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Preface

This course on logic is aimed at students in the Master of Science program of Computer
Science at the University of Innsbruck. In the course the following topics will be discussed:

– Syntax, semantics and formal systems of propositional logic.

– Syntax, semantics and formal systems of first-order logic (including equality).

– Extensions of first-order logic like second-order logic.

– Automated reasoning with equality.

In addition to the lecture homework assignments will be provided that will be discussed
during the time of the lecture.1 Note that these notes are not meant to replace the lecture,
but to accompany it. In particular in the following almost no examples will be given, this
will be done in the lecture.

Beware that these lecture notes assume the reader to be familiar with general logical
concepts as for example provided by the lecture on Logic in Computer Science (LICS for
short) held by Prof. Aart Middeldorp2 or by text books covering this topic (see for exam-
ple [20, 2, 14]).

Similar material as is covered in these lecture notes can be found in the following text
books (in the order of importance): [3, 8, 18, 22]. For additional references see [7, 11, 1, 13].

1 Participation in this discussion is not a requirement in the technical sense, but strongly recommended.
2 See http://cl-informatik.uibk.ac.at/teaching/ws10/lics for the online information on the course

“Logic in Computer Science” as offered in winter 2010.
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1

Why Logic is Good For You

Logic is defined as the study of the principle of reasoning and mathematical logic is defined
as the study of principles of mathematical reasoning. In order to explain what is meant
with “study of reasoning” we consider the two (correct) arguments given below.

A mother or father of a person is an ancestor of that person. An ancestor of an
ancestor of a person is an ancestor of a person. Sarah is the mother of Isaac,
Isaac is the father of Jacob. Thus, Sarah is an ancestor of Jacob.

and

A square or cube of a number is a power of that number. A power of a power
of a number is a power of that number. 64 is the cube of 4, 4 is the square of 2.
Thus, 64 is a power of 2.

On the surface these two argument are different: the first argument is concerned with
parenthood and ancestors, while the second one refers to mathematics and number theory
in particular. However, employing the language of first-order logic (see Chapter 3) we can
express both arguments as follows:

assume ∀x∀y((R1(x, y) ∨ R2(x, y))→ R3(x, y))

assume ∀x∀y∀z((R3(x, y) ∧ R3(y, z))→ R3(x, z))

assume R1(c1, c2) ∧ R2(c2, c3)

thus R3(c1, c3) .

Here R1, R2, R3 denote binary predicate constants (aka1 predicate symbols), while c1, c2,
c3 denote individual constants (aka constant symbols). Depending on the way we inter-
pret these symbols in a given structure we obtain either the first argument or the second
1 also known as

1



1 Why Logic is Good For You

argument. Using a bit more formalism (again see Chapter 3 for details) we can write the
generalised argument as follows.

∀x∀y((R1(x, y) ∨ R2(x, y))→ R3(x, y))
∀x∀y∀z((R3(x, y) ∧ R3(y, z))→ R3(x, z))
R1(c1, c2) ∧ R2(c2, c3)

 |= R3(c1, c3) . (1.1)

Using the technology discussed in Chapter 3 we can easily verify that the consequence
depicted in (1.1) is valid. Hence the argument used to deduce that either Sarah is an
ancestor of Jacob or that 64 is a power of 2 is not only correct, but general in the sense that
the correctness of this argument does not depend on the interpretation of the symbols used
in (1.1). In Chapter 8 we see that the validity of (1.1) can be verified automatically (in an
instant).

Nowadays computer science is more prominent in the use of (mathematical) logic than
mathematics itself and logic has grown to be more relevant to computer science than any
other branch of mathematics (compare [26]). Below we give some application areas of logic
in computer science.

1.1 Minesweeper

Consider Figure 1.1 which shows a typical configuration that may appear during a play of
Minesweeper:2

Figure 1.1: A Minesweeper Configuration

Richard Kaye has shown in [16] that the problem whether an arbitrary configuration on
a Minesweeper is indeed a possible configuration that can be reached through a sequence
of moves is NP-complete. On the other hand, we can employ standard SAT solvers like
for example MiniSat3 to play Minesweeper fully automatically (although the first move
2 http://en.wikipedia.org/wiki/Minesweeper_(computer_game).
3 http://minisat.se/

2

http://en.wikipedia.org/wiki/Minesweeper_(computer_game)
http://minisat.se/


1.2 Program Analysis

has to be guessed). Such a Minesweeper solver has been implemented by Christoph Rungg
(see [24]).

The central idea of such an implementation is the encoding of the rules of the game
as a (large) set S of propositional formulas. As soon as this encoding is established any
satisfying assignment for S can be re-translated into a solution to the original question in
the context of the game. Due to the efficiency of modern SAT solvers it is typically the case
that this approach outperforms any ad-hoc search method that tries to find the correct next
move directly. Similar ideas can be used to easily implement very efficient solvers for logic
puzzles.4

These (toy) examples serve as a reminder of the huge importance of SAT technology in
providing efficient and powerful techniques to implement search methods (compare [17]).

1.2 Program Analysis

Interesting properties of programs (like termination) are typically undecidable. Despite
this limitation such properties are studied and automatic procedures have been designed to
(partially) verify whether certain properties hold.

In the analysis of programs one doesn’t study the concretely given program, but abstracts
it in a suitable way, abstract interpretations [6] formalise this idea. Here the level of ab-
straction is crucial if one wants to prevent false negatives: properties that hold true for the
program become false for the abstraction. In order to design expressive abstractions one
combines simple abstractions into more complicated and thus more expressive ones.

Sumit Gulwani and Ashish Tiwari have presented a methodology to automatically com-
bine abstract interpretations based on specific theories to construct an abstract interpreter
based on the combination of the studied theories. This is encapsulated into the notion
of logical product (compare [12]) and based on the Nelson-Oppen method for combining
decision procedures of different theories (compare [19]). Here a theory is simply a set of
sentences (over a given language) that is closed under logical consequence. Examples of
theories would be for example the theory of linear arithmetic (making use of the symbols
0, 1, +, ×, 6, and =) or the theory of lists (making use of the symbols car, cdr, cons, and
=). If two theories T1, T2 fulfil certain conditions5 and it is known that satisfiability of
quantifier-free formulas with respect to the theories T1 and T2 is decidable, then satisfiabil-
ity of quantifier-free formulas with respect to the union T1 ∪ T2 is decidable. In Chapter 5
we study a related result, Robinson’s joint consistency theorem.

The methodology invented in [12] allows the modularisation of the analysis of programs
via abstract interpretations. Modularisation is possible for both stages of the analysis:

4 See http://cl-informatik.uibk.ac.at/software/puzzles/ for a collection of logic puzzle solvers.
5 To be precise the theories T1, T2 are supposed to be convex, disjoint, and stably infinite, see [19].
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1 Why Logic is Good For You

One one hand the technique can be employed to define suitable interpretations for complex
theories. On the other hand it can be employed to simplify the implementation of such an
abstract interpreter.

1.3 Databases

Datalog is a database query language based on the logic programming paradigm. Syntac-
tically it is a subset of Prolog (compare [4]). It is widely used in knowledge representation
systems, see for example [10]. Logically a datalog query is a formula in Horn logic. Hence
any such query has a unique model, its minimal model. This allows to assign a simple and
unique semantics to datalog programs.

Datalog rules can be translated into inclusions in relational databases. Datalog extends
positive relational algebras as recursive queries can be formed, which is not possible in
positive relational algebras. The success of datalog can for example be witnessed in changes
to the database query language SQL that has been extended by the possibility of recursive
queries.

Contrary to full first-order logic, datalog queries are decidable. One can distinguish two
notions of complexity in this context. On one hand we have expression complexity, where
the complexity of fulfilling a given query is expressed in relation to the size of the query. On
the other hand we have data complexity, where the complexity is measured in the size of the
database and the query. The former notion is closely related to the notion of complexity
of formal theories. Hence we focus on this notion. The expression complexity of datalog is
EXPTIME-complete, that is, far beyond the complexity of typical intractable problems like
for example SAT.

Thomas Eiter et al. extended datalog to disjunctive datalog. Disjunctive datalog allows
disjunctions in heads of rules (compare [9]). It is a strict extension of SQL and forms the
basis of semantic web applications and has connections to description logics and ontologies.
Disjunctive datalog queries can be extended with negation, so that the typical closed-world
semantics of negation can be overcome. To indicate the expressivity of disjunctive datalog
observe that the travelling salesperson problem can be directly formulated in this database
query language. Disjunctive datalog remains decidable, but the expression complexity be-
comes NEXPTIMENP-complete. This implies that such queries can be only solved on a
nondeterministic Turing machine that runs in exponential time and employs an NP-oracle.

1.4 Issues of Security

Security protocols are small programs that aim at securing communications over a public
network. The design of such protocols is difficult and error-prone.
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1.5 Software Verification

In [21] Clifford Neuman and Stuart Stubblebine invented a key exchange protocol.6 The
goal of this protocol is to establish a secure key between two principals Alice and Bob that
already share secure keys with a trusted third party. As shown by Tzonelih Hwang, Narn-
Yoh Lee, Chuang-Ming Li, Ming-Yung Ko, and Yung-Hsiang Chen in 1995 this protocol
is not safe, but there exists a potential attack for a fourth person, such that the attacker
can impersonate Alice and learn the shared key, while Bob believes this is the key of Alice
(compare Chapter 9). It is relative simple to repair the protocol by putting type checks on
the messages.

The potential attacks found by Hwang et al., where found manually, but they can also
be detected automatically by formalising the protocol in first-order logic and employing an
automated theorem prover. This observation is due to Christoph Weidenbach, see [28]. Not
only is it possible to find the bug automatically, it is also possible to verify that the repaired
protocol is now safe. Or to be more precise: safe against an intruder with the assumed
capabilities.

We will study the use of a first-order theorem prover to show that the Neuman-Stubblebine
key exchange protocol can be broken in more detail in Chapter 9.

1.5 Software Verification

As already mentioned above termination of programs is an undecidable property. Despite
this negative result termination is a very active area in program analysis and in the last
decade a number of techniques have been developed to analyse termination of a given
program automatically. This is true for abstract program like term rewrite system (see [25]),
but also for concrete programming languages like C or Java.

Here we focus on a short description of the program Terminator, developed by Byron
Cook and others at the Microsoft Research laboratory at Cambridge University.7 Terminator

employs abstract interpretations and model-checking techniques to prove the termination
of (concurrent) C-programs fully automatically.

In the early years of model-checking mainly hardware was verified. During that time the
research was driven by the need to prevent another design error like the one that lead to
the costly Intel Pentium FDIV bug.8 In the last decade the approach was extended to the
verification of software, where initially only safety properties could be analysed. Such studies
aim at verifying that a given program is safe with respect to a given specification, that is,
nothing bad should happen in the program. Recently also liveness properties became of
interest, that is, the specification represents a positive property and the program is checked

6 http://en.wikipedia.org/wiki/Neuman-Stubblebine_protocol
7 http://research.microsoft.com/en-us/um/cambridge/projects/terminator/
8 http://en.wikipedia.org/wiki/Pentium_FDIV_bug
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1 Why Logic is Good For You

against this positive specification.
Terminator makes use of model-checking to verify liveness properties of a given (concur-

rent) C-program P. As termination is a liveness property, termination of P can be established
in the same way. The central idea is the automatic generation of disjunctive well-founded
transition invariants. A binary relation R is called a transition invariant if the transitive
closure of the transition relation →P (with respect to P) is contained in R. A relation R

that is covered by finitely many well-founded relations U1, . . . , Un is called disjunctive well-
founded. The existence of a disjunctive well-founded transitive invariant for P is equivalent
to termination of P. Transition invariants can be found automatically by exploiting abstract
interpretations and other techniques in program analysis (compare [5]).
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2

Propositional Logic

This chapter recalls the language of propositional logic, that is, its syntax and its meaning,
that is, its semantics (see Section 2.1). Furthermore, we recall the rules of natural deduction
and the rules of resolution for propositional logic (see Section 2.2 and Section 2.3). Finally,
in Section 2.4 we report on the use of many-valued propositional logics in medical expert
systems.

2.1 Syntax and Semantics of Propositional Logic

Let p1, p2, . . . , pj , . . . denote an infinite set of propositional atoms, denoted by p, q, r. The
set of all propositional atoms is denoted by AT.

Definition 2.1. The (propositional) connectives of propositional logic are

¬ ∧ ∨ → ,

and the (propositional) formulas are defined inductively as follows:

(i) A propositional atom p is a formula, and

(ii) if A, B are formulas, then

¬A A ∧B A ∨B A→ B ,

are also formulas.

Convention. We use the following precedence: ¬ binds stronger than ∨ and ∧, which in
turn bind stronger than →.
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2 Propositional Logic

This completes the definition of the syntax of propositional logic. In the remainder of
this section we define its semantics. We write T, F for the two truth values, representing
“true” and “false” respectively.

Definition 2.2. An assignment v : AT → {T,F} is a mapping that associates atoms with
truth values.

We write v(F ) for the valuation of the formula F . The valuation v(F ) is defined as the
extension of the assignment v to formulas, using the following truth tables:

¬
T F

F T

∧ T F

T T F

F F F

∨ T F

T T T

F T F

→ T F

T T F

F T T

Definition 2.3. The consequence relation, denoted as A1, . . . , An |= B, asserts that v(B) =
T, whenever v(A1), . . . , v(An) is true for any assignment v. We write |= A, instead of
∅ |= A and call A a tautology or valid in this case.

We call two formulas (logically) equivalent (denoted as A ≡ B) if A |= B and B |= A

hold.

2.2 Natural Deduction

We recall the rules of natural deduction. We assume the reader is acquainted with some
notion of formal proof system and will only briefly motivate the rules. See [14] for additional
information.

Georg Gentzen introduced the calculus of natural deduction, whose rules for propositional
logic are given in Figure 2.1. The calculus aims to mimic the “natural” way in which
mathematical proofs are performed, for example the disjunction elimination rule is best
understood as an inference rule that represents a proof by case analysis. Note that the
symbol ⊥, representing contradiction, or falsity, is not part of our language of propositional
logic. Instead ⊥ should be understood as an abbreviation for an unsatisfiable formula like
p ∧ ¬p.

Let G be a finite set of formulas and let F be a formula. A natural deduction proof is a
sequence of applications of rules depicted in Figure 2.1. If there exists a natural deduction
proof of F with assumptions G, then we say F is provable (or derived) from G.

Definition 2.4. The provability relation, denoted as A1, . . . , An ` B, asserts that B is
derived from the assumptions A1, . . . , An. This notion extends to infinite sets of formulas
G: We write G ` F if there exists a finite subset G′ ⊆ G such that G′ ` F . We write ` A
instead of ∅ ` A and call the formula A provable in this case.

8



2.2 Natural Deduction

introduction elimination

∧ E F
E ∧ F ∧ : i

E ∧ F
E

∧ : e E ∧ F
F

∧ : e

∨ E
E ∨ F ∨ : i

F
E ∨ F ∨ : i

E ∨ F

E
...
G

F
...
G

G
∨ : e

→

E
...
F

E → F
→ : i

E E → F
F

→ : e

¬

E
...
⊥
¬E ¬ : i

F ¬F
⊥ ¬ : e

⊥
F
¬ : e

¬¬ ¬¬F
F
¬¬ : e

Figure 2.1: Natural Deduction for Propositional Logic

We say that a set of formulas G is consistent if we cannot find a proof of ⊥ from G. A set
of formulas G is called inconsistent if there exists a proof of ⊥ from G. A proof is sometimes
also called a derivation.

The proof of the following theorem can for example be found in [14].

Theorem 2.1. Natural deduction is sound and complete for propositional logic, that is,
the following holds:

A1, . . . , An |= B ⇐⇒ A1, . . . , An ` B .

Note that natural deduction is not the only formal system that is sound and complete for
propositional logic, but only one among many. This motivates the next definition.

Definition 2.5. If there exists a finite system of axioms and inference rules that is sound
and complete for a logic, we say this logic is finitely axiomatised by such a system.

In the next section we briefly introduce propositional resolution which forms another
sound and complete proof system for propositional logic.
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2 Propositional Logic

2.3 Propositional Resolution

A literal is a propositional atom p or its negation ¬p. A formula F is said to be in conjunctive
normal form (CNF for short) if F is a conjunction of disjunctions of literals. For brevity
we often speak of “a CNF F” instead of “a formula F in CNF”.

The next lemma is easy, a complete proof can for example be found in [14].

Lemma 2.1. For all formulas A, there exists a formula B in CNF, such that A ≡ B.

Definition 2.6. A clause is a disjunction of literals, defined inductively as follows:

(i) The empty clause (denoted as �) is a clause,

(ii) literals are clauses, and

(iii) if C, D are clauses, then C ∨D is a clause.

As usual disjunction ∨ is associative and commutative. In addition we define the following
identities:

p = ¬¬p � ∨� = � C ∨� = � ∨ C = C ,

where p denotes a propositional atom and C an arbitrary clause.

Note that the symbol � (like ⊥) representing contradiction, is not part of our language of
propositional logic. Instead � should be understood as an abbreviation for an unsatisfiable
formula like p ∧ ¬p.

It is easy to see that a formula F in CNF directly gives rise to a set of clauses C, where
C is defined as the collection of disjunctions in F . On the other hand Lemma 2.1 implies
that for every formula F there exists a CNF F ′, which can then be directly represented as
a clause set C. We call C the clause form of F .

