

Functional Programming WS 2012/13

Harald Zankl (VO) Cezary Kaliszyk (PS) Thomas Sternagel (PS)

Computational Logic Institute of Computer Science University of Innsbruck

week 7

Overview

• Week 7 - Induction

- Summary of Week 6
- Mathematical Induction
- Induction Over Lists
- Structural Induction

34511

Overview

Week 7 - Induction

• Summary of Week 6

Mathematical Induction

Induction Over Lists

Structural Induction

Outermost

- choose the (leftmost) outermost redex
- redex is outermost if not subterm of different redex

Outermost

- choose the (leftmost) outermost redex
- redex is outermost if not subterm of different redex

Outermost

- choose the (leftmost) outermost redex
- redex is outermost if not subterm of different redex

Innermost

- choose the (leftmost) innermost redex
- redex is innermost if no proper subterm is redex

Outermost

- choose the (leftmost) outermost redex
- redex is outermost if not subterm of different redex

Innermost

- choose the (leftmost) innermost redex
- redex is innermost if no proper subterm is redex

Reduction Strategies

Call-by-name

- use outermost strategy
- stop as soon as WHNF is reached

Reduction Strategies

Call-by-name

- use outermost strategy
- stop as soon as WHNF is reached

Call-by-value

- use innermost strategy
- stop as soon as WHNF is reached

Reduction Strategies

Call-by-name

- use outermost strategy
- stop as soon as WHNF is reached

Call-by-value

- use innermost strategy
- stop as soon as WHNF is reached

WHNF (Intuition)

Thou shalt not reduce below lambda.

Evaluation Strategies

Lazy

- call-by-name + sharing
- only evaluate if necessary
- e.g. Haskell

Evaluation Strategies

Lazy

- call-by-name + sharing
- only evaluate if necessary
- e.g. Haskell

Strict/Eager

- call-by-value
- evaluate arguments before calling a function
- e.g. OCaml (also support for lazyness)

This Week

Practice I

OCaml introduction, lists, strings, trees

Theory I

lambda-calculus, evaluation strategies, induction, reasoning about functional programs

Practice II

efficiency, tail-recursion, combinator-parsing

Theory II

type checking, type inference

Advanced Topics

lazy evaluation, infinite data structures, monads, ...

Overview

Week 7 - Induction

• Summary of Week 6

Mathematical Induction

- Induction Over Lists
- Structural Induction

Goal

"prove that some property P holds for all natural numbers"

Formally		
	$\forall n.P(n)$	(where $n \in \mathbb{N}$)

2 goals to show

1. P(0)2. $\forall k.(P(k) \rightarrow P(k+1))$

2 goals to show

1.
$$P(0)$$

2. $\forall k.(P(k) \rightarrow P(k+1))$

Gives

$$(P(0) \land \forall k.(P(k) \rightarrow P(k+1))) \rightarrow \forall n.P(n)$$

We have

• P(0)

•
$$\forall k.(P(k) \rightarrow P(k+1))$$

We have

- P(0) "property P holds for 0"
- $\forall k.(P(k) \rightarrow P(k+1))$

We have

- P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

We have

- P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

We want

 $\forall n.P(n)$

We have

- P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

We want

 $\forall n.P(n)$ "P holds for every n"

We have

- P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

We want

 $\forall n.P(n)$ "P holds for every n"

We have

- P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

We want

 $\forall n.P(n)$ "P holds for every n"

We get

• for the moment fix n

We have

- P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

We want

 $\forall n.P(n)$ "P holds for every n"

- for the moment fix n
- have *P*(0)

We have

- P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

We want

 $\forall n.P(n)$ "P holds for every n"

- for the moment fix n
- have *P*(0)
- have $P(0) \rightarrow P(1)$

We have

- P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

We want

 $\forall n.P(n)$ "P holds for every n"

- for the moment fix n
- have *P*(0)
- have $P(0) \rightarrow P(1)$
- have *P*(1)

We have

- P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

We want

 $\forall n.P(n)$ "P holds for every n"

- for the moment fix n
- have *P*(0)
- have $P(0) \rightarrow P(1)$
- have *P*(1)
- have $P(1) \rightarrow P(2)$

We have

- P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

• . . .

