

Computational Logic

Georg Moser

Institute of Computer Science @ UIBK

Winter 2012

Compactness Theorem

if every finite subset of a set of formulas ${\mathcal G}$ has a model, then ${\mathcal G}$ has a model

Löwenheim-Skolem Theorem

Compactness Theorem

if every finite subset of a set of formulas ${\mathcal G}$ has a model, then ${\mathcal G}$ has a model

Löwenheim-Skolem Theorem

Compactness Theorem

if every finite subset of a set of formulas ${\mathcal G}$ has a model, then ${\mathcal G}$ has a model

Löwenheim-Skolem Theorem

Compactness Theorem

if every finite subset of a set of formulas ${\mathcal G}$ has a model, then ${\mathcal G}$ has a model

Löwenheim-Skolem Theorem

Compactness Theorem

if every finite subset of a set of formulas ${\mathcal G}$ has a model, then ${\mathcal G}$ has a model

Löwenheim-Skolem Theorem

Compactness Theorem

if every finite subset of a set of formulas ${\mathcal G}$ has a model, then ${\mathcal G}$ has a model

Löwenheim-Skolem Theorem

Compactness Theorem

if every finite subset of a set of formulas ${\mathcal G}$ has a model, then ${\mathcal G}$ has a model

Löwenheim-Skolem Theorem

Compactness Theorem

if every finite subset of a set of formulas ${\mathcal G}$ has a model, then ${\mathcal G}$ has a model

Löwenheim-Skolem Theorem

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness

Extensions and Restrictions of First Order

intuitionistic logic, modal logic, second-order logic

Automated Reasoning

normal forms, Herbrand's Theorem, history of theorem proving, automated reasoning (with equality)

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness

Extensions and Restrictions of First Order

intuitionistic logic, modal logic, second-order logic

Automated Reasoning

normal forms, Herbrand's Theorem, history of theorem proving, automated reasoning (with equality)

 $\mathcal L$ base language; $\mathcal L^+\supseteq \mathcal L$ infinitely many new individual constants

 $\mathcal L$ base language; $\mathcal L^+ \supseteq \mathcal L$ infinitely many new individual constants

Theorem (Model Existence Theorem)

■ if S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists M, M \models \mathcal{G}$

 $\mathcal L$ base language; $\mathcal L^+ \supseteq \mathcal L$ infinitely many new individual constants

Theorem (Model Existence Theorem)

- if S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists M, M \models \mathcal{G}$
- **2** \forall elements *m* of \mathcal{M} : *m* denotes term in \mathcal{L}^+

 $\mathcal L$ base language; $\mathcal L^+ \supseteq \mathcal L$ infinitely many new individual constants

Theorem (Model Existence Theorem)

■ if S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists M, M \models \mathcal{G}$

 $\mathcal L$ base language; $\mathcal L^+ \supseteq \mathcal L$ infinitely many new individual constants

Theorem (Model Existence Theorem)

■ if S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists M, M \models \mathcal{G}$

 $\mathcal L$ base language; $\mathcal L^+ \supseteq \mathcal L$ infinitely many new individual constants

Theorem (Model Existence Theorem)

■ if S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists M, M \models \mathcal{G}$

Lemma

Lemma

```
1 no formula F and \neg F in G
```

Lemma

the set ${\mathcal G}$ of formulas that are true in ${\mathcal M}$ admit

1 no formula F and $\neg F$ in G

2 if
$$\neg \neg F \in \mathcal{G}$$
, then $F \in \mathcal{G}$

Lemma

- **1** no formula F and $\neg F$ in G
- **2** if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$
- 3 if $(E \lor F) \in \mathcal{G}$, then $E \in \mathcal{G}$ or $F \in \mathcal{G}$

Lemma

- **1** no formula F and $\neg F$ in G
- 2 if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$
- 3 if $(E \lor F) \in \mathcal{G}$, then $E \in \mathcal{G}$ or $F \in \mathcal{G}$
- 4 if $\neg (E \lor F) \in \mathcal{G}$, then $\neg E \in \mathcal{G}$ and $\neg F \in \mathcal{G}$

Lemma

- **1** no formula F and $\neg F$ in G
- 2 if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$
- 3 if $(E \lor F) \in \mathcal{G}$, then $E \in \mathcal{G}$ or $F \in \mathcal{G}$
- 4 if $\neg (E \lor F) \in \mathcal{G}$, then $\neg E \in \mathcal{G}$ and $\neg F \in \mathcal{G}$
- 5 if $\exists x F(x) \in \mathcal{G}$, then \exists term t (of \mathcal{L}^+), $F(t) \in \mathcal{G}$

