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Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model
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Summary

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model
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Summary

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

(EI satisfaction properties}
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Summary

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

S admits satisfaction properties =
S* admits satisfaction properties
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Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

S admits satisfaction properties =

G € S is satisfiable -
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Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model
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Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model
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Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model
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Summary
Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Lowenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness

Extensions and Restrictions of First Order
intuitionistic logic, modal logic, second-order logic

Automated Reasoning

normal forms, Herbrand's Theorem, history of theorem proving, automated
reasoning (with equality)
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Summary
Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Lowenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness

Extensions and Restrictions of First Order
intuitionistic logic, modal logic, second-order logic

Automated Reasoning

normal forms, Herbrand's Theorem, history of theorem proving, automated
reasoning (with equality)
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Model Existence

L base language; £ D L infinitely many new individual constants
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Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥/ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1
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Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥/ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1

G has closure properties = 9 model

M, MEG
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Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥/ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1

S admits satisfaction properties =
G € S admits closure properties
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Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥/ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
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Closure Properties
Lemma

the set G of formulas that are true in M admit
no formula F and =F in G
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Model Existence

Closure Properties

Lemma

the set G of formulas that are true in M admit
no formula F and —F in G
if——Feg, then Feg
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and =F in G

if——Feg, then Feg
if(EVF)eG, thenEeGorFeg
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Model Existence

Closure Properties

Lemma

the set G of formulas that are true in M admit
no formula F and =F in G

if——Feg, then Feg
if(EVF)egG, then Ec€GorFeg
if (EV F)eg, then -E € G and -F € G
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and =F in G

if——Feg, then Feg

if(EVF)eG, thenEeGorFeg

if (EV F)eg, then -E € G and -F € G

if IxF(x) € G, then 3 term t (of LT), F(t) € G

(-~ oI
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and =F in G

if——Feg, then Feg

if(EVF)eG, thenEeGorFeg

if (EV F)eg, then -E € G and -F € G

if IxF(x) € G, then 3 term t (of LT), F(t) € G

if ~3xF(x) € G, then ¥ term t (of LT ), =F(t) € G

BEoEN
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and =F in G

if——Feg, then Feg

if(EVF)eG, thenEeGorFeg

if (EV F)eg, then -E € G and -F € G

if IxF(x) € G, then 3 term t (of LT), F(t) € G

if ~3xF(x) € G, then ¥ term t (of LT ), =F(t) € G

BEoEN

Definition
we call the properties of G closure properties
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Model Existence

Lemma ®
let G be a formula set admitting the closure properties
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Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term
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Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG
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Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Lemma @

let £ be a language; LT extension of £ with infinitely many
individual constants
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Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Lemma @

let £ be a language; LT extension of £ with infinitely many
individual constants

let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
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Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Lemma @

let £ be a language; LT extension of £ with infinitely many
individual constants

let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties

V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties
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Model Existence

Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Lemma @
let £ be a language; LT extension of £ with infinitely many
individual constants
let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties

V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof of Model Existence
by Lemma ® and Lemma ® |
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Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then 3 interpretation M in which every element of the domain is
the denotation of some term

e MEG
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Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then 3 interpretation M in which every element of the domain is
the denotation of some term

e MEG

Proof
the domain of M is the set of terms (of L)
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Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then 3 interpretation M in which every element of the domain is
the denotation of some term

e MEG
Proof
the domain of M is the set of terms (of L)

V constants ¢
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Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then 3 interpretation M in which every element of the domain is
the denotation of some term

e MEG
Proof
the domain of M is the set of terms (of L)

V constants ¢

cti=c
V predicate constant P, V terms ti,..., ty:
(t1,...,ty) € P = P(t1,...,t)) €G
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Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then 3 interpretation M in which every element of the domain is
the denotation of some term

e MEG
Proof
the domain of M is the set of terms (of L)

V constants ¢

cti=c
V predicate constant P, V terms ti,..., ty:
(t1,...,ty) € P = P(t1,...,t)) €G

V variables x: /(x) := x
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<+<= Feg
we show the claim by induction on F:
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<«< Feg
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,t,) € PM; hence M = F
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<«< Feg
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,ty) € P, hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<«< Feg
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,ty) € P, hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G(t) € G
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<«< Feg
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,t,) € PM; hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G(t) € G

by induction hypothesis: M = G(t)
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<«< Feg
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,t,) € PM; hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G(t) € G

by induction hypothesis: M = G(t) and thus M = 3xG(x)
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formula F: M= F <= Fecg

Claim: MEF<«< Feg
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,t,) € PM; hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G(t) € G

by induction hypothesis: M = G(t) and thus M = 3xG(x)
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Model Existence

Model Construction in a Picture

set of terms over L

X7

. X6
/(.5 X5
Ky X4
k3 X3
ko X2
kq X1
ko X0
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Model Existence

Model Construction in a Picture

set of terms over L domain of M

X7 X7

X6 : X6
ks X5 k-5 X5
ks X4 kq X4
k3 X3 k3 X3
ko X2 ko X2
kk x ki X1
ko X0 ko X0
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Model Existence

