
The whole is of necessity prior to
the part.

Aristotle

11. Divide and Conquer

11.1. Divide and Conquer

Many recursive algorithms follow the divide and conquer philosophy. They divide the
problem into smaller subproblems (of the same shape) and then conquer these subprob-
lems (either because they are trivial or they are further divided). Finally the solutions
of the subproblems are combined into a solution for the original problem.1

In the sequel we will demonstrate the divide and conquer principle by discussing
mergesort, which works as follows: To sort a list zs we distinguish two cases. In the
base case zs contains at most one element and is already sorted. In the step case we
divide zs into two sublists xs and ys (such that zs = xs@ys). After sorting xs and ys

we merge the result, such that the obtained list is also sorted. In OCaml, mergesort can
be implemented as follows:

❧❡t r❡❝ merge xs ys = ♠❛t❝❤ (xs,ys) ✇✐t❤

| ([],ys) -> ys

| (xs,[]) -> xs

| (x::xs,y::ys) -> ✐❢ x < y t❤❡♥ x::(merge xs (y::ys))

❡❧s❡ y::(merge (x::xs) ys)

❧❡t r❡❝ msort = ❢✉♥❝t✐♦♥

| [] -> []

| [z] -> [z]

| zs -> ❧❡t (xs,ys) = Lst.split_at (Lst.length zs / 2) zs ✐♥

merge (msort xs) (msort ys)

The above implementation divides the list which should be sorted (approximately)
at the middle (using split_at) and sorts the first half and the second half separately.
Finally the obtained lists are merged into the resulting list. The execution of msort can
be visualized by the trees in Figure 11.1. First the recursive calls to msort decompose
the list until all lists are singleton. This phase is top to bottom (cf. Figure 11.1(a)). In
a second phase the resulting list is built by merging the already sorted ones. This phase
is executed bottom to top (cf. Figure 11.1(b)).

Next we will investigate the runtime of msort. Note that the runtime of msort is
mainly depending on the length of the list to sort. The actual list contents are of minor
importance. Hence the runtime of msort is a function T : N → N where n is the length
of the list zs we want to sort and T (n) is the number of instructions that are executed
when calling msort zs. To simplify matters we will consider a worst case analysis and

1Consequently the concept should be named divide and conquer and combine but since this sounds
worse (and is more work to write) we prefer the shorter name.
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Figure 11.1.: Evaluation of msort [3;1;2;4;3].

study the asymptotic runtime only.2 We will use standard O-notation for this. Hence we
are looking for a function f : N → N such that T ∈ O(f). Sometimes we are interested
in tight upper bounds on T (n) and then write T ∈ Θ(f).

The runtime of a divide and conquer algorithm can always be computed by summing
up the runtime for each of the steps to divide the problem, to conquer the subprob-
lems, and to combine the solutions. We investigate each of the steps below for our
implementation of msort:

• divide: We divide the original list of length n into two lists. We used the function
split_at for this purpose. Looking at the implementation of split_at we see
that this part can be done in O(n) time. Hence the runtime of divide is O(n).

• conquer : Here we must consider two cases. If we have an empty or a singleton
list, then this list is already sorted and we can just return it. Hence in this case
we have constant runtime, i.e., O(1). In the other case we conquer each of the two
lists (obtained from divide). Note that split_at produced two sublists, each of
length (approximately) n

2
. To sort one of them we need time T (n

2
) and hence for

both of them we obtain a runtime of 2T (n
2
). Hence in this case conquer runs in

time 2T (n
2
).

• combine: Finally we need to combine the two sorted lists into a single sorted list
(using merge). Since both of these lists are of length n

2
and one element of either

list is removed in each recursive call, merge runs in time O(n).

Hence for msort the function T can be given as follows (for some constant c):

T (n) =

{

c if n 6 1

2T (n
2
) + cn otherwise

(11.1)

2Here asymptotic means that we are not interested in the exact number of operations msort executes
but in the order of the performed operations.
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Figure 11.2.: A tree for the recurrence (11.1).

