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Summary

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Löwenheim-Skolem Theorem

if a set of formulas G has a model, then G has a countable model

compactness

Löwenheim-Skolem

Lemma À Lemma Á

model existence

∃ satisfaction properties
S admits satisfaction properties ⇒
S∗ admits satisfaction properties

S admits satisfaction properties ⇒
G ∈ S is satisfiable
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Summary

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness

Extensions and Restrictions of First Order

intuitionistic logic, modal logic, second-order logic

Automated Reasoning

normal forms, Herbrand’s Theorem, history of theorem proving, automated
reasoning (with equality)
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Model Existence

Model Existence

L base language; L+ ⊇ L infinitely many new individual constants

Theorem (Model Existence Theorem)

1 if S∗ is a set of formula sets of L+ having the satisfaction
properties, then ∀ formula sets G ∈ S∗ of L, ∃ M, M |= G

2 ∀ elements m of M: m denotes term in L+

model existence

Lemma Â Lemma Ã

G has closure properties⇒ ∃ model
M, M |= G

S admits satisfaction properties ⇒
G ∈ S admits closure properties
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Model Existence

Closure Properties

Lemma

the set G of formulas that are true in M admit

1 no formula F and ¬F in G
2 if ¬¬F ∈ G, then F ∈ G
3 if (E ∨ F ) ∈ G, then E ∈ G or F ∈ G
4 if ¬(E ∨ F ) ∈ G, then ¬E ∈ G and ¬F ∈ G
5 if ∃xF (x) ∈ G, then ∃ term t (of L+), F (t) ∈ G
6 if ¬∃xF (x) ∈ G, then ∀ term t (of L+), ¬F (t) ∈ G

Definition

we call the properties of G closure properties
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Model Existence

Lemma Â

1 let G be a formula set admitting the closure properties

2 then ∃ interpretation M in which every element of the domain is
the denotation of some term

3 M |= G

Lemma Ã

1 let L be a language; L+ extension of L with infinitely many
individual constants

2 let S∗ be a set of formula sets (of L+), let S∗ admit the satisfaction
properties

3 ∀ formula set G ∈ S∗ (of L), ∃ G∗ ⊇ G (of L+), such that G∗ fulfils
the closure properties

Proof of Model Existence

by Lemma Ã and Lemma Â
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Model Existence

Proof of Lemma Â
(no identity, no function symbols)

• let G be a formula set admitting the closure properties

• then ∃ interpretation M in which every element of the domain is
the denotation of some term

• M |= G

Proof

1 the domain of M is the set of terms (of L+)

2 ∀ constants c

cM := c

3 ∀ predicate constant P, ∀ terms t1, . . . , tn:

(t1, . . . , tn) ∈ PM ⇐⇒ P(t1, . . . , tn) ∈ G

4 ∀ variables x : `(x) := x
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Model Existence

Proof (cont’d)

5 definition of M takes care of the demand that every element of its
domain is the denotation of a term

6 we claim ∀ formula F : M |= F ⇐⇒ F ∈ G

Claim: M |= F ⇐⇒ F ∈ G
we show the claim by induction on F :

• for the base case, let F = P(t1, . . . , tn), if F ∈ G, then by definition
(t1, . . . , tn) ∈ PM; hence M |= F

• for the step case, we assume F = ∃xG (x) and F ∈ G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G (t) ∈ G

by induction hypothesis: M |= G (t)

and thus M |= ∃xG (x)
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Model Existence

Model Construction in a Picture
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Model Existence

Proof of Lemma Ã
(no identity, no function symbols)

• let L be a language; L+ extension of L with infinitely many
individual constants

• let S∗ be a set of formula sets (of L+), let S∗ admit the satisfaction
properties

• ∀ formula set G ∈ S∗ (of L), ∃ G∗ ⊇ G (of L+), such that G∗ fulfils
the closure properties

Proof

• construct sequence of sets belonging to S∗

G = G0,G1,G2, . . . Gn ⊆ Gn+1

• Gn is constructed in step n

• set G∗ =
⋃

n>0 Gn

• closure properties induce (infinitely many) demands
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Model Existence

Proof (cont’d)

