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Abstract

This seminar report is about Pure, which is a recent functional program-
ming language based on term rewriting. After an introduction to Pure and
its interpreter we will explain the basic concepts of term rewriting and how it
affects the language. In the following sections the language itself is introduced
and interesting features of Pure are highlighted and compared to those of other
languages. Finally we show how Pure can be combined with other computing
environments to make it suitable for mathematical computations.
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1 Introduction

Pure is a fairly young functional programming language. It was created by
Albert Gräf as a successor of his previous programming language Q. He was
dissatisfied with the syntax and the execution speed of Q and thus started
designing a new programming language which he called Pure. He released the
first version in 2008 and is still actively developing and enhancing it.

Pure is mainly used in combination with other languages and computing en-
vironments such as Faust and TeXmacs. Even though Pure’s user base is quite
small, exhaustive documentation is freely available online [4]. All components of
the language (interpreter, standard library, runtime library, etc.) are free soft-
ware, licensed under the GPLv3. The source code and precompiled packages
for Linux, Windows, BSD and Mac OS X are available on Pure’s website.1

Pure is a functional programming language and is based on term rewriting.
While it is in principle a typeless language, it provides support for dynamic
typing. It has features that one would expect from a functional language but
has also some very unique features. In this report we highlight the less common
features and compare Pure to other programming languages.

2 Pure Interpreter

Pure comes with an interpreter that can be used to run code interactively. The
Pure interpreter however does not really interpret the source code but compiles
it to native machine code before execution. This approach is also known as JIT
(just in time) compilation. To generate efficient code Pure uses the LLVM [11]
compiler framework. Beyond JIT compilation the interpreter is able to batch
compile a Pure program to a native executable or an object file. The generated
object file can then be linked into a C or C++ program which makes it possible
to access the Pure runtime from other programming languages.

3 Term Rewriting

Since Pure uses term rewriting as underlying computational model it is neces-
sary to understand its basic concepts. In this section we give a short introduc-
tion to term rewriting and explain its implications on the Pure programming
language.

Term rewriting is a Turing-complete computational model. This means that
every Turing machine and hence every program can be simulated by a term
rewrite system. A term rewrite system is a set of rules of the form l → r,
where l and r are terms consisting of variables and function symbols. Rewrite
rules can be applied to terms by replacing instances of the left-hand side by the
right-hand side of the rule. This application is called a rewrite step.

The following rewrite system can be used to calculate the maximum of two
natural numbers. The constant 0 and the successor function s are used to
encode natural numbers in unary notation.

1http://purelang.bitbucket.org
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3 Term Rewriting

max(0,x) → x

max(x,0) → x

max(s(x), s(y)) → s(max(x,y))

We can calculate the maximum by repeatedly applying these rewrite rules until
the resulting term cannot be rewritten any further. A term where no rules are
applicable is called a normal form. In the following example we determine the
maximum of 3 and 2 by rewriting the term max(s(s(s(0))), s(s(0))) to its
normal form s(s(s(0))).

max(s(s(s(0))), s(s(0))) → s(max(s(s(0)), s(0)))

→ s(s(max(s(0), 0)))

→ s(s(s(0)))

Term rewriting is at the core of the Pure programming language. A Pure
program is basically just a collection of rewrite rules and the Pure interpreter
performs rewrite steps until a normal form is reached. If multiple rules are
applicable, the Pure interpreter selects the first rule in the order in which they
are written. (For details on the evaluation strategy see Section 7.2.) By chang-
ing the syntax we can translate the above rewrite system directly into a Pure
program:

> max 0 x = x;

> max x 0 = x;

> max (s x) (s y) = s (max x y);

> max (s (s (s 0))) (s (s 0));

s (s (s 0))

Since it is not very practical to write such programs, Pure extends the basic
concept of term rewriting. For instance, data types for integers and floating
point numbers and common arithmetic operations are already predefined. An-
other extension are guards that can be added to a rule to determine if the rule
is applicable. With these extensions we can write the max function in a more
straightforward way.

max x y = x if x > y; /* this rule is only applicable

if x is greater than y */

= y otherwise; /* the left -hand side of a rule

can be omitted if it is the

same as in the previous rule */

The pure interpreter considers the rules in the order in which they are written
and hence applies the second rule in this example only if the first rule is not
applicable. Therefore the otherwise clause in the second rule is just syntactic
sugar and can be omitted.

