ogic

Functional Programming
WS 2012/13

Harald Zankl (VO)
Cezary Kaliszyk (PS) Thomas Sternagel (PS)

Computational Logic
Institute of Computer Science
University of Innsbruck

week 7

http://cl-informatik.uibk.ac.at

Week 7 - Induction

@ Week 7 - Induction
o Summary of Week 6
e Mathematical Induction
e Induction Over Lists
o.Structural Induction

HZ (ICS@UIBK) (AP 2/24

Week 7 - Induction Summary of Week 6

@ Week 7 - Induction
o Summary of Week 6

HZ (ICSQUIBK) =3 3/24

Week 7 - Induction Summary of Week 6

Rewrite Strategies

e choose the (leftmost) outermost redex

e redex is outermost if not subterm of different redex

HZ (ICS@UIBK) (AP 4/24

Week 7 - Induction Summary of Week 6

Rewrite Strategies

e choose the (leftmost) outermost redex

e redex is outermost if not subterm of different redex

HZ (ICS@UIBK) (AP 4/24

Week 7 - Induction Summary of Week 6

Rewrite Strategies

e choose the (leftmost) outermost redex

e redex is outermost if not subterm of different redex

4

Innermost

e choose the (leftmost) innermost redex

e redex is innermost if no proper subterm is redex

HZ (ICS@UIBK) FP 4/24

Week 7 - Induction Summary of Week 6

Rewrite Strategies

e choose the (leftmost) outermost redex

e redex is outermost if not subterm of different redex

4

Innermost

e choose the (leftmost) innermost redex

e redex is innermost if no proper subterm is redex

HZ (ICS@UIBK) FP 4/24

Week 7 - Induction Summary of Week 6

Reduction Strategies

Call-by-name

e use outermost strategy

e stop as soon as WHNF is reached

HZ (ICSQUIBK) =3 5/24

Week 7 - Induction Summary of Week 6

Reduction Strategies

Call-by-name

e use outermost strategy

e stop as soon as WHNF is reached

Call-by-value

e use innermost strategy

e stop as soon as WHNF is reached

HZ (ICS@UIBK) FP 5/24

Week 7 - Induction Summary of Week 6

Reduction Strategies

Call-by-name

e use outermost strategy

e stop as soon as WHNF is reached

Call-by-value

e use innermost strategy

e stop as soon as WHNF is reached

4

Thou shalt not reduce below lambda. I

HZ (ICS@UIBK) FP 5/24

Week 7 - Induction Summary of Week 6

Evaluation Strategies

e call-by-name + sharing

e only evaluate if necessary
e e.g. Haskell

HZ (ICSQUIBK) =3 6/24

Week 7 - Induction Summary of Week 6

Evaluation Strategies

e call-by-name + sharing

e only evaluate if necessary
e e.g. Haskell

Strict/Eager

e call-by-value
e evaluate arguments before calling a function

e e.g. OCaml (also support for lazyness)

HZ (ICS@UIBK) FP 6/24

This Week
OCaml introduction, lists, strings, trees I

lambda-calculus, evaluation strategies, induction,
reasoning about functional programs

efficiency, tail-recursion, combinator-parsing

_

type checking, type inference

Advanced Topics

lazy evaluation, infinite data structures, monads, ...

HZ (ICS@UIBK) FP 7/24

Week 7 - Induction Mathematical Induction

@ Week 7 - Induction

e Mathematical Induction

HZ (ICSQUIBK) =3 8/24

Week 7 - Induction Mathematical Induction

“prove that some property P holds for all natural numbers’

Vn.P(n) (where n € N)

HZ (ICS@UIBK) FP 9/24

Week 7 - Induction Mathematical Induction

2 goals to show
1. P(0)
2. Vk.(P(k) — P(k+1))

HZ (ICSQUIBK) =3 10/24

Week 7 - Induction Mathematical Induction

2 goals to show

1. P(0)
2. Vk.(P(k) — P(k + 1))

Gives

(P(0) AVk.(P(k) — P(k +1))) — Vn.P(n)

HZ (ICS@UIBK) FP 10/24

Week 7 - Induction Mathematical Induction

Why Does This Work?