The case n 6 1 will be called the base case (in contrast to the step case). Note that
2T (n

2
) is the time needed for conquer while cn is the accumulated time for divide and

combine. Equations of the form (11.1) are called recurrence equations or just recurrences.
Note that the recurrence (11.1) does not yet give a bound on the runtime of msort.
However, we can use it to compute such a bound. We unfold recurrence (11.1) recursively
and obtain a binary tree (see Figure 11.2). For ease of discussion we assume that n is a
power of 2, i.e., n = 2k for some k ∈ N, and hence the tree is perfect (see Section 6.1.2).
Each node corresponds to a call to msort and we label the node by the runtime needed
for the phases divide and combine. At the root node we split a list of length n into
two sublists (divide) and then merge the sorted lists, each of length (approximately) n

2

(combine). Hence this node gives runtime cn. The two recursive calls (on lists of length
n
2
) give runtime cn

2
each, so together also yield cn. This actually holds for each level

of the tree. Note that the bottom level of the tree has n nodes since we started with
a list of length n. So how many levels are there? Or stated differently: What is the
height of the tree? From Exercise 11.1 we obtain that there are lg n+1 levels and hence
T (n) 6 cn × (lg n + 1) ∈ O(n lg n).3

There are several ways to solve recurrence equations, but for the ones we meet in this
course unfolding the tree will suffice. In general the runtime of a divide and conquer
algorithm can be given as

T (n) =

{

c base case

aT (n
b
) + D(n) + C(n) step case

(11.2)

Here a is the number of subproblems that must be conquered in the step case and n
b

is the size of each of these problems. Furthermore the time needed to divide (D(n))
the problems and to combine (C(n)) the solutions must be added. For msort above we
have a = b = 2, but there exist many other problems where a and b are different from

3By lg n we abbreviate log
2
n.
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11. Divide and Conquer

two (and even different from each other). Note that D(n) + C(n) tells us how costly a
single function call is, whereas a gives us the number of recursive function calls we have
to consider. However, the problems treated recursively are smaller (n

b
), which we must

take into account.
To get an even simpler form of recurrence equations we often collapse the cases for

dividing problems, combining solutions, and the base case. Then a recurrence equation
reads as follows:

T (n) = aT (
n

b
) + f(n) (11.3)

Here a, b ∈ N and f : N → N is an asymptotically positive function. Often we do not
need to solve recurrence equations on our own, but we can use the Master Theorem,
which tells us how the solutions look like in many cases. Basically, we compare the cost
for a single function call (f(n)) with the number of nodes in the last level of the tree
(nlogb a, which estimates the number of recursive calls needed if b > 1). If the cost for a
single call is significantly smaller than the number of recursive calls (f(n) ∈ O(nlogb a−ǫ),
then the latter determines the overall complexity. This corresponds to the first case in
the theorem. The reasoning for the third case is analogous. In the second case the cost
of one function call approximately equals the number of recursive calls and hence the
reasoning is similar as in Figure 11.2, explaining the additional factor lg n.

Theorem 11.1 (Master Theorem). Let a > 1, b > 1, and T (n) as in (11.3). Then

1. T (n) ∈ Θ(nlogb a) if f(n) ∈ O(nlogb a−ǫ) for some ǫ > 0.

2. T (n) ∈ Θ(nlogb a lg n) if f(n) ∈ Θ(nlogb a).

3. T (n) ∈ Θ(f(n)) if f(n) ∈ Ω(nlogb a+ǫ) for ǫ > 0 and af(n
b
) 6 cf(n) for some c < 1

and sufficiently large n.

Since for msort we have a = b = 2 and f(n) ∈ Θ(n), the Master Theorem (case 2)
applies and yields T (n) = Θ(n lg n).

We have seen that for many divide and conquer algorithms we can easily conclude
their runtime by just checking if the Master Theorem applies. But this is far from being
the only benefit. Another nice fact about recursive algorithms is that proving their
correctness is usually easier than when considering loops since induction can be applied.
In the exercises you are asked to prove the correctness of msort (see Exercise 11.3). Have
you ever tried to prove bubblesort correct?

11.2. Dynamic Programming

Dynamic programming is a technique that prefers recalling over recomputing. To this end
it stores the results of subproblems and just looks the result up instead of recomputing
it. Clearly, storing the results for subproblems will need additional memory. Not all
divide and conquer problems are equally well-suited for dynamic programming. Those
where it is necessary to solve many (identical) subproblems frequently will benefit more
than problems where all subproblems look (fairly) different. Another important issue
is that the lookup of a result should be drastically cheaper than the recomputation of a
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11. Divide and Conquer

result. In practice one typically uses data structures that allow a lookup in constant or
logarithmic time. In the imperative world this typically holds for hash tables (lookup is
possible in constant time if there is at most one element in each bucket) whereas in the
functional setting often binary search trees (lookup is possible in logarithmic time if the
tree is balanced) are used. Since theory is pretty independent from such implementation
matters we will refer to it in the sequel just as (lookup) table and assume that operations
such as insertion (add) and lookup (find) are sufficiently efficient. We will use the
interface to a lookup table shown in Listing 11.1.