Pure is due to its term rewriting core a very flexible language. Besides
”
nor-

mal“ calculations Pure can be used to do symbolic evaluations.

> (x+y)*z = x*z+y*z; /* distributivity */

> x*(y+z) = x*y+x*z;

> x*(y*z) = (x*y)*z; /* associativity */

> x+(y+z) = (x+y)+z;
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> square x = x*x;

> square 4;

16

> square (a+b);

a*a+a*b+b*a+b*b

4 Rules and Patterns

Rules in Pure are similar to function definitions in functional languages like
OCaml [12] and Haskell [10]. The left-hand side of a rule is a pattern that
serves as a template to be matched against a term. A pattern is composed of
function symbols and variables. Identifiers at the head position are interpreted
as function symbols whereas any other identifiers are either variables or con-
stants. For example the term max (f x) (3+y) contains the function symbols
max, f and +, the constant 3 and the variables x and y. If the literal part
(function symbols and constants) of a pattern matches a term, the variables in
the pattern are bound to the corresponding values in the term. These variables
can then be used in the right-hand side of a rule.

> fact 0 = 1;

> fact n = n*fact (n-1) if n > 0;

> fact 5; /* this term matches the second rule */

120

> fact 0.0; /* this term does not match the first rule ,

because 0 and 0.0 are different constants */

fact 0.0 /* and hence is a normal form */

Function applications are – like in most functional programming languages –
curried. This means that a function that takes multiple arguments is trans-
formed into a series of functions that take a single argument. Each function is
a partial application of the original function. For example f x y is transformed
into a function f that takes the argument x and returns a function that takes
the argument y. Currying allows us to derive new functions by partially apply-
ing existing ones. We can, for instance, implement the successor function by
partially applying the + function to 1.

> s = (+) 1;

> s 2;

3

4.1 Non linear patterns

In contrast to most other functional programming languages Pure supports
patterns where the same variable occurs more than once. These, so-called non
linear patterns only match if all instances of a variable are bound to the same
value.

> f x x = x*x;

> f 5 5;

3



5 Special Expressions

25

> f 5 6;

f 5 6

Most functional languages that are based on lambda calculus only support linear
pattern, because otherwise they would not be confluent, i.e. different evaluation
strategies could lead to different results.

5 Special Expressions

Pure has a number of special expressions that extend the term rewriting seman-
tic. These expressions are special, because they cannot occur in normal form
terms. Most special expressions are known from other (functional) program-
ming languages and hence are only shortly covered.

Conditional expressions: if x then y else z

Evaluates to y if x is true or to z otherwise.

> max x y = if x > y the x else y;

Lambdas: \x -> y

A lambda is an anonymous function that evaluates to the right-hand side
y if the argument term matches the pattern x.

> foldl (\x y -> y:x) [] (1..5);

[5,4,3,2,1]

Case expressions: case x of s = t; u = v; ... end

The case expression is similar to Haskell’s case and OCaml’s match ex-
pression. If the term x matches a pattern (s, u, etc.) in the rules list, the
expression is evaluated to the corresponding right-hand side (t, v, etc.)
of the matching rule.

> case (a*b+c) of

> (x*y) = "multiplication";

> (x+y) = "addition";

> end;

"addition"

When expressions: x when s = t; u = v; ... end

The when expression binds local variables. The term x is evaluated with
the variables in the patterns s, u, etc. bound to their corresponding values
in the right-hand side terms t, v, etc.

> s = (+) 1;

> s (a+b) when a=1; b=2; end;

4
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With expressions: x with s = t; u = v; ... end

The with expression is used to define local functions. The term x is
evaluated considering the additional rules s = t, u = v, etc.

