

Introduction to Model Checking

Institute of Computer Science University of Innsbruck

René Thiemann

WS 2011/2012

Chapter 5

Model checking overview

Outline

- Program Graphs
- Channel systems
- Promela
 - Promela Syntax and Intuitive Meaning
 - Formal semantics
- The State-Space Explosion Problem

RT (ICS @ UIBK) Chapter 5 2/52 Motivation

- so far, input to model checker is transition system and formula
- for modeling want higher-level description as transition system
 - use variables
 - $\Rightarrow \ \mathsf{program} \ \mathsf{graphs}$
 - use communication
 - $\Rightarrow \ \mathsf{channel} \ \mathsf{systems}$
 - use textual format
 - \Rightarrow Promela

Outline

• Program Graphs

- Channel systems
- Promela
 - Promela Syntax and Intuitive Meaning
 - Formal semantics
- The State-Space Explosion Problem

nbeer = nsprite = 0

nbeer > 0 : bget

Beverage vending machine revisited

transitions (with variables, conditions, and actions):

 $\mathit{start}
ightarrow \mathit{select}$

start \xrightarrow{refill} start

select $\xrightarrow{nsprite > 0:sget}$ start

select $\xrightarrow{nbeer > 0: bget}$ start

select $\xrightarrow{nsprite=0 \land nbeer=0}$ start

Action	Effect on variables
sget	nsprite := nsprite - 1
bget	nbeer := nbeer - 1
refill	<i>nsprite</i> := <i>max</i> ; <i>nbeer</i> := <i>max</i>

<

Chapter 5

6/52

Program Graphs

Some preliminaries

- typed variables Var with evaluation η that assigns values of domain D to variables
 - e.g., $\eta(x) = 17$ and $\eta(y) = green$
- the set of Boolean conditions over Var
 - propositional logic formulas whose propositions are of the form " $\overline{x} \in \overline{D}$ "
 - (nsprite ≥ 1) \land (y = yellow) \land (x $\leq 2 \cdot x'$)
- effect of the actions is formalized by means of a mapping:

 $\textit{Effect}:\textit{Act} \times \textit{Eval}(\textit{Var}) \rightarrow \textit{Eval}(\textit{Var})$

• e.g., for action α use update x := y == yellow ? 2 · x : x - 1, and evaluation η is given by $\eta(x) = 17$ and $\eta(y) = red$

Chapter 5

• Effect $(\alpha, \eta)(x) = \eta(x) - 1 = 16$, and Effect $(\alpha, \eta)(y) = \eta(y) = red$

nsprite > 0 : sget

RT (ICS @ UIBK)

Program graphs

a program graph PG over set Var of typed variables is tuple

 $(Loc, Act, Effect, \longrightarrow, Loc_0, g_0)$ where

- Loc is a set of locations with initial locations $Loc_0 \subseteq Loc$
- Act is a set of actions including the empty action ..., usually not written
- *Effect* : $Act \times Eval(Var) \rightarrow Eval(Var)$ is the effect function
 - \Box has never an effect, i.e., $Effect(\Box, \eta) = \eta$

From program graphs to transition systems

- $\longrightarrow \subseteq$ Loc \times (Cond(Var) \times Act) \times Loc, transition relation
 - Cond(Var): Boolean conditions over Var true is not written

Chapter 5

• $g_0 \in Cond(Var)$ is the initial condition

notation: $\ell \xrightarrow{g:\alpha} \ell'$ denotes $(\ell, g, \alpha, \ell') \in \longrightarrow$

Program Graphs

Beverage vending machine

NOT IN HANDOUT, GRAPH IN PRESENTATION

- $Loc = \{ start, select \}$ with $Loc_0 = \{ start \}$
- Act = { bget, sget, refill }
- $Var = \{ nsprite, nbeer \}$ with domain $\{ 0, 1, \dots, max \}$
 - $Effect(sget, \eta) = \eta[nsprite := nsprite-1]$
- $Effect(bget, \eta) = \eta[nbeer := nbeer 1]$ $Effect(refill, \eta) = [nsprite := max, nbeer := max]$
- $g_0 = (nsprite = max \land nbeer = max)$