Lemma

- **1** no formula F and $\neg F$ in G
- 2 if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$
- 3 if $(E \lor F) \in \mathcal{G}$, then $E \in \mathcal{G}$ or $F \in \mathcal{G}$
- 4 if $\neg (E \lor F) \in \mathcal{G}$, then $\neg E \in \mathcal{G}$ and $\neg F \in \mathcal{G}$
- 5 if $\exists x F(x) \in \mathcal{G}$, then \exists term t (of \mathcal{L}^+), $F(t) \in \mathcal{G}$
- 6 if $\neg \exists x F(x) \in \mathcal{G}$, then \forall term t (of \mathcal{L}^+), $\neg F(t) \in \mathcal{G}$

Lemma

the set \mathcal{G} of formulas that are true in \mathcal{M} admit

- **1** no formula F and $\neg F$ in G
- 2 if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$
- 3 if $(E \lor F) \in \mathcal{G}$, then $E \in \mathcal{G}$ or $F \in \mathcal{G}$
- 4 if $\neg (E \lor F) \in \mathcal{G}$, then $\neg E \in \mathcal{G}$ and $\neg F \in \mathcal{G}$
- 5 if $\exists x F(x) \in \mathcal{G}$, then \exists term t (of \mathcal{L}^+), $F(t) \in \mathcal{G}$
- 6 if $\neg \exists x F(x) \in \mathcal{G}$, then \forall term t (of \mathcal{L}^+), $\neg F(t) \in \mathcal{G}$

Definition

we call the properties of ${\mathcal G}$ closure properties

1 let \mathcal{G} be a formula set admitting the closure properties

- $\ensuremath{{\rm 1}}$ let ${\mathcal G}$ be a formula set admitting the closure properties
- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term

- 1 let \mathcal{G} be a formula set admitting the closure properties
- 2 then \exists interpretation \mathcal{M} in which every element of the domain is the denotation of some term
- 3 $\mathcal{M} \models \mathcal{G}$

- 1 let \mathcal{G} be a formula set admitting the closure properties
- 2 then \exists interpretation \mathcal{M} in which every element of the domain is the denotation of some term
- 3 $\mathcal{M} \models \mathcal{G}$

Lemma ④

1 let \mathcal{L} be a language; \mathcal{L}^+ extension of \mathcal{L} with infinitely many individual constants

- 1 let \mathcal{G} be a formula set admitting the closure properties
- 2 then \exists interpretation \mathcal{M} in which every element of the domain is the denotation of some term
- 3 $\mathcal{M} \models \mathcal{G}$

Lemma ④

- I let L be a language; L⁺ extension of L with infinitely many individual constants
- 2 let S^* be a set of formula sets (of \mathcal{L}^+), let S^* admit the satisfaction properties

- 1 let \mathcal{G} be a formula set admitting the closure properties
- 2 then \exists interpretation \mathcal{M} in which every element of the domain is the denotation of some term
- 3 $\mathcal{M} \models \mathcal{G}$

Lemma ④

- I let L be a language; L⁺ extension of L with infinitely many individual constants
- 2 let S^* be a set of formula sets (of \mathcal{L}^+), let S^* admit the satisfaction properties
- 3 \forall formula set $\mathcal{G} \in S^*$ (of \mathcal{L}), $\exists \mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

- 1 let \mathcal{G} be a formula set admitting the closure properties
- 2 then \exists interpretation \mathcal{M} in which every element of the domain is the denotation of some term
- 3 $\mathcal{M} \models \mathcal{G}$

Lemma ④

- I let L be a language; L⁺ extension of L with infinitely many individual constants
- 2 let S^* be a set of formula sets (of \mathcal{L}^+), let S^* admit the satisfaction properties
- 3 \forall formula set $\mathcal{G} \in S^*$ (of \mathcal{L}), $\exists \mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

Proof of Model Existence

by Lemma ④ and Lemma ③

(no identity, no function symbols)

- let ${\mathcal G}$ be a formula set admitting the closure properties
- then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathcal{M} \models \mathcal{G}$

(no identity, no function symbols)

- let ${\mathcal G}$ be a formula set admitting the closure properties
- then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathcal{M} \models \mathcal{G}$

Proof

1 the domain of \mathcal{M} is the set of terms (of \mathcal{L}^+)

(no identity, no function symbols)