t②♣❡ (’a,’b) t

✈❛❧ empty: (’a,’b) t

✈❛❧ mem: (’a,’b) t -> ’a -> bool

✈❛❧ find : (’a,’b) t -> ’a -> ’b

✈❛❧ add : (’a,’b) t -> ’a -> ’b -> (’a,’b) t

Listing 11.1: Lookup.mli

The type of a lookup table is (’a,’b) t where ’a is the type for the keys and ’b

the type for the values associated with the keys. The constant empty returns an empty
table. The function mem t k checks if table t contains a binding for the key k. If so,
then find t k returns the value v associated to k in table t. Finally, add t k v adds
a new binding (k,v) to table t and returns the new table.

11.2.1. Fibonacci Numbers

We have already seen that the straightforward implementation of the Fibonacci function
is inefficient, since fib n results in approximately 2n recursive calls. To overcome this
exponential growth we will dynamically program (hence the name) a table, where for
each m (here 1 6 m 6 n) we have two cases. If we did not yet consider m we compute
fib m and add as a binding for m the value of fib m to the table. If m has already
been considered, then we just look up the binding, i.e., fib m, in the table. To store
the table linear space is needed but now it is possible to compute fib m in linear time.
An implementation of the Fibonacci numbers using dynamic programming can be done
as follows:

❧❡t fib_dp n =

❧❡t r❡❝ fib t n =

✐❢ Lookup.mem t n t❤❡♥ t

❡❧s❡ ✐❢ n < 2 t❤❡♥ Lookup.add t n 1

❡❧s❡

❧❡t t = fib t (n-1) ✐♥

❧❡t t = fib t (n-2) ✐♥

❧❡t r = Lookup.find t (n-1) + Lookup.find t (n-2) ✐♥

❧❡t t = Lookup.add t n r ✐♥

t

✐♥ Lookup.find (fib Lookup.empty n) n
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11. Divide and Conquer

The differences to the original implementation are as follows: The (inner) fib function
now has an additional parameter t, which is a lookup table that will finally contain all
Fibonacci numbers as bindings. Hence fib now returns a lookup table instead of a single
Fibonacci number. The first thing fib checks is if it has already computed the Fibonacci
number for the current parameter n. In this case the binding is already in the table and
it can be returned without changes. If there is no binding yet for n then we have to add
it. This is easy in the base case (n < 2). In the step case we first get the (updated)
tables for the recursive calls to n− 1 and n− 2. Now the table contains bindings for the
(n−1)-st and the (n−2)-nd Fibonacci numbers which we can just lookup in the table to
compute the n-th Fibonacci number, which we finally add to the table before we return
it. Since fib Lookup.empty n returns a table containing the first n Fibonacci numbers
the last line then looks up the n-th Fibonacci number.

We have seen that dynamic programming allows to reduce exponential runtime to
polynomial runtime while the additional memory needed is only linear (in the size of the
input).

11.2.2. Optimal Rod Cutting

Another example demonstrating the benefit of dynamic programming is the Optimal
Rod Cutting problem. This problem comes as an optimization problem. We are given
a rod of length n and a table of prices pi for 1 6 i 6 n where pi is the price for a rod
of length i. The question is to maximize the profit when cutting a rod of length n into
pieces. Consider the following example.

Example 11.1. Given the following table
length i 1 2 3 4 5 6 7 8 9 10
price pi 2 3 5 5 8 12 12 15 15 17

What is the maximum price that can be obtained when cutting a rod of length 10? Later
on we will see that the answer is 20 for this instance. Note that for simplicity we are
currently not interested in how to cut the rods to obtain this answer.

We will solve the optimal rod cutting problem recursively. Let ri (for 1 6 i 6 n) be
the optimal solution for a rod of length i. Then

rn = max
16i<n

{pn, pi + rn−i} (11.4)

This formula says that for an optimal solution we either do not cut at all (pn) or take
the maximum sum of pi (which is not cut further) and rn−i (which is an optimal solution
for a smaller problem). We can implement the above formula as follows:4

❧❡t price ps i = ✐❢ i <= Lst.length ps t❤❡♥ Lst.nth ps (i-1) ❡❧s❡ 0

❧❡t r❡❝ cut ps n =

✐❢ n = 0 t❤❡♥ 0

4Note that the original problem is restricted to rods for which a price is specified. The implementation
is slightly more general by assigning a price of zero to rods which are too long, i.e., ones that we
cannot sell.

