ogic

Functional Programming
WS 2012/13

Harald Zankl (VO)
Cezary Kaliszyk (PS) Thomas Sternagel (PS)

Computational Logic
Institute of Computer Science
University of Innsbruck

week 4

http://cl-informatik.uibk.ac.at

L-Strings

» strings not functional in OCaml
> therefore use module Strng

L-Strings as character lists

type t = char list

val of_string : string -> char list

val to_string : char list -> string

val of_int : int -> char list

val print : char list -> unit

val toplevel_printer : Format.formatter -> char list -> unit
val blanks : int -> t

HZ (ICS@UIBK) FP 2/28

Week 4 - Trees Summary of Week 3

Setting Up the Interpreter

home directory

current dlrectory

> .ocamlinit(semthedln . and ~

» write modules for custom interpreter to f/le.mltop
» compile with ‘ocamlbuild file.top'

» start with ‘. /file.top’

Example

AsciilArt
Lst
Picture
Strng

w03.mltop

HZ (ICSQUIBK) FP 3/28

This Week

Practice |
OCaml introduction, lists, strings, trees

Theory |
lambda-calculus, evaluation strategies, induction,
reasoning about functional programs

Practice Il
efficiency, tail-recursion, combinator-parsing

Theory Il
type checking, type inference

Advanced Topics
lazy evaluation, infinite data structures, monads, ...

HZ (ICS@UIBK) FP 4/28

Week 4 - Trees Rooted Trees

What Are Trees?

Definition (Tree)
(rooted) tree T = (N, E)
> set of nodes N
> set of edges EC N x N
unique root of T (root(T) € N) without predecessor

v

v

all other nodes have exactly one predecessor

v

leaf is node without successor

HZ (ICSQUIBK) FP 5/28

Week 4 - Trees Rooted Trees

What Are Trees? (cont'd)

Example
» N={a b,c,d,e f,g}
> E={(a,b),(a,¢),(a,€),(c,d), (e,), (e 8)}
» root(T)=a
> leaves(T) = {b,d.f,g}
> T =

HZ (ICS@UIBK) FP 6/28

Week 4 - Trees Rooted Trees

Trees in OCaml

Type
empty tree

= .
type ’a tree = Empty | Node of ’a * ’a tree list
—~—
node with content

Example

1

2
Empty Node (1, [Node(2, [1)]1)

1
/ N\
1 2 3
Node (1, [1) Node (1, [Node (2, [1);Node(3,[1)1)

HZ (ICS@UIBK) (AP 7/28

Week 4 - Trees Binary Trees

Restricting the Branching-Factor

Definition (Binary tree)

restrict number of successors (maximal 2)

Type
type ’a t = Empty | Node of (’a t * ’a * ’a t)
a Node (Node (Empty,2,Empty) ,
1,
a e Node (Node (Empty,4,Empty) ,3,Empty))

HZ (ICS@UIBK) FP 8/28

Week 4 - Trees Binary Trees

Functions on BinTrees

Definition (Size)

size of a tree equals number of nodes

let rec size = function Empty -> 0
| Node(l,_,r) -> size 1 + size r + 1

Definition (Height)
height of a tree is length of longest path from root to some leaf
let rec height = function

| Empty -> 0
| Node(l,_,r) -> max (height 1) (height r) + 1

HZ (ICSQUIBK) FP 9/28

Week 4 - Trees Binary Trees

Example

» convention: do not draw ‘Empty’ nodes
> size T =5

» height T =3

HZ (ICSQUIBK) FP 10/28

Week 4 - Trees Binary Trees

Creating Trees of Lists

The easy way

let rec of_list = function [] -> Empty
| x::xs -> Node(Empty,x,of_list xs)

Example

of_list [1;2;3;4] —»7

HZ (ICS@UIBK) (AP 11/28

Week 4 - Trees Binary Trees

Creating Trees of Lists (cont'd)
The fair way

let rec make = function
| [0 -> Empty
| xs —>
let m = Lst.length xs / 2 in
let (ys,zs) = Lst.split_at m xs in
Node (make ys,Lst.hd zs,make(Lst.tl zs))

Example

make [1;2;3;4] —7T a °

HZ (ICS@UIBK) FP 12/28

Creating Trees of Lists (cont'd)

Ordered insertion

let rec insert c v = function
| Empty -> Node (Empty,v,Empty)
| Node(l,w,r) -> if ¢ v w < 1 then Node(insert c v 1,w,r)
else Node(l,w,insert c v r)

Example

insert compare 2 a a -7 a °

HZ (ICS@UIBK) (AP 13/28

Week 4 - Trees Binary Trees

Creating Trees of Lists (cont'd)

Search trees

let search_tree c¢c = Lst.foldl (fun t v -> insert c v t) Empty

Example

search_tree compare [3;1;0;4;2] —7T a a

HZ (ICS@UIBK) (AP 14/28

Week 4 - Trees Binary Trees

Transforming Trees Into Lists

Flatten

let rec flatten = function
| Empty -> []
| Node(l,v,r) -> (flatten 1)@(v::flatten r)

Example

flatten a ° —1[0;1;2;3;4]

HZ (ICS@UIBK) (AP 15/28

A Sorting Algorithm for Lists

let sort ¢ xs = BinTree.flatten(BinTree.search_tree c xs)

