
Functional Programming
WS 2012/13

Harald Zankl (VO)
Cezary Kaliszyk (PS) Thomas Sternagel (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

week 4

http://cl-informatik.uibk.ac.at

Week 4 - Trees Summary of Week 3

L-Strings

I strings not functional in OCaml

I therefore use module Strng

L-Strings as character lists

type t = char list
val of_string : string -> char list
val to_string : char list -> string
val of_int : int -> char list
val print : char list -> unit
val toplevel_printer : Format.formatter -> char list -> unit
val blanks : int -> t

HZ (ICS@UIBK) FP 2/28

Week 4 - Trees Summary of Week 3

Setting Up the Interpreter

I .ocamlinit (searched in

current directory︷︸︸︷
. and

home directory︷︸︸︷
~)

I write modules for custom interpreter to file.mltop

I compile with ‘ocamlbuild file.top‘

I start with ‘./file.top‘

Example

AsciiArt
Lst
Picture
Strng

w03.mltop

HZ (ICS@UIBK) FP 3/28

Week 4 - Trees

This Week

Practice I
OCaml introduction, lists, strings, trees

Theory I

lambda-calculus, evaluation strategies, induction,
reasoning about functional programs

Practice II
efficiency, tail-recursion, combinator-parsing

Theory II

type checking, type inference

Advanced Topics

lazy evaluation, infinite data structures, monads, . . .

HZ (ICS@UIBK) FP 4/28

Week 4 - Trees Rooted Trees

What Are Trees?

Definition (Tree)

(rooted) tree T = (N, E)

I set of nodes N

I set of edges E ⊆ N × N

I unique root of T (root(T) ∈ N) without predecessor

I all other nodes have exactly one predecessor

I leaf is node without successor

HZ (ICS@UIBK) FP 5/28

Week 4 - Trees Rooted Trees

What Are Trees? (cont’d)

Example

I N = {a, b, c , d , e, f , g}
I E = {(a, b), (a, c), (a, e), (c , d), (e, f), (e, g)}
I root(T) = a

I leaves(T) = {b, d , f , g}
I T =

a

b c

d

e

f g

HZ (ICS@UIBK) FP 6/28

Week 4 - Trees Rooted Trees

Trees in OCaml
Type

type ’a tree =

empty tree︷ ︸︸ ︷
Empty | Node︸ ︷︷ ︸

node with content

of ’a * ’a tree list

Example

1

2

Empty Node(1,[Node(2,[])])

1

1

2 3

Node(1,[]) Node(1,[Node(2,[]);Node(3,[])])

HZ (ICS@UIBK) FP 7/28

Week 4 - Trees Binary Trees

Restricting the Branching-Factor

Definition (Binary tree)

restrict number of successors (maximal 2)

Type

type ’a t = Empty | Node of (’a t * ’a * ’a t)

Node(Node(Empty,2,Empty),
1,
Node(Node(Empty,4,Empty),3,Empty))

1

2 3

4

HZ (ICS@UIBK) FP 8/28

Week 4 - Trees Binary Trees

Functions on BinTrees

Definition (Size)

size of a tree equals number of nodes

let rec size = function Empty -> 0
| Node(l,_,r) -> size l + size r + 1

Definition (Height)

height of a tree is length of longest path from root to some leaf

let rec height = function

| Empty -> 0
| Node(l,_,r) -> max (height l) (height r) + 1

HZ (ICS@UIBK) FP 9/28

Week 4 - Trees Binary Trees

Example

I convention: do not draw ‘Empty’ nodes

I size T = 5

I height T = 3

a

b c

d e

T =

HZ (ICS@UIBK) FP 10/28

Week 4 - Trees Binary Trees

Creating Trees of Lists

The easy way

let rec of_list = function [] -> Empty
| x::xs -> Node(Empty,x,of_list xs)

Example

of_list [1;2;3;4]→+

1

2

3

4

HZ (ICS@UIBK) FP 11/28

Week 4 - Trees Binary Trees

Creating Trees of Lists (cont’d)
The fair way

let rec make = function

| [] -> Empty
| xs ->
let m = Lst.length xs / 2 in

let (ys,zs) = Lst.split_at m xs in

Node (make ys,Lst.hd zs,make(Lst.tl zs))

Example

make [1;2;3;4]→+

3

2

1

4

HZ (ICS@UIBK) FP 12/28

Week 4 - Trees Binary Trees

Creating Trees of Lists (cont’d)

Ordered insertion

let rec insert c v = function

| Empty -> Node(Empty,v,Empty)
| Node(l,w,r) -> if c v w < 1 then Node(insert c v l,w,r)

else Node(l,w,insert c v r)

Example

insert compare 2

3

1

0

4 →+

3

1

0

4

2<

2>

2

2

HZ (ICS@UIBK) FP 13/28

Week 4 - Trees Binary Trees

Creating Trees of Lists (cont’d)

Search trees

let search_tree c = Lst.foldl (fun t v -> insert c v t) Empty

Example

search_tree compare [3;1;0;4;2]→+

3

1

0

4

2

HZ (ICS@UIBK) FP 14/28

Week 4 - Trees Binary Trees

Transforming Trees Into Lists

Flatten

let rec flatten = function

| Empty -> []
| Node(l,v,r) -> (flatten l)@(v::flatten r)

Example

flatten

3

1

0 2

4 →+ [0;1;2;3;4]

HZ (ICS@UIBK) FP 15/28

Week 4 - Trees Binary Trees

A Sorting Algorithm for Lists

let sort c xs = BinTree.flatten(BinTree.search_tree c xs)