105
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❡❧s❡

❧❡t f i q = max q (price ps i + cut ps (n-i)) ✐♥

Lst.foldr f (price ps n) (IntLst.range 1 n)

❧❡t ps = [2;3;5;5;8;12;12;15;15;17]

Here price ps i returns the price for a rod of length i and cut implements the for-
mula (11.4) for a price list ps. Now cut ps 10 = 20 can be computed in almost no
time but the call cut ps 30 already seems to take forever. The reason is that the same
problems are solved again and again. We can remove the bottleneck similar as for the
Fibonacci numbers by dynamic programming. The result looks as follows:

❧❡t cut_dp ps n =

❧❡t r❡❝ cut t ps n =

✐❢ Lookup.mem t n t❤❡♥ t

❡❧s❡ ✐❢ n = 0 t❤❡♥ Lookup.add t n 0

❡❧s❡

❧❡t t = Lst.foldr (❢✉♥ i t -> cut t ps (n-i)) t (IntLst.range 1 n) ✐♥

❧❡t f i q = max q (price ps i + Lookup.find t (n-i)) ✐♥

❧❡t r = Lst.foldr f (price ps n) (IntLst.range 1 n) ✐♥

Lookup.add t n r

✐♥ Lookup.find (cut Lookup.empty ps n) n

The (inner) cut function is almost the same as before. The main difference is that we
first update the lookup table before computing the optimal value r for a rod of length n.

We observe that rod_dp 30 = 60 is now computed almost instantaneously. While
rod_dp is significantly faster than rod it might not be satisfactory because an optimal
solution does not yet tell us how the rod should be cut. Adding this information is the
task of Exercise 11.10.

11.2.3. Beans and Bowls

Consider a bowl containing black and white beans. We may replace beans by the fol-
lowing laws:

1. Replace two black beans by a single white bean.

2. Replace two white beans by a single black bean.

3. Replace a black and a white bean by a single white bean.

These laws can be written more concisely as rewrite rules5

•• → ◦ ◦◦ → • •◦ → ◦ ◦• → ◦

Now we face the following question: Starting with a bowl containing 150 black and 75
white beans can the color of the last bean be predicted? In other words the question
is if we always end up with either a white or a black bean (independent from how we
replace the beans).

5Here we use two rewrite rules for the last law to show that the order of the beans does not matter.
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First we tackle the problem with a naive algorithm that just tries all possibilities.
We write a function beans : int -> int -> (bool * bool) which takes two integers
(number of black and white beans, respectively) and returns a pair of booleans. Here
the first component is true if and only if it is possible to end up with a black bean and
the second component indicates if we can end up with a white bean (it might be that
both possibilities come true). The function can then be implemented as follows:

❧❡t r❡❝ beans b w =

✐❢ b = 1 && w = 0 t❤❡♥ (tr✉❡,❢❛❧s❡)

❡❧s❡ ✐❢ b = 0 && w = 1 t❤❡♥ (❢❛❧s❡,tr✉❡)

❡❧s❡ ✐❢ b < 0 || w < 0 t❤❡♥ (❢❛❧s❡, ❢❛❧s❡)

❡❧s❡

(beans (b-2) (w+1)) <||>

(beans (b+1) (w-2)) <||>

(beans (b-1) w)

Here the operator <||> is a logical or on pairs, defined as

❧❡t (<||>) (b1,w1) (b2,w2) = (b1 || b2,w1 || w2)

However, while e.g., beans 5 5 shows that for some starting configurations it is pos-
sible to end up with a black or a white bean the call beans 150 75 does not terminate
within reasonable time. The reason is that similar instances of the problem are con-
sidered over and over again (see Exercise 11.11). To overcome this bottleneck we use
dynamic programming. In the function beans_dp we first fill the table (with the inner
beans function) and then we can access the result for a concrete configuration.