- let ${\mathcal G}$ be a formula set admitting the closure properties
- then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathcal{M} \models \mathcal{G}$

Proof

1 the domain of \mathcal{M} is the set of terms (of \mathcal{L}^+)

2 \forall constants *c*

$$c^{\mathcal{M}} := c$$

(no identity, no function symbols)

- let ${\mathcal G}$ be a formula set admitting the closure properties
- then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathcal{M} \models \mathcal{G}$

Proof

- **1** the domain of \mathcal{M} is the set of terms (of \mathcal{L}^+)
- **2** \forall constants *c*

$$c^{\mathcal{M}} := c$$

3
$$\forall$$
 predicate constant P , \forall terms t_1, \ldots, t_n :
 $(t_1, \ldots, t_n) \in P^{\mathcal{M}} \iff P(t_1, \ldots, t_n)$

 $\in \mathcal{G}$
(no identity, no function symbols)

- let ${\mathcal G}$ be a formula set admitting the closure properties
- then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathcal{M} \models \mathcal{G}$

Proof

- **1** the domain of \mathcal{M} is the set of terms (of \mathcal{L}^+)
- **2** \forall constants *c*

$$c^{\mathcal{M}} := c$$

3
$$\forall$$
 predicate constant P , \forall terms t_1, \dots, t_n :
 $(t_1, \dots, t_n) \in P^{\mathcal{M}} \iff P(t_1, \dots, t_n) \in \mathcal{G}$
4 \forall variables $x: f(x) := x$

5 definition of \mathcal{M} takes care of the demand that every element of its domain is the denotation of a term

- **5** definition of \mathcal{M} takes care of the demand that every element of its domain is the denotation of a term
- **6** we claim \forall formula $F: \mathcal{M} \models F \iff F \in \mathcal{G}$

- **5** definition of \mathcal{M} takes care of the demand that every element of its domain is the denotation of a term
- **6** we claim \forall formula $F: \mathcal{M} \models F \iff F \in \mathcal{G}$

Claim: $\mathcal{M} \models F \iff F \in \mathcal{G}$

we show the claim by induction on F:

- **5** definition of \mathcal{M} takes care of the demand that every element of its domain is the denotation of a term
- 6 we claim \forall formula $F: \mathcal{M} \models F \iff F \in \mathcal{G}$

Claim: $\mathcal{M} \models F \iff F \in \mathcal{G}$

we show the claim by induction on F:

• for the base case, let $F = P(t_1, ..., t_n)$, if $F \in \mathcal{G}$, then by definition $(t_1, ..., t_n) \in P^{\mathcal{M}}$; hence $\mathcal{M} \models F$

- **5** definition of \mathcal{M} takes care of the demand that every element of its domain is the denotation of a term
- 6 we claim \forall formula $F: \mathcal{M} \models F \iff F \in \mathcal{G}$

 $\mathsf{Claim:} \ \mathcal{M} \models \mathsf{F} \Longleftrightarrow \mathsf{F} \in \mathcal{G}$

we show the claim by induction on F:

- for the base case, let $F = P(t_1, ..., t_n)$, if $F \in \mathcal{G}$, then by definition $(t_1, ..., t_n) \in P^{\mathcal{M}}$; hence $\mathcal{M} \models F$
- for the step case, we assume $F = \exists x G(x)$ and $F \in G$; the other cases are similar

- **5** definition of \mathcal{M} takes care of the demand that every element of its domain is the denotation of a term
- 6 we claim \forall formula $F: \mathcal{M} \models F \iff F \in \mathcal{G}$

Claim: $\mathcal{M} \models F \iff F \in \mathcal{G}$

- we show the claim by induction on F:
 - for the base case, let $F = P(t_1, ..., t_n)$, if $F \in \mathcal{G}$, then by definition $(t_1, ..., t_n) \in P^{\mathcal{M}}$; hence $\mathcal{M} \models F$
 - for the step case, we assume $F = \exists x G(x)$ and $F \in \mathcal{G}$; the other cases are similar

by assumption $\mathcal G$ fulfils the closure properties, hence there exists a term t such that $G(t)\in \mathcal G$

- **5** definition of \mathcal{M} takes care of the demand that every element of its domain is the denotation of a term
- 6 we claim \forall formula $F: \mathcal{M} \models F \iff F \in \mathcal{G}$

