
Functional Programming
WS 2012/13

Harald Zankl (VO)
Cezary Kaliszyk (PS) Thomas Sternagel (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

week 7

http://cl-informatik.uibk.ac.at


Week 7 - Induction

Overview

Week 7 - Induction
Summary of Week 6
Mathematical Induction
Induction Over Lists
Structural Induction

HZ (ICS@UIBK) FP 2/24



Week 7 - Induction Summary of Week 6

Overview

Week 7 - Induction
Summary of Week 6
Mathematical Induction
Induction Over Lists
Structural Induction

HZ (ICS@UIBK) FP 3/24



Week 7 - Induction Summary of Week 6

Rewrite Strategies

Outermost

• choose the (leftmost) outermost redex

• redex is outermost if not subterm of different redex

Innermost

• choose the (leftmost) innermost redex

• redex is innermost if no proper subterm is redex

HZ (ICS@UIBK) FP 4/24



Week 7 - Induction Summary of Week 6

Rewrite Strategies

Outermost

• choose the (leftmost) outermost redex

• redex is outermost if not subterm of different redex

Innermost

• choose the (leftmost) innermost redex

• redex is innermost if no proper subterm is redex

HZ (ICS@UIBK) FP 4/24



Week 7 - Induction Summary of Week 6

Rewrite Strategies

Outermost

• choose the (leftmost) outermost redex

• redex is outermost if not subterm of different redex

Innermost

• choose the (leftmost) innermost redex

• redex is innermost if no proper subterm is redex

HZ (ICS@UIBK) FP 4/24



Week 7 - Induction Summary of Week 6

Rewrite Strategies

Outermost

• choose the (leftmost) outermost redex

• redex is outermost if not subterm of different redex

Innermost

• choose the (leftmost) innermost redex

• redex is innermost if no proper subterm is redex

HZ (ICS@UIBK) FP 4/24



Week 7 - Induction Summary of Week 6

Reduction Strategies

Call-by-name
• use outermost strategy

• stop as soon as WHNF is reached

Call-by-value

• use innermost strategy

• stop as soon as WHNF is reached

WHNF (Intuition)

Thou shalt not reduce below lambda.

HZ (ICS@UIBK) FP 5/24



Week 7 - Induction Summary of Week 6

Reduction Strategies

Call-by-name
• use outermost strategy

• stop as soon as WHNF is reached

Call-by-value

• use innermost strategy

• stop as soon as WHNF is reached

WHNF (Intuition)

Thou shalt not reduce below lambda.

HZ (ICS@UIBK) FP 5/24



Week 7 - Induction Summary of Week 6

Reduction Strategies

Call-by-name
• use outermost strategy

• stop as soon as WHNF is reached

Call-by-value

• use innermost strategy

• stop as soon as WHNF is reached

WHNF (Intuition)

Thou shalt not reduce below lambda.

HZ (ICS@UIBK) FP 5/24



Week 7 - Induction Summary of Week 6

Evaluation Strategies

Lazy

• call-by-name + sharing

• only evaluate if necessary

• e.g. Haskell

Strict/Eager

• call-by-value

• evaluate arguments before calling a function

• e.g. OCaml (also support for lazyness)

HZ (ICS@UIBK) FP 6/24



Week 7 - Induction Summary of Week 6

Evaluation Strategies

Lazy

• call-by-name + sharing

• only evaluate if necessary

• e.g. Haskell

Strict/Eager

• call-by-value

• evaluate arguments before calling a function

• e.g. OCaml (also support for lazyness)

HZ (ICS@UIBK) FP 6/24



Week 7 - Induction

This Week

Practice I

OCaml introduction, lists, strings, trees

Theory I

lambda-calculus, evaluation strategies, induction,
reasoning about functional programs

Practice II

efficiency, tail-recursion, combinator-parsing

Theory II

type checking, type inference

Advanced Topics

lazy evaluation, infinite data structures, monads, . . .