HZ (ICS@UIBK) FP 16/28

Week 4 - Trees Huffman Coding

The Idea

Reduce storage size

I ASCII uses 1 byte per character

I encode frequent characters ‘short’

Example

Text: ‘text’

I 32 bits in ASCII (01110100011001010111100001110100)

I using
t 7→ 0
e 7→ 10
x 7→ 11

6 bits needed (010110)

HZ (ICS@UIBK) FP 17/28

Week 4 - Trees Huffman Coding

Some More Useful List Functions

let concat xs = foldr (@) [] xs

let rec take_while p = function

| [] -> []
| x::xs -> if p x then x :: take_while p xs else []

let rec drop_while p = function

| [] -> []
| x::xs as list -> if p x then drop_while p xs else list

let span p xs = (take_while p xs, drop_while p xs)

let rec until p f x = if p x then x else until p f (f x)

HZ (ICS@UIBK) FP 18/28

Week 4 - Trees Huffman Coding

Counting Symbol Frequency

Collate

let rec collate = function

| [] -> []
| w::ws as xs ->
let (ys,zs) = Lst.span ((=)w) xs in

(Lst.length ys,w) :: collate zs

Example

collate [’a’;’a’;’b’;’c’;’c’;’c’]→+

[(2,’a’);(1,’b’);(3,’c’)]

collate [’a’;’a’;’b’;’a’;’a’;’a’]→+

[(2,’a’);(1,’b’);(3,’a’)]

HZ (ICS@UIBK) FP 19/28

Week 4 - Trees Huffman Coding

Generating a Symbol-Frequency List

Sample

let sample xs = sort compare (collate(sort compare xs))

Example

sample [’t’;’e’;’x’;’t’]→+ [(1,’e’);(1,’x’);(2,’t’)]

HZ (ICS@UIBK) FP 20/28

Week 4 - Trees Huffman Coding

Huffman Trees
I leaf nodes contain weight (= frequency) + character

I other nodes store sum of weights of subtrees

Type

type ’a option = None | Some of ’a (predefined)

type node = (int * char option)

type t = node btree

Example

4

(2,t) 2

(1,e) (1,x)

HZ (ICS@UIBK) FP 21/28

Week 4 - Trees Huffman Coding

Building the Huffman Tree

Step 1

I transform the symbol-frequency list into a list of Huffman trees

let mknode (w,c) = Node(Empty,(w,Some c),Empty)

Example

Lst.map mknode [(1,’e’);(1,’x’);(2,’t’)]

→+ [(1, e) ; (1, x) ; (2, t)]

HZ (ICS@UIBK) FP 22/28

Week 4 - Trees Huffman Coding

Building the Huffman Tree (cont’d)

Step 2

I combine first two trees until only one left

let weight = function

| Node(_,(w,_),_) -> w
| _ -> failwith "empty tree"

let combine = function

| xt::yt::xts -> let w = weight xt + weight yt in

insert (Node(xt,(w,None),yt)) xts
| _ -> failwith "length has to be greater than 1"

let insert vt wts =
let (xts,yts) =
Lst.span (fun x -> weight x <= weight vt) wts in

xts@(vt::yts)

HZ (ICS@UIBK) FP 23/28

Week 4 - Trees Huffman Coding

Building the Huffman Tree (cont’d)

Step 2 (cont’d)

I combine first two trees until only one left

let tree xs =
Lst.hd(Lst.until is_singleton combine (Lst.map mknode xs))

Example

tree [(1,’e’);(1,’x’);(2,’t’)] →+

4

(2, t) 2

(1, e) (1, x)

HZ (ICS@UIBK) FP 24/28

Week 4 - Trees Huffman Coding

Generating a Code-Table

Encoding

I Which code corresponds to a given character?

Example

table

4

(2, t) 2

(1, e) (1, x)

→+[(’t’,[0]);(’e’,[1;0]);(’x’,[1;1])]

HZ (ICS@UIBK) FP 25/28

Week 4 - Trees Huffman Coding

Generating a Code-Table (cont’d)

Encoding

I Which code corresponds to a given character?

let rec table = function

| Node(Empty,(_,Some c),Empty) -> [(c,[])]
| Node(l,_,r) ->
(Lst.map (fun (c,code) -> (c,0::code)) (table l))@
(Lst.map (fun (c,code) -> (c,1::code)) (table r))

| _ -> failwith "the Huffman tree is empty"

HZ (ICS@UIBK) FP 26/28

Week 4 - Trees Huffman Coding

Encoding

I use code-table for compression

let encode t text = Lst.concat(Lst.map (lookup t) text)

let rec lookup xbs v = match xbs with

| ((x,bs)::xbs) -> if x = v then bs else lookup xbs v
| _ -> failwith "not found"

Example

encode
[(’t’,[0]);(’e’,[1;0]);(’x’,[1;1])]
[’t’;’e’;’x’;’t’]
→+ [0;1;0;1;1;0]

HZ (ICS@UIBK) FP 27/28

Week 4 - Trees Huffman Coding

Decoding

I use Huffman tree for decompression

let rec decode_char = function

| (Node(Empty,(_,Some c),Empty),cs) -> (c,cs)
| (Node(xt,_,_),0::cs) -> decode_char (xt,cs)
| (Node(_,_,xt),1::cs) -> decode_char (xt,cs)
| _ -> failwith "empty tree"

let rec decode t = function

| [] -> []
| xs -> let (c,xs) = decode_char (t,xs) in c::decode t xs

HZ (ICS@UIBK) FP 28/28

	Week 4 - Trees
	Summary of Week 3
	Rooted Trees
	Binary Trees
	Huffman Coding