John Alan Robinson invented the resolution calculus (for first-order logic), whose propo-
sitional rules are given in Figure 2.2. The resolution calculus was invented in the 1960s and
various different presentations are known. See [18] for a complete treatment of the differ-
ences between existing calculi. In particular note that the resolution and factoring rule can
also be combined into a single rule [14].

resolution factoring
C ∨ p D ∨ ¬p

C ∨D
C ∨ l ∨ l
C ∨ l l a literal

Figure 2.2: Resolution for Propositional Logic

10



2.3 Propositional Resolution

Definition 2.7. Let C be a set of clauses. Then we define the resolution operator Res(C)
as follows:

Res(C) = {D | D is conclusion of an inference in Figure 2.2 with premises in C} .

Based on this we define the nth and the unlimited iteration of the resolution operator as
follows:

Res0(C) := C Resn+1(C):= Resn(C) ∪ Res(Resn(C))

Res∗(C) :=
⋃
n>0

Resn(C) .

We say the empty clause is derivable from C if � ∈ Res∗(C).

Let C be a set of clauses. If Res(C) ⊆ C, then the clause set C is called saturated. Obviously,
we have that Res∗(C) is saturated. If for a clause D, D ∈ Res∗(C), then we say that D is
derived from C by resolution. If for a saturated set C, � 6∈ C, then C is called consistent,
otherwise C is said to be inconsistent.

Suppose C is inconsistent. Then it is easy to see that C (and the formula F represented
by C) are unsatisfiable. In other words (propositional) resolution is a sound proof method.
Furthermore, we have the following theorem, whose proof can be found for example in [18,
14].

Theorem 2.2. Let F be a formula and let C denote its clause form. Propositional resolution
is sound and complete, that is, the following holds

F is unsatisfiable ⇐⇒ � ∈ Res∗(C) .

Observe that the resolution calculus is a refutation based technique, whose aim is to
derive the empty clause, that is, a contradiction. On the contrary the calculus of natural
deduction aims to prove the validity of a given formula. Hence to prove the validity of a
given formula F by resolution, we have to consider the clause form C of its negation ¬F .
This entails that an application of resolution may require the translation of an arbitrary
formula into CNF. If the latter is done naively, this transformation may be quite costly.

Before we turn to an application of propositional logic in the next section, we mention a
general theorem on propositional logic, whose easy proof is left to the reader.

Theorem 2.3. Let A → C be a valid formula. Then there exists a formula B such that
A → B and B → C are valid. Furthermore, the interpolant B contains only propositional
axioms that occur both in A and C.

11



2 Propositional Logic

2.4 Many-Valued Propositional Logics

We briefly remark on the possibility to replace the two truth values T and F used in classical
propositional logic with infinitely many truth values.

Let V ⊆ [0, 1] denote a set of finitely or infinitely many truth values containing at least
the truth values 0, 1, representing “false” and “true”, respectively.

Definition 2.8. A Lukasiewicz assignment (based on V ) is a mapping v : AT→ V and the
assignment v is extended to a (Lukasiewicz) valuation of formulas as follows:

v(¬A) = 1− v(A)

v(A ∧B) = min{v(A), v(B)}

v(A ∨B) = max{v(A), v(B)}

v(A→ B) = min{1, 1− v(A) + v(B)}

A formula F is valid if v(A) = 1 for all assignments v based on V .

Logics with more than two truth values are called many-valued logics or fuzzy logics.
Many-valued logics, based on Lukasiewicz valuations are called Lukasiewicz logics.

Theorem 2.4. Finite- or infinite-valued Lukasiewicz logics are finitely axiomatisable. Fur-
thermore validity is decidable for propositional Lukasiewicz logics. More precisely the validity
problem for these logics is coNP-complete.

Although many-valued logics have been introduced for purely theoretical reasons they
find a number of applications in modelling uncertainty. Note for example that the database
language SQL uses a third truth value (called unknown) to model unknown data.

If we consider infinitely many truth values V from the real interval [0, 1], we can conceive
these values as assigning probabilities to propositions. In this interpretation infinite-valued
logics can be used to model the behaviour of data bases or medical expert systems.

CADIAG (Computer Assisted DIAGnosis) is a series of medical expert systems developed
at the Vienna Medical University (since the 1980s). The latest system is called CADIAG-2,
see [27] for more details. This expert system is rule based and for example contains rules
of the following form:

IF suspicion of liver metastases by liver palpation

THEN pancreatic cancer

with degree of confirmation 0.3

CADIAG-2 is characterised by its ability to process not only definite truth or falsity, but also
indeterminate (vague or uncertain) information. The inference system of CADIAG-2 can be
expressed as an infinite valued fuzzy logics and this formalisation revealed inconsistencies
in the rule based knowledge representation.

12



2.4 Many-Valued Propositional Logics

Problems

Problem 2.1. Verify whether the following propositional formulas are (i) satisfiable, (ii)
valid, or (iii) unsatisfiable:

(i) (p→ ¬q)→ (q → p)

(ii) (p→ (q → p))

(iii) ((p→ (q → r))→ ((p→ q)→ (p→ r)))

(iv) ((¬p→ ¬q)→ (q → p))

(v) p ∧ ¬(¬p→ q))

Problem 2.2. Show that the following claims about the consequence relation are correct:

(i) (p→ q) ∧ p |= q

(ii) (p→ q) ∧ ¬q |= ¬p

(iii) p→ q 6|= q → p

(iv) (p ∨ q) ∧ ¬p |= q

(v) ¬(p ∧ q) 6|= (¬p ∧ ¬q)

Problem 2.3. Show that the following inference rules are derivable in (propositional) nat-
ural deduction:

(i)
A→ B ¬B

¬A

(ii)
A
¬¬A

(iii) A ∨ ¬A

Problem 2.4. Show that the following (propositional) clause sets are unsatisfiable:

(i) C = {p, q,¬r,¬p ∨ ¬q ∨ r}

(ii) C = {p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q}

(iii) C = {p,¬p ∨ q ∨ r,¬p ∨ ¬q ∨ ¬r,¬p ∨ s ∨ t,¬p ∨ ¬s ∨ ¬t,¬s ∨ q, r ∨ t, s ∨ ¬t}

Problem 2.5. Show that the formula (p ∧ q → r)→ p→ q → r is valid, using resolution.

13



2 Propositional Logic

Problem 2.6. Let F be a propositional formula, where zero, one or more subformulas G
are replaced by a logically equivalent formula G′. Then we obtain a formula F ′ that is
logically equivalent to the formula F .

(i) Give a precise definition of this process of substitution.

(ii) Show the correctness of the claim.

14



3

Syntax and Semantics of First-Order Logic

This chapter recalls the language of first-order logic, that is, its syntax and its semantics.
This will be established in the first two sections. Finally, in Section 3.3 we state and prove
the isomorphism theorem.

3.1 Syntax of First-Order Logic

A first-order language is determined by specifying its constants, variables, logical symbols,
and other auxiliary symbols like brackets or comma. In particular constants are:

(i) Individual constants: k0, k1, . . . , kj , . . .

(ii) Function constants with i arguments: f i
0, f

i
1, . . . , f

i
j , . . .

(iii) Predicate constants with i arguments: Ri
0, R

i
1, . . . , R

i
j , . . .

Here i = 1, 2, . . . and j = 0, 1, 2, . . . While variables are

(i) x0, x1, . . . , xj , . . .

Here j = 0, 1, 2, . . . As logical symbols we have the usual propositional connectives and
quantifiers:

(i) Propositional connectives: ¬, ∧, ∨, →.

(ii) Quantifiers: ∀, ∃.

As soon as the constants of a language L are fixed, the language L is fixed. Any finite
sequence of symbols (from a language L) is called an expression. We often include one
more “logical symbol”, the equality sign =. To be precise the expression = is a predicate
constant, but for convenience we count it as a logical symbol. This is done as we often

15



3 Syntax and Semantics of First-Order Logic

want to assume that equality is part of our language without explicitly remarking on its
presence as one of the constants. This is the only exception, all other (predicate) constants
are referred to as non-logical symbols.

Convention. If L is clear from context the phrase “of L” will be dropped. The meta-
symbols c, d, f , g, h, . . . are used to denote individual constants and function symbols,
while the meta-symbols P , Q, R, . . . vary through predicate symbols. Variables are denoted
by a, b, . . . or we use x, y, z, and so forth.

As defined above the cardinality of the constants and variables in any language is count-
able. In this case we call the language countable or enumerable. To assume a countable
language is a restriction, but this restriction is standard.

Definition 3.1. Terms are defined as follows:

(i) Any individual constant c is a term.

(ii) Any variable x is a term.

(iii) If t1, . . . , tn are terms, f an n-ary function symbol, then f(t1, . . . , tn) is a term.

Note that (as explained above) the phrase “of L” for a pre-assumed language L has been
dropped.

Definition 3.2. If P is a predicate constant with arity n and t1, . . . tn are terms, then
P (t1, . . . , tn) is called an atomic formula. If the equality sign is present then t1 = t2 is also
an atomic formula.

Definition 3.3. (First-order) formulas are defined as follows:

(i) Atomic formulas are formulas.

(ii) If A and B are formulas, then (¬A), (A ∧B), (A ∨B), and (A→ B) are formulas.

(iii) If A is a formula, x is a variable, then ∀xA and ∃xA are formulas.

Convention. Terms are often denoted as s, t, . . . , and formulas are often denoted by A,
B, C, . . . , F , G,. . .

Let F be a formula. A variable x that occurs in F inside the scope of a quantifier
Q ∈ {∀,∃} is called bound. If a variable x does not occur inside the scope of any quantifier,
this variable is called free. This definition is somewhat imprecise. The precise definition is
delegated to the problem section. A formula that does not contain free variables is called
closed. Sometimes we refer to a closed formula as a sentence.
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3.2 Semantics of First-Order Logic

It is often convenient to indicate occurrences of variables in a formula. Suppose F is a
formula and let x denote a free variable occurring in F . We write F (x) instead of F to
indicate all occurrences of x in F . Let t be a term. We write F (t) to denote the formula
obtained from F (x), where all occurrences of x are replaced by t.

Example 3.1. Let F be a formula over the language L = {P,Q}, where P is unary and Q

binary. Suppose F = ∀x(P(x) ∧ Q(x, y)). Using the above convention, we set F = ∀xG(x),
where G(x) := (P(x) ∧ Q(x, y)).

This notation is particular convenient, when one refers to instances of quantified formulas.
Let t be an arbitrary term. Then G(t) = (P(t)∧Q(t, y) is an instance of the formula ∀xG(x).

If this does not affect the readability of formulas we will omit parentheses. In particular
parentheses are omitted in the case of double negation. We write ¬¬A instead of ¬(¬A).
Moreover we use the following convention on the priority of the logical symbols.

Convention. Extending the convention introduced in Chapter 2 we assert that quantifiers
∀, ∃ bind stronger than ¬. Furthermore we often write s 6= t as abbreviation for ¬(s = t).

3.2 Semantics of First-Order Logic

In the following L always denotes an arbitrary, but fixed language. Recall that we drop
reference to L if no confusion can arise.

Definition 3.4. A structure is a pair A = (A, a) such that:

(i) A is a non-empty set, called domain or universe of the structure.

(ii) The mapping a associates constants with the domain:

– Every individual constant c is associated with an element a(c) ∈ A.

– Every n-ary function constant f is associated with a function a(f) : An → A.

– Every n-ary predicate constant P is associated with a subset a(P ) ⊆ An.

(iii) The equality sign = is associated with the identity relation a(=).

Instead of a(f), a(P ), a(=) we usually write fA, PA, =A, respectively. Further, for brevity
we write = for the equality sign and the identity relation.

Remark. The definition of a structure is equivalent to the definition of model in [14]. The
latter name is sometimes problematic, as the word “model” is often used in a more restrictive
way, see below.
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3 Syntax and Semantics of First-Order Logic

Definition 3.5. An environment (or a look-up table) for a structure A is a mapping ` : {xn |
n ∈ N} → A from the set of variables into the universe of A. By `{x 7→ t} we denote the
environment mapping x to t and all other variables y 6= x to `(y).

Definition 3.6. An interpretation I is a pair (A, `) consisting of a structure A and an
environment `. The value of a term t (with respect to I) is defined as follows:

tI :=

`(t) if t a free variable

fA(tI1 , . . . , t
I
n) if t = f(t1, . . . , tn) .

Let I = (A, `) be an interpretation, we write I{x 7→ t} for the interpretation (A, `{x 7→ t}).

Given an interpretation I and a formula F , we are going to define when I is a model of
F . We also say that I satisfies F or that F holds in I. In the following the word “model”
is exclusively used in this sense.

Definition 3.7. Let I = (A, `) be an interpretation and let F be a formula, we define the
satisfaction relation I |= F inductively.

I |= t1 = t2 :⇐⇒ tI1 = tI2

I |= P (t1, . . . , tn) :⇐⇒ (tI1 , . . . , t
I
n) ∈ PA

I |= ¬F :⇐⇒ I 6|= F

I |= F ∧G :⇐⇒ I |= F and I |= G

I |= F ∨G :⇐⇒ I |= F or I |= G

I |= F → G :⇐⇒ if I |= F , then I |= G

I |= ∀xF :⇐⇒ if I{x 7→ a} |= F holds for all a ∈ A

I |= ∃xF :⇐⇒ if I{x 7→ a} |= F holds for some a ∈ A .

If G is a set of formulas, we write I |= G to indicate that I |= F for all F ∈ G. We say I
models G whenever I |= G holds.

Definition 3.7 follows the presentation in [14, 8]. Note that this is not the only possibility
to define that a given interpretation I models a formula F . Indeed in [13, 3] different
approaches are taken that are essentially equivalent. The above approach has the advantage
that the satisfaction relation is defined directly for formulas, whereas [13, 3] define the
satisfaction relation first for sentences, which is later lifted to formulas. The here followed
approach is slightly more technical, but conceptionally easier. The interested reader is
kindly referred to [13, 3].

The next definitions lifts the satisfaction relation to a consequence relation (aka semantic
entailment relation).
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3.3 Models

Definition 3.8. Let F , G be formulas and let G be a set of formulas. Then G |= F iff each
interpretation of G that is a model, is also a model of F . Instead of {G} |= F we write
G |= F .

A formula F is called satisfiable if there exists an interpretation that is a model of F
(denoted as Sat(F )); F is called unsatisfiable if no interpretation is a model (denoted as
¬Sat(F )). If F is satisfied by any interpretation, then we call F valid (denoted as |= F ).

Lemma 3.1. For all formulas F and all sets of formulas G we have that G |= F iff ¬Sat(G∪
{¬F}).

Proof. We have G |= F iff any interpretation that is a model of G is a model of F . This holds
iff no interpretation is model of a G but not a model of F . This again holds iff G ∪ {¬F} is
not satisfiable.

We call two formulas F and G logically equivalent if F |= G and G |= F . As above this
is denoted as F ≡ G. Clearly this is equivalent to |= F ↔ G, where the latter abbreviates
|= (F → G) ∧ (G → F ). It is easy to see that for any formula F there exists a logically
equivalent formula F ′ such that F ′ contains only ¬, ∧ as connectives and the quantifier ∃.
This fact comes in handy to simplify proofs by induction on F .

The proof of the following lemma is delegated to the problem section.

Lemma 3.2. Let I1 = (A1, `1) and I2 = (A2, `2) be interpretations such that the respective
universes coincide. Suppose F is a formula such that I1 and I2 coincide on the constants
and variables occurring in F . Then I1 |= F iff I2 |= F .

Observe that the lemma states that for a given interpretation I = (A, `) only a finite part
of the look-up table ` is used as only finitely many variables may occur in a given formula F .
In particular if F is a sentence, we may simplify the notation introduced in Definition 3.7.
Instead of I |= F , we simply write A |= F and say the structure A models F .

3.3 Models

In this section we state and prove the isomorphism theorem.

Definition 3.9. Let A, B be two structures (with respect to the same language L) and let
A, B denote the respective domains. Suppose there exists a bijection m : A→ B such that

(i) for any individual constant c, m(cA) = cB,

(ii) for any n-ary function constant f and all a1, . . . , an ∈ A we have

m(fA(a1, . . . , an)) = fB(m(a1), . . . ,m(an)) , and
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3 Syntax and Semantics of First-Order Logic

(iii) for any n-ary predicate constant P and all elements a1, . . . , an ∈ A we have:

(a1, . . . , an) ∈ PA ⇐⇒ (m(a1), . . . ,m(an)) ∈ PB .

Then m is called an isomorphism. We write m : A ∼= B to denote m and write A ∼= B if
there exists an isomorphism m : A → B.

The proof of the next lemma is not difficult and left to the reader.

Lemma 3.3. Let A, B be sets such that there exists a bijection m between them. Then if
A is a structure with domain A, there exists a structure B with domain B such that A ∼= B.

Theorem 3.1. Let A, B be structures such that A ∼= B. Then for every sentence F we
have A |= F iff B |= F .

Proof. Assume m : A ∼= B; in proof we show that the same formulas hold if one uses
corresponding environments together with the structures A, B. Let I be an interpretation.
With an environment ` ∈ I we associate the environment `m := m ◦ `. Let I = (A, `) and
J = (B, `m). Then we show by induction:

(i) For every term t: m(tI) = tJ .

(ii) For every formula F : I |= F iff J |= F .

The proof of the assertion (i) is left to the reader. We concentrate on the proof of asser-
tion (ii).

Suppose F is an atomic formula, that is, either F = (t1 = t2) or F = P (t1, . . . , tn) for
terms t1, t2, . . . , tn. In the first sub-case we have:

I |= t1 = t2 ⇐⇒ tI1 = tI2

⇐⇒ m(tI1 ) = m(tI2 ) m is injective

⇐⇒ tJ1 = tJ2 property (i)

⇐⇒ J |= t1 = t2 ,

and in the second

I |= P (t1, . . . , tn) ⇐⇒ (tI1 , . . . , t
I
n) ∈ PA

⇐⇒ (m(tI1 ), . . . ,m(tIn)) ∈ PB as m : A ∼= B

⇐⇒ (tJ1 , . . . , t
J
n ) ∈ PB property (i)

⇐⇒ J |= P (t1, . . . , tn) .
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3.3 Models

Suppose F is a complex formula. The sub-cases where F = ¬G, F = (G ∧ H) follow
directly by the definition of the satisfaction relation |= and the induction hypothesis.
Hence, we assume F (x) = ∃xG.