* P(0)
o Vk.(P(K) — P(k + 1))

HZ (ICSQUIBK) =3 11/24

Week 7 - Induction Mathematical Induction

Why Does This Work?

e P(0) “property P holds for 0"
o Vk.(P(k) — P(k+1))

HZ (ICSQUIBK) =3 11/24

Week 7 - Induction Mathematical Induction

Why Does This Work?

e P(0) “property P holds for 0"

e Vk.(P(k) — P(k + 1)) "if property P holds for arbitrary k then it
also holds for k + 1"

HZ (ICS@UIBK) FP 11/24

Week 7 - Induction Mathematical Induction

Why Does This Work?

e P(0) “property P holds for 0"

e Vk.(P(k) — P(k + 1)) "if property P holds for arbitrary k then it
also holds for k + 1"

Vn.P(n) l

HZ (ICS@UIBK) FP 11/24

Week 7 - Induction Mathematical Induction

Why Does This Work?

e P(0) “property P holds for 0"

e Vk.(P(k) — P(k + 1)) "if property P holds for arbitrary k then it
also holds for k + 1"

Vn.P(n) "“P holds for every n" l

HZ (ICS@UIBK) FP 11/24

Why Does This Work?

e P(0) “property P holds for 0"

e Vk.(P(k) — P(k + 1)) "if property P holds for arbitrary k then it
also holds for k + 1"

Vn.P(n) "“P holds for every n" \

HZ (ICS@UIBK) (AP 11/24

Why Does This Work?

e P(0) “property P holds for 0"

e Vk.(P(k) — P(k + 1)) "if property P holds for arbitrary k then it
also holds for k + 1"

Vn.P(n) "“P holds for every n" \

e for the moment fix n

HZ (ICS@UIBK) (AP 11/24

Why Does This Work?

e P(0) “property P holds for 0"

e Vk.(P(k) — P(k + 1)) "if property P holds for arbitrary k then it
also holds for k + 1"

Vn.P(n) "“P holds for every n" \

e for the moment fix n
e have P(0)

HZ (ICS@UIBK) (AP 11/24

Why Does This Work?

e P(0) “property P holds for 0"

e Vk.(P(k) — P(k + 1)) "if property P holds for arbitrary k then it
also holds for k + 1"

Vn.P(n) "“P holds for every n" \

e for the moment fix n
e have P(0)
e have P(0) — P(1)

HZ (ICS@UIBK) (AP 11/24

Why Does This Work?

e P(0) “property P holds for 0"

e Vk.(P(k) — P(k + 1)) "if property P holds for arbitrary k then it
also holds for k + 1"

Vn.P(n) "“P holds for every n" \

e for the moment fix n
e have P(0)

e have P(0) — P(1)

e have P(1)

HZ (ICS@UIBK) FP 11/24

Why Does This Work?

e P(0) “property P holds for 0"

e Vk.(P(k) — P(k + 1)) "if property P holds for arbitrary k then it
also holds for k + 1"

Vn.P(n) "“P holds for every n" \

e for the moment fix n
e have P(0)

e have P(0) — P(1)

e have P(1)
e have P(1) — P(2)

HZ (ICS@UIBK) (AP 11/24

Why Does This Work?

e P(0) “property P holds for 0"

e Vk.(P(k) — P(k + 1)) "if property P holds for arbitrary k then it
also holds for k + 1"

Vn.P(n) "“P holds for every n" \

e for the moment fix n o ...
e have P(0)

e have P(0) — P(1)

e have P(1)
e have P(1) — P(2)

HZ (ICS@UIBK) (AP 11/24

Why Does This Work?

e P(0) “property P holds for 0"

e Vk.(P(k) — P(k + 1)) "if property P holds for arbitrary k then it
also holds for k + 1"

Vn.P(n) "“P holds for every n" \

e for the moment fix n o ...

e have P(0) e have P(n—1)
e have P(0) — P(1)

e have P(1)
e have P(1) — P(2)

HZ (ICS@UIBK) FP 11/24

Why Does This Work?

e P(0) “property P holds for 0"

e Vk.(P(k) — P(k + 1)) "if property P holds for arbitrary k then it
also holds for k + 1"

Vn.P(n) "“P holds for every n" \

e for the moment fix n o ...

e have P(0) e have P(n—1)

e have P(0) — P(1) e have P(n—1) — P(n)
e have P(1)
e have P(1) — P(2)