> square 4 with square x = x*x; end;

16

Patterns in special expressions behave slightly different than patterns in rules.
A match_failed expression is thrown if the subject term does not match the
pattern whereas a rule is simply not applied.

> (\(x:y) -> x:y) 5;

<stdin >, line 14: unhandled exception ’failed_match ’ ...

> f x:y = x:y;

> f 5; /* the rule is not applied , this term is a normal form */

f 5

6 Container Types

6.1 Lists

In Pure, like in many other functional programming languages, lists are built
using the cons (:) operator and the empty list constant ([]). We can also
use the bracket notation to declare lists, for instance [1,2,3] denotes the list
1:2:3:[]. Lists can contain different types of data and can be nested.

Symbols like cons and [] are so-called constructors. Unlike OCaml and
Haskell, Pure allows us to define rules for constructors, i.e. they can appear as
the root symbol on the left-hand side of a rule. There is no distinction between
function symbols and constructors in Pure. For instance the following rules for
the cons operator cause lists to be always sorted and deduplicated.

> x:y:z = y:x:z if y < x;

> [12,1,7,2,3,3];

[1,2,3,3,7,12]

>

> x:x:z = x:z;

> [12,1,7,2,3,3];

[1,2,3,7,12]

Pure offers a number of functions and operators for lists. The following exam-
ples cover some of them.

> 1..10; /* a list from 1 to 10 */

[1,2,3,4,5,6,7,8,9,10]

> let x = 1:3..10; /* all odd numbers from 1 to 10 */

> x

[1,3,5,7,9]

> #x /* compute the length */

5

> x!2 /* access the element at index 2 */
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7 Language Features

5

> x!![0 ,2 ,3] /* create a list with elements

at the specified indices */

[1,5,7]

A convenient way to generate lists are list comprehensions. A list comprehen-
sions consists of an expression, a generator clause and an optional filter clause.
The resulting list is built by repeatedly evaluating the expression with its vari-
ables bound according to the generator and filter clauses. For example, in the
comprehension [2*x | x=1..10] the expression 2*x is evaluated with x bound
to each element of the list 1..10. By adding the filter clause x % 2 == 0, the
variable x is only bound to even numbers in that range.

> [2*x | x=1..10; x mod 2 == 0];

[4,8,12,16,20]

6.2 Tuples

Another data structure that is similar to lists are tuples. Tuples are constructed
with the right-associative comma (,) operator and can, in contrast to lists, not
be nested. For instance 1,2,3, (1,2),3 and 1,(2,3) are one and the same
tuple. To achieve this the following rules for the tuple constructor are defined
in the standard library.

> x,() = x;

> (),y = y;

> (x,y),z = x,y,z;

With these rules every tuple is flattened and the empty tuple becomes a neutral
element in respect to the comma operator.

7 Language Features

7.1 Types

Pure is in principle a typeless language, but supports, as an alternative to classic
data types, type rules. Type rules are similar to normal rules, but are prefixed
with the keyword type, take only one argument and evaluate to a truth-value.
They are used as predicates to determine if a given term belongs to a type. A
type consists of those terms for which the type predicate evaluates to true. We
can, for example, define a data type for triples as follows.

> type triple [x:y:z] = true;

We can use the typep function to check if the term [1,2,3] belongs to the
triple type.

> typep triple [1,2,3];

1

> typep triple [1,2,3,4];

6



7.1 Types

0

The previous definition of triple is called partial, because we can extend it with
additional rules.

type triple x = #x == 3; /* all terms for which the

length function returns 3 */

> typep triple (1,2,3);

1

This type rule applies to all terms x and hence the definition of triple is now
complete and cannot be extended further.

We can use these type predicates in rules as so-called type-tags. Type-tags
can be added to the arguments of a rule and determine to which data types
the rule is applicable. In the following example the sum rule is only applied to
terms that satisfy the triple predicate.

> sum x:: triple = x!0 + x!1 + x!2;

> sum (1,2,3);

6

> sum [1,2,3];

6

> sum 3;

sum 3

The fact that type-tags are only evaluable at runtime makes Pure a dynamically
typed language.