♠♦❞✉❧❡ L = Lookup

❧❡t beans_dp b w =

❧❡t r❡❝ beans t b w =

✐❢ L.mem t (b,w) t❤❡♥ t ❡❧s❡

✐❢ b = 1 && w = 0 t❤❡♥ L.add t (b,w) (tr✉❡,❢❛❧s❡)

❡❧s❡ ✐❢ b = 0 && w = 1 t❤❡♥ L.add t (b,w) (❢❛❧s❡,tr✉❡)

❡❧s❡ ✐❢ b < 0 || w < 0 t❤❡♥ L.add t (b,w) (❢❛❧s❡, ❢❛❧s❡)

❡❧s❡

❧❡t t = beans t (b-2) (w+1) ✐♥

❧❡t t = beans t (b+1) (w-2) ✐♥

❧❡t t = beans t (b-1) w ✐♥

❧❡t r = L.find t (b-2,w+1) <||> L.find t (b+1,w-2) <||> L.find t (b-1,w) ✐♥

L.add t (b,w) r

✐♥ L.find (beans L.empty b w) (b,w)

And indeed, if we start with 150 black and 75 white beans the outcome can either be a
black or a white bean. Note that the call beans_dp 150 75 does not return immediately
(On a contemporary laptop it takes about a second). To understand this (shockingly
slow) execution we first take a look at the search space. The call beans_dp 150 75

requires 19,138 entries in the lookup table and from Exercise 11.13 we obtain that in
general the lookup table (computed for the call beans_dp m n) is quadratic in m + n.
Hence the runtime of beans_dp will be (at least) quadratic. The overall runtime also
depends on the implementation of the Lookup module. Ours is based on binary search
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trees, where mem and find have logarithmic runtime (if the tree is balanced, otherwise the
runtime is linear). Hence the overall runtime of beans_dp will be between O(n2 · log n)
and O(n3).

11.3. Chapter Notes

This chapter builds on Chapter 4 (divide and conquer) and Chapter 15 (dynamic pro-
gramming) from [4].

While divide and conquer techniques are not restricted to functional programming
they often appear in this programming paradigm due to the heavy use of recursion. The
principle itself is much older, however. Already in 1805 Carl Friedrich Gauss presented
a fast Fourier transformation algorithm where the problem is divided into smaller sub-
problems whose solutions are combined. Recurrence equations have already been studied
by Fibonacci in the 13th century.

While dynamic programming is a simple idea itself, it took until the 1950’s to properly
study the underlying mathematics. The idea of dynamic programming sometimes is also
referred to by the name memoization. Note that some other (functional) programming
languages have memoization already built in (e.g. Haskell).

There are many other real world problems where an efficient implementation is possible
using dynamic programming. We mention an important one which is finding longest
common subsequences of two strings. This is used in DNA analysis to determine the
similarity of two genes. Other problems that benefit from dynamic programming are
discussed in the exercises.

11.4. Exercises

Exercise 11.1. Consider a perfect binary tree where the last level has n nodes. Show
that the tree has lg n + 1 levels, i.e., height lg n + 1.

Hint: How many nodes does the tree have? Lemma 6.5 might be helpful.

Exercise 11.2. Prove the following claim by induction:

If xs and ys are sorted lists then merge xs ys is a sorted list.

Hint: Which kind of induction is useful?

Exercise 11.3. Show by structural induction on lists that for all lists zs the result of
msort zs is a sorted list.

Hint: You can assume the claim in Exercise 11.2.

Exercise 11.4. Consider a different implementation of msort where the list zs is split dif-
ferently, i.e., (xs,ys) = (Lst.hd zs, Lst.tl zs). Is the (worst case) runtime affected
by this change?

Exercise 11.5. Write a function qsort, which implements quicksort.
Hint: For a non-empty list select the head element as pivot.

Exercise 11.6. Consider the Fibonacci numbers (see Definition 7.1).
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1. Compute a recurrence equation for the Fibonacci numbers.

2. Does the Master Theorem apply to the recurrence from item 1?

Exercise 11.7. Consider the following implementation of insert sort.

❧❡t r❡❝ insert x = ❢✉♥❝t✐♦♥

| [] -> [x]

| y::ys -> ✐❢ x < y t❤❡♥ x::y::ys ❡❧s❡ y::(insert x ys)

❧❡t r❡❝ isort = ❢✉♥❝t✐♦♥

| [] -> []

| x::xs -> insert x (isort xs)

1. Compute the recurrence equation for isort.

2. Solve the recurrence by unfolding it into a tree. Conclude an upper bound for the
runtime of isort.

3. Does the Master Theorem apply to the recurrence from item 1?

Exercise 11.8. Give a recurrence where the Master Theorem does not apply.
Hint: Find (un)suitable values for a, b, and f(n).