I |= ∃xG ⇐⇒ there exists a ∈ A, I{x 7→ a} |= G

⇐⇒ there exists a ∈ A, J {x 7→ m(a)} |= G induction hypothesis

⇐⇒ there exists b ∈ B, J {x 7→ b} |= G m is surjective

⇐⇒ J |= ∃xG

This concludes the proof.

Corollary 3.1. ( i) Any set of formulas that has a finite model has a model in the domain
{0, 1, 2, . . . , n} for some n.

( ii) Any set of formulas that has a countable infinite model has a model whose domain is
the set of all natural numbers.

Proof. Follows directly from Lemma 3.3 and Theorem 3.1.

Problems

Problem 3.1. Indicate the form of the following argument—traditionally called ’syllogism
in Felapton’—using formulas:

(i) No centaurs are allowed to vote.

(ii) All centaurs are intelligent beings.

(iii) Therefore, some intelligent beings are not allowed to vote.

Problem 3.2. Let L = {F,P,=}, where F is unary, P is binary and let A be a structure
whose domain are sets of persons, such that P(a, b) denotes “a is parent of b” and F “female”.
Give informal explanations of the following formulas:

(i) ∃z∃u∃v(u 6= v ∧ P(u, b) ∧ P(v, b) ∧ P(u, z) ∧ P(v, z) ∧ P(z, a) ∧ ¬F(b))

(ii) ∃z∃u∃v(u 6= v ∧ P(u, a) ∧ P(v, a) ∧ P(u, z) ∧ P(v, z) ∧ P(z, b) ∧ F(b))

Problem 3.3. Consider the following sentences:

À Each smurf is happy if all its children are happy.

Á Smurfs are green if at least two of their ancestors are green.

Â A smurf is really small if one of its parents is large.
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3 Syntax and Semantics of First-Order Logic

Ã Large smurfs are not really small.

Ä There are red smurfs that are large.

For each of the sentences above, give a first-order formula that formalises it. Use the
following constants, functions and predicates:

– constants: green, red.

– functions: colour(a).

– predicates: Smurf(a), Large(a), ReallySmall(a), Happy(a), Child(a, b) (“a is child of b”),
Ancestor(a, b) (“a is ancestor of b”), =.

Problem 3.4. Show that the formalisation in the previous problem is satisfiable.

Problem 3.5. Let t be a term and let F be a formula.

– Give a formal definition of Var(t), the set of variables in t.

– Give a formal definition of FVar(F ), the set of free variables in F .

Problem 3.6. Show the following statements, either by reduction to definitions or by
providing a counter-example:

(i) ∃y∀xP(x, y) |= ∀x∃yP(x, y).

(ii) ∀x∃yR(x, y) 6|= ∃y∀xR(x, y).

Problem 3.7. Define two formulas F and G, such that F 6|= G holds and F 6|= ¬G holds.

Problem 3.8. Give a formal proof of Lemma 3.2.
Hint : First prove (by induction) that the value of a term is the same with respect to I1

and I2. Based on this prove the lemma by structural induction.

Problem 3.9. Complete the proof of Theorem 3.1.

Problem 3.10. Let S be the set of satisfiable sets G of formulas and show the following
properties, where G ∈ S is assumed.

(i) If G0 ⊆ G, then G0 ∈ S.

(ii) If ¬¬F ∈ G, then G ∪ {F} ∈ S

(iii) If (E ∨ F ) ∈ G, then either G ∪ {E} ∈ S or G ∪ {F} ∈ S

(iv) If ∃xF (x) ∈ G and the individual constant c doesn’t occur in G or ∃xF (x), then
G ∪ {F (c)} ∈ S

(v) If {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S
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4

Soundness and Completeness of First-Order

Logic

In this chapter we show soundness and completeness of first-order logic. Furthermore,
we prove the compactness theorem and the Löwenheim-Skolem theorem. These theorems
are often proved as corollaries to the completeness theorem, cf. [13, 14, 8]. However, this
has the disadvantage that the proof of these theorems depends on a formal system, while
their statement does not. This is not elegant and comparable to the bad programming
practice of first defining a clean interface of a data type and then ignoring the interface and
altering private functions on the data type. Thus we give a direct proof of compactness and
Löwenheim-Skolem. Based on this proof we conclude completeness essentially as a corollary.

In Section 4.1 we state the compactness theorem and Löwenheim-Skolem theorem together
with direct corollaries. In Section 4.2 we prove the model existence theorem, which forms
the core of the proof of compactness and Löwenheim-Skolem. Further, in Section 4.3 we
recall the rules of natural deduction for first-order logic and proof completeness of first-order
logic.

4.1 Compactness and Löwenheim-Skolem Theorem

We state the compactness theorem and Löwenheim-Skolem theorem together with direct
corollaries. The proof of these theorems is given in Section 4.2 below.

Theorem 4.1 (Compactness Theorem). If every finite subset of a set of formulas G has a
model, then G has a model.

Theorem 4.2 (Löwenheim-Skolem Theorem). If a set of formulas G has a model, then G
has a countable model.
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4 Soundness and Completeness of First-Order Logic

Corollary 4.1. If a set of formulas G has arbitrarily large finite models, then it has a
countable infinite model.

Proof. Define an infinite set of sentences (In)n>1 as follows. (Note that the prefix of universal
quantifiers is empty if n = 1).

In := ∀x1 . . . ∀xn−1∃y (x1 6= y ∧ · · · ∧ xn−1 6= y)

Note that if I |= In, then I has at least n elements. Consider

G′ := G ∪ {I1, I2, . . . } .

Any finite subset of G′ is a subset of G ∪
⋃

16i6n Ii for some n. By assumption that G has
arbitrarily large finite models, this finite subset has a model. Due to compactness G′ has
a model, which is also an infinite model of G. Finally, we employ Löwenheim-Skolem to
conclude that this model is countable.

Further we obtain the following strengthening of Corollary 3.1.

Corollary 4.2. ( i) Any set of formulas G that has a model, has a model whose domain
is either the set of natural numbers < n for some positive number n, or else the set
of all numbers.

( ii) Suppose a set of formulas G, whose language L is based on individual and predicate
constants only and such that L doesn’t contain =. If G has a model, then G has a
model whose domain is the set of all natural numbers.

Proof. It suffices to prove the second assertion, the first follows from Corollary 3.1 and
Löwenheim-Skolem. Consider G: due to the first part G has either a model I whose domain
is the set of all numbers, or a model I whose domain is {0, 1, . . . , n − 1} for n ∈ N. We
assume the latter and we assume that the environment of I is denoted as `. Let f : N →
{0, 1, . . . , n− 1} be defined as follows:

f(m) := min{m,n− 1} .

Then clearly f is surjective. We define an interpretation J with environment `f induced
by f . (Compare the proof of Theorem 3.1.) For any individual constant c, we set cJ := f(cI)
and for any numbers n1, . . . , nk and k-ary predicate constant P we set (n1, . . . , nk) ∈ PJ

iff (f(n1), . . . , f(nk)) ∈ P I . Note that this definition would not be well-defined if extended
in the same way to function symbols.

Now f is almost an isomorphism, but it is not injective. Inspection of the proof of
Theorem 3.1 shows that injectivity is only necessary when equality is present. Hence we
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4.2 Model Existence Theorem

obtain for all formulas F : I |= F iff J |= F . In sum we obtain J |= G, as I |= G. Further,
the domain of J are the set of all natural numbers, which concludes the proof.

4.2 Model Existence Theorem

Recall Theorem 4.1.

Theorem (Compactness Theorem). If every finite subset of a set of formulas G has a model,
then G has a model.

In proof we assume that the only propositional connectives used are ¬ and ∨. The only
quantifier occurring in a formula is ∃. This simplifies the number of cases we need to
consider. Let S be the set of satisfiable formulas sets. The next lemma consolidates certain
properties of S to be exploited later on.

Lemma 4.1. Let S be the set of satisfiable sets of formulas G and let G ∈ S. Then we have:

( i) If G0 ⊆ G, then G0 ∈ S.

( ii) For no formula F , both F and ¬F are in G.

( iii) If ¬¬F ∈ G, then G ∪ {F} ∈ S.

( iv) If (E ∨ F ) ∈ G, then either G ∪ {E} ∈ S or G ∪ {F} ∈ S.

( v) If ¬(E ∨ F ) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S.

( vi) If ∃xF (x) ∈ G, the individual constant c doesn’t occur in G or ∃xF (x), then G ∪
{F (c)} ∈ S.

( vii) If ¬∃xF (x) ∈ G, then for all terms t, G ∪ {¬F (t)} ∈ S.

( viii) For any term t, G ∪ {t = t} ∈ S.

( ix) If {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S.

Proof. The proof of all 9 properties follows directly form the definition of satisfiability.
Compare also Problem 3.10.

Definition 4.1. The 9 properties in Lemma 4.1 are called satisfaction properties.

The proof of Theorem 4.1 is concluded if we can argue that the considered formula set G
belongs to S as defined above. In order to do so, we express the assumption of this theorem
as another set: Let S∗ denote the set of all formula sets whose finite subsets belong to S.
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4 Soundness and Completeness of First-Order Logic

Lemma 4.2. If S is a set of sets of formulas having the satisfaction properties, then the set
S∗ of all sets of formulas whose every finite subset is in S has the satisfaction properties.

Proof. In proof one performs case distinction over all 9 properties to verify that S∗ indeed
admits the satisfaction properties. We consider the only interesting case: disjunction.

Suppose G∪{E∨F} ∈ S∗. By definition, for every finite subset G′ of G∪{E∨F}, G′ ∈ S.
We have to prove that either every finite subset of G ∪ {E} is in S or every finite subset of
G ∪ {F} is in S, as this would imply that either G ∪ {E} ∈ S∗ or G ∪ {F} ∈ S∗.

Assume there exists a finite subset G0 ⊆ G ∪ {E} such that G0 6∈ S. Clearly G0 6⊆ G as
otherwise G0 ∈ S follows from G0 ⊆ G ∪ {E ∨ F}, G ∪ {E ∨ F} ∈ S∗, and the definition of
S∗. Thus we assume there exists a finite set G1 ⊆ G such that G0 = G1 ∪ {E}.

We claim that for any finite subset G2 ⊆ G ∪ {F}, G2 ∈ S. In proof of this claim observe
that the assumption G2 ⊆ G immediately implies that G2 ∈ S. Thus we assume without loss
of generality that there exists a finite set G3 ⊆ G and G2 = G3 ∪ {F}. Consider G1 ∪ G3 ∪
{E∨F}. By assumption this is a finite subset of G∪{E∨F}. Hence G1 ∪ G3 ∪ {E ∨ F} ∈ S
and thus either G1 ∪G3 ∪{E} ∈ S or G1 ∪G3 ∪{F} ∈ S. If G1 ∪G3 ∪{E} ∈ S, then observe:

G0 = G1 ∪ {E} ⊆ G1 ∪ G3 ∪ {E} ∈ S ,

which would imply G0 ∈ S, contrary to our assumption. Thus G1 ∪ G3 ∪ {F} ∈ S. And also
G2 = G3 ∪ {F} ∈ S. This completes the proof of this case.

Let L be a language, let L+ be an extension of L with infinitely many individual constants.
In the sequel we will prove the following theorem.

Theorem 4.3 (Model Existence Theorem). ( i) If S∗ is a set of sets of formulas of L+

having the satisfaction properties, then every set of formulas of L in S∗ has a model
M.

( ii) Every element of the domain of M is the denotation of some term in L+.

We momentarily assume Theorem 4.3. Based on this theorem, we conclude compactness
and Löwenheim-Skolem.

Theorem (Compactness Theorem). If every finite subset of a set of formulas G has a model,
then G has a model.

Proof. Let S denote the set of satisfiable sets of formulas (over L) and let S∗ denote the set
of all sets of formulas (over L+) whose every finite subset belongs to S. By Lemma 4.1 S
admits the satisfaction properties. This together with Lemma 4.2 yields that S∗ admits the
satisfaction properties. Hence (due to Theorem 4.3) every formula set in S∗ has a model.
Consider the set G assumed in the theorem. Then every finite subset of G is satisfiable,
hence G ∈ S∗ and thus G is satisfiable.
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Theorem (Löwenheim-Skolem Theorem). If a set of formulas G has a model, then G has
a countable model.

Proof. Let S denote the set of satisfiable sets of formulas (over L). By Theorem 4.3 every
set of formulas in S has a modelM in which each element of the domain is the denotation of
some term in L+. The language L is countable, thus the extended language L+ is countable
and there are at most countably many terms in L+. As every element of (the domain of)
M is the denotation of a term and a term can be the denotation of at most one element of
M, M is countable.

In proof of Theorem 4.3 we consider properties of formulas which are modelled by some
interpretation M (of L+).

Lemma 4.3. Let G denote the set of formulas true in M. Then we have:

( i) for no formula F and ¬F in G,

( ii) if ¬¬F ∈ G, then F ∈ G,

( iii) if (E ∨ F ) ∈ G, then either E ∈ G or F ∈ G,

( iv) if ¬(E ∨ F ) ∈ G, then ¬E ∈ G and ¬F ∈ G,

( v) if ∃xF (x) ∈ G, then there exists a term t (of L+), such that F (t) ∈ G,

( vi) if ¬∃xF (x) ∈ G, then for any term t (of L+), ¬F (t) ∈ G,

( vii) for any term t (of L+), t = t ∈ G, and

( viii) if F (s) ∈ G, and s = t ∈ G, then F (t) ∈ G.

Proof. The 8 properties follow as M |= G.

Definition 4.2. The 8 properties in Lemma 4.3 are called closure properties.

In addition to Lemma 4.3 we have its converse. For the moment we restrict our attention
to the case where the base language L is restricted. This is lifted later in Chapter 8.

Lemma 4.4. Let G be a set of formulas (of L) admitting the closure properties. Suppose
that L is free of the equality symbol and free of function constants. Then there exists a
model M such that every element of the domain of M is the denotation of a term (of L+)
and M |= G.
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4 Soundness and Completeness of First-Order Logic

Proof. Let G be set of formulas. We construct a model of G. We define the domain of
M as the set of all terms in L+. Thus, due to our restriction on L+, the domain of
M consists of infinitely many individual constants and variables. In order to define the
structure underlying M, we set:

cM := c for any individual constant c .

In order to guarantee that M |= G it suffices to make all atomic formulas occurring in G
true. For that we set for any predicate constant P and for any sequence of terms t1, . . . , tn:

PM(t1, . . . , tn)⇐⇒ P (t1, . . . , tn) ∈ G .

Finally, we lift this structure to an interpretationM by defining the look-up table as follows:

`(x) := x for any variable x .

This completes the definition of the interpretation M. Note that each term of L+ is inter-
preted by itself, that is, we have:

tM = t for any term t .

The definition of M takes care of the demand that every element of its domain is the
denotation of a term. Any term t in L+ is denoted by an element ofM, namely the domain
element t.

It remains to prove that for any formula F : F ∈ G implies M |= F . This we proof by
induction on F .

– For the base case F = P (t1, . . . , tn), if F ∈ G, then by definition PM(t1, . . . , tn), hence
M |= F .

– For the step case assume F = ∃xG(x) and F ∈ G. By induction hypothesis for any
term t such that G(t) ∈ G, we have M |= G(t). Now, by assumption G fulfils the
closure properties, hence there exists a term t such that G(t) ∈ G. ThusM |= ∃xG(x)
holds by definition of the satisfaction relation |=. The other cases follow similarly.

Remark 4.1. In Chapter 7 we will study models M that feature the equation tM = t (for
any term t) in more detail. Such models are often called term or Herbrand models.

Lemma 4.5. Let L be a language and let L+ denote an extension of L with infinitely many
individual constants. Suppose S∗ is a set of set of formulas (of L+) with the satisfaction
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properties. Then every set G of formulas (over L) in S∗ is extensible to a set G∗ of formulas
(over L+) having the closure property.

Proof. We construct a sequence of sets, starting with G such that only elements are added,
never removed:

G = G0,G1,G2 . . . Gn ⊆ Gn+1 ,

Moreover, we demand that any Gi belongs to S∗. Finally we define G∗ :=
⋃

n>0 Gn.
We have to verify that G∗ admits all 8 closure properties. The first one is trivial. Assume

that for a given formula F , F and ¬F occurs in G∗. As G∗ is the union of the above sequence
there exists an index k such that {F,¬F} ⊆ Gk, but if we can guarantee that Gk ∈ S∗, then
this contradicts the fact that S∗ admits the satisfaction properties. Thus we only need to
consider the other 7 properties and make sure that for each n, Gn ∈ S∗.

At each stage n we aim to add only one formula to Gn. The remaining 7 closure properties
define certain demands on G∗ that can be formulated as follows.

(i) if ¬¬F ∈ Gn, then there exists k > n such that Gk+1 = Gk ∪ {F},

(ii) if (E∨F ) ∈ Gn, then there exists k > n such that Gk+1 = Gk∪{E} or Gk+1 = Gk∪{F},

(iii) if ¬(E ∨ F ) ∈ Gn, then there exists k > n such that Gk+1 = Gk ∪ {¬E} and Gk+1 =
Gk ∪ {¬F},

(iv) if ∃xF (x) ∈ Gn, then there exists k > n such that there is a term t and Gk+1 =
Gk ∪ {F (t)}, and

(v) if ¬∃xF (x) ∈ Gn, then for any term t there exists k > n, such that Gk+1 = Gk∪{¬F (t)},

(vi) for any term t, then there exists k > n such that t = t ∈ Gk, and

(vii) if F (s) ∈ Gn, and s = t ∈ Gn, then there exists k > n such that F (t) ∈ Gk.

