exponentially

e in the number of concurrent components, number of variables, and size
of channels

RT (ICS @ UIBK) Chapter 5 52/52

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	Program Graphs
	Channel systems
	Promela
	Promela - Syntax and Intuitive Meaning
	Formal semantics

	The State-Space Explosion Problem

