1. a) Solution. For expressivity, predicated have been given meaningful names.

$$
\begin{equation*}
\exists x \text { Lives }(x) \wedge \operatorname{Killed}(x, \text { agatha }) \tag{1}
\end{equation*}
$$

(2) Lives(agatha)
(3) Lives(butler)
(4) Lives(charles)
(5) $\quad \forall x($ Lives $(x) \rightarrow(x=$ agatha $\vee x=$ butler $\vee x=$ charles $))$
(6) $\quad \forall x y(\operatorname{Killed}(x, y) \rightarrow \operatorname{Hates}(x, y))$
(7) $\quad \forall x y(\operatorname{Killed}(x, y) \rightarrow \neg \operatorname{Richer}(x, y))$
(8) $\quad \forall x($ Hates (agatha, $x) \rightarrow \neg$ Hates (charles, $x)$)
(9) $\quad \forall x(x \neq$ butler \rightarrow Hates (agatha, $x))$
(10) $\quad \forall x(\neg \operatorname{Richer}(x$, agatha $) \rightarrow$ Hates $($ butler,$x))$
(11) $\quad \forall x($ Hates (agatha, $x) \rightarrow$ Hates (butler, $x)$)
(12) $\quad \forall x \exists y \neg \operatorname{Hates}(x, y)$
(13) \quad agatha \neq butler
b) Solution. Let Γ contain the axioms in (1)-(13) in a), then the question is formalisable as the following consequence:

$$
\Gamma \models \exists \operatorname{Killed}(x, \text { agatha }) .
$$

Using semantic argumentation we see that $\Gamma \models$ Killed(agatha, agatha).
2. a) Solution. We argue in the sequent calculus for intuitionistic logic:

$$
\frac{\frac{A \vdash A}{A, \neg A \vdash} \quad B \vdash B}{\neg A \vee B, A \vdash B}
$$

b) Solution.

$$
\begin{gathered}
\frac{P(x) \vdash P(x)}{P(x), \exists x P(x) \vdash P(x)} \\
\frac{\frac{P(x) \vdash \exists x P(x) \rightarrow P(x)}{P(x) \vdash \exists y(\exists x P(x) \rightarrow P(y))}}{\exists x P(x) \vdash \exists y(\exists x P(x) \rightarrow P(y))} \\
\vdash \exists x P(x) \rightarrow \exists y(\exists x P(x) \rightarrow P(y))
\end{gathered}
$$

c) Solution.

$$
\begin{gathered}
\frac{A \vdash A \quad B(x) \vdash B(x)}{A \rightarrow B(x), A \vdash B(x)} \\
\frac{\frac{A \rightarrow B(x), A \vdash \exists x B(x)}{A \rightarrow B(x) \vdash(A \rightarrow \exists x B(x))}}{\exists x(A \rightarrow B(x)) \vdash(A \rightarrow \exists x B(x))} \\
\vdash \exists x(A \rightarrow B(x)) \rightarrow(A \rightarrow \exists x B(x))
\end{gathered}
$$

d) Solution. We only show one direction, the other direction is similar.
3. Solution. Simplification of the the proof of Lemma 4.4 in the lecture notes, plus extension of the term model to functions. For the latter the following setting suffices:

$$
f^{\mathcal{M}}\left(t_{1}, \ldots, t_{n}\right):=f\left(t_{1}, \ldots, t_{n}\right) .
$$

4. a) Solution.

$$
G:=\forall z((\neg P(a, b) \vee P(c, d) \vee R(z)) \wedge(\neg P(a, b) \vee \neg R(c) \vee R(z))) .
$$

b) Solution. G is satisfiable, and from this we can only conclude that F is satisfiable.
c) Solution.

$$
H:=\forall x y u v(P(x, y) \wedge(\neg P(u, v) \vee R(u)) \wedge \neg R(a)) .
$$

H is unsatisfiable, and thus $\neg F$ is unsatisfiable, and thus F is valid.
5.

Solution

Consider propositional logic. Then $A_{1}, \ldots, A_{n} \vDash B$, asserts that $\mathrm{v}(B)=\mathrm{T}$, whenever there exists $i \in\{1, \ldots, n\}$ such that $\mathrm{v}\left(A_{i}\right)=\mathrm{T}$, for any assignment v.
Natural deduction for propositional logic is sound and complete.
An interpretation \mathcal{I} is a pair $\mathcal{A}=(A, a)$ such that (i) A is a non-empty
 set, called domain and (ii) the mapping a associates constants with the domain.

For all formulas F and all sets of formulas \mathcal{G} we have that $\mathcal{G} \models F$ iff $\neg \operatorname{Sat}(\mathcal{G} \cup\{\neg F\})$.
Let \mathcal{A}, \mathcal{B} be structures such that $\mathcal{A} \cong \mathcal{B}$ and let ℓ be an environment. Then for every formula F we have $(\mathcal{A}, \ell) \models F \operatorname{iff}(\mathcal{B}, \ell) \models F$.
The set S of all consistent set of formulas has the satisfaction properties.
If a set of formulas \mathcal{G} has arbitrarily large models, then it has a countable infinite model.
For any formula F there exists a formula G such that G does neither contain individual or function constants nor equality and $F \approx G$.
Let \mathcal{K} be a Δ-elementary class of structures. Then there exists a subclass $\mathcal{K}^{\infty} \subseteq \mathcal{K}$ of structures in \mathcal{K} with infinite domain which is not elementary.

Existential second-order logic is closed under negation.

\square