In meeting these demands we use the fact that all previously constructed Gn are contained
in S∗ and that S∗ admits the satisfaction properties. Hence, we can use the following facts.
Note that we employ the fact that the sequence (Gn)n>0 is growing: Gn ⊆ Gn+1.

(i) If ¬¬F ∈ Gn, then for any k > n, Gk ∪ {F} ∈ S∗.

(ii) If (E ∨ F ) ∈ Gn, then for any k > n, either Gk ∪ {E} ∈ S∗ or Gk ∪ {F} ∈ S∗.

(iii) If ¬(E ∨ F ) ∈ Gn, then for any k > n, Gk ∪ {¬E} ∈ S∗ and Gk ∪ {¬F} ∈ S∗.

(iv) If ∃xF (x) ∈ G, then for any k > n and any unused individual constant c, Gk∪{F (c)} ∈
S∗.
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4 Soundness and Completeness of First-Order Logic

(v) If ¬∃xF (x) ∈ G, then for any k > n and for any term t, Gk ∪ {¬F (t)} ∈ S∗.

(vi) For any term t, for any k > n, Gk ∪ {t = t} ∈ S∗.

(vii) If {F (s), s = t} ⊆ Gn, then for any k > n, Gk ∪ {F (t)} ∈ S∗.

The correspondence between demand and properties induced by the fact that S∗ fulfils
the satisfaction properties shows that we can in principle fulfil any demand. It only remains
to define a fair strategy such that eventually any of the infinite demands is fulfilled.

However this is easy if we recall that any pair (i, n) can be encoded as a single natural
number. Associate to each demand a pair (i, n) such that i is the number of the demand
raised at stage n. Hence it remains to enumerate all pairs (i, n) so that at a given stage k
we decode the pair k represents and grant the ith demand that was raised at stage n < k.
In this way it is guaranteed that all demands above can be eventually satisfied such that all
constructed sets Gn belong to S∗. This completes the proof.

Based on Lemmas 4.4 and 4.5 we can prove the model existence theorem. We recall the
theorem:

Theorem. ( i) If S∗ is a set of sets of formulas of L+ having the satisfaction properties,
then every set of formulas of L in S∗ has a model M.

( ii) Every element of the domain of M is the denotation of some term in L+.

Proof. In proof of the theorem we restrict our base language L to the case where L is free
of function constants and equality, cf. Lemma 4.4.

By assumption S∗ admits the satisfaction properties. Due to Lemma 4.5 we have that
for any formula set G (over L) in S∗ is extensible to a set G∗ of formulas (of L+) such that
G∗ fulfils the closure properties. But then Lemma 4.4 is applicable to G∗ and we obtain a
M such that M |= G∗. This takes care of the first statement of the lemma.

Moreover M has the property that any element in the universe of M is the denotation
of a term (of L+). This takes care of the second statement of the lemma.

4.3 Soundness and Completeness

In this section we prove soundness and completeness of predicate logic. The propositional
rules (for the connectives ¬, ∨, ∧, and →) are given in Figure 2.1 in Chapter 2. We only
need to lift (or conceive) these rules in the present context, the context of first-order logic.
The rules for equality are given in Figure 4.1 and quantifier rules for ∃ and ∀ are given in
Figure 4.2.
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introduction elimination

= t = t =: i
s = t F (s)

F (t)
=: e

Figure 4.1: Natural Deduction: Equality Rules

introduction elimination

∃
F (t)
∃xF (x) ∃ : i

∃xF (x)

a F (a)
...
G

G
∃ : e

∀

a
...
F (a)

∀xF (x) ∀ : i
∀xF (x)
F (t) ∀ : e

Here the variable a in ∃ : e and in ∀ : i is local to the box it occurs in.

Figure 4.2: Natural Deduction: Quantifier Rules

Let G be a finite set of formulas and let F be a formula. A natural deduction proof is a
sequence of applications of rules depicted in Figure 2.1, 4.1, and 4.2. We adapt the definition
of provability given above with respect to propositional logic.

Definition 4.3. The provability relation, denoted as A1, . . . , An ` B, asserts that B is
derived from the assumptions A1, . . . , An. This notion extends to infinite set of formulas
G: We write G ` F if there exists a finite subset G′ ⊆ G such that G′ ` F . We write ` A
instead of ∅ ` A and call the formula A provable in this case.

Theorem 4.4 (Soundness Theorem). Let G be a set of formulas and let F be a formula
such that G ` F . Then G |= F .

Sketch of Proof. We only sketch the proof. For a slightly different formal system a com-
pletely worked out proof can be found in [3].

In proof of soundness one verifies that every single inference rule is correct. For this one
shows that if the assumptions of an inference rule are modelled by a model M, then the
consequence (of the rule) holds in M as well.

In order to prepare for the completeness theorem, we state two lemmas, whose proof is
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4 Soundness and Completeness of First-Order Logic

left to the reader (compare also [3]). Recall that a set of formulas G is called inconsistent if
⊥ is derivable from G.

Lemma 4.6. We have G ` F iff G ∪ {¬F} is inconsistent.

Lemma 4.7. The set S of all consistent sets of formulas has the satisfaction properties.

Theorem 4.5 (Completeness Theorem). Let G be set of formulas and let F be a formula
such that G |= F . Then G ` F .

Proof. By compactness we know that there exists a finite subset G′ of G, such that G′ |= F .
Hence we can assume without loss of generality that the formula set G is finite.

Thus in order to show completeness, we have to show that G ` F holds. We show the
contra-positive. Suppose F is not derivable form G, then F is not a consequence of G. Due
to Lemmas 4.6, G 6` F is equivalent to the assertion that G ∪ {¬F} is consistent. On the
other hand, due to Lemma 3.1 G 6|= F is equivalent to the assertion that the set G ∪ {¬F}
is satisfiable.

Hence, we have to prove that the consistency of G ∪ {¬F} implies that the set G ∪ {¬F}
is satisfiable. Thus it suffices to show that any consistent set is satisfiable.

By the model existence theorem (Theorem 4.3) it suffices to verify that the set S of
consistent sets of formulas has the satisfaction properties. As the latter follows by Lemma 4.7
we conclude completeness.

Problems

Problem 4.1. Let Larith contain = and the constants 0, s, +, ·, <. By true arithmetic we
mean the set of sentences G of Larith that are true in the usual interpretation in number
theory.

By a non-standard model of arithmetic we mean a model of G that is not isomorphic to
the standard interpretation. Let H = G ∪ {c 6= 0, c 6= 1, . . . }, where c denotes a constant
not in Larith. Prove that any model of H is a non-standard model.

Problem 4.2. Prove Lemma 4.6.

Problem 4.3. Prove Lemma 4.7.
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5

Craig’s Interpolation Theorem

Given an implication A → C, Craig’s interpolation theorem tells us that there exists a
sentence B, the interpolant, such that B is implied by A and B implies C. Moreover
B employs only non-logical constants that occur in both A and C. After presenting the
theorem in some detail, we will employ it to prove Robinson’s joint consistency theorem, a
theorem that allows us to speak about the satisfiability of the union S∪T of theories S and
T , based only on the satisfiability of S and T .

The latter theorem is partly related to the Nelson-Oppen method briefly mentioned in
Chapter 1. Apart from the statement of the interpolation theorem and the joint consistency
theorem this chapter is optional.

5.1 Craig’s Theorem

Recall Theorem 2.3 that stated the existence of interpolants for valid implications in the
context of propositional logic. We extend this result to first-order logic.

We start with the following simple lemma, whose proof is left to the reader.

Lemma 5.1. If the sentence A→ C holds, there exists a sentence B such that A→ B and
B → C and only those individual constants occur in B that occur in both A and C.

If we attempt to generalise the lemma such that B contains only individual, function,
and predicate constants that occur in both A and C, some care is necessary.

Example 5.1. Let A :⇐⇒ ∃xF (x) ∧ ∃x¬F (x) and let C :⇐⇒ ∃x∃y(x 6= y). Then A→ C

holds, but there exists no interpolant B such that only individual, function, or predicate
constants occur in B that are shared by A and C.

Theorem 5.1. If the sentence A → C holds, there exists a sentence B such that A → B

and B → C such that only those non-logical constants occur in B that occur in both A and
C.
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5 Craig’s Interpolation Theorem

Note that the example above doesn’t contradict the theorem as we consider the equality
sign as logical symbol, compare Section 3.1. Before proving this theorem we deal with two
degenerated cases. Suppose A → C holds and A is unsatisfiable. Then any unsatisfiable
sentence can be used as interpolant that only uses non-logical constants that occur in A

and C. Consider for example

∃x(F (x) ∧ ¬F (x))→ ∃G(x) .

Then ∃x(x 6= x) serves as interpolant: Clearly ∃x(F (x) ∧ ¬F (x))→ ∃x(x 6= x) and ∃x(x 6=
x)→ ∃G(x). The dual case occurs if C is valid. Then any valid sentence serves as interpolant
if the condition on non-logical constants is fulfilled. As a side-remark observe that for
languages without the equality sign = Craig’s interpolation theorem for these degenerated
cases holds only true if we extend the language by logical constants like > and ⊥.

We are ready to give the proof of the theorem.

Proof. From the above discussion it is clear that we can restrict to those implications A→ C,
where neither A is unsatisfiable nor C is valid. Moreover we will only treat the special case
where equality and individual and function constants are absent. The general case follows
from the special case by the use of the pattern of the proofs of Lemma 7.1 and 7.2.

In proof we proceed indirectly and assume that no interpolant exists. Then we show that
the set of sentences {A,¬C} is satisfiable, which contradicts the assumption that A implies
C. In order to prove this we make use of the model existence theorem. For that we consider
a language L that contains all the non-logical symbols occurring in both A and C and its
extension L+ containing infinitely many individual constants.

We define a collection S of sets of sentences such that {A,¬C} ∈ S and S will fulfil the
satisfaction properties, cf. Definition 4.1. Then Theorem 4.3 yields that any set of formulas
of L in S has a model and thus {A,¬C} is satisfiable.

We call a set of sentences G (of L+) A-sentences (C-sentences) if all sentences in G contain
only predicate constants that occur in A (C). A pair of set of sentences (G1,G2) such that
G1 are satisfiable A-sentences and G2 are satisfiable C-sentences is barred by a sentences B,
if B is both an A-sentence and a C-sentence and G1 |= B and G2 |= ¬B holds. Note that the
assumption that there exists no interpolant B (of L) is equivalent to say that no sentences
bars (A,¬C). Due to Lemma 5.1 no sentence of L+ can bar (A,¬C) if this assumption
holds. We are ready to define the collection S. Let S be the set of all sets of sentences G
that admit an unbarred division, where this means that there exists a pair (G1,G2) of A-
sentences and C-sentences such that G = G1 ∪ G2, G1 and G2 are satisfiable and no sentence
bars G1,G2. It remains to verify that S admits the satisfaction properties.

We consider the only interesting case.
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– Let G ∈ S. If (E ∨ F ) ∈ G, then either G ∪ {E} ∈ S or G ∪ {F} ∈ S.

As G ∈ S there exists a pair (G1,G2) such that G = G1∪G2 and (G1,G2) is unbarred. Without
loss of generality assume (E ∨ F ) ∈ G1. Then both E and F are A-sentences. It suffices to
show that either (G1 ∪ {E},G2) or (G1 ∪ {F},G2) forms an unbarred division of G ∪ {E}.
In proof, first observe that if G1 ∪ {E} is unsatisfiable then G |= ¬E and G |= E ∨ F holds.
Hence G |= F . Then it is easy to see that (G1∪{F},G2) forms an unbarred division. Similar
for the case that G1 ∪{F} is unsatisfiable. Thus we can assume that G1 ∪{E} and G1 ∪{F}
are satisfiable.

Suppose both alternatives fail to be unbarred divisions. This means there have to exist
sentences Bi (i ∈ {1, 2}) that bar (G1 ∪ {E},G2) and (G1 ∪ {F},G2) respectively. Then
G1 |= B1 ∨ B2 as G1 ∪ {E} |= B1 and G1 ∪ {F} |= B2 hold. Moreover G2 |= ¬B1 and
G2 |= ¬B2. From which we conclude that G2 |= ¬(B1 ∨ B2). Therefore (B1 ∨ B2) bars
the pair (G1,G2), which is a contradiction to the assumption that G ∈ S. Hence either
of the pairs (G1 ∪ {E},G2) or (G1 ∪ {F},G2) forms an unbarred division and the proof is
complete.

5.2 Robinson’s Joint Consistency Theorem

For the next result we need to define precisely what is to be understood by a theory of a
language.

Definition 5.1. A theory in a language L is a set of sentences of L that is closed under
the consequence relation. We call an element of a theory a theorem. A theory T is called
complete if for every sentence F of L either F ∈ T or ¬F ∈ T .

A theory T ′ is an extension of a theory T if T ⊆ T ′. An extension T ′ is conservative if
any sentence F of the language of T that is a theorem of T ′ is a theorem of T .

Note that any mathematical theory like for example the natural numbers together with
the usual operations can be expressed as an (infinite) theory in the above sense. Moreover
any reasoning over data-types like for example arrays can be so represented, compare also
Chapter 1.

The (not difficult) proof of the next lemma is omitted, but see Problem 5.3 below.

Lemma 5.2. The union S ∪T of two theories S and T is satisfiable iff there is no sentence
in S whose negation is in T .

Theorem 5.2. Let L0, L1, and L2 be languages such that L0 = L1 ∩L2. Let Ti be a theory
in Li (i ∈ {0, 1, 2}). Let T3 be the set of sentences of L1 ∪ L2 that are consequences of
T1 ∪ T2. If T1, T2 are conservative extensions of T0, then T3 is a conservative extension of
T0.
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Proof. Suppose A is a sentence of L0 that is a theorem of T3. Set U2 := {B | T2∪{¬A} |= B}.
As A ∈ T3, T1 ∪ T2 ∪ {¬A} is unsatisfiable hence also T1 ∪ U2 is unsatisfiable.

By the lemma there exists a theorem C ∈ T1 whose negation ¬C is in U2. It is easy to see
that C, ¬C are sentences of L0. Moreover ¬A→ ¬C is of L0. By assumption on T1, C is a
theorem of T0, while ¬A→ ¬C is in T2 and thus a theorem of T0. Thus also C → A ∈ T0,
which together with C ∈ T0 yields that A ∈ T0.

Based on the above theorem we can state and prove Robinson’s joint consistency theorem.

Corollary 5.1. Let Li and Ti (i ∈ {0, 1, 2}) be as in the theorem. If T0 is complete and T1,
T2 are satisfiable extensions of T0, then T1 ∪ T2 is satisfiable.

Proof. Note that a satisfiable extension of a complete theory T is conservative. Assume
there exists a theorem A of the extension in the language of the complete theory. Then
if A ∈ T we are done and if ¬A ∈ T , then the extension cannot be satisfiable. On the
other hand a conservative extension of a satisfiable theory has to be satisfiable. Otherwise,
assume the extension is unsatisfiable, then by the completeness theorem this extension is
inconsistent and any formula is contained in it, for example ∀x(x 6= x). The latter is clearly
a sentence that must not be a theorem of the original theory.

Based on these observations the corollary is a direct consequence of the theorem.

Problems

Problem 5.1. Show Lemma 5.1. Hint : Those individual constants that occur in A but not
in C have to be suitably replaced, for example with fresh variables. And observe that since
A→ C is valid so is ∀x1 . . . xn(A′ → C), where A′ denotes the result of the replacement of
constants.

Problem 5.2. Consider the proof of Theorem 5.1.

(i) Show that all applicable satisfaction properties are fulfilled by the set S.

(ii) Extend the theorem to languages containing equality. Hint : Study the proof of
Lemma 7.1 and observe that the existence of a valid implication A → C is equiv-
alent to the statement that A ∧ ¬C is unsatisfiable.

(iii) Extend the theorem to languages containing individual and function constants.

Problem 5.3. Show Lemma 5.2. Hint : The direction from right to left is obvious and the
other direction follows by the use of compactness and Craig’s interpolation theorem.
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Extensions of First-Order Logic

In this chapter we consider the limits of expressivity of first-order logic (see Section 6.1)
and consider a specific extension of first-order logic: second-order logic (see Section 6.2).
Finally, we conclude by mentioning a specific application of (second-order) logic to com-
plexity theory. The complexity class P is captured by existential second-order logic on finite
structures.

6.1 Limits of First-Order Logic

Let G be a directed graph with distinct nodes u, v. Recall that reachability in G is not
expressible in first-order logic, that is, there is no formula F (a, b) such that F holds in an
interpretation with environment `(a) = u, `(b) = v iff there exists a path in G from u to v.
This formulation does not (yet) clarify, whether an (infinite) set of formulas F is sufficient
to express reachability. In order to solve this issue, we introduce the notion of elementary
and ∆-elementary collections of structures. Let F be a set of sentences (over some language
L), we define:

Mod(F) = {A | A is a structure (of L) and A |= F} .

We call Mod(F) the class of models of F . Instead of Mod({F}) we simply write Mod(F ).

Definition 6.1. Let K be a collection of structures.

– K is called elementary if there exists a sentence F such that K = Mod(F ).

– K is called ∆-elementary if there exists a set of sentences F such that K = Mod(F).