RT (ICS @ UIBK) Chapter 5 10/

Structured operational semantics

- basic strategy: unfolding
 - state = location ℓ + evaluation η
 - initial state = initial location satisfying the initial condition g_0

• propositions and labeling

- propositions: "at ℓ " and " $x \in D$ " for $D \subseteq dom(x)$
- $\langle \ell,\eta\rangle$ is labeled with "at ℓ " and all conditions that hold in η
- if $\ell \xrightarrow{g:\alpha} \ell'$ and g holds in η then $\langle \ell, \eta \rangle \rightarrow \langle \ell', Effect(\alpha, \eta) \rangle$

- notation ______ means: ______ means:
 - if the proposition above the "solid line" (i.e., the premise) holds, then the proposition under the fraction bar (i.e., the conclusion) holds
- \bullet such "if \ldots then \ldots " propositions are also called inference rules
- if the premise is a tautology, it may be omitted
- in the latter case, the rule is also called an axiom

Transition systems for program graphs

the transition system TS(PG) of program graph

 $PG = (Loc, Act, Effect, \longrightarrow, Loc_0, g_0)$

- over set Var of variables is the tuple $(S, \rightarrow, I, AP, L)$ where
 - $S = Loc \times Eval(Var)$
 - $\longrightarrow \subseteq S \times S$ is defined by the rule: $\frac{\ell \xrightarrow{g:\alpha} \ell' \land \eta \models g}{\langle \ell, \eta \rangle \rightarrow \langle \ell', Effect(\alpha, \eta) \rangle}$
 - $I = \{ \langle \ell, \eta \rangle \mid \ell \in Loc_0, \eta \models g_0 \}$
 - $AP = Loc \cup Cond(Var)$ and $L(\langle \ell, \eta \rangle) = \{\ell\} \cup \{g \in Cond(Var) \mid \eta \models g\}$

RT (ICS @ UIBK)	Chapter 5	13/52
Channel systems		
Outline		
• Program Graphs		
• Channel systems		

- Promela
 - Promela Syntax and Intuitive Meaning
 - Formal semantics
- The State-Space Explosion Problem

rogram Graphs

Channel systems

Concurrent systems

- program graphs
 - suited for modeling sequential data-dependent systems
- what about concurrent systems?
 - threading
 - distributed algorithms and communication protocols
- can we model:
 - synchronous communication?
 - asynchronous communication?

Interleaving

- construct concurrent system from several (sequential) components
- actions of independent components are merged or interleaved
 - a single or more processors are available (perhaps on different computers)
 - on which the actions of the processes are interlocked
- no assumptions on the order of processes
 - possible orders for independent processes *P* and *Q*:

Ρ	Q	Ρ	Q	Ρ	Q	Q	Q	Ρ	
Ρ	Ρ	Q	Ρ	Ρ	Q	Ρ	Ρ	Q	
Ρ	Q	Ρ	Ρ	Q	Ρ	Ρ	Р	Q	

- justification for interleaving:
 - the effect of concurrently executed, independent actions α and β equals the effect when α and β are successively executed in arbitrary order

P: x++;... Q: y++..., parallel execution = sequential execution

```
RT (ICS @ UIBK)
```

Chapter 5

Channel system

Channels

- process P_i = program graph PG_i + communication actions
 - c!v transmit the value v along channel c
 - c?x receive message via channel c and assign it to variable x
- *Comm* =
 - $\{ c!v, c?x \mid c \in Chan, v \in dom(c), x \in Var. dom(x) \supseteq dom(c) \}$
- sending and receiving a message
 - *c*!*v* puts the value *v* at the rear of the buffer *c* (if *c* is not full)
 - c?x retrieves the front element of the buffer and assigns it to x (if c is not empty)
 - if cap(c) = 0, channel c has no buffer
 - if cap(c) = 0, sending and receiving can takes place simultaneously this is called synchronous message passing or handshaking
 - if cap(c) > 0, sending and receiving can never take place simultaneously this is called asynchronous message passing