HZ (ICS@UIBK) FP 7/24



Week 7 - Induction Mathematical Induction

Overview

Week 7 - Induction
Summary of Week 6
Mathematical Induction
Induction Over Lists
Structural Induction

HZ (ICS@UIBK) FP 8/24



Week 7 - Induction Mathematical Induction

When?

Goal

“prove that some property P holds for all natural numbers”

Formally

∀n.P(n) (where n ∈ N)

HZ (ICS@UIBK) FP 9/24



Week 7 - Induction Mathematical Induction

How?

2 goals to show

1. P(0)

2. ∀k .(P(k)→ P(k + 1))

Gives

(P(0) ∧ ∀k .(P(k)→ P(k + 1)))→ ∀n.P(n)

HZ (ICS@UIBK) FP 10/24



Week 7 - Induction Mathematical Induction

How?

2 goals to show

1. P(0)

2. ∀k .(P(k)→ P(k + 1))

Gives

(P(0) ∧ ∀k .(P(k)→ P(k + 1)))→ ∀n.P(n)

HZ (ICS@UIBK) FP 10/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0)

“property P holds for 0”

• ∀k.(P(k)→ P(k + 1))

“if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n)

“P holds for every n”

We get

• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1))

“if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n)

“P holds for every n”

We get

• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n)

“P holds for every n”

We get

• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n)

“P holds for every n”

We get

• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n) “P holds for every n”

We get

• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n) “P holds for every n”

We get

• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n) “P holds for every n”

We get
• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n) “P holds for every n”

We get
• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n) “P holds for every n”

We get
• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n) “P holds for every n”

We get
• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n) “P holds for every n”

We get
• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n) “P holds for every n”

We get
• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n) “P holds for every n”

We get
• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n) “P holds for every n”

We get
• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

Why Does This Work?

We have

• P(0) “property P holds for 0”

• ∀k.(P(k)→ P(k + 1)) “if property P holds for arbitrary k then it
also holds for k + 1”

We want

∀n.P(n) “P holds for every n”

We get
• for the moment fix n

• have P(0)

• have P(0)→ P(1)

• have P(1)

• have P(1)→ P(2)

• . . .

• have P(n − 1)

• have P(n − 1)→ P(n)

• hence P(n)

HZ (ICS@UIBK) FP 11/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0)

= (1 + 2 + · · ·+ 0

= 0

= 0·(0+1)
2

)

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0)

= (1 + 2 + · · ·+ 0

= 0

= 0·(0+1)
2

)

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0)

= (1 + 2 + · · ·+ 0

= 0

= 0·(0+1)
2

)

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0)

= (1 + 2 + · · ·+ 0

= 0

= 0·(0+1)
2

)

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0) = (1 + 2 + · · ·+ 0

= 0

= 0·(0+1)
2

)

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0) = (1 + 2 + · · ·+ 0 = 0

= 0·(0+1)
2

)

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0) = (1 + 2 + · · ·+ 0 = 0 = 0·(0+1)
2 )

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0) = (1 + 2 + · · ·+ 0 = 0 = 0·(0+1)
2 )

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0) = (1 + 2 + · · ·+ 0 = 0 = 0·(0+1)
2 )

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0) = (1 + 2 + · · ·+ 0 = 0 = 0·(0+1)
2 )

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0) = (1 + 2 + · · ·+ 0 = 0 = 0·(0+1)
2 )

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1)

= (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0) = (1 + 2 + · · ·+ 0 = 0 = 0·(0+1)
2 )

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0) = (1 + 2 + · · ·+ 0 = 0 = 0·(0+1)
2 )

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

What is Meant by ‘Property’?

anything that depends on some variable and is either true or false can
be seen as function p : ’a -> bool

Example

• P(x) = (1 + 2 + · · ·+ x = x ·(x+1)
2 )

• base case: P(0) = (1 + 2 + · · ·+ 0 = 0 = 0·(0+1)
2 )

• step case: P(k)→ P(k + 1)

IH: P(k) = (1 + 2 + · · ·+ k = k·(k+1)
2 )

show: P(k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k · (k + 1)