Each elementary class is ∆-elementary. Moreover, every ∆-elementary class is the inter-
section of elementary classes:

Mod(F) =
⋂

F∈F
Mod(F ) .
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Reachability is not expressible in first-order logic, even with an infinite set of formuals.
More precisely the class K1 of strongly connected graphs is not ∆-elementary. Let G be
a structure defined over the language L = {R} with the domain G. Here R is a binary
relation symbol that represents the (directed) edge relation of the graph G.
G is called strongly connected if for arbitrary, but distinct u, v ∈ G there exists a path in
G from u to v. For each number n, the regular polygon with n+ 1 nodes is denoted as Gn.
More precisely, we set Gn = (Gn, R

Gn), where Gn = {0, . . . , n} and

RGn := {(i, i+ 1) | i < n} ∪ {(n, 0)} ,

while we define the following sentences (n ∈ N):

Fn(a, b) := a = b ∨ ∃x1 · · · ∃xn

(
a = x1 ∧ xn = b ∧R(x1, x2) ∧ · · · ∧R(xn−1, xn)

)
.

Suppose, in order to derive a contradiction, that K1 = Mod(F) for set of sentences F with
variables a and b.

We set H := F ∪ {¬Fn | 2 6 n}. Then it is easy to see that H is unsatisfiable as by
assumption any model of F is a strongly connected graph, while the family of sentences
(¬Fn)n>2 can only be modelled if there exists at least two nodes which are not connected.
However, each finite subset F ′ of H has a model. Namely there exists a number m such that
F ′ ⊆ F ∪ {¬Fn | 2 6 n 6 m} and G2m |= F ′. For the latter observe that we can interpret
the free variables a and b by 0 and m, respectively. This contradicts compactness.

6.2 Second-Order Logic

A second-order language extends a first-order language by a collection of variables for rela-
tions and functions. I.e., variables are:

(i) First-order variables, which are also called individual variables.

(ii) Relation variables with i arguments: V i
0 , V

i
1 , . . . , V

i
j , . . .

(iii) Function variables with i arguments: ui
0, u

i
1, . . . , u

i
j , . . .

Here i = 1, 2, . . . and j = 0, 1, 2, . . .

Definition 6.2. Second-order terms are defined like first-order terms together with the
following clause:

(iv) If t1, . . . , tn are second-order terms, u an n-ary function variable, then u(t1, . . . , tn) is
a second-order term.
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A second-order term without function variables is a first-order term.

Convention. The meta-symbols c, f , g, h, . . . , are used to denote constants and function
symbols, while the meta-symbols u, v, w are used to denote function variables. P , Q, R,
. . . , vary through predicate symbols or predicate variables. Individual variables are denoted
as x, y, z, . . . , and predicate variables are denoted by V ,X,Y ,Z, etc.

Definition 6.3. Second-order formulas are defined like first-order formulas together with
the following clauses:

(iv) If t1, . . . , tn are (second-order) terms, X an n-ary predicate variable, thenX(t1, . . . , tn)
is a second-order formula.

(v) If A(f) is a second-order formula, f a function constant, u a function variable, such
that A(u) denotes the replacement of all occurrences of f by u, then

∀u A(u) ∃u A(u) ,

are second-order formulas.

(vi) If A(P ) a second-order formula, P a predicate constant, X a predicate variable, then

∀X A(X) ∃X A(X) ,

are second-order formulas.

A second-order formula without predicate and function variables is a first-order formula.

Remark. We could employ different notions for free and bound second order variables, but
this gets cumbersome and would constitute a distraction here. Moreover it is easy to see
that function variables are not necessary and their use can be circumvented. However, the
use of function symbols simplifies the clarity of exposition.

Definition 6.4. Let A denote a structure and A its domain. A second-order environment
for A associates with any individual variable a an element in A, moreover with any n-
ary function variable u a function f : An → A is associated and finally any n-ary relation
variable X is assigned to a subset of An.

Let ` be a second-order environment and let A′ ⊆ An be an n-ary relation over A. Then
we write `{X 7→ A′} for the environment mapping predicate variable X to the relation A′

and all other variables Y 6= X to `(Y ). A similar notion is used for function variables.

Based on the above extension of the notion of environment it is easy to define interpre-
tations in the context of a second-order language. A second-order interpretation I is a pair
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(A, `) such that A is a structure and ` is a second-order environment. Thus the value of a
second-order term t is defined as follows:

tI =


`(t) if t an individual variable

fA(tI1 , . . . , t
I
n) if t = f(t1, . . . , tn), f a constant

`(u)(tI1 , . . . , t
I
n) if t = u(t1, . . . , tn), u a variable

Definition 6.5. Let I = (A, `) be a second-order interpretation, let A be the domain of
A, let F be a formula, and let A′ be a relation. We write I{X 7→ A′} as abbreviation for
(A, `{X 7→ A′}).

We define the satisfaction relation I |= F as before, but add the following clauses:

I |= X(t1, . . . , tn) :⇐⇒ if `(X) = P ⊆ An and (tI1 , . . . , t
I
n) ∈ P

I |= ∀XF (X) :⇐⇒ if I{X 7→ A′} |= F (X) holds for all A′ ⊆ An

I |= ∃XF (X) :⇐⇒ if I{X 7→ A′} |= F (X) holds for some A′ ⊆ An

I |= ∀uF (u) :⇐⇒ if I{u 7→ f} |= F (u) holds for all f ∈ An → A

I |= ∃uF (u) :⇐⇒ if I{u 7→ f} |= F (u) holds for some f ∈ An → A

The next example shows that reachability (in a directed graph) becomes definable in
second-order logic.

Example 6.1. Consider the following second order formula F (x, y):

∃P
(
∀z1∀z2∀z3 (¬P (z1, z1) ∧ (P (z1, z2) ∧ P (z2, z3)→ P (z1, z3))) ∧

∧ ∀z1∀z2(P (z1, z2) ∧ ∀z3(¬(P (z1, z3) ∧ P (z3, z2)))→ R(z1, z2)) ∧ P (x, y)
)

.

The idea of the formula is to assert the existence of a predicate P whose interpretation
is that of a path in the graph. For that we assert with the first subformula that a path
is transitive, but not reflexive. The second formula says that every direct successor in a
path is connected by an edge in the graph. Finally, the last subformula expresses that the
interpretations of x and y are connected.

It is not difficult to see that for any finite second-order model G of F with environment
`, there exists a path in G from `(x) to `(y).

While first-order logic features compactness, Löwenheim-Skolem, and completeness, none
of these properties hold for second-order logic. This is summarised in the next theorem,
whose proof we omit. The interested reader is kindly referred to [3] or [8].

Theorem 6.1. ( i) Compactness fails for second-order logic.
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( ii) Löwenheim-Skolem fails for second-order logic.

( iii) Completeness fails for second-order logic, i.e., there does not exists a calculus that is
sound and complete for second-order logic. In particular the set of valid second-order
sentences is not recursively enumerable.

6.3 Complexity Theory via Logic

In the remainder of this chapter we consider a specific application of the expressivity of
second-order logic, namely the characterisation of the class NP of non-deterministic pro-
grams that run in polynomial time. For this purpose we suit the definition of problems to
finite structures and state that a complexity problem denotes a (subset of a) set of finite
structures. This re-formulation is standard, compare [23].

Definition 6.6. Let K be a set of finite structures (of a finite language L) and let F be
a sentence (of L). Suppose M is a (second-order) structure in K. Then the F -K problem
asks, whether M |= F holds.

We call a second-order formula F existential (∃SO for short) if F has the following form:

∃X1∃X2 · · · ∃Xn G ,

where G is essentially a first-order formula that may contain the free second-order variables
X1, . . . , Xn.

Let K be a set of finite structures and let L denote a finite language. Suppose F is a
second-order sentence (of L), i.e., no variable occurs free in F . The proof of the following
lemmas can be found in [13].

Lemma 6.1. If F is ∃SO, then the F -K problem is in NP.

Lemma 6.2. If F -K is decidable by a NTM M that runs in polynomial time then F is
equivalent to an existential second-order sentence.

Based on Lemma 6.1 and Lemma 6.2 we obtain the following characterisation theorem
due to Fagin.

Theorem 6.2. A sentence F (of L) is equivalent to a sentence in ∃SO iff F -K ∈ NP.
Moreover if F -K ∈ NP, then it can be assumed that the first-order part of F is a universal
formula.

Proof. Suppose F is an existential second-order sentence. Then by Lemma 6.1 the corre-
sponding problem F -K is in NP. Conversely assume there exists a sentence F together with
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a set of structures K such that F -K ∈ NP. Then by definition of the complexity class NP

there exists a TM (not necessarily deterministic) that runs in polynomial time and decides
the F -K problem. Due to Lemma 6.2, F is equivalent to an ∃SO sentence G. Moreover it
follows from the proof of Lemma 6.2 (see [13]) that the first-order part of G is universal.

As an easy corollary to this theorem we obtain an easy proof that the satisfiability prob-
lem of proposition logic (SAT for short) is complete for NP with respect to the polytime
reducibility relation. (The interested reader is encouraged to compare the below given proof
sketch to the standard argument, see for example [23].)

Corollary 6.1. SAT is complete for NP (with respect to polytime reducibility).

Proof. It is easy to see that SAT ∈ NP, as this is a consequence of Lemma 6.1. On the other
hand consider any problem A ∈ NP. Then we can reformulate the problem A as an F -K
problem for some set of finite structures K and some sentence F . Due to Theorem 6.2 the
sentence F is ∃SO and the first-order part of F is universal.

Let M ∈ K be a finite model. In order to reduce the F -K problem (with respect to M)
to a SAT-problem, consider the finite (!) conjunction of all instances of the the first-order
part of F , where we instantiate the bound variables by constants representing all elements
inM. We obtain a quantifier-free formula effectively forming a propositional logic formula,
when we conceive the atomic formulas as propositional atoms.

It is not difficult to argue that any interpretation of F is conceivable as an assignment
of this propositional formula, while on the other hand any assignment that satisfies the
propositional formula can be re-interpreted as model of F .

In sum SAT ∈ NP and any problem A in NP is reducible (with an algorithm that runs in
polynomial time) to a SAT problem. Hence SAT is complete for NP.

The next corollary to Theorem 6.2 we state without proof.

Corollary 6.2. The following is equivalent:

– NP = co− NP and

– ∃SO is equivalent to (full) second-order logic.

Problems

Problem 6.1. Let K be a ∆-elementary class of structures. Show that the subclass K∞ ⊆ K
of structures in K with infinite domain is ∆-elementary, too.

Hint : Observe the difference between elementary and ∆-elementary class of structures.
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Problem 6.2. Show that SAT ∈ NP, using the results of this chapter.
Hint : It suffices to formulate SAT as an F -K problem for a suitable class of structures K

and an ∃SO sentence F .
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7

Normal Forms and Herbrand’s Theorem

The central result in this chapter is Herbrand’s theorem, a theorem that is as important
in formal logic as in automated reasoning and which we will employ in latter chapters. As
forerunner to this theorem two normal form theorems will be presented in the first two
sections.

Such a normal form theorem falls into two categories: either the theorem tell us that for
a given formula F there exists a formula G of specific syntactic form such that F and G

are logically equivalent, or it tells us that F and G are equivalent for satisfaction. The aim
of normal form theorems is to provide us with (simple) procedures to transform arbitrary
formulas into a form that can later easily analysed.

In Section 7.3 Herbrand’s theorem is proven together with some corollaries that will be
used later. In Section 7.4 it is shown that equality, individual and function constants can
be eliminated from formulas without affecting the satisfiability. Apart from the statement
of Theorem 7.4 this section is optional.

7.1 Prenex Normal Form

In this section we state and prove a normal form theorem of the first type: a given formula
F is shown to be transformable into prenex normal form and this transformation preserves
logical equivalence.

Definition 7.1. A formula F is in prenex normal form if it has the form

Q1x1 · · ·Qnxn G(x1, . . . , xn) Qi ∈ {∀,∃} ,

where G is quantifier-free. The subformula G is also called matrix. If the matrix G is a
conjunction of disjunctions of literals, we say F is in conjunctive prenex normal form (CNF
for short). Recall that a literal is an atomic formula or a negated atomic formula.
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Remark 7.1. Observe the overloading of the abbreviation for conjunctive prenex normal
form. In Chapter 2 we used CNF to denote the conjunctive normal form of a propositional
formula. In the following we will sometimes also call a quantifier-free formula that is a
conjunction of disjunctions of literals a CNF. No confusion will arise from this.

Note that the conjunctive prenex normal form need not be unique as illustrated by the
next example.

Example 7.1. Consider ∀xF (x)↔ G(a), which abbreviates:

(∀xF (x)→ G(a)) ∧ (G(a)→ ∀xF (x)) .

One logically equivalent CNF would be

∀x∃y((¬F (y) ∨G(a)) ∧ (¬G(a) ∨ F (x)) .

Another logically equivalent CNF is obtained if the quantifiers are pulled out in different
order. That is

∃y∀x((¬F (y) ∨G(a)) ∧ (¬G(a) ∨ F (x)) ,

is also a CNF of F .

Theorem 7.1. For any formula F there exists a formula G in prenex normal form such
that F ≡ G.

Proof. To prove the theorem we give a construction to transform F into a formula G in
prenex normal form. Each step performed preserves logical equivalence of formulas.

(i) We replace all occurring implication signs → in F , employing the equivalence (E →
F ) ≡ (¬E ∨ F ).

(ii) We rename bound variables such that each quantifier introduces a unique bound vari-
able. The proof that this step preserves equivalence is left to the reader, see Prob-
lem 7.2.

(iii) We pull quantifiers out using one of the following equivalences:

¬∀xF (x) ≡ ∃x¬F (x) ¬∃xF (x) ≡ ∀x¬F (x) QxE(x)� F ≡ Qx(E(x)� F )

where Q ∈ {∀,∃}, � ∈ {∧,∨}, and in the last equivalence the variable x must not
occur free in F . It is easy to see that replacement of logically equivalent formulas
preserves logical equivalence, see Problem 7.1.
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By adapting the transformation procedure so that also the matrix of the obtained prenex
normal form is normalised, we immediately get the next result.

Corollary 7.1. For any formula F there exists a formula G in CNF such that F ≡ G.

7.2 Skolem Normal Form

In this section we state and prove a normal form theorem of the second type: a given
formula F is shown to be transformable into Skolem normal form and this transformation
is satisfiability preserving.

An existential formula F is of form

∃x1 · · · ∃xn G(x1, . . . , xn) ,

where the matrix G is quantifier free. A universal formula is of form

∀x1 · · · ∀xn G(x1, . . . , xn) .

For later arguments we note that any quantifier-free formulas is existential and universal:
simply set n = 0 in the above presentation.

Definition 7.2. A formula F is in Skolem normal form (SNF for short) if F is universal
and in CNF.

Let L be a language and L+ an extension of L, that is, the constants in L form a subset
of the constants in the language L+. Suppose further that I is an interpretation of L and
I+ an interpretation of L+ such that I and I+ coincide on L. Then I+ is called expansion
of I.

Definition 7.3. Given a sentence F , we define its Skolemisation FS as follows:

(i) Transform F into a CNF F ′ such that F ′ can be represented as

Q1x1 · · ·Qmxm G(x1, . . . , , xm) .

(ii) Set F ′′ = F ′ and repeatedly transform F ′′ by replacing the sentence

∀x1 · · · ∀xi−1∃xiQi+1xi+1 · · ·Qmxm G(x1, . . . , xi, . . . , xm)

by the sentences s(F ′′)

∀x1 · · · ∀xi−1Qi+1xi+1 · · ·Qmxm G(x1, . . . , f(x1, . . . , xi−1), . . . , xm)
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where f denotes a fresh function symbol of arity i− 1. The transformation ends if no
existential quantifier remains.

The fresh function symbols introduced in the process of Skolemisation are often called
Skolem functions. We say formulas F and G are equivalent for satisfiability if F is satisfiable
iff G is satisfiable. This is denoted as F ≈ G.

Theorem 7.2. For any formula F there exists a computable formula G in SNF such that
F ≈ G.

Proof. Without loss of generality we assume that F is already in CNF. Otherwise we trans-
form it in CNF using Corollary 7.1. It suffices to prove that F ≈ s(F ), as the theorem then
follows by an inductive argument from the special case. We fix some notation:

F = ∀x1 · · · ∀xi−1∃xiQi+1xi+1 · · ·Qmxm G(x1, . . . , xi, . . . , xm)

s(F ) = ∀x1 · · · ∀xi−1Qi+1xi+1 · · ·Qmxm G(x1, . . . , f(x1, . . . , xi−1), . . . , xm)

H(a1, . . . , ai) = Qi+1xi+1 · · ·Qmxm G(a1, . . . , ai, xi+1, . . . , xm)

where a1, . . . , ai are fresh variables.
First assume that s(F ) is satisfiable, that is, there exists a modelM such thatM |= s(F ).

Then clearly M also models F . Indeed the stronger assertion s(F )→ F is valid.
The other direction is more involved. Suppose F is satisfiable and let M be a model of

F . Then we can expand M to a model M+ such that for any assignment of the variables
a1, . . . , ai−1

M+ |= H(a1, . . . , ai−1, f(a1, . . . , ai−1)) . (7.1)

To define fM
+

we fix i− 1 elements b1, . . . , bi−1 ∈M and consider the set B of all elements
b ∈ M such that H holds, where the variables a1, . . . , ai are interpreted as b1, . . . , bi−1,
respectively.

By assumption B 6= ∅. Thus we can pick (in an arbitrary but fixed way) an element
b ∈ B and set

fM
+

(b1, . . . , bi−1) := b .

In this way the interpretation of the function constant f is completely described and the
assertion (7.1) follows. Hence ∀x1 · · · ∀xi−1H(x1, . . . , f(x1, . . . , xi−1)) = s(F ) is satisfiable.

7.3 Herbrand’s Theorem

In this section we state and prove the main result of this chapter. A term t is called closed
or ground, if t does not contain (free) variables.
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Definition 7.4. A Herbrand universe for a language L is the set of all closed terms (of L).
If L doesn’t contain an individual constant, then we add a fresh constant to L.