HZ (ICS@UIBK) FP 11/24

Why Does This Work?

e P(0) “property P holds for 0"

e Vk.(P(k) — P(k + 1)) "if property P holds for arbitrary k then it
also holds for k + 1"

Vn.P(n) "“P holds for every n" \

e for the moment fix n o ...

e have P(0) e have P(n—1)

e have P(0) — P(1) e have P(n—1) — P(n)
e have P(1) e hence P(n)

e have P(1) — P(2)

HZ (ICS@UIBK) FP 11/24

Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

HZ (ICSQUIBK) =3 12/24

Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

HZ (ICS@UIBK) FP 12/24

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

. P(X):(1+2+"‘+X:M)

HZ (ICS@UIBK) (AP 12/24

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

. P(X):(1+2+M+X:M)
e base case: P(0)

HZ (ICS@UIBK) (AP 12/24

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

. P(X):(1+2+M+X:M)
o base case: P(0)=(1+2+---4+0)

HZ (ICS@UIBK) (AP 12/24

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

. P(X):(1+2+M+X:M)
e base case: P(0)=(1+2+4---+0=0)

HZ (ICS@UIBK) (AP 12/24

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

. P(X):(1+2+"‘+X:M)
e base case: P(O):(1+2+”‘+O:0:M)

HZ (ICS@UIBK) (AP 12/24

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

. P(X):(1+2+M+X:M)
e base case: P(O):(1+2+...+O:0:M)
o step case: P(k) — P(k+1)

HZ (ICS@UIBK) (AP 12/24

Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

. P(X):(1+2+"‘+X:M)
o base case: P(0) = (1+2+---+0=0= 2G))
e step case: P(k)_> P(k—|—1)

IH: P(k):(1+2+'”+k:@)

HZ (ICSQUIBK) (AP 12/24

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

o P(x)=(1+2+- 4 x=Xxil)y
e base case: P(O):(1+2+---+O:0:W)
o step case: P(k) — P(k+1)

IH: P(k) = (1+2+ - + k = X&)

show: P(k +1)

HZ (ICSQUIBK) (AP 12/24

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

o P(x)= (1424 +x =Xty
e base case: P(O):(1+2+---+O:0:W)
o step case: P(k) — P(k+1)
IH: P(k) = (1+2+ - + k = X&)
show: P(k +1)
1424+ (k+1)

HZ (ICSQUIBK) (AP 12/24

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

o P(x)= (1424 +x =Xty
e base case: P(O):(1+2+---+O:0:W)
o step case: P(k) — P(k+1)
IH: P(k) = (1+2+ - + k = X&)
show: P(k +1)
1424 4 (k+1) =142+ + k) +(k+1)

HZ (ICSQUIBK) (AP 12/24

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

° P(X):(1+2+...+X:M)
e base case: P(O):(1+2+---+O:0:W)
o step case: P(k) — P(k+1)
IH: P(k) = (1+2+ - + k = X&)
show: P(k +1)
1424 4 (k+1) =142+ + k) +(k+1)
m k- (k+1)

:T'i'(k-i-l)

HZ (ICSQUIBK) (AP 12/24

M peWbeitn 0000000000000 Wedvmwsdel b
What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

° P(X):(l—i—Q—i—---—l—X:M)
e base case: P(O):(1+2+---+O:0:W)
o step case: P(k) — P(k+1)
IH: P(k) = (1+2+ - + k = X&)
show: P(k +1)
1424 4 (k+1) =142+ + k) +(k+1)
m k- (k+1)

:T'i'(k-i-l)

(k+1)- (k+2)
2

HZ (ICSQUIBK) (AP 12/24

Week 7 - Induction Mathematical Induction

e of course the base case can be changed

e e.g., if base case P(1), property holds for all n > 1

HZ (ICSQUIBK) =3 13/24

Week 7 - Induction Induction Over Lists

@ Week 7 - Induction

e Induction Over Lists

HZ (ICSQUIBK) =3 14/24

Week 7 - Induction Induction Over Lists

Recall

type ’a list = [1 | (::) of ’a * ’a list

HZ (ICSQUIBK) =3 15/24

Week 7 - Induction Induction Over Lists

Recall

type ’a list = [1 | (::) of ’a * ’a list

e |ists are recursive structures

e base case: []

e step case: x :: xS

HZ (ICS@UIBK) FP 15/24

Week 7 - Induction Induction Over Lists

Induction Principle on Lists

e to show P(xs) for all lists xs

e show base case: P([])

e show step case: P(xs) — P(x : : xs) for arbitrary x and xs

HZ (ICS@UIBK) FP 16/24

Week 7 - Induction Induction Over Lists

Induction Principle on Lists

e to show P(xs) for all lists xs

e show base case: P([])

e show step case: P(xs) — P(x : : xs) for arbitrary x and xs

(P([J)AVx Vxs (P(xs) — P(x :: xs)))