Channel system

Channels

usually, processes exchange data in some way \Rightarrow channels

- processes communicate via channels ($c \in Chan$)
- channels are first-in, first-out buffers
- channels are typed (wrt. their content dom(c))
- channels buffer messages (of appropriate type)
- channel capacity = maximum # messages that can be stored
 - c is a channel with finite capacity cap(c)
 - if cap(c) > 0, there is some "delay" between sending and receiving
 - if cap(c) = 0, then communication via c amounts to handshaking

RT (ICS @ UIBK)

Chapter 5

18/52

Channel systems

Example: Traffic Light

say that channel only has one value: token, say that cap(c) = 0

Chapter 5

Channel systems

a program graph over (Var, Chan) is a tuple

$$\mathsf{PG} = (\mathsf{Loc}, \mathsf{Act}, \mathsf{Effect}, \rightarrow, \mathsf{Loc}_0, g_0)$$

where

 $\rightarrow \subseteq Loc \times (Cond(Var) \times Act) \times Loc \cup \underbrace{Loc \times (Cond(Var) \times Comm) \times Loc}_{communication actions}$

a channel system *CS* over $(\bigcup_{0 < i \le n} Var_i, Chan)$:

$$CS = [PG_1 | \cdots | PG_n]$$

with program graphs PG_i over (Var_i , Chan)

RT (ICS @ UIBK)	Chapter 5	21/52
Channel and have		
Channel systems		

Communication actions

Handshaking

- if cap(c) = 0, then process P_i can perform $\ell_i \xrightarrow{g:c!v} \ell'_i$ only
- ... if P_j , say, can perform $\ell_j \xrightarrow{g':c?\times} \ell'_j$ and ...
- if both g and g' are satisfied, and
- the effect corresponds to the (atomic) distributed assignment x := v.

Asynchronous message passing

later . . .

Channel system

Example: Traffic lights

NOT IN HANDOUT, GRAPH IN PRESENTATION

Crossing = [TrafficLight | TrafficLight | Starter]

- only two traffic lights \Rightarrow both wait for input infinitely long
- therefore use additional "starter" to send one input

Transition system semantics of a channel system

let $CS = [PG_1 | \cdots | PG_n]$ be a channel system over (*Chan*, *Var*) with

 $PG_i = (Loc_i, Act_i, Effect_i, \rightarrow_i, Loc_{0,i}, g_{0,i}), \text{ for } 0 < i \leq n$

- TS(CS) is the transition system $(S, \rightarrow, I, AP, L)$ where:
 - $S = (Loc_1 \times \cdots \times Loc_n) \times Eval(Var) \times Eval(Chan)$
 - $\bullet \ \rightarrow$ is defined by the inference rules on the next slides
 - $I = \left\{ \langle \ell_1, \ldots, \ell_n, \eta, \xi_0 \rangle \mid \forall i. \ (\ell_i \in Loc_{0,i} \land \eta \models g_{0,i}) \land \forall c. \xi_0(c) = \varepsilon \right\}$
- $AP = \biguplus_{0 < i \leq n} Loc_i \ \uplus \ Cond(Var)$
- $L(\langle \ell_1, \ldots, \ell_n, \eta, \xi \rangle) = \{ \ell_1, \ldots, \ell_n \} \cup \{ g \in Cond(Var) \mid \eta \models g \}$

Inference rules (I)