An interpretation I (of L) is a Herbrand interpretation if

(i) the universe of I is the Herbrand universe H for L and

(ii) the interpretation I is defined such that

tI := t for any closed term t

A Herbrand interpretation I is a Herbrand model of a set of formulas G if I |= G.

A specific Herbrand model has been constructed in the proof of Lemma 4.4 in Chapter 4.3.
Thus (by the proof of) Lemma 4.4 we already know that a satisfiable set of universal
sentences G has a Herbrand model. Instead, in preparation for Herbrand’s theorem, we
argue directly. Let t1, . . . , tn be terms. Then the formula F (t1, . . . , tn) is called an instance
of ∀x1 · · · ∀xnF (x1, . . . , xn). If all terms ti (1 6 i 6 n) are ground, F (t1, . . . , tn) is called a
ground instance.

Suppose that I models G and let ∀x1 · · · ∀xnF (x1, . . . , xn) ∈ G. By definition of the satis-
faction relation I also models every ground instance F (t1, . . . , tn) of ∀x1 · · ·xnF (x1, . . . , xn).
Consider a Herbrand interpretation J (of the language of G) that satisfies exactly the same
instances F (t1, . . . , tn) as I. This amounts to set J as the collection of all true atoms
F (t1, . . . , tn) in the interpretation I. Then J |= ∀x1 · · · ∀xnF (x1, . . . , xn) and thus J is a
Herbrand model of G.

This observation motivates a new notation. Let I = (A, `) be an interpretation and let
F be a formula. Recall that Lemma 3.2 states that only a finite part of the look-up table `
is necessary to conclude the truth value of F as only finitely many variables may occur in
a given formula F .

Let a1, . . . , an denote the set of (free) variables in F . Then only the values `(a1), . . . `(an)
of the environment ` are important. Thus instead of (A, `) |= F we sometimes write:

A |= F [`(a1), . . . , `(an)] .

Theorem 7.3. Let G be a set of universal sentences (of L) without =. Then the following
assertions are equivalent:

( i) G is satisfiable.

( ii) G has a Herbrand model (over L).

( iii) every finite subset of Gr(G) has a Herbrand model (over L).
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here we set

Gr(G) := {F (t1, . . . , tn) | ∀x1 · · · ∀xnF (x1, . . . , xn) ∈ G, t1, . . . , tn closed terms of L} .

Proof. The argument for the equivalence of the first two statements has already been given
above.

To see that the third item is equivalent, it suffices to show that item (iii) implies item (i).
Thus we assume that any finite subset of Gr(G) has a Herbrand model. Then in particular
any finite subset of Gr(G) has a model and hence Gr(G) itself has a model by compactness.
Thus (using the equivalence of the first two statements) Gr(G) has a Herbrand model M.

Now let ∀x1 · · · ∀xnF (x1, . . . , xn) ∈ G, then any ground instance F (t1, . . . , tn) ∈ Gr(G)
for any sequence of (closed) terms t1, . . . , tn. Thus M |= F (t1, . . . , tn) for any sequence
t1, . . . , tn. Hence, M |= F [t1, . . . , tn] for all domain elements t1, . . . , tn ∈ M. This implies
M |= ∀x1 · · · ∀xnF (x1, . . . , xn) by definition. This holds for any sentence in G and thus
M |= G.

To simplify later developments we represent Herbrand’s theorem in a more condensed
form below.

Corollary 7.2. Let G be a set of universal sentences (of L) without =. Either G has a
Herbrand model or G is unsatisfiable. For the latter case the following assertions hold (and
are equivalent):

( i) There exists a finite subset of Gr(G) whose conjunction is unsatisfiable.

( ii) There exists a finite subset S of Gr(G) such that the disjunction of the negation of
formulas in S is valid.

Proof. By the theorem G either has a Herbrand model or is unsatisfiable. Moreover in the
latter case there exists a finite subset of Gr(G) whose conjunction is unsatisfiable by the
theorem. Otherwise all finite subset of Gr(G) would be satisfiable from which we would
conclude that G is satisfiable.

Hence it remains to verify that both items in the corollary are equivalent. For that
suppose there exists a finite subset of Gr(G) whose conjunction C is unsatisfiable. Then
clearly the negation of this conjunction C is a disjunction D of negations of formulas in
Gr(G) and D is finite. Moreover D is valid.

We can paraphrase Herbrand’s theorem (and Corollary 7.2) as the statement: A universal
sentence ∀xF (x) is unsatisfiable if and only if there exists a finite sets S of ground instances
F (t) for terms t in the Herbrand universe such that S is unsatisfiable.
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Note that the restriction to universal sentences in Theorem 7.3 and Corollary 7.2 is
essential: On one hand we cannot generalise the theorem to universal formulas, on the
other we cannot generalise it to general sentences, see Problem 7.3. One way to overcome
this problem is to assert that any formula F (a1, . . . , an) (with free variables a1, . . . , an) is
understood to be implicitly universally quantified as follows: ∀x1 · · ·xnF (x1, . . . , xn), see
for example [13]. In Chapter 8 we make use of similar ideas in the definition of (first-order)
clause logic.

Corollary 7.3. If F (a1, . . . , an) is a quantifier-free formula in a language L with at least
one constant, then ∃x1 · · · ∃xnF (x1, . . . , xn) is valid iff there are ground terms tk1, . . . , t

k
n,

k ∈ N such that the Herbrand disjunction F (t11, . . . , t
1
n) ∨ · · · ∨ F (tk1, . . . , t

k
n), is valid.

Proof. If ∃x1 · · · ∃xnF (x1, . . . , xn) is valid, then ∀x1 · · · ∀xn¬F (x1, . . . , xn) is unsatisfiable
and vice versa. By Corollary 7.2 there exists a finite disjunction of formulas F (tk1, . . . , t

k
n)

that is valid.

Based on Herbrand’s theorem a naive form of automating the verification of a given
sentence F becomes possible. Let F be an arbitrary sentence in a language L. Then by
Theorem 7.2 there exists a formula F ′ in SNF such that F ≈ F ′. Suppose F ′ has the
following shape:

∀x1 · · · ∀xn G(x1, . . . , xn) .

Let H be the Herbrand universe for L. Recall that G is in CNF. Then we consider all
possible Herbrand interpretations of L. For that we make use of so called semantic trees.
Let A be a set of atomic formulas (of L) over the Herbrand universe H and let A0, A1, . . .

be some enumeration of A. The semantic tree T is inductively defined as follows.

– The tree which contains only the root is a semantic tree.

– The two edges leaving the root are labelled by A0 or ¬A0, respectively

– Let I be a node in T . Then I is either a

(i) leaf node or

(ii) the edges e1, e2 leaving node I are labelled by An+1 and ¬An+1 respectively,
when the edge that enters node I is labelled by An or ¬An.

Any path in T gives rise to a partial Herbrand interpretation I of F ′. We traverse the path
and set all literals used as edge labels true in I. In this way a semantic tree represents all
possible Herbrand interpretations of F ′ (as L is assumed to be countable).

Let I denote a node in T and let I denote the partial Herbrand interpretation induced
by this node. We call I closed if there exists a ground instance D of a disjunction in G such
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that I 6|= D and thus I 6|= F ′. Clearly when all nodes in T are closed, then there exists a
finite sets S of ground instances:

G(tk1, . . . , t
k
n) ,

for closed terms tk1, . . . , t
k
n, k > 1 in the Herbrand universe H such that S is unsatisfiable.

By Herbrand’s theorem this implies that F ′ is unsatisfiable and thus F is unsatisfiable.
Hence in order to prove that a given existential formula is valid or that a given universal

formula is unsatisfiable, we construct the semantic tree T as above iteratively. Note that
we can stop the construction of T as soon as all leaf nodes in T are closed.

This procedure can be automated and provides us with a sound and complete algorithm
A. Here soundness means that A will never refute a formula F that is satisfiable and
completeness means that for any unsatisfiable formula F we will find a finite semantic tree
witnessing that F is unsatisfiable. Of course the algorithm A need not terminate and is
hopelessly inefficient.

In Chapter 8 we see how a refined variant of this idea can be used as the basis of a very
efficient automated reasoning technique for first-order logic.

7.4 Eliminating Function Symbols and Identity

Above we restricted Herbrand’s theorem to languages without equality. In this section we
show how to overcome this restriction. In addition we show how to eliminate individual and
function constants from the language.

We start with the transformation rules to eliminate individual and function constants. For
that observe that any formula F is logically equivalent to a formula G such that individual
and function constants only occur immediately to the right of an equality sign. So the
only occurrence of an n-place function symbol or a constant is in atomic formulas of the
following shape: a = f(b1, . . . , bn), where the indicated terms a, b1, . . . , bn are variables. To
obtain the formula G from F we iteratively apply the following transformation. Suppose
the n-place function symbol occurs somewhere else in F than immediately to the right of
=. Suppose f is the first symbol (also known as root symbol) of a term t occurring in a
subformula A of F . Let x be a fresh bound variable and denote as F ′ the result of replacing
A(t) by ∃x(x = t ∧A(x)). It is not difficult to argue that F ′ is logically equivalent of F .

Hence, we assume that in the given formula F individual and function constants only
occur immediately to the right hand of =. Based on this information we show how to
replace any of the occurring individual and function constants. Let F be a formula, f an
n-place function symbol or a constant occurring in a = f(b1, . . . , bn). Then we replace all
occurrences of this equality by a P (b1, . . . , bn, a), where the predicate constant P is fresh.
The result of this transformation is denoted as F ′′. Let C(f) denote the following sentence,
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denoted as functionality axiom:

∀x1 · · · ∀xn∃y∀z(P (x1, . . . , xn, z)↔ z = y) .

Then we obtain the following lemma, whose not difficult proof is left to the reader.

Lemma 7.1. F is satisfiable if and only if F ′′ ∧ C(f) is satisfiable.

We turn our attention to the elimination of the symbol =. For that we assume without loss
of generaltiy that the formula F admits only predicate constants as non-logical symbols.
(Otherwise we first employ Lemma 7.1.) We make use of an additional binary relation
symbol � together with the following equivalence axioms E.

∀x x� x ∧ ∀x∀y (x� y ∧ y � x) ∧ ∀x∀y∀z ((x� y ∧ y � z)→ x� z) .

In addition for each n-ary predicate constant P we consider the following sentence C(P )

∀x1 · · · ∀xn∀y1 · · · ∀yn ((x1 � y1 ∧ · · · ∧ xn � yn)→ (P (x1, . . . , xn)↔ P (y1, . . . , yn)) .

For any formula F let F ′′′ denote the result of replacing the equality sign = everywhere by
� and let C(F ) denote the conjunction of all congruence axioms C(P ) for any constant P .
Then we obtain the following lemma, whose proof follows similarly to Lemma 7.1.

Lemma 7.2. F is satisfiable if and only if F ′′′ ∧ E ∧ C(F ) is satisfiable.

Lemma 7.1 and 7.2 allow us to eliminate individual and function constants and the equal-
ity symbol from considered formulas, while preserving satisfaction. In particular this means
that Herbrand’s theorem (in all variants discussed above) remains valid. We conclude this
chapter with the following theorem.

Theorem 7.4. For any formula F there exists a formula G such that G does neither contain
individual or function constants nor equality and F ≈ G.

Problems

Problem 7.1. Two formulas are equivalent over an interpretation I if they have the same
truth value with respect to I. Show that the following hold for equivalence over any inter-
pretation I (and hence for logical equivalence):

(i) If sentence G is obtained from sentence F by replacing each occurrence of an atomic
sentence A by an equivalent sentence B, then F and G are equivalent.

(ii) Show the same holds for an atomic formula A and an equivalent formula B.
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(iii) Show that this holds for arbitrary subformulas A.

Problem 7.2. Show that

(i) If F is a formula and x a bound variable in F , then F is logically equivalent to a
formula in which x doesn’t occur at all.

(ii) Generalise this to any number of variables x1, . . . , xn.

Problem 7.3. Let L = {c,P}.

(i) Give the Herbrand universe for L.

(ii) Give two examples of Herbrand interpretations of L.

(iii) Let G1 = {P(c), ∃x¬P(x)}. Show that G1 is satisfiable, but doesn’t have a Herbrand
model.

(iv) Let G2 = {P(c),¬P(a)}. Show that G2 is satisfiable, but doesn’t have a Herbrand
model.

Problem 7.4. Prove Lemma 7.1.
Hint : It simplifies the argument if the following auxiliary axiom D is employed:

∀x1 · · · ∀xn∀z(P (x1, . . . , xn, z)↔ z = f(x1, . . . , xn))

Note that D |= C and D |= F ↔ F ′′.

Problem 7.5. Prove Lemma 7.2.
Hint : Only the direction from right to left is of interest. Start with a model M for

F ′′′ ∧ E ∧ C(F ) and define an interpretation whose universe consists of all equivalence
classes (with respect to �) and whose denotation of � is the identity.
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8

Automated Reasoning with Equality

In this chapter we introduce the theory of automated reasoning. While it is in principle pos-
sible to automate proof search in a natural deduction calculus, as introduced in Section 4.3,
such provers are rarely used in practise. Hence, we will first introduce the resolution calcu-
lus, a system of inference rules well-suited for automation (see Section 8.1). To simplify the
presentation we will first disregard languages containing the equality sign. (We know from
earlier results that theoretically this is no restriction in power.) In Section 8.2 we extend
resolution by suitably defined inference rules to overcome this (practical) restriction. The
obtained calculus is called paramodulation calculus. In order to improve the efficiency of
this calculus, we finally study a refined version, the superposition calculus, in Section 8.3.

Note that the here introduced automated techniques are easily powerful enough to show
the validity of the semantic entailment (1.1) mentioned in Chapter 1.

8.1 Resolution for First-Order Logic

In Chapter 2 we introduced resolution for propositional logic. In this section we extend
this calculus to first-order logic. For that we restrict the syntax of first-order logic. This
restricted language is sometimes called (first-order) clause logic. As in Section 3.1 our
language consists of constants, variables, logical symbols, and other auxiliary symbols. In
particular we have individual constants k0, k1, . . . , kj , . . . , function constants (with i ar-
guments) f i

0, f
i
1, . . . , f

i
j , . . . and predicate constants (with i arguments) Ri

0, R
i
1, . . . , R

i
j , . . .

In addition to these constants we make use of variables: x0, x1, . . . , xj , . . . We collect the
(infinite) set of variables as V.

Convention. The meta-symbols c, f , g, h, . . . , are used to denote constants and function
symbols, while the meta-symbols P , Q, R, . . . , vary through predicate symbols. Variables
are denoted by a, b, . . . or we use x, y, z, and so forth.
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8 Automated Reasoning with Equality

The most noticeable restriction to our earlier used languages is the restriction of the
logical symbols to ¬ and ∨. Note that in such a restricted language the notion of a term or
atomic formula is still meaningful. However, we can not really speak of first-order formula
of this language, simply because elementary logical symbols, in particular quantifiers, are
missing. We will see shortly that this is of no real concern.

Definition 8.1. If t1, . . . , tn denote terms, and P denotes an n-placed predicate constant,
then P (t1, . . . , tn) is called an atomic formula. A literal is an atomic formula or its negation.
A clause is a disjunction of literals.

Let C be a clause. We write Var(C) for the set of variables (from V) that occur in
C. Let L denote a standard first-order language (as defined in Section 3.1) and let L′ be
the restriction of L according to the above settings. Let F be a sentence (of L). Due
to Theorem 7.2 there exists a sentence G in SNF such that F ≈ G. By definition G is
an universal formula, whose matrix is in conjunctive normal from and for the sake of the
argument, we suppose G has the following shape:

∀x1 · · · ∀xn (H1(x1, . . . , xn) ∧ · · · ∧Hm(x1, . . . , xn)) ,

where each Hi (i = 1, . . . ,m) is a disjunction of literals. Thus each Hi is actually a clause
and we can represent G as a set C of clauses. This set is called clause form of G (and of F ).

Theorem 8.1. For any first-order sentence F (of L) there exists a computable set of clauses
C = {C1, . . . , Cm} (of L′) such that F ≈ ∀x1 · · · ∀xn(C1 ∧ · · · ∧ Cm).

Proof. The theorem follows from the considerations above.

In order to make the clause form C unique for a given formula F , we fix the specific
transformation steps applied to obtain C. Thus we can speak of the clause form C of F .
The next definition fixes the representation of clauses we will use in the sequel, compare
also the corresponding definition given in Section 2.3.

Definition 8.2. We define a clause inductively.

(i) � is a clause (the empty clause),

(ii) literals are clauses, and

(iii) if C, D are clauses, then C ∨D is a clause.

When speaking about clauses, we use the equivalences A ≡ ¬¬A, where A denotes an
atomic formula. Moreover disjunction ∨ is associative and commutative. In addition we
define the following identities: �∨� = � and C ∨� = �∨C = C, where C is an arbitrary
clause.
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8.1 Resolution for First-Order Logic

Let T denote the set of terms in our language. Terms are denoted by s, t, u, v, w, . . .

A substitution σ is a mapping V → T , such that σ(x) = x, for almost all x. Notation:
{x1 7→ t1, . . . , xn 7→ tn}, the empty substitution is denoted by ε. We call the set dom(σ) =
{x | σ(x) 6= x} the domain of σ. The set rg(σ) = {σ(x) | x ∈ dom(σ)} is called the range of
σ. Var(rg(σ)) is abbreviated by vrg(σ). A substitution σ is called ground if vrg(σ) = ∅.