We want

 $\forall n.P(n)$ "P holds for every n"

- for the moment fix n
- have *P*(0)
- have $P(0) \rightarrow P(1)$
- have *P*(1)
- have $P(1) \rightarrow P(2)$

We have

- P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

We want

 $\forall n.P(n)$ "P holds for every n"

- for the moment fix n
- have *P*(0)
- have $P(0) \rightarrow P(1)$
- have *P*(1)
- have $P(1) \rightarrow P(2)$

- . . .
- have P(n − 1)

We have

- P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

We want

 $\forall n. P(n)$ "P holds for every n"

- for the moment fix n
- have *P*(0)
- have P(0)
 ightarrow P(1)
- have *P*(1)
- have $P(1) \rightarrow P(2)$

- . . .
- have P(n − 1)
- have $P(n-1) \rightarrow P(n)$

We have

- P(0) "property P holds for 0"
- ∀k.(P(k) → P(k + 1)) "if property P holds for arbitrary k then it also holds for k + 1"

We want

 $\forall n. P(n)$ "P holds for every n"

- for the moment fix n
- have *P*(0)
- have P(0)
 ightarrow P(1)
- have *P*(1)
- have $P(1) \rightarrow P(2)$

- . . .
- have P(n − 1)
- have $P(n-1) \rightarrow P(n)$
- hence P(n)

anything that depends on some variable and is either true or false can be seen as function p : 'a -> bool

anything that depends on some variable and is either true or false can be seen as function p : 'a -> <code>bool</code>

Example

anything that depends on some variable and is either true or false can be seen as function p : 'a -> <code>bool</code>

Example

•
$$P(x) = (1 + 2 + \dots + x = \frac{x \cdot (x+1)}{2})$$

anything that depends on some variable and is either true or false can be seen as function p : 'a -> <code>bool</code>

Example

•
$$P(x) = (1 + 2 + \dots + x = \frac{x \cdot (x+1)}{2})$$

• base case: P(0)

anything that depends on some variable and is either true or false can be seen as function p : 'a -> <code>bool</code>

•
$$P(x) = (1 + 2 + \dots + x = \frac{x \cdot (x+1)}{2})$$

anything that depends on some variable and is either true or false can be seen as function p : 'a -> <code>bool</code>

•
$$P(x) = (1 + 2 + \dots + x = \frac{x \cdot (x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \dots + 0 = 0)$$

anything that depends on some variable and is either true or false can be seen as function p : 'a -> <code>bool</code>

•
$$P(x) = (1 + 2 + \dots + x = \frac{x \cdot (x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0 \cdot (0+1)}{2})$$

anything that depends on some variable and is either true or false can be seen as function p : 'a -> <code>bool</code>

•
$$P(x) = (1 + 2 + \dots + x = \frac{x \cdot (x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0 \cdot (0+1)}{2})$$

• step case:
$$P(k) \rightarrow P(k+1)$$

anything that depends on some variable and is either true or false can be seen as function p : 'a -> <code>bool</code>

•
$$P(x) = (1 + 2 + \dots + x = \frac{x \cdot (x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0 \cdot (0+1)}{2})$$

• step case:
$$P(k) \rightarrow P(k+1)$$

IH: $P(k) = (1+2+\cdots+k = \frac{k \cdot (k+1)}{2})$

anything that depends on some variable and is either true or false can be seen as function p : 'a -> <code>bool</code>

•
$$P(x) = (1 + 2 + \dots + x = \frac{x \cdot (x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0 \cdot (0+1)}{2})$$

• step case:
$$P(k) \rightarrow P(k+1)$$

IH: $P(k) = (1+2+\cdots+k = \frac{k \cdot (k+1)}{2})$
show: $P(k+1)$

anything that depends on some variable and is either true or false can be seen as function p : 'a -> <code>bool</code>

•
$$P(x) = (1 + 2 + \dots + x = \frac{x \cdot (x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0 \cdot (0+1)}{2})$$

• step case:
$$P(k) \rightarrow P(k+1)$$

IH: $P(k) = (1+2+\cdots+k = \frac{k \cdot (k+1)}{2})$
show: $P(k+1)$

$$1+2+\cdots+(k+1)$$

anything that depends on some variable and is either true or false can be seen as function p : 'a -> <code>bool</code>

•
$$P(x) = (1 + 2 + \dots + x = \frac{x \cdot (x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0 \cdot (0+1)}{2})$$