• interleaving for $\alpha \in Act_i$:

$$\frac{\ell_{i} \xrightarrow{g:\alpha} i \ell'_{i} \land \eta \models g}{\langle \ell_{1}, \dots, \ell_{i}, \eta, \eta, \xi \rangle \to \langle \ell_{1}, \dots, \ell'_{i}, \dots, \ell_{n}, \eta', \xi \rangle}$$

where $\eta' = Effect(\alpha, \eta)$

• synchronous message passing over $c \in Chan$, cap(c) = 0:

$$\frac{\ell_{i} \xrightarrow{g:c?x} i \ell'_{i} \land \ell_{j} \xrightarrow{g':c!v} j \ell'_{j} \land (\eta \models g \land g') \land i \neq j}{\langle \ell_{1}, \dots, \ell_{i}, \dots, \ell_{j}, \dots, \ell_{n}, \eta, \xi \rangle \rightarrow \langle \ell_{1}, \dots, \ell'_{j}, \dots, \ell'_{j}, \dots, \ell_{n}, \eta', \xi \rangle}$$

where $\eta' = \eta[x := v]$

RT (ICS @ UIBK)

25/52

Channel systems

Example protocol

- two clients, one scheduler, one printer
- clients send data to scheduler which sends this data further to printer

Chapter 5

- · before sending data, clients have to initialize connection by sending id
- after data has been delivered by printer, scheduler sends ack. to client
- scheduler should always be able to receive data
- \Rightarrow proper modeling requires asynchronous message passing
 - if cap(c) > 0, then process P_i can perform $\ell_i \xrightarrow{g:c!v} \ell'_i$
 - ... iff g is satisfied and less than cap(c) messages are stored in c
 - P_j may perform ℓ_j g:c?x → ℓ'_j iff g is satisfied and c is not empty
 then the first element v of the buffer is extracted and assigned to x
 - then the first element v of the buffer is extracted and assigned to x (atomically)

	executable if	effect
g : c!v	g is sat. and c is not full	Enqueue(c, v)
g : c?x	g is sat. and c is not empty	x := Front(c); Dequeue(c);

Example: Traffic lights

NOT IN HANDOUT, PROGRAM GRAPH IN PRESENTATION

mention unreachable states, no evaluation, no channel evaluations

Chapter 5

26/52

RT (ICS @ UIBK)

/52

Channel evaluations

- a channel evaluation ξ is
 - a mapping from channel $c \in Chan$ onto a sequence $\xi(c) \in dom(c)^*$ such that
 - current length cannot exceed the capacity of c: $\mathit{len}(\xi(c)) \leqslant \mathit{cap}(c)$
 - $\xi(c) = v_1 v_2 \dots v_k \ (cap(c) \ge k)$ denotes v_1 is at front of buffer etc.
- $\xi[c := v_1 \dots v_k]$ denotes the channel evaluation

$$\xi[c := v_1 \dots v_k](c') = \begin{cases} \xi(c') & \text{if } c \neq c' \\ v_1 \dots v_k & \text{if } c = c' \end{cases}$$

• initial channel evaluation ξ_0 equals $\xi_0(c) = \varepsilon$ for any c

RT (ICS @ UIBK)	Chapter 5	29/52
Channel systems		

Transition system of example protocol

let $c(ac_1) = c(ac_2) = c(pc) = 0$ and c(ic) = c(dc) > 0CHANNEL SYSTEM SHOWN IN PRESENTATION

CL_1	CL_2	SC	PR	X	SC.d	PR.d	ic	dc
<i>c</i> ₁	<i>c</i> ₁	<i>s</i> ₁	p_1	?	?	?	ϵ	ϵ
<i>c</i> ₂	<i>c</i> ₁	s_1	p_1	?	?	?	1	ϵ
<i>c</i> ₂	c_1	s ₂	p_1	1	?	?	ϵ	ϵ
<i>c</i> ₂	<i>c</i> ₂	<i>s</i> ₂	p_1	1	?	?	2	ϵ
<i>c</i> ₂	<i>C</i> 3	s ₂	p_1	1	?	?	2	<i>d</i> ₂
<i>c</i> ₂	C3	s 3	p_1	1	<i>d</i> ₂	?	2	ϵ
<i>c</i> ₂	C3	<i>S</i> 4	p 2	1	d_2	d_2	2	ϵ
<i>c</i> 3	c ₃	<i>s</i> 4	p_2	1	d_2	d_2	2	d_1
<i>c</i> ₁	C ₃	<i>s</i> 1	p_2	1	d_2	d_2	2	d_1

problem: client 1 gets acknowledge although data 2 is send to printer

Channel systems

Inference rules (II)

asynchronous message passing for $c \in Chan$, cap(c) > 0:

• receive a value along channel c and assign it to variable x:

$$\frac{\ell_{i} \xrightarrow{g:c?\times} i \ell_{i}' \land \xi(c) = v_{1} \dots v_{k} \land k > 0 \land \eta \models g}{\langle \ell_{1}, \dots, \ell_{i}, \dots, \ell_{n}, \eta, \xi \rangle \rightarrow \langle \ell_{1}, \dots, \ell_{i}', \dots, \ell_{n}, \eta', \xi' \rangle}$$

where $\eta' = \eta[x := v_1]$ and $\xi' = \xi[c := v_2 \dots v_k]$

• transmit value $v \in dom(c)$ over channel c:

$$\frac{\ell_i \xrightarrow{g:c!v}_i \ell'_i \land \xi(c) = v_1 \dots v_k \land k < cap(c) \land \eta \models g}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \rightarrow \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta, \xi' \rangle}$$

where
$$\xi' = \xi[c := v_1 v_2 \dots v_k v]$$

RT (ICS @ UIBK)	Chapter 5	30/52

Outline

- Program Graphs
- Channel systems
- Promela
 - Promela Syntax and Intuitive Meaning
 - Formal semantics
- The State-Space Explosion Problem

RT (ICS @ UIBK)

Promela - Syntax and Intuitive M

nanoPromela

RT (ICS @ UIBK)

- Promela (Process Meta Language) is modeling language for SPIN
 - most widely used model checker SPIN
 - developed by Gerard Holzmann (Bell Labs, NASA JPL)
 - ACM Software Award 2002
- nanoPromela is the core of Promela
 - shared variables and channel-based communication
 - formal semantics of a Promela model is a channel system
 - processes are defined by means of a guarded command language
- no explicit actions, statements describe effect of actions

nanoPromela

nanoPromela-program $\overline{\mathcal{P}} = [\mathcal{P}_1 | \dots | \mathcal{P}_n]$ with \mathcal{P}_i processes a process is specified by a statement:

- stmt ::= skip | x := expr | c?x | c!expr | stmt₁; stmt₂ | atomic{assignments} | if :: $g_1 \Rightarrow stmt_1 \dots \dots g_n \Rightarrow stmt_n$ fi do :: $g_1 \Rightarrow stmt_1 \dots \dots g_n \Rightarrow stmt_n$ od assignments ::= $x_1 := expr_1$; $x_2 := expr_2$; ...; $x_m := expr_m$
- x is a variable in Var, expr an expression and c a channel, g_i a guard
- assume the Promela specification is type-consistent

Promela	Promela - Syntax and Intuitive Mear
Itoration statements	

- **do** :: $g_1 \Rightarrow \operatorname{stmt}_1 \ldots :: g_n \Rightarrow \operatorname{stmt}_n \operatorname{od}$
- iterative execution of nondeterministic choice among $g_i \Rightarrow \text{stmt}_i$
 - where guard g_i holds in the current state
- no blocking if all guards are violated; instead, loop is aborted
- while g do stmt od \equiv do $:: g \Rightarrow$ stmt od
- no break-statements to abort a loop

Promela Promela - Syntax and Intuitive Meaning Conditional statements

Chapter 5

- $\mathbf{if} :: g_1 \Rightarrow \mathsf{stmt}_1 \dots :: g_n \Rightarrow \mathsf{stmt}_n \mathbf{fi}$
- nondeterministic choice between statements stmt_i for which g_i holds
- test-and-set semantics:
 - guard evaluation + selection of enabled command + execution first atomic step of selected statement is all performed atomically
- if-fi-command blocks if no guard holds
 - parallel processes may unblock a process by changing shared variables
 - e.g., when y=0, if $:: y > 0 \Rightarrow x := 42$ fi waits until y exceeds 0
- standard abbreviations:
 - if g then $stmt_1$ else $stmt_2$ fi \equiv if $:: g \Rightarrow stmt_1$ $:: \neg g \Rightarrow stmt_2$ fi
 - if g then stmt₁ fi \equiv if $:: g \Rightarrow$ stmt₁ $:: \neg g \Rightarrow$ skip fi