Claim: $\mathcal{M} \models F \iff F \in \mathcal{G}$

- we show the claim by induction on F:
 - for the base case, let $F = P(t_1, ..., t_n)$, if $F \in \mathcal{G}$, then by definition $(t_1, ..., t_n) \in P^{\mathcal{M}}$; hence $\mathcal{M} \models F$
 - for the step case, we assume $F = \exists x G(x)$ and $F \in G$; the other cases are similar

by assumption $\mathcal G$ fulfils the closure properties, hence there exists a term t such that $G(t)\in \mathcal G$

by induction hypothesis: $\mathcal{M} \models G(t)$

- **5** definition of \mathcal{M} takes care of the demand that every element of its domain is the denotation of a term
- 6 we claim \forall formula $F: \mathcal{M} \models F \iff F \in \mathcal{G}$

Claim: $\mathcal{M} \models F \iff F \in \mathcal{G}$

- we show the claim by induction on F:
 - for the base case, let $F = P(t_1, ..., t_n)$, if $F \in \mathcal{G}$, then by definition $(t_1, ..., t_n) \in P^{\mathcal{M}}$; hence $\mathcal{M} \models F$
 - for the step case, we assume $F = \exists x G(x)$ and $F \in \mathcal{G}$; the other cases are similar

by assumption $\mathcal G$ fulfils the closure properties, hence there exists a term t such that $G(t)\in \mathcal G$

by induction hypothesis: $\mathcal{M} \models G(t)$ and thus $\mathcal{M} \models \exists x G(x)$

- **5** definition of \mathcal{M} takes care of the demand that every element of its domain is the denotation of a term
- 6 we claim \forall formula $F: \mathcal{M} \models F \iff F \in \mathcal{G}$

Claim: $\mathcal{M} \models F \iff F \in \mathcal{G}$ we show the claim by induction on F:

- for the base case, let $F = P(t_1, ..., t_n)$, if $F \in \mathcal{G}$, then by definition $(t_1, ..., t_n) \in P^{\mathcal{M}}$; hence $\mathcal{M} \models F$
- for the step case, we assume F = ∃xG(x) and F ∈ G; the other cases are similar

by assumption $\mathcal G$ fulfils the closure properties, hence there exists a term t such that $G(t)\in \mathcal G$

by induction hypothesis: $\mathcal{M} \models G(t)$ and thus $\mathcal{M} \models \exists x G(x)$

set of terms over $\ensuremath{\mathcal{L}}$

GM (Institute of Computer Science @ UIBK)

GM (Institute of Computer Science @ UIBK)

(no identity, no function symbols)

- let ${\cal L}$ be a language; ${\cal L}^+$ extension of ${\cal L}$ with infinitely many individual constants
- let S* be a set of formula sets (of L⁺), let S* admit the satisfaction properties
- \forall formula set $\mathcal{G} \in S^*$ (of \mathcal{L}), $\exists \ \mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

(no identity, no function symbols)

- let ${\cal L}$ be a language; ${\cal L}^+$ extension of ${\cal L}$ with infinitely many individual constants
- let S* be a set of formula sets (of L⁺), let S* admit the satisfaction properties
- \forall formula set $\mathcal{G} \in S^*$ (of \mathcal{L}), $\exists \mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

Proof

• construct sequence of sets belonging to S^*

$$\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \dots$$
 $\mathcal{G}_n \subseteq \mathcal{G}_{n+1}$

(no identity, no function symbols)

- let ${\cal L}$ be a language; ${\cal L}^+$ extension of ${\cal L}$ with infinitely many individual constants
- let S* be a set of formula sets (of L+), let S* admit the satisfaction properties
- \forall formula set $\mathcal{G} \in S^*$ (of \mathcal{L}), $\exists \ \mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

Proof

• construct sequence of sets belonging to S^*

$$\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \dots$$
 $\mathcal{G}_n \subseteq \mathcal{G}_{n+1}$

• \mathcal{G}_n is constructed in step n

(no identity, no function symbols)

- let ${\cal L}$ be a language; ${\cal L}^+$ extension of ${\cal L}$ with infinitely many individual constants
- let S* be a set of formula sets (of L+), let S* admit the satisfaction properties
- \forall formula set $\mathcal{G} \in S^*$ (of \mathcal{L}), $\exists \ \mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

Proof

• construct sequence of sets belonging to S^*

$$\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \dots$$
 $\mathcal{G}_n \subseteq \mathcal{G}_{n+1}$

- \mathcal{G}_n is constructed in step n
- set $\mathcal{G}^* = \bigcup_{n \geqslant 0} \mathcal{G}_n$

(no identity, no function symbols)