• step case:
$$P(k) \rightarrow P(k+1)$$

IH: $P(k) = (1+2+\cdots+k = \frac{k \cdot (k+1)}{2})$
show: $P(k+1)$

$$1 + 2 + \dots + (k + 1) = (1 + 2 + \dots + k) + (k + 1)$$

anything that depends on some variable and is either true or false can be seen as function p : 'a -> <code>bool</code>

•
$$P(x) = (1 + 2 + \dots + x = \frac{x \cdot (x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0 \cdot (0+1)}{2})$$

• step case:
$$P(k) \rightarrow P(k+1)$$

IH: $P(k) = (1+2+\cdots+k = \frac{k \cdot (k+1)}{2})$
show: $P(k+1)$

$$1 + 2 + \dots + (k + 1) = (1 + 2 + \dots + k) + (k + 1)$$

$$\stackrel{\text{\tiny IH}}{=} \frac{k \cdot (k + 1)}{2} + (k + 1)$$

anything that depends on some variable and is either true or false can be seen as function p : 'a -> <code>bool</code>

•
$$P(x) = (1 + 2 + \dots + x = \frac{x \cdot (x+1)}{2})$$

• base case:
$$P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0 \cdot (0+1)}{2})$$

• step case:
$$P(k) \rightarrow P(k+1)$$

IH: $P(k) = (1+2+\cdots+k = \frac{k \cdot (k+1)}{2})$
show: $P(k+1)$

$$1 + 2 + \dots + (k + 1) = (1 + 2 + \dots + k) + (k + 1)$$
$$\stackrel{\text{\tiny IH}}{=} \frac{k \cdot (k + 1)}{2} + (k + 1)$$
$$= \frac{(k + 1) \cdot (k + 2)}{2}$$

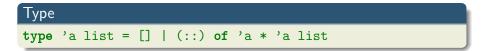
- of course the base case can be changed
- e.g., if base case P(1), property holds for all $n \ge 1$

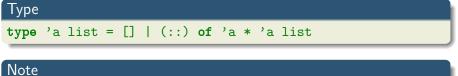
Overview

73+SIGI

Week 7 - Induction

- Summary of Week 6
- Mathematical Induction
- Induction Over Lists





- lists are recursive structures
- base case: []
- step case: x :: xs

Intuition

- to show P(xs) for all lists xs
- show base case: P([])
- show step case: $P(xs) \rightarrow P(x::xs)$ for arbitrary x and xs

Intuition

- to show P(xs) for all lists xs
- show base case: P([])
- show step case: $P(xs) \rightarrow P(x::xs)$ for arbitrary x and xs

Formally

$(P([]) \land \forall x \quad . \forall xs \quad .(P(xs) \rightarrow P(x :: xs))) \ \rightarrow \forall ls \quad .P(ls)$

Intuition

- to show P(xs) for all lists xs
- show base case: P([])
- show step case: $P(xs) \rightarrow P(x::xs)$ for arbitrary x and xs

Formally

$$(P([]) \land \forall x : \alpha.\forall xs : \alpha \text{ list.}(P(xs) \to P(x :: xs))) \\ \to \forall ls : \alpha \text{ list.}P(ls)$$

Intuition

- to show P(xs) for all lists xs
- show base case: P([])
- show step case: $P(xs) \rightarrow P(x::xs)$ for arbitrary x and xs

Formally

$$(P([]) \land \forall x : \alpha.\forall xs : \alpha \text{ list.}(\overbrace{P(xs)}^{\mathsf{IH}} \to P(x :: xs))) \to \forall ls : \alpha \text{ list.}P(ls)$$

Intuition

- to show P(xs) for all lists xs
- show base case: P([])
- show step case: $P(xs) \rightarrow P(x::xs)$ for arbitrary x and xs

Formally

$$(P([]) \land \forall x : \alpha.\forall xs : \alpha \text{ list.}(\overbrace{P(xs)}^{\mathsf{IH}} \to P(x :: xs))) \to \forall ls : \alpha \text{ list.}P(ls)$$

Remarks

- $y : \beta$ reads 'y is of type β '
- for lists, P can be seen as function p : 'a list -> bool

Example - Lst.append

Recall

```
let rec (0) xs ys = match xs with
    [] -> ys
    | x::xs -> x :: (xs 0 ys)
```

Example - Lst.append

Recall

```
let rec (0) xs ys = match xs with
    [] -> ys
    | x::xs -> x :: (xs 0 ys)
```

Lemma

```
[] is right identity of @, i.e.,
```

xs @ [] = *xs*

Example - Lst.append

Recall

Lemma

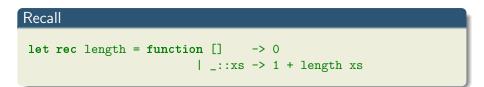
```
[] is right identity of @, i.e.,
```

$$xs @ [] = xs$$

Proof.