Model Construction in a Picture

set of terms over L domain of M

X7 X7

X6 : X6
ks X5 M k-5 X5
ks X4 kq X4
k3 /@/\ ks X3
ko X2 ko X2
kq X1 kq X1
ko X0 ko X0
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Model Existence

Model Construction in a Picture

set of terms over L domain of M
14

X.7 /\ X.7

X6 : X6
ks X5 M k-5 X5
ks X4 kq X4
k3 /@/\ ks X3
ko X2 ko X2
kq X1 kq X1
ko X0 ko X0
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Model Construction in a Picture

formula set G domain of M

x7

: X6
k5 X5
kg X4
k3 X3
ko X2
kq X1
ko X0
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Model Construction in a Picture

formula set G domain of M

kQERM

x3 € PM X7

: X6
k5 X5
kg X4
k3 X3
ko X2
kq X1
ko X0
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Model Existence

Model Construction in a Picture

formula set G domain of M

M
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Model Existence

Proof of Lemma @
(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
o V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties
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Model Existence

Proof of Lemma @
(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
o V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof
e construct sequence of sets belonging to S*

G =20G0,01,G2,... Gn C Gnt1
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Model Existence

Proof of Lemma @

(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
o V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof
e construct sequence of sets belonging to S*

G =20G0,01,G2,... Gn C Gnt1

e G, is constructed in step n
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Model Existence

Proof of Lemma @

(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
o V formula set G € S$* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof
e construct sequence of sets belonging to S*

G =20G0,01,G2,... Gn C Gnt1

e G, is constructed in step n

o set G = U,>09n
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Model Existence

Proof of Lemma @

(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
o V formula set G € S$* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof
e construct sequence of sets belonging to S*

G =20G0,01,G2,... Gn C Gnt1

e G, is constructed in step n

o set G = U,>09n

e closure properties induce (infinitely many) demands
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Proof (cont'd)

Demands
no formula F and =F in G, forall n >0
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Proof (cont'd)

Demands
no formula F and =F in G, forall n >0
if -——F € G,, then 3k > n, gk+1 =G, U {F}
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Proof (cont'd)

Demands
no formula F and =F in G, forall n >0
if ==F € Gp, then 3k > n, G11 = Gk U{F}
if (EV F) € Gp, then 3k > n, Gyy1 =Gk U{E} or Gey1 = G U{F}

GM (Institute of Computer Science @ UIBK) Computational Logic



Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if ==F € Gp, then 3k > n, G11 = Gk U{F}
if (EV F) € Gp, then 3k > n, Gyy1 =Gk U{E} or Gey1 = G U{F}
if 7(EV F) € G, then ki, ko > n, Gy, 41 = Gk, U{—E} and
Glo+1 = Gk, U{F}
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Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -—F € G,, then dk > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gey1 = G U{F}
if —|(E vV F) € G,, then 3k, ko > n, gkl+1 = gk1 U {—'E} and
Glot1 = Gk, U {~F}
if IxF(x) € Gy, then I term t, Ik = n, Grr1 = Gk U {F(t)}
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Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -——F € G,, then 3k > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gey1 = G U{F}
if —|(E vV F) € G,, then 3k, ko > n, gkl+1 = gk1 U {—'E} and
Glot1 = Gk, U {~F}
if IxF(x) € Gy, then I term t, Ik = n, Grr1 = Gk U {F(t)}
if =3xF(x) € Gp, then V term t, 3k > n, Gyy1 = G U{-F(t)}

B o
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Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -—F € G,, then dk > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gey1 = G U{F}
if —|(E V F) € G,, then 3k, ko > n, gkl+1 = gk1 U {—'E} and
Glo+1 = Gk, U{~F}
if IxF(x) € Gy, then I term t, Ik = n, Grr1 = Gk U {F(t)}
@A if ~3xF(x) € Gy, then V term t, Ik > n, Gyy1 = G U{-F(t)}

Claim: all demands can be granted

GM (Institute of Computer Science @ UIBK) Computational Logic



Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -—F € G,, then dk > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gey1 = G U{F}
if —|(E V F) € G,, then 3k, ko > n, gkl+1 = gkl U {—|E} and
Glot1 = Gk, U {~F}
if IxF(x) € Gy, then I term t, Ik = n, Grr1 = Gk U {F(t)}
@A if ~3xF(x) € Gy, then V term t, Ik > n, Gyy1 = G U{-F(t)}

Claim: all demands can be granted

e invariant of construction: Vn > 0 we have G, € §*

GM (Institute of Computer Science @ UIBK) Computational Logic



Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -——F € G,, then 3k > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gey1 = G U{F}
if —|(E vV F) € G,, then 3k, ko > n, gkl+1 = gkl U {—|E} and
Glo+1 = Gk, U{~F}
if IxF(x) € Gy, then I term t, Ik = n, Grr1 = Gk U {F(t)}
@A if ~3xF(x) € Gy, then V term t, Ik > n, Gyy1 = G U{-F(t)}