- let ${\cal L}$ be a language; ${\cal L}^+$ extension of ${\cal L}$ with infinitely many individual constants
- let S* be a set of formula sets (of L⁺), let S* admit the satisfaction properties
- \forall formula set $\mathcal{G} \in S^*$ (of \mathcal{L}), $\exists \ \mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

Proof

• construct sequence of sets belonging to S^*

$$\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \dots$$
 $\mathcal{G}_n \subseteq \mathcal{G}_{n+1}$

- \mathcal{G}_n is constructed in step n
- set $\mathcal{G}^* = \bigcup_{n \geqslant 0} \mathcal{G}_n$
- closure properties induce (infinitely many) demands

Demands

1 no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \ge n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \text{ if } (E \lor F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \ge n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \text{ if } (E \lor F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- 4 if $\neg (E \lor F) \in \mathcal{G}_n$, then $\exists k_1, k_2 \ge n$, $\mathcal{G}_{k_1+1} = \mathcal{G}_{k_1} \cup \{\neg E\}$ and $\mathcal{G}_{k_2+1} = \mathcal{G}_{k_2} \cup \{\neg F\}$

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \ge n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \text{ if } (E \lor F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- 4 if $\neg (E \lor F) \in \mathcal{G}_n$, then $\exists k_1, k_2 \ge n$, $\mathcal{G}_{k_1+1} = \mathcal{G}_{k_1} \cup \{\neg E\}$ and $\mathcal{G}_{k_2+1} = \mathcal{G}_{k_2} \cup \{\neg F\}$
- 5 if $\exists x F(x) \in \mathcal{G}_n$, then \exists term $t, \exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \ge n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \text{ if } (E \lor F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- 4 if $\neg (E \lor F) \in \mathcal{G}_n$, then $\exists k_1, k_2 \ge n$, $\mathcal{G}_{k_1+1} = \mathcal{G}_{k_1} \cup \{\neg E\}$ and $\mathcal{G}_{k_2+1} = \mathcal{G}_{k_2} \cup \{\neg F\}$
- **5** if $\exists x F(x) \in \mathcal{G}_n$, then \exists term $t, \exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- 6 if $\neg \exists x F(x) \in \mathcal{G}_n$, then \forall term $t, \exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{\neg F(t)\}$

Demands

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \ge n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \text{ if } (E \lor F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- 4 if $\neg (E \lor F) \in \mathcal{G}_n$, then $\exists k_1, k_2 \ge n$, $\mathcal{G}_{k_1+1} = \mathcal{G}_{k_1} \cup \{\neg E\}$ and $\mathcal{G}_{k_2+1} = \mathcal{G}_{k_2} \cup \{\neg F\}$
- **5** if $\exists x F(x) \in \mathcal{G}_n$, then \exists term $t, \exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- 6 if $\neg \exists x F(x) \in \mathcal{G}_n$, then \forall term $t, \exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{\neg F(t)\}$

Claim: all demands can be granted

Demands

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \ge n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \text{ if } (E \lor F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- 4 if $\neg (E \lor F) \in \mathcal{G}_n$, then $\exists k_1, k_2 \ge n$, $\mathcal{G}_{k_1+1} = \mathcal{G}_{k_1} \cup \{\neg E\}$ and $\mathcal{G}_{k_2+1} = \mathcal{G}_{k_2} \cup \{\neg F\}$
- **5** if $\exists x F(x) \in \mathcal{G}_n$, then \exists term $t, \exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- 6 if $\neg \exists x F(x) \in \mathcal{G}_n$, then \forall term $t, \exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{\neg F(t)\}$

Claim: all demands can be granted

• invariant of construction: $\forall n \ge 0$ we have $\mathcal{G}_n \in S^*$

Demands

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \ge n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \text{ if } (E \lor F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- 4 if $\neg (E \lor F) \in \mathcal{G}_n$, then $\exists k_1, k_2 \ge n$, $\mathcal{G}_{k_1+1} = \mathcal{G}_{k_1} \cup \{\neg E\}$ and $\mathcal{G}_{k_2+1} = \mathcal{G}_{k_2} \cup \{\neg F\}$
- **5** if $\exists x F(x) \in \mathcal{G}_n$, then \exists term $t, \exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- 6 if $\neg \exists x F(x) \in \mathcal{G}_n$, then \forall term $t, \exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{\neg F(t)\}$

Claim: all demands can be granted

- invariant of construction: $\forall n \ge 0$ we have $\mathcal{G}_n \in S^*$
- invariant takes care of first demand: no formula F and ¬F in G_n for all n ≥ 0