(deviation from Promela)

the following nanoPromela program describes its behaviour:

```
    RT (ICS @ UIBK)
    Chapter 5
    37/52

    Promela
    Formal semantics

    Formal semantics
```

the semantics of a nanoPromela-statement over (*Var*, *Chan*) is a program graph over (*Var*, *Chan*).

the program graphs PG_1, \ldots, PG_n for the processes $\mathcal{P}_1, \ldots, \mathcal{P}_n$ of a nanoPromela-program $\overline{\mathcal{P}} = [\mathcal{P}_1 | \ldots | \mathcal{P}_n]$ constitute a channel system over (*Var*, *Chan*)

the locations of the program graph PG_i are the sub-statements of the nanoPromela-program P_i

Client-scheduler-printer example

```
----- CLIENT i -----
  do :: true => ic ! i;
                dc ! d_i;
                 ac; ? ack
  od
  ----- SCHEDULER ------
  do :: true => ic ? x;
                dc ? d;
                pc ! d;
                if :: x = 1 \Rightarrow ac_1 ! ack
                    :: x = 2 \Rightarrow ac_2 ! ack
                fi
  od
  ----- PRINTER ------
  do :: true => pc ? d; skip
  od
RT (ICS @ UIBK)
                              Chapter 5
```

Sub-statements

for statement stmt its sub-statements $\mathcal{S}ub(\text{stmt})$ is smallest set of statements such that

- exit $\in Sub(stmt)$
- stmt $\in Sub(stmt)$
- if stmt' $\in Sub(stmt)$ then $Sub(stmt') \subseteq Sub(stmt)$
- if $stmt' \in Sub(stmt_1)$ then stmt'; $stmt_2 \in Sub(stmt_1; stmt_2)$
- if $stmt' \in Sub(stmt_2)$ then $stmt' \in Sub(stmt_1; stmt_2)$
- if $stmt' \in Sub(stmt_i)$ then $stmt' \in Sub(if \dots :: g_i \Rightarrow stmt_i \dots fi)$
- if stmt' ∈ Sub(stmt_i) then stmt'; loop ∈ Sub(loop) where loop = do...: g_i ⇒ stmt_i...od

Formal semantics

Inference rules

Inference rules

Formal semantics

atomic{ $x_1 := \exp r_1; ...; x_m := \exp r_m$ } $\xrightarrow{\alpha_m}$ exit where $\alpha_0 = id$, $\alpha_i = Effect(assign(x_i, \exp r_i), Effect(\alpha_{i-1}, \eta))$ for $1 \le i \le m$

 $\frac{\mathsf{stmt}_1 \xrightarrow{g:\alpha} \mathsf{stmt}'_1 \neq \mathsf{exit}}{\mathsf{stmt}_1; \mathsf{stmt}_2 \xrightarrow{g:\alpha} \mathsf{stmt}'_1; \mathsf{stmt}_2}$

 $\frac{\mathsf{stmt}_1 \xrightarrow{g:\alpha} \mathsf{exit}}{\mathsf{stmt}_1; \mathsf{stmt}_2 \xrightarrow{g:\alpha} \mathsf{stmt}_2}$

	Chapter 5	42/52
Promela		Formal semantics

let *loop* be a shortcut for

do :: true => ic ! i; dc ! d_i ; aci ? ack od

derive the following step in the program graph of the client

	ic ! $i \xrightarrow{ic ! i}$ exit
ic ! <i>i</i> ; dc ! d _i ;	ac_i ? $ack \xrightarrow{ic ! i} dc ! d_i; ac_i$? ack
loop <u>ic</u>	$\stackrel{!i}{\longrightarrow}$ dc ! d _i ; ac _i ? ack; <i>loop</i>