2
+ (k + 1)

=
(k + 1) · (k + 2)

2

HZ (ICS@UIBK) FP 12/24



Week 7 - Induction Mathematical Induction

Remark

• of course the base case can be changed

• e.g., if base case P(1), property holds for all n ≥ 1

HZ (ICS@UIBK) FP 13/24



Week 7 - Induction Induction Over Lists

Overview

Week 7 - Induction
Summary of Week 6
Mathematical Induction
Induction Over Lists
Structural Induction

HZ (ICS@UIBK) FP 14/24



Week 7 - Induction Induction Over Lists

Recall

Type

type ’a list = [] | (::) of ’a * ’a list

Note
• lists are recursive structures

• base case: []

• step case: x :: xs

HZ (ICS@UIBK) FP 15/24



Week 7 - Induction Induction Over Lists

Recall

Type

type ’a list = [] | (::) of ’a * ’a list

Note
• lists are recursive structures

• base case: []

• step case: x :: xs

HZ (ICS@UIBK) FP 15/24



Week 7 - Induction Induction Over Lists

Induction Principle on Lists

Intuition

• to show P(xs) for all lists xs

• show base case: P([])

• show step case: P(xs)→ P(x :: xs) for arbitrary x and xs

Formally

(P([]) ∧ ∀x

: α

.∀xs

: α list

.(P(xs)→ P(x :: xs)))
→ ∀ls

: α list

.P(ls)

Remarks
• y : β reads ‘y is of type β’

• for lists, P can be seen as function p : ’a list -> bool

HZ (ICS@UIBK) FP 16/24



Week 7 - Induction Induction Over Lists

Induction Principle on Lists

Intuition

• to show P(xs) for all lists xs

• show base case: P([])

• show step case: P(xs)→ P(x :: xs) for arbitrary x and xs

Formally

(P([]) ∧ ∀x

: α

.∀xs

: α list

.(P(xs)→ P(x :: xs)))
→ ∀ls

: α list

.P(ls)

Remarks
• y : β reads ‘y is of type β’

• for lists, P can be seen as function p : ’a list -> bool

HZ (ICS@UIBK) FP 16/24



Week 7 - Induction Induction Over Lists

Induction Principle on Lists

Intuition

• to show P(xs) for all lists xs

• show base case: P([])

• show step case: P(xs)→ P(x :: xs) for arbitrary x and xs

Formally

(P([]) ∧ ∀x : α.∀xs : α list.(P(xs)→ P(x :: xs)))
→ ∀ls : α list.P(ls)

Remarks
• y : β reads ‘y is of type β’

• for lists, P can be seen as function p : ’a list -> bool

HZ (ICS@UIBK) FP 16/24



Week 7 - Induction Induction Over Lists

Induction Principle on Lists

Intuition

• to show P(xs) for all lists xs

• show base case: P([])

• show step case: P(xs)→ P(x :: xs) for arbitrary x and xs

Formally

(P([]) ∧ ∀x : α.∀xs : α list.(

IH︷ ︸︸ ︷
P(xs)→ P(x :: xs)))
→ ∀ls : α list.P(ls)

Remarks
• y : β reads ‘y is of type β’

• for lists, P can be seen as function p : ’a list -> bool

HZ (ICS@UIBK) FP 16/24



Week 7 - Induction Induction Over Lists

Induction Principle on Lists

Intuition

• to show P(xs) for all lists xs

• show base case: P([])

• show step case: P(xs)→ P(x :: xs) for arbitrary x and xs

Formally

(P([]) ∧ ∀x : α.∀xs : α list.(

IH︷ ︸︸ ︷
P(xs)→ P(x :: xs)))
→ ∀ls : α list.P(ls)

Remarks
• y : β reads ‘y is of type β’

• for lists, P can be seen as function p : ’a list -> bool

HZ (ICS@UIBK) FP 16/24



Week 7 - Induction Induction Over Lists

Example - Lst.append

Recall

let rec (@) xs ys = match xs with

| [] -> ys
| x::xs -> x :: (xs @ ys)

Lemma

[] is right identity of @, i.e.,

xs @ [] = xs

Proof.