Demands

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \text{ if } (E \lor F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- 4 if $\neg (E \lor F) \in \mathcal{G}_n$, then $\exists k_1, k_2 \ge n$, $\mathcal{G}_{k_1+1} = \mathcal{G}_{k_1} \cup \{\neg E\}$ and $\mathcal{G}_{k_2+1} = \mathcal{G}_{k_2} \cup \{\neg F\}$
- **5** if $\exists x F(x) \in \mathcal{G}_n$, then \exists term $t, \exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- 6 if $\neg \exists x F(x) \in \mathcal{G}_n$, then \forall term $t, \exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{\neg F(t)\}$

Claim: all demands can be granted

- invariant of construction: $\forall n \ge 0$ we have $\mathcal{G}_n \in S^*$
- invariant takes care of first demand: no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- the satisfaction properties guarantee that any demand can be met

• consider Demand 5:

if $\exists x F(x) \in \mathcal{G}_n$, then \exists term $t, \exists k \ge n, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$

• consider Demand 5: if $\exists v F(v) \in C$, then \exists terms that $\exists k > n$

if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \ge n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$

• we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \mathcal{G}_n \cup \{F(c)\} \in S^*$$

consider Demand 5:

if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \ge n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$

• we use that S^* fulfils the satisfaction properties (c is fresh):

 $\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \ge n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$
- consider Demand 5:
 if ∃xF(x) ∈ G_n, then ∃ term t, ∃k ≥ n, G_{k+1} = G_k ∪ {F(t)}
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \ge n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

• we fulfil demand by setting (at step k)

$${\mathcal G}_{k+1} := {\mathcal G}_k \cup \{{\mathcal F}({\boldsymbol c})\}$$
 for fresh ${\boldsymbol c}$

- consider Demand 5:
 if ∃xF(x) ∈ G_n, then ∃ term t, ∃k ≥ n, G_{k+1} = G_k ∪ {F(t)}
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \ge n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

• we fulfil demand by setting (at step k)

$${\mathcal G}_{k+1} := {\mathcal G}_k \cup \{F(c)\}$$
 for fresh c

• similar for the Demands 2-6

- consider Demand 5:
 if ∃xF(x) ∈ G_n, then ∃ term t, ∃k ≥ n, G_{k+1} = G_k ∪ {F(t)}
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \ge n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

• we fulfil demand by setting (at step k)

$$\mathcal{G}_{k+1} := \mathcal{G}_k \cup \{F(c)\}$$
 for fresh c

• similar for the Demands 2-6

- consider Demand 5:
 if ∃xF(x) ∈ G_n, then ∃ term t, ∃k ≥ n, G_{k+1} = G_k ∪ {F(t)}
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \ge n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

• we fulfil demand by setting (at step k)

$$\mathcal{G}_{k+1} := \mathcal{G}_k \cup \{F(c)\}$$
 for fresh c

• similar for the Demands 2-6

- assign a pair (i, n) to each demand:
 - i is the number of the demand raised at step n

- consider Demand 5:
 if ∃xF(x) ∈ G_n, then ∃ term t, ∃k ≥ n, G_{k+1} = G_k ∪ {F(t)}
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \ge n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

• we fulfil demand by setting (at step k)

 $\mathcal{G}_{k+1} := \mathcal{G}_k \cup \{F(c)\}$ for fresh c

• similar for the Demands 2-6

- assign a pair (i, n) to each demand:
 i is the number of the demand raised at step n
- enumerate all pairs (i, n), that is, encode (i, n) as number k

- consider Demand 5:
 if ∃xF(x) ∈ G_n, then ∃ term t, ∃k ≥ n, G_{k+1} = G_k ∪ {F(t)}
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \ge n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

• we fulfil demand by setting (at step k)

 $\mathcal{G}_{k+1} := \mathcal{G}_k \cup \{F(c)\}$ for fresh c

• similar for the Demands 2-6

- assign a pair (i, n) to each demand:
 i is the number of the demand raised at step n
- enumerate all pairs (i, n), that is, encode (i, n) as number k
- in step k we grant the i^{th} demand that was raised at step n

- consider Demand 5:
 if ∃xF(x) ∈ G_n, then ∃ term t, ∃k ≥ n, G_{k+1} = G_k ∪ {F(t)}
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \ge n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

• we fulfil demand by setting (at step k)