HZ (ICS@UIBK) (AP 16/24

Week 7 - Induction Induction Over Lists

Induction Principle on Lists

e to show P(xs) for all lists xs

e show base case: P([])

e show step case: P(xs) — P(x : : xs) for arbitrary x and xs

(P([1)AVx : a.Vxs : a 1list.(P(xs) — P(x :: xs)))
—Vis : a 1ist.P(Is)

HZ (ICS@UIBK) (AP 16/24

Week 7 - Induction Induction Over Lists

Induction Principle on Lists

e to show P(xs) for all lists xs

e show base case: P([])

e show step case: P(xs) — P(x : : xs) for arbitrary x and xs

IH

—~
(P([1)AVx : a.Vxs : a list.(P(xs) — P(x :: xs)))
— Vs : a 1ist.P(Is)

HZ (ICS@UIBK) (AP 16/24

Induction Principle on Lists

e to show P(xs) for all lists xs

e show base case: P([])

e show step case: P(xs) — P(x : : xs) for arbitrary x and xs

Formally
IH

—~
(P([1)AVx : a.Vxs : a list.(P(xs) — P(x :: xs)))
—Vis : a 1ist.P(Is)

Remarks

e y : (B reads 'y is of type '

e for lists, P can be seen as function p : ’a list -> bool

<

HZ (ICS@UIBK) FP 16/24

Week 7 - Induction Induction Over Lists

Example - Lst . append

let rec (@) xs ys = match xs with
| 1 -> ys
[x::xs => x :: (xs Q@ ys)

HZ (ICSQUIBK) =3 17/24

Week 7 - Induction Induction Over Lists

Example - Lst . append

Recall

let rec (@) xs ys = match xs with

| 0 -> ys
[x::xs => x :: (xs Q@ ys)
Lemma

[1 is right identity of @, i.e.,

xs0 [] =xs

HZ (ICSQUIBK) =3 17/24

Week 7 - Induction Induction Over Lists

Example - Lst . append

Recall

let rec (@) xs ys = match xs with
| 0 -> ys
[x::xs => x :: (xs Q@ ys)

Lemma

[1 is right identity of @, i.e.,

xs0 [] =xs

Blackboard U]

HZ (ICSQUIBK) =3 17/24

Week 7 - Induction Induction Over Lists

Example - Lst.length

let rec length = function [] -> 0
| _::xs -> 1 + length xs

HZ (ICS@UIBK) FP 18/24

Week 7 - Induction Induction Over Lists

Example - Lst.length

let rec length = function [] -> 0
| _::xs -> 1 + length xs

sum of lengths equals length of combined list, i.e.,

length xs + length ys = length(xs @ ys)

HZ (ICSQUIBK) =3 18/24

Example - Lst.length

let rec length = function [] -> 0
| _::xs -> 1 + length xs

sum of lengths equals length of combined list, i.e.,

length xs + length ys = length(xs @ ys)

Blackboard Il

HZ (ICSQUIBK) =3 18/24

Week 7 - Induction Structural Induction

@ Week 7 - Induction

o Structural Induction

HZ (ICSQUIBK) =3 19/24

Week 7 - Induction Structural Induction

General Structures

= Var of var
| Abs of (var * term)
|

type term

App of (term * term)

Induction Principle

HZ (ICS@UIBK) (AP 20/24

Week 7 - Induction Structural Induction

General Structures

type term

Var of var

| Abs of (var * term)
| A

pp of (term * term)

Induction Principle

e for every non-recursive constructor there is a base case

HZ (ICS@UIBK) (AP 20/24

Week 7 - Induction Structural Induction

General Structures

type term

Var of var

| Abs of (var * term)
| A

pp of (term * term)

