ogic

Computational Logic

Georg Moser
Institute of Computer Science @ UIBK

Winter 2012

http://cl-informatik.uibk.ac.at

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

GM (Institute of Computer Science @ UIBK) Computational Logic 74/111

Summary

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

GM (Institute of Computer Science @ UIBK] Computational Logic

Summary

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

(EI satisfaction properties}

GM (Institute of Computer Science @ UIBK] Computational Logic

Summary

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

S admits satisfaction properties =
S* admits satisfaction properties

(Institute of Computer Science @ UIBK] Computational Logic 74/111

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

S admits satisfaction properties =

G € S is satisfiable -

GM (Institute of Computer Science @ UIBK) Computational Logic 74/111

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

GM (Institute of Computer Science @ UIBK] Computational Logic

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

GM (Institute of Computer Science @ UIBK] Computational Logic

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

GM (Institute of Computer Science @ UIBK) Computational Logic

Summary
Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Lowenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness

Extensions and Restrictions of First Order
intuitionistic logic, modal logic, second-order logic

Automated Reasoning

normal forms, Herbrand's Theorem, history of theorem proving, automated
reasoning (with equality)

GM (Institute of Computer Science @ UIBK) Computational Logic

Summary
Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Lowenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness

Extensions and Restrictions of First Order
intuitionistic logic, modal logic, second-order logic

Automated Reasoning

normal forms, Herbrand's Theorem, history of theorem proving, automated
reasoning (with equality)

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

L base language; £ D L infinitely many new individual constants

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥/ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥/ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1

GM (Institute of Computer Science @ UIBK) Computational Logic 76/111

Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥/ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1

G has closure properties = 9 model

M, MEG

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥/ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1

S admits satisfaction properties =
G € S admits closure properties

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥/ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1

GM (Institute of Computer Science @ UIBK) Computational Logic 76/111

Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit

GM (Institute of Computer Science @ UIBK) Computational Logic

Closure Properties
Lemma

the set G of formulas that are true in M admit
no formula F and =F in G

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Closure Properties

Lemma

the set G of formulas that are true in M admit
no formula F and —F in G
if——Feg, then Feg

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and =F in G

if——Feg, then Feg
if(EVF)eG, thenEeGorFeg

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Closure Properties

Lemma

the set G of formulas that are true in M admit
no formula F and =F in G

if——Feg, then Feg
if(EVF)egG, then Ec€GorFeg
if (EV F)eg, then -E € G and -F € G

GM (Institute of Computer Science @ UIBK)

Computational Logic

Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and =F in G

if——Feg, then Feg

if(EVF)eG, thenEeGorFeg

if (EV F)eg, then -E € G and -F € G

if IxF(x) € G, then 3 term t (of LT), F(t) € G

(-~ oI

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and =F in G

if——Feg, then Feg

if(EVF)eG, thenEeGorFeg

if (EV F)eg, then -E € G and -F € G

if IxF(x) € G, then 3 term t (of LT), F(t) € G

if ~3xF(x) € G, then ¥ term t (of LT), =F(t) € G

BEoEN

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and =F in G

if——Feg, then Feg

if(EVF)eG, thenEeGorFeg

if (EV F)eg, then -E € G and -F € G

if IxF(x) € G, then 3 term t (of LT), F(t) € G

if ~3xF(x) € G, then ¥ term t (of LT), =F(t) € G

BEoEN

Definition
we call the properties of G closure properties

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Lemma ®
let G be a formula set admitting the closure properties

GM (Institute of Computer Science @ UIBK) Computational Logic

Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

GM (Institute of Computer Science @ UIBK) Computational Logic

Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

GM (Institute of Computer Science @ UIBK) Computational Logic

Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Lemma @

let £ be a language; LT extension of £ with infinitely many
individual constants

GM (Institute of Computer Science @ UIBK) Computational Logic

Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Lemma @

let £ be a language; LT extension of £ with infinitely many
individual constants

let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties

GM (Institute of Computer Science @ UIBK) Computational Logic

Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Lemma @

let £ be a language; LT extension of £ with infinitely many
individual constants

let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties

V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Lemma @
let £ be a language; LT extension of £ with infinitely many
individual constants
let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties

V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof of Model Existence
by Lemma ® and Lemma ® |

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then 3 interpretation M in which every element of the domain is
the denotation of some term

e MEG

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then 3 interpretation M in which every element of the domain is
the denotation of some term

e MEG

Proof
the domain of M is the set of terms (of L)

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then 3 interpretation M in which every element of the domain is
the denotation of some term

e MEG
Proof
the domain of M is the set of terms (of L)

V constants ¢

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then 3 interpretation M in which every element of the domain is
the denotation of some term

e MEG
Proof
the domain of M is the set of terms (of L)

V constants ¢

cti=c
V predicate constant P, V terms ti,..., ty:
(t1,...,ty) € P = P(t1,...,t)) €G

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then 3 interpretation M in which every element of the domain is
the denotation of some term

e MEG
Proof
the domain of M is the set of terms (of L)

V constants ¢

cti=c
V predicate constant P, V terms ti,..., ty:
(t1,...,ty) € P = P(t1,...,t)) €G

V variables x: /(x) := x

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<+<= Feg
we show the claim by induction on F:

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<«< Feg
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,t,) € PM; hence M = F

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<«< Feg
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,ty) € P, hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<«< Feg
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,ty) € P, hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G(t) € G

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<«< Feg
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,t,) € PM; hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G(t) € G

by induction hypothesis: M = G(t)

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<«< Feg
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,t,) € PM; hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G(t) € G

by induction hypothesis: M = G(t) and thus M = 3xG(x)

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<«< Feg
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,t,) € PM; hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G(t) € G

by induction hypothesis: M = G(t) and thus M = 3xG(x)

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Model Construction in a Picture

set of terms over L

X7

. X6
/(.5 X5
Ky X4
k3 X3
ko X2
kq X1
ko X0

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Model Construction in a Picture

set of terms over L domain of M

X7 X7

X6 : X6
ks X5 k-5 X5
ks X4 kq X4
k3 X3 k3 X3
ko X2 ko X2
kk x ki X1
ko X0 ko X0

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Model Construction in a Picture

set of terms over L domain of M

X7 X7

X6 : X6
ks X5 M k-5 X5
ks X4 kq X4
k3 /@/\ ks X3
ko X2 ko X2
kq X1 kq X1
ko X0 ko X0

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Model Construction in a Picture

set of terms over L domain of M
14

X.7 /\ X.7

X6 : X6
ks X5 M k-5 X5
ks X4 kq X4
k3 /@/\ ks X3
ko X2 ko X2
kq X1 kq X1
ko X0 ko X0

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Construction in a Picture

formula set G domain of M

x7

: X6
k5 X5
kg X4
k3 X3
ko X2
kq X1
ko X0

GM (Institute of Computer Science @ UIBK) Computational Logic 81/111

Model Construction in a Picture

formula set G domain of M

kQERM

x3 € PM X7

: X6
k5 X5
kg X4
k3 X3
ko X2
kq X1
ko X0

GM (Institute of Computer Science @ UIBK) Computational Logic 81/111

Model Existence

Model Construction in a Picture

formula set G domain of M

M

GM (Institute of Computer Science @ UIBK) Computational Logic 81/111

Model Existence

Proof of Lemma @
(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
o V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

GM (Institute of Computer Science @ UIBK] Computational Logic

Model Existence

Proof of Lemma @
(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
o V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof
e construct sequence of sets belonging to S*

G =20G0,01,G2,... Gn C Gnt1

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof of Lemma @

(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
o V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof
e construct sequence of sets belonging to S*