Exercise 11.9. Consider the Optimal Rod Cutting problem. A greedy strategy chooses
a j such that pj + pn−j is maximal. Then it performs the recursive calls on the shorter
rods (of lengths j and n − j) such as in the following function:

❧❡t r❡❝ cut_greedy ps n =

✐❢ n = 0 t❤❡♥ 0

❡❧s❡

❧❡t f i (l,q) =

❧❡t p = price ps i + price ps (n-i) ✐♥

✐❢ p > q t❤❡♥ (i,p) ❡❧s❡ (l,q)

✐♥

❧❡t (j,_) = Lst.foldr f (n,price ps n) (IntLst.range 1 n) ✐♥

✐❢ j = n t❤❡♥ price ps n ❡❧s❡ cut_greedy ps j + cut_greedy ps (n-j)

1. Show that the greedy strategy does not necessarily yield an optimal solution.

2. What is the runtime of cut_greedy?

Exercise 11.10. Extend the function cut_rod such that it also returns how an optimal
solution can be obtained by indicating how the rod must be cut.

Hint: Add this information to the lookup table (it might now contain triples (rn, l, r)
where rn is the optimal solution to a rod of length n and l and r are the lengths of the
left and right rod, respectively).

Exercise 11.11. Consider beans & bowls.
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1. Give an upper bound on the number of recursive calls emerging from beans m n

(in terms of m and n).

2. Draw the recursive calls emerging from beans 3 3 as a tree. The nodes are labeled
beans m n for different values of m and n and there is an edge from node beans m n

to node beans m′ n′ if the former recursively calls the latter.

Hint: Share identical nodes in the tree.

3. Use the tree from (2) to compute the number of (recursive) calls to beans (starting
from beans 3 3). Check your computation by adding a counter to beans.

4. Use the tree from (2) to compute the number of (recursive) calls to beans (starting
from beans_dp 3 3). Check your computation by adding a counter to beans

(inside beans_dp).

Exercise 11.12. Extend beans_dp such that it returns the sequence of choices that yield
a single black/white bean.

Exercise 11.13. Give an upper bound (in terms of m and n) on the size of the lookup
table generated for the call beans_dp m n. Conclude that the size of the lookup table is
quadratic in m + n. Compare your upper bound with the exact size of the lookup table
for m = 150 and n = 75.

Hint: Note that m × n is not a correct upper bound. Why?

Exercise 11.14. Consider Post’s Correspondence Problem (PCP). Here PCPs are given
as a list of pairs where each pair contains the corresponding words, i.e., the words at the
same indices.

❧❡t pcp0 = [([0;1],[0]);([0],[1;0])]

❧❡t pcp1 = [([0;1],[0]);([1;1],[1;0])] (*no solution*)

❧❡t pcp2 = [([0;1],[0]);([0;1],[1;1;0]);([0],[1;0;0]);([1;0;0],[1;0])]

❧❡t pcp3 = [([1;0;1],[1]);([0],[0;1]);([1;0],[1;1;0]);([1;1],[1;0])]

❧❡t pcp4 = [([0;1],[0]);([0;0],[1;0])] (*no solution*)

The following implementation tries to determine if a PCP has a solution or not by
testing all possibilities in a breadth first search. To save memory, common prefixes of
two words are removed using the function trim.

❧❡t r❡❝ trim = ❢✉♥❝t✐♦♥

| (x::xs,y::ys) ✇❤❡♥ x = y -> trim (xs,ys)

| d -> d

❧❡t extend (w1,w2) (d1,d2) = trim (w1@d1,w2@d2)

❧❡t solve ds =

❧❡t r❡❝ solve = ❢✉♥❝t✐♦♥

| [] -> ❢❛❧s❡

| ([],[])::_ -> tr✉❡

| (x::_,y::_)::ws ✇❤❡♥ x <> y -> solve ws

| w::ws -> solve (ws@Lst.map (extend w) ds)

✐♥ solve (Lst.map trim ds)
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11. Divide and Conquer

1. Write a function solve_dp, which uses dynamic programming to avoid considering
the same problems again.

2. Can you give an upper bound on the additional memory needed for the lookup
table?

3. Write a function solve_dps, which returns (the indices of) a solution.
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