7.1.1 Interface Types

Pure also offers a way to define a type through a set of operations it has to
support. This concept is also known as duck typing and is best described with
its name giving quote:

”
When I see a bird that walks like a duck and swims like

a duck and quacks like a duck, I call that bird a duck.“ This style of typing is
supported by Pure through interface types. An interface definition consists of
a set of patterns that indicate which operations are required. These patterns
are then matched against the left-hand side of each rule and a list of types is
derived. Every type in that list supports the stated operations and is part of the
interface. For instance the addable interface consists of all types that support
the + operator for arguments of equal type.

> interface addable with

> x:: addable + y:: addable;

> end;

>

> show interface addable

type addable x::int;

type addable x:: double;

type addable x:: bigint;

type addable s:: string;

type addable [];

type addable xs@(_:_);
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7 Language Features

It is also possible to specify an interface with multiple operations. The interface
in the following example consists of all types that support typical list operations.

> interface listlike with

> #x:: listlike;

> x:: listlike!n::int;

> head x:: listlike;

> tail x:: listlike;

> end;

> show interface listlike

type listlike x:: matrix;

type listlike s:: string;

type listlike (x:xs);

Unlike in the previous example, the empty list is not part of the interface,
because neither the head nor the tail functions are defined for the empty list.
Interface types can be used just like normal types, e.g. as type-tags or as type
predicates using the typep function.

7.2 Lazy evaluation

An expression can comprise multiple sub-terms that are reducible by a rule (so-
called redexes). The Pure interpreter evaluates such an expression by reducing
the leftmost innermost redex first. This evaluation strategy is also known as
eager evaluation. In some cases, however, it is desirable to delay the evaluation
of an expression until its value is needed. In Pure this can be achieved through
the postfix operator &, that turns its argument into a parameterless anonymous
function (thunk). If the value of the expression is needed, the thunk is replaced
by its computed value.

> let x = 5 &;

> x;

#<thunk 0x7f1f8f5575d8 >

> x + 2; /* force the evaluation of x */

7

> x; /* x is no longer a thunk */

5

Lazy evaluation allows us to build infinite lists, also called streams, by turning
the tail of a list into a thunk. In the following example we apply the & operator
to the recursive call of the from function to build such an infinite list.

> from x = x:from (x+1) &;

> let x = from 5;

> x;

5:#< thunk 0x7f1f8f557448 >

> x!!(0..9);

[5,6,7,8,9,10,11,12,13,14]

The same result can be achieved by using the built-in list generator with the
inf constants.

> 5.. inf;

5:#< thunk 0x7f1f8f557448 >

8



7.3 The Quote

7.3 The Quote

Like the & operator, the quote influences the evaluation of an expression. More
precisely, the quote inhibits the evaluation of its argument. We can manipulate
quoted (unevaluated) expressions, for instance by using pattern matching or by
binding variables to a value.

> let x+y = ’(23*a+5*1*b) with b=6;

> x;

23*a

> y;

5*1*6

The eval function evaluates quoted expressions.

> eval y;

30

7.4 Macros

Pure offers besides ordinary rules and type rules a third class of rules, namely
macros. They are, similar to macros in other programming languages (e.g.
C), evaluated at compile time. Like ordinary rules, macros are evaluated by
performing rewrite steps until a normal form is reached. After the evaluation,
the compiler replaces every instance of a macro by the resulting normal form.
This transformation happens before the actual compilation of the program.

Macros are defined by prefixing rules with the def keyword. In the following
example we define the list length function as macro. This optimizes the regular
length function insofar that it is already evaluated at compile time for list
constants.

> def #[] = 0;

> def #(x:xs) = #xs+1;

> lstlen = #[1,2,3,4]; /* evaluated during the JIT compilation */

> tpllen = #(1,2,3,4);

> show lstlen /* print the definition of lst */

lstlen = 4;

> show tpllen

tpllen = #(1,2,3,4);

As shown in the example above, macros can be recursive. In fact macros can be
arbitrary rewrite rules and are hence Turing-complete. This implies in particular
that the execution of macros and therefore the compilation of a program does
not necessarily terminate.