G =20G0,01,G2,... Gn C Gnt1

e G, is constructed in step n

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof of Lemma @

(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
o V formula set G € S$* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof
e construct sequence of sets belonging to S*

G =20G0,01,G2,... Gn C Gnt1

e G, is constructed in step n

o set G = U,>09n

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof of Lemma @

(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
o V formula set G € S$* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof
e construct sequence of sets belonging to S*

G =20G0,01,G2,... Gn C Gnt1

e G, is constructed in step n

o set G = U,>09n

e closure properties induce (infinitely many) demands

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

Demands
no formula F and =F in G, forall n >0

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

Demands
no formula F and =F in G, forall n >0
if -——F € G,, then 3k > n, gk+1 =G, U {F}

GM (Institute of Computer Science @ UIBK] Computational Logic

Proof (cont'd)

Demands
no formula F and =F in G, forall n >0
if ==F € Gp, then 3k > n, G11 = Gk U{F}
if (EV F) € Gp, then 3k > n, Gyy1 =Gk U{E} or Gey1 = G U{F}

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if ==F € Gp, then 3k > n, G11 = Gk U{F}
if (EV F) € Gp, then 3k > n, Gyy1 =Gk U{E} or Gey1 = G U{F}
if 7(EV F) € G, then ki, ko > n, Gy, 41 = Gk, U{—E} and
Glo+1 = Gk, U{F}

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -—F € G,, then dk > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gey1 = G U{F}
if —|(E vV F) € G,, then 3k, ko > n, gkl+1 = gk1 U {—'E} and
Glot1 = Gk, U {~F}
if IxF(x) € Gy, then I term t, Ik = n, Grr1 = Gk U {F(t)}

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -——F € G,, then 3k > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gey1 = G U{F}
if —|(E vV F) € G,, then 3k, ko > n, gkl+1 = gk1 U {—'E} and
Glot1 = Gk, U {~F}
if IxF(x) € Gy, then I term t, Ik = n, Grr1 = Gk U {F(t)}
if =3xF(x) € Gp, then V term t, 3k > n, Gyy1 = G U{-F(t)}

B o

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -—F € G,, then dk > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gey1 = G U{F}
if —|(E V F) € G,, then 3k, ko > n, gkl+1 = gk1 U {—'E} and
Glo+1 = Gk, U{~F}
if IxF(x) € Gy, then I term t, Ik = n, Grr1 = Gk U {F(t)}
@A if ~3xF(x) € Gy, then V term t, Ik > n, Gyy1 = G U{-F(t)}

Claim: all demands can be granted

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -—F € G,, then dk > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gey1 = G U{F}
if —|(E V F) € G,, then 3k, ko > n, gkl+1 = gkl U {—|E} and
Glot1 = Gk, U {~F}
if IxF(x) € Gy, then I term t, Ik = n, Grr1 = Gk U {F(t)}
@A if ~3xF(x) € Gy, then V term t, Ik > n, Gyy1 = G U{-F(t)}

Claim: all demands can be granted

e invariant of construction: Vn > 0 we have G, € §*

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -——F € G,, then 3k > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gey1 = G U{F}
if —|(E vV F) € G,, then 3k, ko > n, gkl+1 = gkl U {—|E} and
Glo+1 = Gk, U{~F}
if IxF(x) € Gy, then I term t, Ik = n, Grr1 = Gk U {F(t)}
@A if ~3xF(x) € Gy, then V term t, Ik > n, Gyy1 = G U{-F(t)}

Claim: all demands can be granted
e invariant of construction: Vn > 0 we have G, € §*

e invariant takes care of first demand: no formula F and —=F in G, for
alln>0

GM (Institute of Computer Science @ UIBK) Computational Logic

Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -——F € G,, then 3k > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gey1 = G U{F}
if —|(E vV F) € G,, then 3k, ko > n, ng_]_ = gkl U {—|E} and
Glo+1 = Gk, U{~F}
if IxF(x) € Gy, then I term t, Ik = n, Grr1 = Gk U {F(t)}
@A if ~3xF(x) € Gy, then V term t, Ik > n, Gyy1 = G U{-F(t)}