Chapter 5

construct by going left-down, left-up, right-up, right-down

 $skip \rightarrow exit$

 $x := \exp \xrightarrow{assign(x, expr)} exit$

assign(x, expr) denotes the action that only changes x, no other variables

$$c?x \xrightarrow{c?x} exit$$
 $c!expr \xrightarrow{c!expr} exit$

 RT (ICS @ UIBK)
 Chapter 5
 41/52

 Promela
 Formal semantics

Inference rules

$$\frac{\mathsf{stmt}_i \xrightarrow{h:\alpha} \mathsf{stmt}'_i}{\mathsf{if} \dots :: g_i \Rightarrow \mathsf{stmt}_i \dots \mathsf{fi} \xrightarrow{g_i \wedge h:\alpha} \mathsf{stmt}'_i}$$

 $\mathsf{stmt}_i \xrightarrow{h:\alpha} \mathsf{stmt}'_i \neq \mathsf{exit}$ $\mathsf{do} \ldots :: g_i \Rightarrow \mathsf{stmt}_i \ldots \mathsf{od} \xrightarrow{g_i \land h:\alpha} \mathsf{stmt}'_i; \mathsf{do} \ldots \mathsf{od}$

 $\mathsf{stmt}_i \xrightarrow{h:\alpha} \mathsf{exit}$ $\mathsf{do} \ldots :: g_i \Rightarrow stmt_i \ldots \mathsf{od} \xrightarrow{g_i \land h:\alpha} \mathsf{do} \ldots \mathsf{od}$

do ... ::
$$g_i \Rightarrow stmt_i \dots$$
 od $\xrightarrow{\neg g_1 \land \dots \land \neg g_n}$ exit

• Channel systems

• Promela

- Promela Syntax and Intuitive Meaning
- Formal semantics
- The State-Space Explosion Problem

Example: scheduler

Chapter 5

RT (ICS @ UIBK)

The State-Space Explosion Problem

Sequential programs

• # states of a simple program graph is:

 $| \# \text{program locations} | \cdot \prod_{\text{variable } x} | dom(x) |$

- \Rightarrow number of states grows exponentially in number of program variables
- N variables with k possible values each yields k^N states
- this is called the state-space explosion problem
- program with 10 locations, 3 bools, 4 integers (in range 0...9):

 $10 \cdot 2^3 \cdot 10^4 = 800,000$ states

- adding a single 50-positions bit-array yields $800,000\cdot 2^{50}$ states

Chapter 5

46/52

Channel systems

- each channel c has a bounded capacity cap(c) and a domain dom(c)
- # states of system with N components and K channels is:

$$\prod_{i=1}^{N} \left(\left| \# \text{program locations} \right| \prod_{\text{variable } x} \left| dom(x) \right| \right) \cdot \prod_{j=1}^{K} \left| dom(c_j) \right|^{cap(c_j)+1}$$

this is the underlying structure of Promela

RT (ICS @ UIBK)	Chapter 5	49/52
The State-Space Explosion Problem		

The Need for Automated Verification

Client-scheduler-printer example

for channel capacity 6 and binary data obtain
$3 \cdot 3 \cdot 5 \cdot 2^{2} \cdot 2 \cdot 2 \cdot 2^{6+1} \cdot 2^{6+1} = 45 \cdot 2^{18} = 11,796,480$ states
client 1 client 2 scheduler printer <i>ic dc</i>

The State-Space Explosion Problem

Summary of Modeling Concurrent Systems

- transition systems are fundamental for modeling software should be generated from high-level modeling language
- program graphs = states with variables
- interleaving = execution of independent concurrent processes by nondeterminism
- channel systems = program graphs + first-in first-out communication
 - handshaking for channels of capacity 0
 - asynchronous message passing when capacity exceeds 0
 - semantical model of Promela
- formal semantic for Promela \Rightarrow know exactly which system is verified

Chapter 5

- size of transition systems grows exponentially
 - in the number of concurrent components, number of variables, and size of channels