 $\mathcal{G}_{k+1} := \mathcal{G}_k \cup \{F(c)\}$ for fresh c

• similar for the Demands 2-6

- assign a pair (i, n) to each demand:
 i is the number of the demand raised at step n
- enumerate all pairs (i, n), that is, encode (i, n) as number k
- in step k we grant the i^{th} demand that was raised at step n

formula set $\mathcal{G}=\mathcal{G}_0$

 $\exists x R(x)$

 $P(x_3) \vee Q(k_0)$

formula set \mathcal{G}_{k+1} , $k \ge 0$

 $\exists x R(x)$ $P(x_3) \lor Q(k_0)$

 $\neg \neg T(k_0, k_1)$

 $(E \lor F) \in \mathcal{G}_n$, then $\exists k \ge n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\}$ or $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$

 $(E \lor F) \in \mathcal{G}_n$, then $\exists k \ge n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\}$ or $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$

 $\neg \neg T(k_0, k_1)$

 $\exists x R(x)$

 $P(x_3) \vee Q(k_0)$

formula set \mathcal{G}_{k+1} , $k \ge 0$

 $\exists x F(x) \in \mathcal{G}_n$, then $\exists k \ge n$, \exists term t, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$

GM (Institute of Computer Science @ UIBK)

 $\exists x F(x) \in \mathcal{G}_n$, then $\exists k \ge n$, \exists term t, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$

Natural Deduction for First-Order Logic

Natural Deduction Extended

Natural Deduction Quantifier Rules

variable x in $\exists : e, \forall : i \text{ local to box}$

Example

Example

hence we have

 $\exists x \mathsf{P}(x), \forall x \forall y (\mathsf{P}(x) \to \mathsf{Q}(y)) \vdash \forall y \mathsf{Q}(y)$

GM (Institute of Computer Science @ UIBK)

Computational Logic

Example

GM (Institute of Computer Science @ UIBK

Definition

let \mathcal{G} be a set of formulas, F a formula

• if \exists a natural deduction proof from of F from finite $\mathcal{G}_0 \subseteq \mathcal{G}$, we write $\mathcal{G} \vdash F$

Definition

let \mathcal{G} be a set of formulas, F a formula

- if ∃ a natural deduction proof from of F from finite G₀ ⊆ G, we write G ⊢ F
- if ¬∃ proof of ⊥ from G, we say G is consistent, otherwise inconsistent

Definition

let \mathcal{G} be a set of formulas, F a formula

- if ∃ a natural deduction proof from of F from finite G₀ ⊆ G, we write G ⊢ F
- if ¬∃ proof of ⊥ from G, we say G is consistent, otherwise inconsistent

Theorem

first-order logic is sound and complete: $\mathcal{G} \models \mathsf{F} \iff \mathcal{G} \vdash \mathsf{F}$

Definition

let \mathcal{G} be a set of formulas, F a formula

- if ∃ a natural deduction proof from of F from finite G₀ ⊆ G, we write G ⊢ F
- if ¬∃ proof of ⊥ from G, we say G is consistent, otherwise inconsistent

Theorem

first-order logic is sound and complete: $\mathcal{G} \models \mathsf{F} \iff \mathcal{G} \vdash \mathsf{F}$

Proof Idea

• the set S of consistent sets of formulas admit the satisfactions properties

Definition

let \mathcal{G} be a set of formulas, F a formula

- if ∃ a natural deduction proof from of F from finite G₀ ⊆ G, we write G ⊢ F
- if ¬∃ proof of ⊥ from G, we say G is consistent, otherwise inconsistent

Theorem

first-order logic is sound and complete: $\mathcal{G} \models \mathsf{F} \iff \mathcal{G} \vdash \mathsf{F}$

Proof Idea

- the set S of consistent sets of formulas admit the satisfactions properties
- by the model existence theorem any $\mathcal{G}\in S$ is satisfiable

$$\mathcal{G} \models \mathsf{F} \Leftarrow \mathcal{G} \vdash \mathsf{F}$$

$$\mathcal{G} \models \mathit{F} \Leftarrow \mathcal{G} \vdash \mathit{F}$$

Soundness Theorem

first-order logic is sound

$$\mathcal{G} \models \mathsf{F} \Leftarrow \mathcal{G} \vdash \mathsf{F}$$

$\mathcal{G} \models \mathit{F} \Leftarrow \mathcal{G} \vdash \mathit{F}$

$\mathcal{G} \models \mathit{F} \Leftarrow \mathcal{G} \vdash \mathit{F}$

Lemma 6

the set S of all consistent set of formulas has the satisfaction properties

GM (Institute of Computer Science @ UIBK)

$$\mathcal{G} \models \mathit{F} \Leftarrow \mathcal{G} \vdash \mathit{F}$$

Lemma

 $\mathcal{G} \vdash F$ iff $\mathcal{G} \cup \{\neg F\}$ is inconsistent

Lemma ©

the set S of all consistent set of formulas has the satisfaction properties

GM (Institute of Computer Science @ UIBK)

first-order logic is complete

$$\mathcal{G} \models \mathsf{F} \Rightarrow \mathcal{G} \vdash \mathsf{F}$$

first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

Proof.