Demands

1 no formula F and ¬F in Gn for all n > 0

2 if ¬¬F ∈ Gn, then ∃k > n, Gk+1 = Gk ∪ {F}
3 if (E ∨ F ) ∈ Gn, then ∃k > n, Gk+1 = Gk ∪ {E} or Gk+1 = Gk ∪ {F}
4 if ¬(E ∨ F ) ∈ Gn, then ∃k1, k2 > n, Gk1+1 = Gk1 ∪ {¬E} and
Gk2+1 = Gk2 ∪ {¬F}

5 if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}
6 if ¬∃xF (x) ∈ Gn, then ∀ term t, ∃k > n, Gk+1 = Gk ∪ {¬F (t)}

Claim: all demands can be granted

• invariant of construction: ∀n > 0 we have Gn ∈ S∗

• invariant takes care of first demand: no formula F and ¬F in Gn for
all n > 0

• the satisfaction properties guarantee that any demand can be met
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Model Existence

Proof (cont’d)

• consider Demand 5:
if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}

• we use that S∗ fulfils the satisfaction properties (c is fresh):

∃xF (x) ∈ Gn ∈ S∗ ⇒

• we fulfil demand by setting (at step k)

Gk+1 := Gk ∪ {F (c)} for fresh c

• similar for the Demands 2–6

Claim: ∃ fair strategy

• assign a pair (i , n) to each demand:
i is the number of the demand raised at step n

• enumerate all pairs (i , n), that is, encode (i , n) as number k

• in step k we grant the i th demand that was raised at step n

GM (Institute of Computer Science @ UIBK) Computational Logic 84/111



Model Existence

Proof (cont’d)

• consider Demand 5:
if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}

• we use that S∗ fulfils the satisfaction properties (c is fresh):

∃xF (x) ∈ Gn ∈ S∗ ⇒

• we fulfil demand by setting (at step k)

Gk+1 := Gk ∪ {F (c)} for fresh c

• similar for the Demands 2–6

Claim: ∃ fair strategy

• assign a pair (i , n) to each demand:
i is the number of the demand raised at step n

• enumerate all pairs (i , n), that is, encode (i , n) as number k

• in step k we grant the i th demand that was raised at step n

GM (Institute of Computer Science @ UIBK) Computational Logic 84/111



Model Existence

Proof (cont’d)

• consider Demand 5:
if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}

• we use that S∗ fulfils the satisfaction properties (c is fresh):

∃xF (x) ∈ Gn ∈ S∗ ⇒ Gn ∪ {F (c)} ∈ S∗

• we fulfil demand by setting (at step k)

Gk+1 := Gk ∪ {F (c)} for fresh c

• similar for the Demands 2–6

Claim: ∃ fair strategy

• assign a pair (i , n) to each demand:
i is the number of the demand raised at step n

• enumerate all pairs (i , n), that is, encode (i , n) as number k

• in step k we grant the i th demand that was raised at step n

GM (Institute of Computer Science @ UIBK) Computational Logic 84/111



Model Existence

Proof (cont’d)

• consider Demand 5:
if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}

• we use that S∗ fulfils the satisfaction properties (c is fresh):

∃xF (x) ∈ Gn ∈ S∗ ⇒ ∀k > n Gk ∪ {F (c)} ∈ S∗

• we fulfil demand by setting (at step k)

Gk+1 := Gk ∪ {F (c)} for fresh c

• similar for the Demands 2–6

Claim: ∃ fair strategy

• assign a pair (i , n) to each demand:
i is the number of the demand raised at step n

• enumerate all pairs (i , n), that is, encode (i , n) as number k

• in step k we grant the i th demand that was raised at step n

GM (Institute of Computer Science @ UIBK) Computational Logic 84/111



Model Existence

Proof (cont’d)

• consider Demand 5:
if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}

• we use that S∗ fulfils the satisfaction properties (c is fresh):

∃xF (x) ∈ Gn ∈ S∗ ⇒ ∀k > n Gk ∪ {F (c)} ∈ S∗

• we fulfil demand by setting (at step k)

Gk+1 := Gk ∪ {F (c)} for fresh c

• similar for the Demands 2–6

Claim: ∃ fair strategy

• assign a pair (i , n) to each demand:
i is the number of the demand raised at step n

• enumerate all pairs (i , n), that is, encode (i , n) as number k

• in step k we grant the i th demand that was raised at step n

GM (Institute of Computer Science @ UIBK) Computational Logic 84/111



Model Existence

Proof (cont’d)