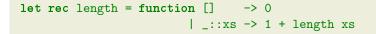
Blackboard

Example - Lst.length



Example - Lst.length

Recall



Lemma

sum of lengths equals length of combined list, i.e.,

length xs + length ys = length(xs @ ys)

Example - Lst.length

Recall

Lemma

sum of lengths equals length of combined list, i.e.,

length xs + length ys = length(xs @ ys)

Proof.

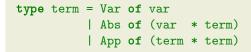
Blackboard

Overview

Week 7 - Induction

- Summary of Week 6
- Mathematical Induction
- Induction Over Lists
- Structural Induction

Туре



Type type term = Var of var | Abs of (var * term) | App of (term * term)

Induction Principle

• for every non-recursive constructor there is a base case

Type type term = Var of var | Abs of (var * term) | App of (term * term)

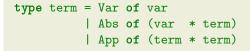
- for every non-recursive constructor there is a base case
 - base case: Var x

Туре



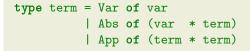
- for every non-recursive constructor there is a base case
 - base case: Var x
- for every recursive constructor there is a step case

Туре



- for every non-recursive constructor there is a base case
 - base case: Var x
- for every recursive constructor there is a step case
 - step case: Abs(x, t)

Туре



- for every non-recursive constructor there is a base case
 - base case: Var x
- for every recursive constructor there is a step case
 - step case: Abs(x, t)
 - step case: App(s, t)

Induction Principle on General Structures

Intuition

- to show P(s) for all structures s
- show base cases
- show step cases

Recall

Type type 'a btree = Empty | Node of ('a btree * 'a * 'a btree)

Туре

type 'a btree = Empty | Node of ('a btree * 'a * 'a btree)

$$(P(\texttt{Empty}) \land \forall v . \forall l . \forall r . ((P(l) \land P(r)) \rightarrow P(\texttt{Node}(l, v, r)))) \rightarrow \forall t . P(t)$$

Recall

Туре

type 'a btree = Empty | Node of ('a btree * 'a * 'a btree)

$$(P(\text{Empty}) \land \forall v : \alpha. \forall I : \alpha \text{ btree.} \forall r : \alpha \text{ btree.}$$

 $((P(I) \land P(r)) \rightarrow P(\text{Node}(I, v, r)))) \rightarrow \forall t : \alpha \text{ btree.} P(t)$

Example - Trees

Definition (Perfect Binary Trees)

binary tree is perfect if all leaf nodes have same depth

Example - Trees

Definition (Perfect Binary Trees)

binary tree is perfect if all leaf nodes have same depth

Example - Trees (cont'd)

Recall let rec height = function | Empty -> 0 | Node(1,_,r) -> max (height 1) (height r) + 1 let rec size = function Empty -> 0 | Node(1,_,r) -> size 1 + size r + 1

Example - Trees (cont'd)

Recall let rec height = function | Empty -> 0 | Node(1,_,r) -> max (height 1) (height r) + 1 let rec size = function Empty -> 0 | Node(1,_,r) -> size 1 + size r + 1

Lemma

perfect binary tree t of height n has exactly $2^n - 1$ nodes

Example - Trees (cont'd)

Recall

```
let rec height = function
| Empty -> 0
| Node(1,_,r) -> max (height 1) (height r) + 1
let rec size = function Empty -> 0
| Node(1,_,r) -> size 1 + size r + 1
```

Lemma

perfect binary tree t of height n has exactly $2^n - 1$ nodes

Proof.

To show:
$$P(t) = ig(ext{perfect}\ t o (ext{size}\ t = 2^{(ext{height}\ t)} - 1)ig)$$
Blackboard