1 wlog \exists finite $\mathcal{G}_0 \subseteq \mathcal{G}, \mathcal{G}_0 \models F$

first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

Proof.

■ wlog ∃ finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \mathsf{Sat}(\mathcal{G} \cup \{\neg F\})$ if (∃ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \mathsf{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$

first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

Proof.

- wlog ∃ finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \operatorname{Sat}(\mathcal{G} \cup \{\neg F\})$ if (∃ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \operatorname{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$
- **2** suppose $\mathcal{G}_0 \not\vdash F$, we have to show $\mathcal{G}_0 \not\models F$

first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

Proof.

- wlog ∃ finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \operatorname{Sat}(\mathcal{G} \cup \{\neg F\})$ if (∃ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \operatorname{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$
- **2** suppose $\mathcal{G}_0 \not\vdash F$, we have to show $\mathcal{G}_0 \not\models F$
- **3** suppose $\mathcal{G}_0 \cup \{\neg F\}$ is consistent, then $\mathcal{G}_0 \cup \{\neg F\}$ is satisfiable
first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

Proof.

- wlog ∃ finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \operatorname{Sat}(\mathcal{G} \cup \{\neg F\})$ if (∃ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \operatorname{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$
- **2** suppose $\mathcal{G}_0 \not\vdash F$, we have to show $\mathcal{G}_0 \not\models F$
- **3** suppose $\mathcal{G}_0 \cup \{\neg F\}$ is consistent, then $\mathcal{G}_0 \cup \{\neg F\}$ is satisfiable
- 4 Lemma [®] yields that the set S of consistent formulas sets fulfils the satisfaction properties

first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

Proof.

- wlog ∃ finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \operatorname{Sat}(\mathcal{G} \cup \{\neg F\})$ if (∃ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \operatorname{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$
- **2** suppose $\mathcal{G}_0 \not\vdash F$, we have to show $\mathcal{G}_0 \not\models F$
- **3** suppose $\mathcal{G}_0 \cup \{\neg F\}$ is consistent, then $\mathcal{G}_0 \cup \{\neg F\}$ is satisfiable
- 4 Lemma (6) yields that the set S of consistent formulas sets fulfils the satisfaction properties
- 5 model existence yields that $\forall \mathcal{H} \in S$, \mathcal{H} satisfiable

first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

Proof.

- wlog ∃ finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \operatorname{Sat}(\mathcal{G} \cup \{\neg F\})$ if (∃ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \operatorname{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$
- **2** suppose $\mathcal{G}_0 \not\vdash F$, we have to show $\mathcal{G}_0 \not\models F$
- **3** suppose $\mathcal{G}_0 \cup \{\neg F\}$ is consistent, then $\mathcal{G}_0 \cup \{\neg F\}$ is satisfiable
- 4 Lemma (6) yields that the set S of consistent formulas sets fulfils the satisfaction properties
- **5** model existence yields that $\forall \mathcal{H} \in S$, \mathcal{H} satisfiable
- 6 as $\mathcal{G}_0 \cup \{\neg F\} \in S$, $\mathcal{G}_0 \cup \{\neg F\}$ satisfiable

first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

Proof.

- wlog ∃ finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \operatorname{Sat}(\mathcal{G} \cup \{\neg F\})$ if (∃ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \operatorname{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$
- **2** suppose $\mathcal{G}_0 \not\vdash F$, we have to show $\mathcal{G}_0 \not\models F$
- **3** suppose $\mathcal{G}_0 \cup \{\neg F\}$ is consistent, then $\mathcal{G}_0 \cup \{\neg F\}$ is satisfiable
- 4 Lemma (6) yields that the set S of consistent formulas sets fulfils the satisfaction properties
- **5** model existence yields that $\forall \mathcal{H} \in S$, \mathcal{H} satisfiable
- **6** as $\mathcal{G}_0 \cup \{\neg F\} \in S$, $\mathcal{G}_0 \cup \{\neg F\}$ satisfiable

we have only considered the case without function symbols, without =