For a given expression E the application of a substitution σ to E is denoted as Eσ; Eσ
is called an instance of E. The composition of substitutions σ = {x1 7→ t1, . . . , xn 7→ tn} ,
τ = {y1 7→ r1, . . . , y1 7→ rm} (denoted as στ) is defined as follows:

{x1 7→ t1τ, . . . , xn 7→ tnτ} ∪ {yi → ri | for all j = 1, . . . , n, yi 6= xj} .

A substitution σ is more general than a substitution τ , if there exists a substitution ρ such
that σρ = τ .

Definition 8.3. A unifier σ of expressions E and F is a substitution such that Eσ = Fσ.
A unifier σ is most general if σ is more general than any other unifier (of E, F ). Unifiers
and most general unifiers naturally generalise to sets of expressions.

The sequence E = u1
?= v1, . . . , un

?= vn is called an equality problem. Here ui, vi denotes
either terms or atomic formulas. The unifier of an equality problem E = x1

?= v1, . . . , xn
?=

vn is defined as the unifier of the set {u1 = v1, . . . , un = vn}. The rules in Figure 8.1 define
a simple, rule based unification algorithm that acts on equality problems.

u
?= u,E ⇒ E

f(s1, . . . , sn) ?= f(t1, . . . , tn), E ⇒ s1
?= t1, . . . , sn

?= tn, E

f(s1, . . . , sn) ?= g(t1, . . . , tm), E ⇒⊥ if f 6= g

x
?= v,E ⇒ x

?= v,E{x 7→ v} if x ∈ V ar(E), x 6∈ V ar(v)

x
?= v,E ⇒⊥ if x 6= v, x ∈ V ar(v)

v
?= x,E ⇒ x

?= v,E if v 6∈ V

For brevity the symbol f and g may either denote a function or a predicate constant.

Figure 8.1: Rule Based Standard Unification

If E = x1
?= v1, . . . , xn

?= vn, with xi pairwise distinct and xi 6∈ Var(vi), then E is an
equality problem in solved form. An equality problem E = x1

?= v1, . . . , xn
?= vn in solved

form induces the substitution σE := {x1 7→ v1, . . . , xn 7→ vn}.
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8 Automated Reasoning with Equality

Theorem 8.2. An equality problem E is unifiable iff the unification algorithm of Figure 8.1
stops with a solved form. Moreover if E ⇒∗ E′ such that E′ is a solved form, then σE′ is a
most general unifier ( mgu for short) of E.

Proof. It suffices to verify the following three properties:

(i) If E ⇒ E′, then σ is a unifier of E iff σ is a unifier of E′.

(ii) If E ⇒∗⊥, then E is not unifiable.

(iii) If E ⇒∗ E′ such that E′ is a solved form, then σE′ is a mgu of E.

The first item follows by case distinction on each rule. The remaining items are consequences
of the first, together with the fact that if E = x1

?= v1, . . . , xn
?= vn is a solved form, then

the induced substitution σE = {x1 7→ v1, . . . , xn 7→ vn} is a mgu of E.

It is not difficult to see that the algorithm terminated, but may produce exponentially
large terms. Now, we are ready to state the two inference rules of the resolution calculus in
Figure 8.2. In the application of these inferences, we can always assume that the premises
are variable disjoint. Otherwise, we make them variable disjoint by renaming variables
consistently.

C ∨A D ∨ ¬B
(C ∨D)σ

C ∨A ∨B
(C ∨A)σ

Here σ is a mgu of the atomic formulas A and B. The first inference is called resolution,
while the second one is called factoring.

Figure 8.2: Resolution Calculus

Remark. Observe that the factoring rule is only defined for atoms A and B, that is,
factoring is restricted to positive literals. In this sense factoring defined as in Figure 8.2 is
more restrictive than the definition in Chapter 2.

The next definition lifts Definition 2.7 to first-order logic, or more precisely to first-order
clause logic.

Definition 8.4. Let C be a set of clauses. We define the resolution operator Res(C) as
follows:

Res(C) = {D | D is conclusion of an inference in Figure 8.2 with premises in C} .

We define Res0(C) := C and Resn+1(C) := Resn(C)∪Res(Resn(C)). Finally, we set: Res∗(C) :=⋃
n>0 Resn(C). We say the empty clause is derivable from C if � ∈ Res∗(C).
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8.1 Resolution for First-Order Logic

Recall that if Res(C) ⊆ C, then the clause set C is called saturated. Obviously, we have
that Res∗(C) is saturated. If for a clause D, D ∈ Res∗(C), then we say that D is derived
from C by resolution. If for a saturated set C, � 6∈ C, then C is called consistent.

Theorem 8.3. Resolution is sound. Moreover let F be a sentence and C its clause form
such that � ∈ Res∗(C). Then F is unsatisfiable.

Sketch of Proof. We only sketch the proof of the theorem, see [18] for a complete proof.
Similar to the proof of the soundness theorem for natural deduction, we have to verify
that every inference rule of the resolution calculus is sound. For this one shows that if
the assumptions of resolution and factoring are modelled by an interpretation M, then the
consequence (of the rule) holds in M as well.

In order to proof completeness of resolution, we make use of the following lemmas.

Lemma 8.1. Let S denote the set of all consistent ground clause sets. A clause is called
ground if it doesn’t contain variables. Then S has the satisfaction properties.

Proof. As the syntax of clause logic is restricted, it suffices to verify the properties (i)–(iv)
of the satisfaction properties. The other properties are trivially satisfied.

We exemplarily consider property (iv) and suppose there exists ground clauses E, F such
that E ∨ F ∈ C for C ∈ S. We have to show that either C ∪ {E} or C ∪ {F} is consistent.
Assume to the contrary that � ∈ Res∗(C ∪ {E}) and � ∈ Res∗(C ∪ {F}). We name the first
derivation of � from C ∪{E} by D1 and the second derivation of � from C ∪{F} is denoted
as D2.

As C is free of variables, these proofs are free of variables, too. Thus we take the derivation
D1 and replace in this derivation the clause E with the clause E ∨ F . The result will be a
valid derivation of clause F in the resolution calculus: the only condition in each inference
that could possibly be affected is the condition on the unifiers. However, as all clauses are
ground, this does not cause any problems. Thus we obtain a derivation D of the clause
F from the set of clauses C. Now, we consider the derivation D2 of � from C ∪ {F}. We
transform D2 as follows: at any position in the proof, where the clause F is used, the
derivation D is used instead. In sum, we obtain a derivation of the empty clause from the
set of clauses C. This contradicts the assumption.

The next two lemma allow us to lift a ground resolution derivation to the general level.
The lemmas follow essentially by definition of a most general unifier, cf. Definition 8.3.
See [18] for a complete proof.

Lemma 8.2 (Lifting Lemma). A ground substitution is a substitution whose range contains
only terms without variables. Let τ1 and τ2 be a ground substitutions and consider the
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8 Automated Reasoning with Equality

following ground resolution step:

Cτ1 ∨Aτ1 Dτ2 ∨ ¬Bτ2
Cτ1 ∨Dτ2 ,

where Aτ1 = Bτ2. Then there exists a mgu σ of A and B, such that σ is more general then
τ1 and τ2 and the following resolution step is valid:

C ∨A D ∨ ¬B
(C ∨D)σ .

Lemma 8.3 (Lifting Lemma). Let τ be a ground substitutions and consider the following
ground factoring step:

Cτ ∨Aτ ∨Bτ
Cτ ∨Aτ ,

where Aτ = Bτ . Then there exists a mgu σ, such that σ is more general then τ and the
following resolution step is valid:

C ∨A D ∨ ¬B
(C ∨D)σ

Our completeness proof for resolution follows the pattern of the proof of the completeness
theorem for natural deduction, that is, we want to apply the model existence theorem in
conjunction with Lemma 8.1. However, we have not yet proven the model existence theorem
in the full generality that is required here. Our proof didn’t allow function constants in our
base language. This is not a major restriction in the context of first-order logic, but it is a
rather strong restriction in the context of clause logic, as the latter depends on Skolemisation.
We recall the crucial lemma (compare Chapter 4.3) and extend it suitably to the current
context.

Lemma 8.4. Let G be a set of formulas (of L) admitting the closure properties. Suppose
that L is free of the equality symbol. Then there exists an interpretation M such that every
element of the domain of M is the denotation of a term (of L+) and M |= G.

Proof. Based on the proof of Lemma 4.4 it suffices to extend the definition of the Herbrand
model M of G as follows. Let t1, . . . , tn denote elements of M and f an n-ary function
symbol in L+. We define:

fM(t1, . . . , tn) := f(t1, . . . , tn) .

Following the argument given in the proof of Lemma 4.4 it is an easy exercise to verify that
M |= G holds.
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8.1 Resolution for First-Order Logic

Theorem 8.4. Resolution is complete. Let F be a sentence and C its clause form. Then
� ∈ Res∗(C) if F is unsatisfiable.

Proof. If F is unsatisfiable then due to Corollary 7.2 there exists a set of ground clauses C′

that are instances of the clauses in C such that C′ is unsatisfiable.
Suppose � 6∈ Res∗(C′). Then by definition the clause set Res∗(C′) is saturated and thus

consistent. By the model existence theorem in conjunction with Lemma 8.1 we conclude
that C′ is satisfiable. This is a contradiction to our assumption. Hence � ∈ Res∗(C′).

It remains to lift this derivation of the empty clause from C′ to a derivation of the empty
clause from the original set of clauses C. This is possible due to the lifting lemmas, Lem-
mas 8.2 and 8.3.

If the above inference rules are implemented, the inefficiency quickly becomes apparent.
One of the reasons for their inefficiency is the large search space. To overcome this restriction
ordered resolution has been invented.

A proper order � is an irreflexive and transitive relation. The converse of � is written
as ≺. A quasi-order is a reflexive and transitive relation and a partial order is an anti-
symmetric quasi-order. A proper order � on a set A is well-founded (on A) if there exists
no infinite descending sequence a1 � a2 � · · · of elements of A. A well-founded proper
order is called a well-founded order. A proper order is called linear (or total) on A if for all
a, b ∈ A, a different from b, a and b are comparable by �. A linear well-founded order is
called a well-order.

Definition 8.5. Given an arbitrary well-founded and total order � on ground atomic
formulas, we define the order �L on ground literals as follows:

– If A � B, then (¬)A �L (¬)B

– ¬A �L A.

The next lemma is immediate from the definitions.

Lemma 8.5. If � is well-founded and total (on ground atoms), then �L is well-founded
and total (on ground literals).

Let �L be a total order on ground literals according to Definition 8.5. We say a (not
necessarily ground) literal L is maximal if there exists a ground substitution σ such that
for no other literal M : Mσ �L Lσ. We say L is strictly maximal if there exists a (ground)
substitution σ such that for no other literal M : Mσ <L Lσ. Here <L denotes the reflexive
closure of �L.

In Figure 8.3 we give the inference rules for ordered resolution. This variant of the
resolution calculus remains sound and complete, but allows to narrow the search space
considerably.
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8 Automated Reasoning with Equality

C ∨A D ∨ ¬B
(C ∨D)σ

C ∨A ∨B
(C ∨A)σ

Here σ is a mgu of A and B. The first inference is called ordered resolution, while the second
one is called ordered factoring.

– For ordered resolution Aσ is strictly maximal with respect to Cσ and ¬Bσ is maximal
with respect to Dσ.

– For ordered factoring Aσ is strictly maximal with respect to Cσ.

Figure 8.3: Ordered Resolution Calculus

Definition 8.6. Let C be a set of clauses. We define the ordered resolution operator
ResOR(C) as follows:

ResOR(C) = {D | D is conclusion of an inference in Figure 8.3 with premises in C}

The nth (unrestricted) iteration ResnOR (Res∗OR) of the operator ResOR is defined as above.

Theorem 8.5. Ordered resolution is sound and complete. Let F be a sentence and C its
clause form. Then F is unsatisfiable iff � ∈ Res∗OR(C).

Sketch of Proof. Soundness of ordered resolution is a consequence of Theorem 8.3 as ordered
resolution restricts resolution.

In order to adapt the completeness proof we first have to extend the underlying order �L

on literals (see Definition 8.5) to an order on clauses. For that one usually employs the so
called multiset extension of an order (see [25] for a definition). In this context we only need
to know that any well-founded and total order on literals is extensible to a well-founded and
total order on clauses (denoted as �C).

We can refine Corollary 7.2 in such a way that if F is an unsatisfiable formula correspond-
ing to C there exists a maximal set of clauses D such that D is unsatisfiable and each clause
in D is ground. Furthermore, any clause in D is an instance of a clause in C. Here a set of
clauses is called maximal if there exists no set of clauses D′ ∪ {D}, fulfilling the above re-
quirements, such that D = D′ ∪{D1, . . . , Dn} and for all 1 6 i 6 n we have D �C Di, while
there is no clause in D′ that is larger than D. Then completeness of ground ordered resolu-
tion follows if we follow the pattern of the proof of Theorem 8.4 but replace the application
of Corollary 7.2 by the refinement described above. Finally, in order to prove completeness
of ordered resolution it remains to adapt the lifting lemmas, Lemmas 8.2 and 8.3, suitably,
which does not provide any problems.
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8.2 Paramodulation and Ordered Paramodulation

8.2 Paramodulation and Ordered Paramodulation

We are ready to admit the equality sign = to our base language. In principle we can eliminate
equality from our language and apply the aforementioned (ordered) resolution calculi to deal
with formulas containing =. This is a consequence of Lemmas 7.1 and and 7.2 studied in
Chapter 7. However, this would be hopelessly inefficient. Instead one expands the (ordered)
resolution calculus by a new inference rule, designated to deal with equality. This rules is
called paramodulation. In order to give a precise definition, we need an additional definition.

Let s, t be terms and let A be a formula. In Chapter 3 we used the notation A(x) to
indicate an occurrence of the variable x in A and we wrote A(t) to indicate the simultaneous
replacement of x by t in A. In the following we need to make this definition more precise.

Let � be a fresh constant and let L be our basic language. Then terms of L ∪ {�} such
that � occurs exactly once, are are called contexts. The empty context is denoted as �.
For a context C[�] and a term t (of L), we write C[t] for the replacement of � by t.

In Figure 8.4 we give the inference rules for the paramodulation calculus. This extension of
the resolution calculus to languages that contain = remains sound and complete. However,
due to the presence of equality the search space explodes.

C ∨A D ∨ ¬B
(C ∨D)σ

C ∨A ∨B
(C ∨A)σ

C ∨ s 6= s′

Cσ′
C ∨ s = t D ∨ L[s′]

(C ∨D ∨ L[t])σ′ .

Here σ is a mgu of A and B and σ′ is a mgu of s and s′.

Figure 8.4: Paramodulation Calculus

Definition 8.7. Let C be a set of clauses. We define the paramodulation operator ResP(C)
as follows:

ResP(C) = {D | D is conclusion of an inference in Figure 8.4 with premises in C}

The nth (unrestricted) iteration ResnP (Res∗P) of the operator ResP is defined as above.

Before we can prove soundness and completeness of the paramodulation calculus, we
need to update the proof of the model existence theorem. More precisely we have to adapt
the proof of Lemma 4.4 to a language containing the equality symbol = (compare also
Section 8.1). Finally, we are in the position to state the lemma in its full generality.

Lemma 8.6. Let G be a set of formulas (of L) admitting the closure properties. Then there
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8 Automated Reasoning with Equality

exists an interpretation M such that every element of the domain of M is the denotation
of a term (of L+) and M |= G.

Proof. Let M denote the Herbrand model defined in the proof of Lemma 8.4. Now, the
crucial difference is the presence of the equality sign = in L. Suppose (s = t) ∈ G, where s
and t are syntactically different. ThenM 6|= s = t as inM the terms s and t are interpreted
by different symbols.

To overcome this, we define a variant of the term model M, denoted as M′. For that it
suffices to consider the set E of all equations induced by G:

E := {s = t | G |= s = t} .

Note that the assumption that G fulfils the closure properties implies that the definition of
E is well-defined and that E gives rise to an equivalence relation ∼.

Based on the relation ∼ we define the domain ofM′ as the set of equivalent classes for the
set of terms of L+. Let [t]∼ denote the equivalence class of t with respect to the equivalence
∼. We define the structure underlying M′ as follows:

(i) cM := [c]∼ for any individual constant c,

(ii) fM([t1]∼, . . . , [tn]∼) := [f(t1, . . . , tn)]∼ for any n-ary function constant f and any
tuple of equivalence classes [t1]∼, . . . , [tn]∼ in M′.

Furthermore, for any predicate constant P and for any sequence of equivalence classes [t1]∼,
. . . , [tn]∼ in M′ we set:

PM([t1]∼, . . . , [tn]∼)⇐⇒ P (t1, . . . , tn) ∈ G ,

and interpret equality = as the equivalence ∼. (Note that this amounts to the interpretation
of = as syntactic equality on the domain of M′.)

Finally, we lift this structure to an interpretation M′ by defining the look-up table as
follows:

`(x) := [x]∼ for any variable x .

This completes the definition of the interpretation M′. The fact that M′ is a model of G
follows by induction on formulas as before.

Theorem 8.6. Paramodulation is sound and complete. Let F be a sentence and C its clause
form. Then F is unsatisfiable iff � ∈ Res∗OR(C).

Sketch of Proof. To show soundness we have to verify that every inference rule of the resolu-
tion calculus is sound. For this one shows that if the assumptions of resolution and factoring
are modelled by a model M, then the consequence (of the rule) holds in M as well.
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In order to show completeness it remains to show that the set of consistent set of ground
clauses fulfils the satisfaction properties. For that we need to take into account the prop-
erties (viii) and (ix) which have not yet been considered. Due to the presence of paramod-
ulation among the rules of the paramodulation calculus this is an easy exercise and left to
the reader.

Then ground completeness of paramodulation follows as completeness of natural deduc-
tion or resolution. In order to lift this to a proof of completeness of paramodulation a lifting
lemma for paramodulation is required. This is stated similar to the Lemmas 8.2 and 8.3
above.