Claim: all demands can be granted
e invariant of construction: Vn > 0 we have G, € §*

e invariant takes care of first demand: no formula F and —=F in G, for
alln>0

e the satisfaction properties guarantee that any demand can be met

v

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

o we use that S* fulfils the satisfaction properties (c is fresh):

IxF(x) € G € S = G, U{F(c)} € §*

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

o we use that S* fulfils the satisfaction properties (c is fresh):

IxF(x) € Gn € S* =Vk 2 nGyU{F(c)} € §*

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

o we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € Gn € S* =Vk 2 nGyU{F(c)} € §*
e we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

o we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € Gn € S* =Vk 2 nGyU{F(c)} € §*
e we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢

e similar for the Demands 2-6

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

o we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € Gn € S* =Vk 2 nGyU{F(c)} € §*
e we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢

e similar for the Demands 2-6

Claim: d fair strategy

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

o we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € Gn € S* =Vk 2 nGyU{F(c)} € §*
e we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢

e similar for the Demands 2-6

Claim: d fair strategy

e assign a pair (i, n) to each demand:
i is the number of the demand raised at step n

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

o we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € Gn € S* =Vk 2 nGyU{F(c)} € §*
o we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢

e similar for the Demands 2-6

Claim: d fair strategy

e assign a pair (i, n) to each demand:
i is the number of the demand raised at step n

e enumerate all pairs (i, n), that is, encode (i, n) as number k

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

o we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € Gn € S* =Vk 2 nGyU{F(c)} € §*
o we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢

e similar for the Demands 2-6

Claim: d fair strategy

e assign a pair (i, n) to each demand:
i is the number of the demand raised at step n

e enumerate all pairs (i, n), that is, encode (i, n) as number k

e in step k we grant the /" demand that was raised at step n

GM (Institute of Computer Science @ UIBK) Computational Logic

Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

o we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € Gn € S* =Vk 2 nGyU{F(c)} € §*
o we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢

e similar for the Demands 2-6

Claim: d fair strategy

e assign a pair (i, n) to each demand:
i is the number of the demand raised at step n

e enumerate all pairs (i, n), that is, encode (i, n) as number k

e in step k we grant the /" demand that was raised at step n [

GM (Institute of Computer Science @ UIBK) Computational Logic

Saturation of G in a Picture

formula set G = Gy

GM (Institute of Computer Science @ UIBK] Computational Logic

Model Existence

Saturation of G in a Picture

formula set G = Gy formula set Gx11, k>0

——F € Gy, then 3k > n, Gey1 = Gk U{F}

GM (Institute of Computer Science @ UIBK] Computational Logic

Model Existence

Saturation of G in a Picture

formula set G = Gy formula set Gx11, k>0

——F € Gy, then 3k > n, Gey1 = Gk U{F}

GM (Institute of Computer Science @ UIBK] Computational Logic

Model Existence

Saturation of G in a Picture

formula set G = Gy formula set Gx11, k>0

(EV-F) € Gp, then 3k > n, Gi1 = Gk U{E} or Gyy1 = G U{F}

GM (Institute of Computer Science @ UIBK] Computational Logic

Model Existence

Saturation of G in a Picture

formula set G = Gy formula set Gx11, k>0

(EV-F) € Gp, then 3k > n, Gi1 = Gk U{E} or Gyy1 = G U{F}

GM (Institute of Computer Science @ UIBK] Computational Logic

Model Existence

Saturation of G in a Picture

formula set G = Gy formula set Gx11, k>0

IxF(x) € G, then 3k > n, I term t, Gy1 = G U{F(t)}

GM (Institute of Computer Science @ UIBK] Computational Logic

Model Existence

Saturation of G in a Picture

formula set G = Gy formula set Gx11, k>0

IxF(x) € G, then 3k > n, I term t, Gy1 = G U{F(t)}

GM (Institute of Computer Science @ UIBK] Computational Logic

Natural Deduction for First-Order Logic

introduction elimination

E F . EANF EANF .
A EAF/\.I “E N:e = N:e

E F
E . _F EVF G G _

\ E\/F\/.I Evl__v.u c Ve

E

£ E E-F ..
PR ESF ! F '