Induction Principle

e for every non-recursive constructor there is a base case
e base case: Var x

HZ (ICS@UIBK) (AP 20/24

Week 7 - Induction Structural Induction

General Structures

= Var of var
| Abs of (var * term)
|

type term

App of (term * term)

Induction Principle
e for every non-recursive constructor there is a base case
e base case: Var x

e for every recursive constructor there is a step case

HZ (ICS@UIBK) (AP 20/24

Week 7 - Induction Structural Induction

General Structures

type term

Var of var

| Abs of (var * term)
| A

pp of (term * term)

Induction Principle

e for every non-recursive constructor there is a base case
e base case: Var x

e for every recursive constructor there is a step case
e step case: Abs(x,t)

HZ (ICSQUIBK) (AP 20/24

Week 7 - Induction Structural Induction

General Structures

type term

Var of var

| Abs of (var * term)
| A

pp of (term * term)

Induction Principle

e for every non-recursive constructor there is a base case
e base case: Var x

e for every recursive constructor there is a step case
e step case: Abs(x,t)
e step case: App(s,t)

HZ (ICSQUIBK) (AP 20/24

Week 7 - Induction Structural Induction

Induction Principle on General Structures

e to show P(s) for all structures s

e show base cases

e show step cases

HZ (ICS@UIBK) (AP 21/24

Week 7 - Induction Structural Induction

Recall

type ’a btree = Empty | Node of (’a btree * ’a * ’a btree)

HZ (ICS@UIBK) (AP

Week 7 - Induction Structural Induction

Recall

type ’a btree = Empty | Node of (’a btree * ’a * ’a btree)

Induction Principle

(P(Empty) A

Vv VI Nr .
((P(1) A P(r)) — P(Node(/, v, r))))
vt P(t)

HZ (ICS@UIBK) (AP 22/24

Week 7 - Induction Structural Induction

Recall

type ’a btree = Empty | Node of (’a btree * ’a * ’a btree)

Induction Principle

(P(Empty) A
Vv : a.V/ : a btree.Vr : a btree.
((P(1) A P(r)) — P(Node(/,v,r))))

Vt : a btree.P(t)

HZ (ICS@UIBK) (AP 22/24

Week 7 - Induction Structural Induction

Example - Trees

Definition (Perfect Binary Trees)

binary tree is perfect if all leaf nodes have same depth

let rec perfect = function
| Empty -> true
| Node(l,_,r) -> height 1 = height r && perfect 1
&& perfect r

HZ (ICS@UIBK) (AP 23/24

Week 7 - Induction Structural Induction

Example - Trees

Definition (Perfect Binary Trees)

binary tree is perfect if all leaf nodes have same depth

let rec perfect = function
| Empty -> true
| Node(l,_,r) -> height 1 = height r && perfect 1
&& perfect r

HZ (ICS@UIBK) (AP 23/24

Week 7 - Induction Structural Induction

Example - Trees (cont'd)

Recall

let rec height = function
| Empty -> 0
| Node(l,_,r) -> max (height 1) (height r) + 1

let rec size = function Empty -> 0
| Node(l,_,r) -> size 1 + sizer + 1

HZ (ICS@UIBK) (AP 24/24

Week 7 - Induction Structural Induction

Example - Trees (cont'd)

Recall

let rec height = function
| Empty -> 0
| Node(l,_,r) -> max (height 1) (height r) + 1

let rec size = function Empty -> 0
| Node(l,_,r) -> size 1 + sizer + 1

perfect binary tree t of height n has exactly 2" — 1 nodes

HZ (ICS@UIBK) (AP 24/24

Week 7 - Induction Structural Induction

Example - Trees (cont'd)

Recall

let rec height = function
| Empty -> 0
| Node(l,_,r) -> max (height 1) (height r) + 1

let rec size = function Empty -> 0
| Node(l,_,r) -> size 1 + sizer + 1

perfect binary tree t of height n has exactly 2" — 1 nodes

To show: P(t) = (perfect t — (size t = 2(beieht 1) _ 1))
Blackboard U

HZ (ICS@UIBK) FP 24/24

	Week 7 - Induction
	Summary of Week 6
	Mathematical Induction
	Induction Over Lists
	Structural Induction