• consider Demand 5:
if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}

• we use that S∗ fulfils the satisfaction properties (c is fresh):

∃xF (x) ∈ Gn ∈ S∗ ⇒ ∀k > n Gk ∪ {F (c)} ∈ S∗

• we fulfil demand by setting (at step k)

Gk+1 := Gk ∪ {F (c)} for fresh c

• similar for the Demands 2–6

Claim: ∃ fair strategy

• assign a pair (i , n) to each demand:
i is the number of the demand raised at step n

• enumerate all pairs (i , n), that is, encode (i , n) as number k

• in step k we grant the i th demand that was raised at step n

GM (Institute of Computer Science @ UIBK) Computational Logic 84/111



Model Existence

Proof (cont’d)

• consider Demand 5:
if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}

• we use that S∗ fulfils the satisfaction properties (c is fresh):

∃xF (x) ∈ Gn ∈ S∗ ⇒ ∀k > n Gk ∪ {F (c)} ∈ S∗

• we fulfil demand by setting (at step k)

Gk+1 := Gk ∪ {F (c)} for fresh c

• similar for the Demands 2–6

Claim: ∃ fair strategy

• assign a pair (i , n) to each demand:
i is the number of the demand raised at step n

• enumerate all pairs (i , n), that is, encode (i , n) as number k

• in step k we grant the i th demand that was raised at step n

GM (Institute of Computer Science @ UIBK) Computational Logic 84/111



Model Existence

Proof (cont’d)

• consider Demand 5:
if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}

• we use that S∗ fulfils the satisfaction properties (c is fresh):

∃xF (x) ∈ Gn ∈ S∗ ⇒ ∀k > n Gk ∪ {F (c)} ∈ S∗

• we fulfil demand by setting (at step k)

Gk+1 := Gk ∪ {F (c)} for fresh c

• similar for the Demands 2–6

Claim: ∃ fair strategy

• assign a pair (i , n) to each demand:
i is the number of the demand raised at step n

• enumerate all pairs (i , n), that is, encode (i , n) as number k

• in step k we grant the i th demand that was raised at step n

GM (Institute of Computer Science @ UIBK) Computational Logic 84/111



Model Existence

Proof (cont’d)

• consider Demand 5:
if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}

• we use that S∗ fulfils the satisfaction properties (c is fresh):

∃xF (x) ∈ Gn ∈ S∗ ⇒ ∀k > n Gk ∪ {F (c)} ∈ S∗

• we fulfil demand by setting (at step k)

Gk+1 := Gk ∪ {F (c)} for fresh c

• similar for the Demands 2–6

Claim: ∃ fair strategy

• assign a pair (i , n) to each demand:
i is the number of the demand raised at step n

• enumerate all pairs (i , n), that is, encode (i , n) as number k

• in step k we grant the i th demand that was raised at step n
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Model Existence

Saturation of G in a Picture

formula set G = G0

...

¬¬T (k0, k1)

∃xR(x)

P(x3) ∨ Q(k0)

formula set Gk+1, k > 0
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Natural Deduction

Natural Deduction for First-Order Logic

introduction elimination

∧ E F
E ∧ F

∧ : i
E ∧ F

E
∧ : e E ∧ F

F
∧ : e

∨ E
E ∨ F

∨ : i
F

E ∨ F
∨ : i

E ∨ F

E
...
G

F
...
G

G
∨ : e

→

E
...
F

E → F
→ : i

E E → F
F

→ : e
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Natural Deduction

Natural Deduction Extended

introduction elimination

¬

E
...
⊥
¬E

¬ : i
F ¬F
⊥ ¬ : e

¬ ⊥
F
¬ : e

¬¬ ¬¬F
F
¬¬ : e

= t = t =: i
s = t F (s)

F (t)
=: e
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Natural Deduction

Natural Deduction Quantifier Rules

introduction elimination

∃
F (t)

∃xF (x)
∃ : i

∃xF (x)

x F (x)
...
G

G
∃ : e

∀

x
...
F (x)

∀xF (x)
∀ : i

∀xF (x)

F (t)
∀ : e

variable x in ∃ : e, ∀ : i local to box
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Natural Deduction