7.5 C Interface

Pure provides an interface to the C programming language that makes it pos-
sible to call C functions. To use a C function it has to be declared using the
extern keyword and can then be called like a normal function. When calling

9



8 Utilization

such a function the interpreter converts all supplied arguments to corresponding
C data types.

> extern void puts (char *str); // declare the C function puts

> puts "Hello world!";

Hello world!

Since Pure provides no facilities for input and output, calling C functions is the
only way to perform these operations. The C interface can be used to load and
access any C library and hence extends the capabilities of the Pure platform
vastly. As an alternative to calling external functions Pure makes it possible to
embed the C code directly into a Pure program. The inlined code is compiled
by the Pure interpreter in cooperation with an LLVM enabled C compiler. This
feature is mainly used to implement performance critical parts of an algorithm.

> %<

> int fact(int n) { // embedded C function

> int res =1;

> for(; n > 1; n--)

> res *= n;

> return res;

> }

> %>

> fact 10;

3628800

Pure makes it very easy to interface with imperative-style code with arbitrary
side effects. Therefore Pure is, despite its name, not a purely functional lan-
guage.

8 Utilization

Besides Pure’s usage as standalone language, it is primarily used in combination
with other computing environments and languages. Pure integrates with the
following computing platforms:

Octave a language intended for numerical computations [2]

Pure Data a graphical programming environment for audio, video, and graph-
ical processing [6]

Faust a functional programming language designed for real-time signal process-
ing [1]

REDUCE a computer algebra system [7]

TeXmacs a scientific text editing platform [9]

Gnumeric a spreadsheet program [3]
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8.1 Mathematical computations with TeXmacs and REDUCE

8.1 Mathematical computations with TeXmacs and REDUCE

TeXmacs is a graphical text editor with typesetting facilities similar to those of
LATEX. A plugin is available that enables the usage of Pure inside a TeXmacs
document, i.e. TeXmacs becomes a graphical interface to the Pure interpreter.
This allows us to enter mathematical expressions in a more convenient way so
that it becomes easier to use Pure’s symbolic evaluation capabilities to perform
mathematical computations. In addition we can use the interface to the RE-
DUCE library which provides a rich set of functions for algebraic computations.

The following excerpt of a TeXmacs document contains a Pure shell which is
used to differentiate a list of terms by applying the df function of the REDUCE
library.

> using reduce;

>

[
sin (x)

xi
|i= 1..3

]
;

[
sin (x)

x
,
sin (x)

x2
,
sin (x)

x3

]

> map (\y -> df y x) ans;
[
cos (x)x− sin (x)

x2
,
cos (x) x− 2 sin (x)

x3
,
cos (x)x− 3 sin (x)

x4

]

>

1

By combining TeXmacs, REDUCE and Pure we obtain a powerful mathemat-
ical computing platform, roughly comparable to Mathematica or Matlab.

9 Conclusion

As we have seen Pure combines many different programming concepts into a
language. It combines functional features known from OCaml and Haskell with
the concepts of macros and quoting similar to Lisp. In addition it provides
a dynamic type system with support for interfaces akin to those of the Go
language. These features on top of the term rewriting core make Pure a very
flexible and dynamic language. Therefore Pure can cover a wide range of ap-
plications: from scientific calculations with focus on symbolic evaluations to
digital signal processing with strict time constraints. To achieve this Pure tries
to balance functional purity and practicality, for instance by making it easy to
call external C functions.

Pure is still a very young language and hence lacks some features, most
prominently support for concurrent programming. Despite its rather small
user base Pure is very actively developed, especially by its creator Albert Gräf.
He puts a lot of effort into making Pure a useful language by implementing
new features, writing exhaustive documentation and by integrating Pure into
multiple computing platforms. All in all Pure has the potential to become a
more widely known and used language.
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