Blackboard

HZ (ICS@UIBK) FP 17/24



Week 7 - Induction Induction Over Lists

Example - Lst.append

Recall

let rec (@) xs ys = match xs with

| [] -> ys
| x::xs -> x :: (xs @ ys)

Lemma

[] is right identity of @, i.e.,

xs @ [] = xs

Proof.

Blackboard

HZ (ICS@UIBK) FP 17/24



Week 7 - Induction Induction Over Lists

Example - Lst.append

Recall

let rec (@) xs ys = match xs with

| [] -> ys
| x::xs -> x :: (xs @ ys)

Lemma

[] is right identity of @, i.e.,

xs @ [] = xs

Proof.

Blackboard

HZ (ICS@UIBK) FP 17/24



Week 7 - Induction Induction Over Lists

Example - Lst.length

Recall

let rec length = function [] -> 0
| _::xs -> 1 + length xs

Lemma

sum of lengths equals length of combined list, i.e.,

length xs + length ys = length(xs @ ys)

Proof.

Blackboard

HZ (ICS@UIBK) FP 18/24



Week 7 - Induction Induction Over Lists

Example - Lst.length

Recall

let rec length = function [] -> 0
| _::xs -> 1 + length xs

Lemma

sum of lengths equals length of combined list, i.e.,

length xs + length ys = length(xs @ ys)

Proof.

Blackboard

HZ (ICS@UIBK) FP 18/24



Week 7 - Induction Induction Over Lists

Example - Lst.length

Recall

let rec length = function [] -> 0
| _::xs -> 1 + length xs

Lemma

sum of lengths equals length of combined list, i.e.,

length xs + length ys = length(xs @ ys)

Proof.

Blackboard

HZ (ICS@UIBK) FP 18/24



Week 7 - Induction Structural Induction

Overview

Week 7 - Induction
Summary of Week 6
Mathematical Induction
Induction Over Lists
Structural Induction

HZ (ICS@UIBK) FP 19/24



Week 7 - Induction Structural Induction

General Structures

Type

type term = Var of var
| Abs of (var * term)
| App of (term * term)

Induction Principle

• for every non-recursive constructor there is a base case

• base case: Var x

• for every recursive constructor there is a step case

• step case: Abs(x , t)
• step case: App(s, t)

HZ (ICS@UIBK) FP 20/24



Week 7 - Induction Structural Induction

General Structures

Type

type term = Var of var
| Abs of (var * term)
| App of (term * term)

Induction Principle

• for every non-recursive constructor there is a base case

• base case: Var x

• for every recursive constructor there is a step case

• step case: Abs(x , t)
• step case: App(s, t)

HZ (ICS@UIBK) FP 20/24



Week 7 - Induction Structural Induction

General Structures

Type

type term = Var of var
| Abs of (var * term)
| App of (term * term)

Induction Principle

• for every non-recursive constructor there is a base case
• base case: Var x

• for every recursive constructor there is a step case

• step case: Abs(x , t)
• step case: App(s, t)

HZ (ICS@UIBK) FP 20/24



Week 7 - Induction Structural Induction

General Structures

Type

type term = Var of var
| Abs of (var * term)
| App of (term * term)

Induction Principle

• for every non-recursive constructor there is a base case
• base case: Var x

• for every recursive constructor there is a step case

• step case: Abs(x , t)
• step case: App(s, t)

HZ (ICS@UIBK) FP 20/24



Week 7 - Induction Structural Induction

General Structures

Type

type term = Var of var
| Abs of (var * term)
| App of (term * term)

Induction Principle

• for every non-recursive constructor there is a base case
• base case: Var x

• for every recursive constructor there is a step case
• step case: Abs(x , t)

• step case: App(s, t)

HZ (ICS@UIBK) FP 20/24



Week 7 - Induction Structural Induction

General Structures

Type

type term = Var of var
| Abs of (var * term)
| App of (term * term)