Example

1 ∃xP(x) premise
2 ∀x∀y(P(x)→ Q(y)) premise
3 y
4 x P(x) assumption
5 ∀y(P(x)→ Q(y)) 2, ∀ : e
6 P(x)→ Q(y) 5, ∀ : e
7 Q(y) 4, 6,→ : e
8 Q(y) 1, 4− 7,∃ : e
9 ∀yQ(y) 3− 8,∀ : i

hence we have

∃xP(x),∀x∀y(P(x)→ Q(y)) ` ∀yQ(y)

provability relation
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Gödel’s Completeness Theorem

Gödel’s Completeness Theorem

Definition

let G be a set of formulas, F a formula

• if ∃ a natural deduction proof from of F from finite G0 ⊆ G, we
write G ` F

• if ¬ ∃ proof of ⊥ from G, we say G is consistent, otherwise
inconsistent

Theorem

first-order logic is sound and complete: G |= F ⇐⇒ G ` F

Proof Idea

• the set S of consistent sets of formulas admit the satisfactions
properties

• by the model existence theorem any G ∈ S is satisfiable
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Gödel’s Completeness Theorem

Soundness Theorem

first-order logic is sound

G |= F ⇐ G ` F

completenessmodel existenceLemma Å

S set of consistent sets⇒ S admits
satisfaction properties

Lemma

G ` F iff G ∪ {¬F} is inconsistent

Lemma Å

the set S of all consistent set of formulas has the satisfaction properties
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Gödel’s Completeness Theorem

Completeness Theorem

first-order logic is complete

G |= F ⇒ G ` F

Proof.

1 wlog ∃ finite G0 ⊆ G, G0 |= F , recall G |= F iff ¬Sat(G ∪ {¬F})
if (∃ finite G0 ⊆ G ¬ Sat(G0 ∪ {¬F})) iff G0 |= F

2 suppose G0 6` F , we have to show G0 6|= F

3 suppose G0 ∪ {¬F} is consistent, then G0 ∪ {¬F} is satisfiable

4 Lemma Å yields that the set S of consistent formulas sets fulfils the
satisfaction properties

5 model existence yields that ∀ H ∈ S , H satisfiable

6 as G0 ∪ {¬F} ∈ S , G0 ∪ {¬F} satisfiable

we have only considered the case without function symbols, without =
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Gödel’s Completeness Theorem

Completeness Theorem

first-order logic is complete

G |= F ⇒ G ` F

Proof.

1 wlog ∃ finite G0 ⊆ G, G0 |= F , recall G |= F iff ¬Sat(G ∪ {¬F})
if (∃ finite G0 ⊆ G ¬ Sat(G0 ∪ {¬F})) iff G0 |= F

2 suppose G0 6` F , we have to show G0 6|= F

3 suppose G0 ∪ {¬F} is consistent, then G0 ∪ {¬F} is satisfiable

4 Lemma Å yields that the set S of consistent formulas sets fulfils the
satisfaction properties

5 model existence yields that ∀ H ∈ S , H satisfiable

6 as G0 ∪ {¬F} ∈ S , G0 ∪ {¬F} satisfiable

we have only considered the case without function symbols, without =

GM (Institute of Computer Science @ UIBK) Computational Logic 92/111
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Gödel’s Completeness Theorem

Completeness Theorem

first-order logic is complete

G |= F ⇒ G ` F

Proof.

1 wlog ∃ finite G0 ⊆ G, G0 |= F , recall G |= F iff ¬Sat(G ∪ {¬F})
if (∃ finite G0 ⊆ G ¬ Sat(G0 ∪ {¬F})) iff G0 |= F

2 suppose G0 6` F , we have to show G0 6|= F

3 suppose G0 ∪ {¬F} is consistent, then G0 ∪ {¬F} is satisfiable

4 Lemma Å yields that the set S of consistent formulas sets fulfils the
satisfaction properties

5 model existence yields that ∀ H ∈ S , H satisfiable

6 as G0 ∪ {¬F} ∈ S , G0 ∪ {¬F} satisfiable

we have only considered the case without function symbols, without =

GM (Institute of Computer Science @ UIBK) Computational Logic 92/111


	Summary
	Model Existence
	Natural Deduction
	Gödel's Completeness Theorem