It is not difficult to see that the paramodulation calculus is still inefficient due to the
presence of the paramodulation rule

C ∨ s = t D ∨ L[s′]
(C ∨D ∨ L[t])σ ,

where σ is a mgu of s and s′ in the calculus. A first step to restrict the search space is
to combine paramodulation with ordered resolution instead of the unrestricted resolution
calculus. The corresponding rules are given in Figure 8.5.

C ∨A D ∨ ¬B
(C ∨D)σ

C ∨A ∨B
(C ∨A)σ

C ∨ s 6= s′

Cσ′
C ∨ s = t D ∨ L[s′]

(C ∨D ∨ L[t])σ′ .

Here σ is a mgu of A and B and σ′ is a mgu of s and s′. The last rule is called ordered
paramodulation.

– For ordered resolution Aσ is strictly maximal with respect to Cσ and ¬Bσ is maximal
with respect to Dσ.

– For ordered factoring Aσ is strictly maximal with respect to Cσ.

– For ordered paramodulation the equation (s = t)σ′ and the literal L[t]σ′ is maximal
with respect to Dσ′

Figure 8.5: Ordered Paramodulation Calculus

Definition 8.8. Let C be a set of clauses. We define the ordered paramodulation operator
ResOP(C) as follows:

ResOP(C) = {D | D is conclusion of an inference in Figure 8.5 with premises in C}
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The nth (unrestricted) iteration ResnOP (Res∗OP) of the operator ResOP is defined as above.

Theorem 8.7. Ordered paramodulation is sound and complete. Let F be a sentence and C
its clause form. Then F is unsatisfiable iff � ∈ Res∗OP(C).

Proof. Soundness and completeness follow due to the combination of Theorem 2.3 and 8.6.

8.3 Superposition Calculus

Unfortunately the ordered paramodulation calculus as defined in Section 8.2 is still to ineffi-
cient to be used. While the literals in the considered clauses are now ordered, no restriction
on the way the equality s = t is used in paramodulation is present.

To overcome this one incorporates ideas from rewriting (see for example [25]) to combine
ordered resolution and paramodulation to the superposition calculus. The rules are the rules
of Figure 8.6.

Definition 8.9. Let C be a set of clauses. We define the superposition operator ResSP(C)
as follows:

ResSP(C) = {D | D is conclusion of an inference in Figure 8.6 with premises in C}

The nth (unrestricted) iteration ResnSP (Res∗SP) of the operator ResSP is defined as above.

The following example clarifies the need for the seemingly artificial equality factoring rule.
If we delete this rule from the superposition calculus, we obtain strict superposition.

Example 8.1. Consider the following set of clauses C:

c 6= d

b = d

a 6= d ∨ a = c

a = b ∨ a = d

It is easy to see that C is unsatisfiable. However this contradiction cannot be derived by
strict superposition if based on the term order �, where a � b � c � d. The only derivable
clause is the following tautology:

a 6= d ∨ b = c ∨ a = d .

We state soundness and completeness of the superposition calculus without proof. To-
gether with the definition of a variety of further refinements the proof can be found in [1].
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C ∨A D ∨ ¬B
(C ∨D)σ

C ∨A ∨B
(C ∨A)σ

C ∨ s = t D ∨ ¬A[s′]
(C ∨D ∨ ¬A[t])σ

C ∨ s = t D ∨A[s′]
(C ∨D ∨A[t])σ

C ∨ s = t D ∨ u[s′] 6= v

(C ∨D ∨ u[t] 6= v)σ
C ∨ s = t D ∨ u[s′] = v

(C ∨D ∨ u[t] = v)σ

C ∨ s 6= t

Cσ
C ∨ u = v ∨ s = t

(C ∨ v 6= t ∨ u = t)σ

The first two rules are called ordered resolution and ordered factoring respectively. They
are restricted to atoms A and B that do not contain = and the same order constraints hold
as in Figure 8.3.
The last four rules are called superposition rules, the seventh is denoted as equality resolution,
while the last one is called equality factoring.

– For the superposition rules σ is a mgu of s and s′, tσ 6< sσ, vσ 6< u[s′]σ, (s = t)σ
is strictly maximal with respect to Cσ. Moreover ¬A[s′] and u[s′] 6= v are maximal,
while A[s′] and u[s′] = v are strictly maximal with respect to Dσ. And (s = t)σ 6<
(u[s′] = v)σ.

– For the equality resolution rule, σ is a mgu of s and t, and (s 6= t)σ is strictly maximal
with respect to Cσ.

– Finally for equality factoring: σ is mgu of s and u, (s = t)σ is strictly maximal in Cσ.
And (s = t)σ 6< (u = v)σ.

Figure 8.6: Superposition Calculus

Theorem 8.8. Superposition is sound and complete. Let F be a sentence and C its clause
form. Then F is unsatisfiable iff � ∈ ResSP

∗(C).

Problems

Problem 8.1. Consider the unification algorithm given in Figure 8.1. Show that this
algorithm produced exponential large terms in the worst case.

Problem 8.2. Consider the (propositional) clauses:

C1 ∨A C2 ∨ ¬A ∨B C3 ∨ ¬B

(i) Give two different resolution derivations of the clause C1 ∨ C2 ∨ C3.

(ii) Can this behaviour be avoided by the use of ordered resolution?
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8 Automated Reasoning with Equality

Problem 8.3. Use (the propositional variant) of ordered resolution to show Theorem 2.3
for propositional logic.

Hint : Let A → C be the considered implication. Then choose the order � underlying
ordered resolution such that those variables that occur in A but not in C are maximal.

Problem 8.4. Formulate and prove the lifting lemmas for ordered resolution.

Problem 8.5. Show the following claim:

Let S denote the set of all consistent ground clause sets with respect to paramod-
ulation. Then S has the satisfaction properties.

Problem 8.6. Formulate and prove the lifting lemmas for paramodulation and complete
the proof of Theorem 8.6.
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9

Issues of Security

The Neuman-Stubblebinde key exchange protocol (see [21]) aims to establish a secure key
between two agents that already share secure keys with a trusted third party. In this chapter
we give a formalisation of this protocol in first-order logic and show how it can be analysed
by a state-of-the-art theorem prover for first-order logic.

In Section 9.1 we describe the protocol and indicate how it should work. In Section 9.2
we mention a possible attack, which makes the protocol erroneous. Further, we indicate
how this attack can be prevented. Finally, in Section 9.3 we show how the protocol can be
formalised in first-order logic.

9.1 Neuman-Stubblebine Key Exchange Protocol

The protocol aims to establish a secure key between two agents Alice and Bob that already
share secure keys with a trusted third party, the server. We use the following notations:

– A is the identifier of Alice.

– B is the identifier of Bob.

– T is the identifier of the server.

– Kat is the symmetric key shared between Alice and the server.

– Kbt is the symmetric key shared between Bob and the server.

– Kab is the symmetric key shared between Alice and Bob to be established.

– Na denotes a nonce created by Alice. Here a nonce is a fresh number used to prevent
replay attacks.
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9 Issues of Security

– Nb denotes a nonce created by Bob.

– Ekey(message) denotes the encryption of message using the key key.

– Time defines the time span of the validity of the key Kab.

The protocol proceeds as follows, where we write A −→ B : M when Alice sends Bob the
message M . Further, message composition is denoted by “,”.

(i) A −→ B : A,Na, that is, Alice sends her identifier and a freshly generated nonce.

(ii) B −→ T : B,EKbt
(A,Na,Time),Nb, that is, Bob encrypts the triple (A,Na,Time) using

his shared key with the server and sends this together with his identity and a freshly
generated nonce.

(iii) T −→ A : EKat(B,Na,Kab,Time),EKbt
(A,Kab,Time),Nb, that is, the server generates

the shared key Kab and sends it encrypted to Alice using the shared key. Furthermore
he encrypts the shared key with the key shared with Bob, which is also sent to Alice.
Finally, the nonce Nb is part of the message to Alice.

(iv) A −→ B : EKbt
(A,Kab,Time),EKab

(Nb), that is, Alice encrypts Bob’s nonce with the
new key and forwards part of the message to Bob.

After reception of the message from Alice, Bob can first extract the shared key Kab and
then verifies that the key comes from Alice by decrypting EKab

(Nb).

9.2 The Attack

The behaviour of a possible intruder (denoted as I) is governed by the following assumptions.

(i) The intruder can record all sent messages.

(ii) The intruder can send messages and can forge the sender of a message.

(iii) The intruder can encrypt messages, when he finds out a key.

(iv) The intruder has no access to information private to Alice, Bob, or the server.

(v) The intruder cannot break any secure key.

Based on these assumptions the intruder can impersonate Alice and the server and thus
convince Bob to share all secrets with him as follows:

(i) I(A) −→ B : A,Na.

(ii) B −→ I(T) : B,EKbt
(A,Na,Time),Nb.
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(iii) I(A) −→ B : EKbt
(A,Na,Time),ENa(Nb).

Here I(A) means that the intruder impersonates Alice, while I(T) means that the intruder
plays the role of the server.

The intruder only needs to send the message EKbt
(A,Na,Time) back to Bob, and uses

the nonce Na to encrypt the message ENa(Nb). From Bob’s point of view the nonce Na is
actually the new shared key Kab and everything seems to be in order.

This possible attack was first found by Hwang et al. (see [15]) who already described a
solution to this attack. It suffices to distinguish nonces and keys, so that they cannot be
confused.

9.3 Formalisation in First-Order

Following [28] we formalise the set of messages sent during the execution of the protocol.
The formalisation makes use of unary predicate symbols only. This is necessary to make
sure that the obtained consequence relations can be verified automatically.

We start with fixing the first-order language L used and then consider each of the four
messages sent during the protocol in turn. We assert that L contains the following individual
constants:

a b t na at bt ,

where a, b, t are to be interpreted as the identifiers A, B, and T, respectively. The constant
na refers to Alics’s nonce and at (bt) represents the key Kat (Kbt).

Further, L contains the following function constants:

nb tb kt key sent pair triple encr quadr ,

where nb, tb, kt are unary and compute Bob’s fresh nonce and the time-stamp Time, while
kt formalises the computation of the new key by the server. The symbols key, pair, encr are
binary, sent, triple are ternary, and quadr is 4-ary. These latter symbols essentially serve as
containers.

Finally, L contains the following predicate constants:

Ak Bk Tk P M Fresh Nonce Storea Sb .

Here the constants Ak, Bk, Tk will be used in conjunction with the function symbol key

to assert the existence of shared keys. The constant P will only be true for principals of
the protocol and M is used to encode the messages sent. Furthermore Fresh asserts that its
argument is a fresh nonce. The latter is necessary, as we assume that Bob is only interested
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in fresh nonces. The predicate Nonce denotes that its argument is a nonce and the predicates
Storea, Storeb denote information that is in the store of Alice or Bob.

To simplify the readability of the formalisation, we indicate the type of a bound variable
in its name as subscript. For example the bound variable xna indicates that this variable
plays the role of the nonce Na in the protocol. This is only a notational simplification and
doesn’t affect the semantics.

9.3.1 A −→ B : A, Na

The first message of Alice is represented by the following set of formulas

1: Ak(key(at, t))

2 : P(a)

3 : M(sent(a, b, pair(a, na))) ∧ Storea(pair(b, na))

9.3.2 B −→ T : B, EKbt
(A, Na, Time), Nb

The second message of Bob to the server is represented by the following set of formulas.
The formalisation asserts that Bob is only sending a message if he has received a message
from Alice.

4 : Bk(key(bt, t))

5 : P(b)

6 : Fresh(na)

7 : ∀xa∀xna (M(sent(xa, b, pair(xa, xna))) ∧ Fresh(xna)→

→ Storeb(pair(xa, xna)) ∧M(sent(b, t,

triple(b, nb(xna), encr(triple(xa, xna, tb(xna)), bt)))))

Formula 7 expresses that Bob reacts to any message sent by any principal that need not
be known in advance. Hence the formalisation is slightly more general than the protocol
and allows repeated execution.
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9.3 Formalisation in First-Order

9.3.3 T −→ A : EKat(B, Na, Kab, Time), EKbt
(A, Kab, Time), Nb

On seeing the second message, generated by the right-hand side of the implication in for-
mula 7, the server sends the third message. This is formalised as follows.

8 : Tk(key(at, a)) ∧ Tk(key(bt, b))

9 : P(t)

10: ∀xb∀xnb∀xa∀xna∀xtime∀xbt∀xat

(M(sent(xb, t, triple(xb, xnb, encr(triple(xa, xna, xtime), xbt)))) ∧ Tk(key(xbt, xb)) ∧

∧ Tk(key(xat, xa)) ∧ Nonce(xna)→ M(sent(t, xa,

triple(encr(quadr(xb, xna, kt(xna), xtime), xat),

encr(triple(xa, kt(xna), xtime), xbt), xnb))))

11: Nonce(na)

12: ∀x¬Nonce(kt(x))

13: ∀x (Nonce(tb(x)) ∧ Nonce(nb(x)))

The last 3 formulas represent that the server will not accept his generated key as nonce.
Accordingly the assumption for sending his message has been strengthend. This requirement
is not part of the protocol, but prevents that the intruder can generate arbitrarily many
keys. These could possible be used to learn the key.

9.3.4 A −→ B : EKbt
(A, Kab, Time), EKab

(Nb)

Alice sees the server message and tries to decrypt the first part of the message using the
secure key at she shares with the server. If this succeeds she checks her store that this part
of the message starts with the same identifier, she sent her first message to. In this case she
sends the fourth message.

14: ∀xnb∀xk∀xm∀xb∀xna∀xtime

((M(sent(t, a, triple(encr(quadr(xb, xna, xk, xtime), at), xm, xnb))) ∧

∧ Storea(pair(xb, xna)))→ M(sent(a, xb, pair(xm, encr(xnb, xk)))) ∧ Ak(key(xk, xb)))

15: ∀xtime∀xk∀xnb∀xa∀xna

((M(sent(xa, b, pair(encr(triple(xa, xk, tb(xna)), bt), encr(nb(xna), xk)))) ∧

∧ Storeb(pair(xa, xna)))→ Bk(key(xk, xa)))

We collect these 15 sentences into the set G. Then it is not difficult to verify by hand
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that the following consequence is valid:

G |= ∃x(Ak(key(x, a)) ∧ Bk(key(x, b))) .

This shows that the protocol terminates with the desired result that Alice and Bob share a
symmetric key. Furthermore completeness tells us that this fact can also be formally proven,
for example in natural deduction.

Fact 9.1. The formula ∃x(Ak(key(x, a))∧Bk(key(x, b))) is derivable from G fully automat-
ically by a variant of ordered resolution in less than a second.

In the remainder of the section, we formalise the behaviour of the intruder. Recall the
assumptions made above in Section 9.2. These are formalised as follows.

We extend our base language L by the predicate constants Ik and Im. Ik will be used to
express that the intruder has learnt a key of another principal and Im states that a message
is recorded or faked by the intruder.

16: ∀xa∀xb∀xm (M(sent(xa, xb, xm))→ Im(xm))

17: ∀u∀v (Im(pair(u, v))→ Im(u) ∧ Im(v))

18: ∀u∀v∀w (Im(triple(u, v, w))→ (Im(u) ∧ Im(v) ∧ Im(w)))

19: ∀u∀ v∀w∀z (Im(quadr(u, v, w, z))→ (Im(u) ∧ Im(v) ∧ Im(w) ∧ Im(z)))

20: ∀u∀v (Im(u) ∧ Im(v)→ Im(pair(u, v)))

21: ∀u∀v∀w ((Im(u) ∧ Im(v) ∧ Im(w))→ Im(triple(u, v, w)))

22: ∀u∀v∀w∀z ((Im(u) ∧ Im(v) ∧ Im(w) ∧ Im(z))→ Im(quadr(u, v, w, z)))

23: ∀x∀y∀u ((P(x) ∧ P(y) ∧ Im(u))→ M(sent(x, y, u)))

24: ∀u∀v ((Im(u) ∧ P(v))→ Ik(key(u, v)))

25: ∀u∀v∀w ((Im(u) ∧ Ik(key(v, w)) ∧ P(w))→ Im(encr(u, v)))

Formula 24 represents that anything the intruder receives can be used as a key, while
Formula 25 represents that the intruder can use such a key to encrypt messages. Based on
this formalisation we can automatically detect that there is a problem with this protocol.
Let H denote the extension of the formula set G by the sentences 16–25.

Fact 9.2. The formula ∃x(Ik(key(x, b)) ∧ Bk(key(x, a))) is derivable from H fully automat-
ically by a variant of ordered resolution in less than a second.

This fact expresses that the attack reported in [15] can indeed by detected fully auto-
matically. As mentioned above we can get rid of this attack, if nonces are no longer to
be confused with keys. If this is suitably formalised (see [28]), then one can formally and
automatically verify that the (updated) protocol is safe.
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Problems

Problem 9.1. Update the formula set H so that the additional requirement that keys are
different from nonces is properly expressed.

Hint : Introduce a new unary predicate constant Key, update formula 7 correspondingly,
and add formulas that express that nonces and keys are different.

Problem 9.2. Consider the formalisation in Problem 9.1 and let H′ denote the correspond-
ing set of formulas. Show that the following consequence

H′ |= (∃x y z(Ik(key(x, y)) ∧ Bk(key(x, z))))

does not hold.

Problem 9.3. Download the theorem prover SPASS together with the formalisation of
the Neuman-Stubblebine protocol from the SPASS homepage: http://www.spass-prover.
org/. Verify Facts 9.1 and 9.2 using SPASS and show that you can automatically disprove
the consequence H′ |= (∃x y z(Ik(key(x, y)) ∧ Bk(key(x, z)))) in Problem 9.2.
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