GM (Institute of Computer Science @ UIBK) Computational Logic

Natural Deduction Extended

introduction elimination
E
S F_-F .
- —-E ’ 1
_ % - e
& 2 e
s=t F(s)
—== B 5 =] =:€
t=t F(t)

GM (Institute of Computer Science @ UIBK) Computational Logic

Natural Deduction

Natural Deduction Quantifier Rules
introduction elimination
x F(x)
F(t) IxF(x) G
3 EIxF(x) 3 C d: e
X
F(x) - VxF (x)
v VF(x) F(o)

variable x in 3: e, V: i local to box

GM (Institute of Computer Science @ UIBK)

Computational Logic

Natural Deduction

Example
1 IxP(x) premise
2 VxVy(P(x) — Q(y)) premise
3 y
4 X P(x) assumption
5 Vy(P(x) = Q(y)) 2,V:ie
6 P(x) — Q(y) 5V:e
7 Q(y) 4,6,—: e
8 Q(y) 1,4—-7,3: e
9 VyQ(y) 3—-8,V:i

GM (Institute of Computer Science @ UIBK) Computational Logic

Natural Deduction

Example
1 IxP(x) premise
2 VxVy(P(x) — Q(y)) premise
3 y
4 X P(x) assumption
5 vy(P(x) = Q(y)) 2,V:e
6 P(x) — Q(y) 5,7 ¢
7 Q(y) 4,6, —:e
8 Q(y) 1,4—7,3:6
9 YyQ(y) 3-8,V:i
hence we have
IxP(x), VxVy(P(x) — Q(y)) F VyQ(y)

GM (Institute of Computer Science @ UIBK) Computational Logic

Natural Deduction

Example
1 IxP(x) premise
2 VxVy(P(x) — Q(y)) premise
3 y
4 X P(x) assumption
5 Vy(P(x) = Q(y)) 2,V:e
6 P(x) — Q(y) 5,VZ e
7 Q(y) 4,6, —:e
8 Q(y) 1,4—7,3:6
9 VyQ(y) 3-8,V:i
hence we have (provability relationj
IxP(x), VxVy(P(x) — Q(y)) F VyQ(y)