Claim: all demands can be granted
e invariant of construction: Vn > 0 we have G, € §*

e invariant takes care of first demand: no formula F and —=F in G, for
alln>0
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Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -——F € G,, then 3k > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gey1 = G U{F}
if —|(E vV F) € G,, then 3k, ko > n, ng_]_ = gkl U {—|E} and
Glo+1 = Gk, U{~F}
if IxF(x) € Gy, then I term t, Ik = n, Grr1 = Gk U {F(t)}
@A if ~3xF(x) € Gy, then V term t, Ik > n, Gyy1 = G U{-F(t)}

Claim: all demands can be granted
e invariant of construction: Vn > 0 we have G, € §*

e invariant takes care of first demand: no formula F and —=F in G, for
alln>0

e the satisfaction properties guarantee that any demand can be met

v
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Proof (cont'd)
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Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}
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Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}
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e consider Demand 5:
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Gk+1:= Gk U{F(c)} for fresh ¢

e similar for the Demands 2-6
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Natural Deduction for First-Order Logic

introduction elimination

E F . EANF EANF .
A EAF/\.I “E N:e = N:e

E F
E . _F EVF G G _

\ E\/F\/.I Evl__v.u c Ve

E

£ E E-F ..
PR ESF ! F '
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Natural Deduction Extended

introduction elimination
E
S F_-F .
- —-E ’ 1
_ % - e
& 2 e
s=t F(s)
—== B 5 = ] =:€
t=t F(t)
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Natural Deduction

Natural Deduction Quantifier Rules
introduction elimination
x  F(x)
F(t) IxF(x) G
3 EIxF(x) 3 C d: e
X
F(x) - VxF (x)
v VF(x) F(o)

variable x in 3: e, V: i local to box
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Natural Deduction

Example
1 IxP(x) premise
2 VxVy(P(x) — Q(y)) premise
3 y
4 X P(x) assumption
5 Vy(P(x) = Q(y))  2,V:ie
6 P(x) — Q(y) 5V:e
7 Q(y) 4,6,—: e
8 Q(y) 1,4—-7,3: e
9 VyQ(y) 3—-8,V:i
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Natural Deduction

Example
1 IxP(x) premise
2 VxVy(P(x) — Q(y)) premise
3 y
4 X P(x) assumption
5 vy(P(x) = Q(y))  2,V:e
6 P(x) — Q(y) 5,7 ¢
7 Q(y) 4,6, —:e
8 Q(y) 1,4—7,3:6
9 YyQ(y) 3-8,V:i
hence we have
IxP(x), VxVy(P(x) — Q(y)) F VyQ(y)
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Natural Deduction

Example
1 IxP(x) premise
2 VxVy(P(x) — Q(y)) premise
3 y
4 X P(x) assumption
5 Vy(P(x) = Q(y))  2,V:e
6 P(x) — Q(y) 5,VZ e
7 Q(y) 4,6, —:e
8 Q(y) 1,4—7,3:6
9 VyQ(y) 3-8,V:i
hence we have (provability relationj
IxP(x), VxVy(P(x) — Q(y)) F VyQ(y)
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Godel’'s Completeness Theorem

Godel's Completeness Theorem

Definition
let G be a set of formulas, F a formula

e if 3 a natural deduction proof from of F from finite Gg C G, we
write G - F
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Godel’s Completeness Theorem

Godel's Completeness Theorem

Definition
let G be a set of formulas, F a formula

e if 3 a natural deduction proof from of F from finite Gg C G, we
write G - F

e if = 3 proof of L from G, we say G is consistent, otherwise
inconsistent

Theorem
first-order logic is sound and complete: G |= F <= G+ F

Proof Idea

e the set S of consistent sets of formulas admit the satisfactions
properties

e by the model existence theorem any G € S is satisfiable |
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Godel’'s Completeness Theorem

Soundness Theorem
first-order logic is sound

GFEF<GFF
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Godel’s Completeness Theorem

Soundness Theorem
first-order logic is sound

GEF<GFF

Lemma
G & F iff GU {~F} is inconsistent

Lemma ®

the set S of all consistent set of formulas has the satisfaction properties
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Godel’'s Completeness Theorem

Completeness Theorem

first-order logic is complete
GEF=GFF
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Completeness Theorem
first-order logic is complete

GEF=GFF

Proof.
wlog 3 finite Go C G, Go = F
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Godel’s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GHF

Proof.

wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {—F})) iff Go = F

suppose Go I/ F, we have to show Gg [~ F

suppose Go U {—F} is consistent, then Go U {—F} is satisfiable

Lemma ® yields that the set S of consistent formulas sets fulfils the
satisfaction properties

model existence yields that V H € S, H satisfiable

@A as GoU{—-F} €S, Go U{—~F} satisfiable -

4

we have only considered the case without function symbols, without =
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