HZ (ICS@UIBK) (AP 16/28

The Idea

Reduce storage size

» ASCIT uses 1 byte per character
» encode frequent characters ‘short’

Example
Text: ‘text’
» 32 bits in ASCII (01110100011001010111100001110100)
t—0
> using| e+ 10 |6 bits needed (010110)
X+ 11

HZ (ICS@UIBK) FP 17/28

Week 4 - Trees Huffman Coding

Some More Useful List Functions

let concat xs = foldr (@) [] xs
let rec take_while p = function
| 0] ->]
| x::xs -> if p x then x :: take_while p xs else []
let rec drop_while p = function
(N -> [l
| x::xs as list -> if p x then drop_while p xs else list

let span p xs = (take_while p xs, drop_while p xs)

let rec until p f x = if p x then x else until p f (f x)

HZ (ICS@UIBK) FP 18/28

Week 4 - Trees Huffman Coding

Counting Symbol Frequency

Collate

let rec collate = function
(| -> [
| w::ws as xs —>
let (ys,zs) = Lst.span ((=)w) xs in
(Lst.length ys,w) :: collate zs

Example
collate [’a’;’a’;’b’;’c’;’c’;’c’] _)+
[(2,7a%);(1,’b?);(3,7¢c’)]

collate [’a’;’a’;’b’;’a’;’a’;’a’] _)-l-
[(2,7a%);(1,’b?);(3,7a’)]

HZ (ICS@UIBK) (AP 19/28

Generating a Symbol-Frequency List

Sample

let sample xs = sort compare (collate(sort compare xs))

Example

sample [’t’;’e’;’x?;’t’] =T [(1,%e’);(1,°x°);(2,°t")]

HZ (ICS@UIBK) FP 20/28

Week 4 - Trees Huffman Coding

Huffman Trees
» leaf nodes contain weight (= frequency) + character
» other nodes store sum of weights of subtrees
Type
type ’a option = None | Some of ’a (predefined)
type node = (int * char option)

type t = node btree

Example
TIRO
(Le) (1,x)
HZ (ICS@UIBK) FP

21/28

Building the Huffman Tree

Step 1
» transform the symbol-frequency list into a list of Huffman trees

let mknode (w,c) = Node(Empty, (w,Some c),Empty)

Example

Lst.map mknode [(1,’e’);(1,’x’);(2,°t?)]
=t [(Le); (LX) (2,t)]

HZ (ICS@UIBK) FP 22/28

Building the Huffman Tree (cont'd)

Step 2

» combine first two trees until only one left

let weight = function
| Node(_,(W,_),_) > w
| _ -> failwith "empty, tree"

let combine = function
| xt::yt::xts -> let w = weight xt + weight yt in
insert (Node(xt, (w,None),yt)) xts
| _ -> failwith "length has to be greater than 1"

let insert vt wts =

let (xts,yts) =

Lst.span (fun x -> weight x <= weight vt) wts in
xts@(vt::yts)

HZ (ICS@UIBK) FP 23/28

Building the Huffman Tree (cont'd)

Step 2 (cont'd)

» combine first two trees until only one left

let tree xs =
Lst.hd(Lst.until is_singleton combine (Lst.map mknode xs))

Example

tree [(1,7e7);(1,°x);(2,7¢)] =% (2. (2)

(1,e) |(1,x)

HZ (ICS@UIBK) FP 24/28

Week 4 - Trees

Huffman Coding

Generating a Code-Table

Encoding

» Which code corresponds to a given character?

Example

table

HZ (ICS@UIBK)

(L, e)

(1,x)

(2,1) —>+[(’t’,[0]);(’e’,[1;01);(’X’,[1;1])]

25/28

Generating a Code-Table (cont'd)

Encoding

» Which code corresponds to a given character?

let rec table = function
| Node (Empty, (_,Some c),Empty) -> [(c,[1)]
| Node(1,_,r) ->
(Lst.map (fun (c,code) -> (c,0::code)) (table 1))@
(Lst.map (fun (c,code) -> (c,l::code)) (table r))
| _ -> failwith "the Huffman tree is_ empty"

HZ (ICS@UIBK) FP 26/28

e T 111211 C 1 0
Encoding
> use code-table for compression

let encode t text = Lst.concat(Lst.map (lookup t) text)

let rec lookup xbs v = match xbs with
| ((x,bs)::xbs) -> if x = v then bs else lookup xbs v
| _ -> failwith "not, found"

Example
encode
[C°t’,[01);Ce’,[1;01); Cx?,[1;1])]

[’t’;’e’;’x’;’t’]
—1[0;1;0;1;1;0]

HZ (ICS@UIBK) FP 27/28

Decoding

» use Huffman tree for decompression

let rec decode_char = function
| (Node(Empty, (_,Some c),Empty),cs) -> (c,cs)
| (Node(xt,_,_),0::cs) -> decode_char (xt,cs)
| (Node(,xt),1::cs) -> decode_char (xt,cs)
| -> failwith "empty, tree"

- =

let rec decode t = function

IO ->10

| xs -> let (c,xs) = decode_char (t,xs) in c::decode t xs

HZ (ICS@UIBK) FP 28/28

	Week 4 - Trees
	Summary of Week 3
	Rooted Trees
	Binary Trees
	Huffman Coding