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’'s Completeness Theorem

Godel's Completeness Theorem

Definition
let G be a set of formulas, F a formula

e if 3 a natural deduction proof from of F from finite Gg C G, we
write G - F

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’s Completeness Theorem

Godel's Completeness Theorem

Definition
let G be a set of formulas, F a formula

e if 3 a natural deduction proof from of F from finite Gg C G, we
write G - F

e if = 3 proof of L from G, we say G is consistent, otherwise
inconsistent

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’s Completeness Theorem

Godel's Completeness Theorem

Definition
let G be a set of formulas, F a formula

e if 3 a natural deduction proof from of F from finite Gg C G, we
write G - F

e if = 3 proof of L from G, we say G is consistent, otherwise
inconsistent

Theorem

first-order logic is sound and complete: G = F < G+ F

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’s Completeness Theorem

Godel's Completeness Theorem

Definition
let G be a set of formulas, F a formula

e if 3 a natural deduction proof from of F from finite Gg C G, we
write G - F

e if = 3 proof of L from G, we say G is consistent, otherwise
inconsistent

Theorem
first-order logic is sound and complete: G = F < G+ F

Proof Idea

e the set S of consistent sets of formulas admit the satisfactions
properties

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’s Completeness Theorem

Godel's Completeness Theorem

Definition
let G be a set of formulas, F a formula

e if 3 a natural deduction proof from of F from finite Gg C G, we
write G - F

e if = 3 proof of L from G, we say G is consistent, otherwise
inconsistent

Theorem
first-order logic is sound and complete: G |= F <= G+ F

Proof Idea

e the set S of consistent sets of formulas admit the satisfactions
properties

e by the model existence theorem any G € S is satisfiable |

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’'s Completeness Theorem

Soundness Theorem
first-order logic is sound

GFEF<GFF

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’s Completeness Theorem

Soundness Theorem
first-order logic is sound

GEF<GFF

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’s Completeness Theorem

Soundness Theorem
first-order logic is sound

GEF<GFF

S set of consistent sets = S admits
satisfaction properties

GM (Institute of Computer Science @ UIBK) Computational Logic 91/111

Godel’s Completeness Theorem

Soundness Theorem
first-order logic is sound

GEF<GFF

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’s Completeness Theorem

Soundness Theorem
first-order logic is sound

GEF<GFF

Lemma ®
the set S of all consistent set of formulas has the satisfaction properties J

GM (Institute of Computer Science @ UIBK) Computational Logic 91/111

Godel’s Completeness Theorem

Soundness Theorem
first-order logic is sound

GEF<GFF

Lemma
G & F iff GU {~F} is inconsistent

Lemma ®

the set S of all consistent set of formulas has the satisfaction properties

GM (Institute of Computer Science @ UIBK) Computational Logic 91/111

Godel’'s Completeness Theorem

Completeness Theorem

first-order logic is complete
GEF=GFF

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’'s Completeness Theorem

Completeness Theorem
first-order logic is complete

GEF=GFF

Proof.
wlog 3 finite Go C G, Go = F

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’'s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GHF

Proof.

wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {~F})) iff Go = F

GM (Institute of Computer Science @ UIBK] Computational Logic

Godel’'s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GHF

Proof.

wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {—F})) iff Go = F
suppose Go I/ F, we have to show Gg [~ F

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GHF

Proof.

wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {~F})) iff Go = F

suppose Go I/ F, we have to show Gg [~ F

suppose Go U {—F} is consistent, then Go U {—F} is satisfiable

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GHF

Proof.
wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {~F})) iff Go = F
suppose Go I/ F, we have to show Gg [~ F
suppose Go U {—F} is consistent, then Go U {—F} is satisfiable

Lemma ® yields that the set S of consistent formulas sets fulfils the
satisfaction properties

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GHF

Proof.

wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {~F})) iff Go = F

suppose Go I/ F, we have to show Gg [~ F

suppose Go U {—F} is consistent, then Go U {—F} is satisfiable

Lemma ® yields that the set S of consistent formulas sets fulfils the
satisfaction properties

model existence yields that V H € S, H satisfiable

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GHF

Proof.
wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {~F})) iff Go = F
suppose Go I/ F, we have to show Gg [~ F
suppose Go U {—F} is consistent, then Go U {—F} is satisfiable

Lemma ® yields that the set S of consistent formulas sets fulfils the
satisfaction properties

model existence yields that V H € S, H satisfiable
@A as GoU{—-F} €S, Go U{—~F} satisfiable

GM (Institute of Computer Science @ UIBK) Computational Logic

Godel’s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GHF

Proof.

wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {—F})) iff Go = F

suppose Go I/ F, we have to show Gg [~ F

suppose Go U {—F} is consistent, then Go U {—F} is satisfiable

Lemma ® yields that the set S of consistent formulas sets fulfils the
satisfaction properties

model existence yields that V H € S, H satisfiable

@A as GoU{—-F} €S, Go U{—~F} satisfiable -

4

we have only considered the case without function symbols, without =

GM (Institute of Computer Science @ UIBK) Computational Logic

	Summary
	Model Existence
	Natural Deduction
	Gödel's Completeness Theorem