Induction Principle

• for every non-recursive constructor there is a base case
• base case: Var x

• for every recursive constructor there is a step case
• step case: Abs(x , t)
• step case: App(s, t)

HZ (ICS@UIBK) FP 20/24



Week 7 - Induction Structural Induction

Induction Principle on General Structures

Intuition

• to show P(s) for all structures s

• show base cases

• show step cases

HZ (ICS@UIBK) FP 21/24



Week 7 - Induction Structural Induction

Recall

Type

type ’a btree = Empty | Node of (’a btree * ’a * ’a btree)

Induction Principle

(P(Empty) ∧
∀v

: α

.∀l

: α btree

.∀r

: α btree

.

((P(l) ∧ P(r))→ P(Node(l , v , r))))

→
∀t

: α btree

.P(t)

HZ (ICS@UIBK) FP 22/24



Week 7 - Induction Structural Induction

Recall

Type

type ’a btree = Empty | Node of (’a btree * ’a * ’a btree)

Induction Principle

(P(Empty) ∧
∀v

: α

.∀l

: α btree

.∀r

: α btree

.

((P(l) ∧ P(r))→ P(Node(l , v , r))))

→
∀t

: α btree

.P(t)

HZ (ICS@UIBK) FP 22/24



Week 7 - Induction Structural Induction

Recall

Type

type ’a btree = Empty | Node of (’a btree * ’a * ’a btree)

Induction Principle

(P(Empty) ∧
∀v : α.∀l : α btree.∀r : α btree.

((P(l) ∧ P(r))→ P(Node(l , v , r))))

→
∀t : α btree.P(t)

HZ (ICS@UIBK) FP 22/24



Week 7 - Induction Structural Induction

Example - Trees

Definition (Perfect Binary Trees)

binary tree is perfect if all leaf nodes have same depth

let rec perfect = function

| Empty -> true

| Node(l,_,r) -> height l = height r && perfect l
&& perfect r

HZ (ICS@UIBK) FP 23/24



Week 7 - Induction Structural Induction

Example - Trees

Definition (Perfect Binary Trees)

binary tree is perfect if all leaf nodes have same depth

let rec perfect = function

| Empty -> true

| Node(l,_,r) -> height l = height r && perfect l
&& perfect r

HZ (ICS@UIBK) FP 23/24



Week 7 - Induction Structural Induction

Example - Trees (cont’d)

Recall

let rec height = function

| Empty -> 0
| Node(l,_,r) -> max (height l) (height r) + 1

let rec size = function Empty -> 0
| Node(l,_,r) -> size l + size r + 1

Lemma

perfect binary tree t of height n has exactly 2n − 1 nodes

Proof.

To show: P(t) =
(
perfect t → (size t = 2(height t) − 1)

)
Blackboard

HZ (ICS@UIBK) FP 24/24



Week 7 - Induction Structural Induction

Example - Trees (cont’d)

Recall

let rec height = function

| Empty -> 0
| Node(l,_,r) -> max (height l) (height r) + 1

let rec size = function Empty -> 0
| Node(l,_,r) -> size l + size r + 1

Lemma

perfect binary tree t of height n has exactly 2n − 1 nodes

Proof.

To show: P(t) =
(
perfect t → (size t = 2(height t) − 1)

)
Blackboard

HZ (ICS@UIBK) FP 24/24



Week 7 - Induction Structural Induction

Example - Trees (cont’d)

Recall

let rec height = function

| Empty -> 0
| Node(l,_,r) -> max (height l) (height r) + 1

let rec size = function Empty -> 0
| Node(l,_,r) -> size l + size r + 1

Lemma

perfect binary tree t of height n has exactly 2n − 1 nodes

Proof.

To show: P(t) =
(
perfect t → (size t = 2(height t) − 1)

)
Blackboard

HZ (ICS@UIBK) FP 24/24


	Week 7 - Induction
	Summary of Week 6
	Mathematical Induction
	Induction Over Lists
	Structural Induction


