
Towards an Automatic Analysis of Security
Protocols in First-Order Logic

Christoph Weidenbach

Max-Planck-Institut für Informatik
Im Stadtwald, 66123 Saarbrücken, Germany

weidenb@mpi-sb.mpg.de

Abstract. The Neuman-Stubblebine key exchange protocol is formal-
ized in first-order logic and analyzed by the automated theorem prover
Spass. In addition to the analysis, we develop the necessary theoreti-
cal background providing new (un)decidability results for monadic first-
order fragments involved in the analysis. The approach is applicable to a
variety of security protocols and we identify possible extensions leading
to future directions of research.

1 Introduction

The growing importance of the internet causes a growing need for security pro-
tocols that protect transactions and communication. It turns out that the design
of such protocols is highly error-prone. Therefore, a variety of different meth-
ods have been described that analyze security protocols to discover flaws. The
topic of this paper is to add a further, new method that is based on automated
theorem proving in first-order logic.

In the context of first-order automated theorem proving, Schumann (1997)
implemented the well-known BAN logic (Burrows, Abadi & Needham 1990) in
first-order logic and then used the automated theorem prover SETHEO to search
for proofs in the BAN logic. The BAN logic is a modal belief logic, suitable to
express the beliefs of parties in the course of a protocol execution. The logic has
been successfully used to analyze authenticity properties of several classical pro-
tocols. The BAN logic is not very-well suited for reasoning about secrecy, e.g.,
possible actions of an intruder. For this purpose finite state (model checking)
methods, see, e.g., the overview article by Mitchell (1998), turned out to be suc-
cessful. Independently from the specific formalization used in such an approach,
the protocol is eventually described by a finite model, usually guaranteeing de-
cidability of the investigated properties. The inductive method due to Paulson
(1997) uses inductive definitions for actions of the various parties, message se-
quences etc. as the basis for an analysis. The analysis is supported by the generic,
interactive higher-order logic theorem prover Isabelle. Due to the expressiveness
of the logic, a detailed modeling of protocols is possible, at the price that explicit
induction proofs are usually not automatic.

Our approach tries to combine the benefits of the finite state analysis and
the inductive method. The idea is to use fragments of first-order logic that are

H. Ganzinger (Ed.): CADE-16, LNAI 1632, pp. 314–328, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Towards an Automatic Analysis of Security Protocols in First-Order Logic 315

expressive enough to have infinite, inductive models, but that are still subject
to automated theorem proving. For example, our theory is expressive enough to
model an intruder that can send all – in general infinitely many (see page 318)
– syntactically composable messages. In Section 2 we demonstrate our approach
by an analysis of the Neuman & Stubblebine (1993) key exchange protocol. The
protocol is translated into first-order monadic Horn fragments. We show that
the automated theorem prover Spass (Weidenbach, Afshordel, Brahm, Cohrs,
Engel, Keen, Theobalt & Topic 1999) can be successfully used to automatically
prove security properties of the protocol and to detect potential errors of an
implementation. The Spass input files of the analysis are available at

http://spass.mpi-sb.mpg.de/
For space limitations, the analysis of the Neuman-Stubblebine protocol presented
here leaves out the second part of the protocol that serves subsequent authen-
tication. This part of the protocol can also be successfully analyzed with our
techniques, though. In Section 3 we investigate the Horn fragments involved in
the analysis and prove that several of these are decidable in general. The paper
ends with a discussion of the achieved results and pointers to future research,
Section 4.

2 The Neuman–Stubblebine Protocol

The example protocol we want to study is the key-exchange protocol due to
Neuman & Stubblebine (1993). The goal of this protocol is to establish a secure
key Kab between two principals A and B that already share secure keys Kat and
Kbt with a trusted server T , respectively.

(i) A → B : A, Na

(ii) B → T : B, EKbt (A, Na, Tb), Nb

(iii) T → A : EKat (B, Na, Kab, Tb), EKbt(A, Kab , Tb), Nb

(iv) A → B : EKbt (A, Kab, Tb), EKab(Nb)
The protocol starts with A sending the clear-text message (i) to B consisting of
two components: A’s name and a nonce Na created by A. So “,” in the protocol
description means message composition. Nonces are fresh numbers (e.g., random
numbers) that are used to prevent replay attacks. Having received this message,
B sends the three part message (ii) to the server T . The message starts with
B’s name, an encrypted middle part and ends with a nonce Nb generated by B.
Encryption is denoted by an expression Ekey(message). The message A, Na, Tb

is encrypted by the secure key Kbt that B and T share and contains A’s name,
the nonce Na and a time span Tb. The span Tb suggests the expiration time for
the eventually generated session key between A and B, an aspect of the protocol
that we will not study. The server T decrypts the instructions from B using the
key Kbt and generates a session key Kab for A and B. Then he sends the three
part message (iii) to A. Using the secure key Kat the server T encrypts B’s name,
A’s initial nonce Na, the generated session key Kab and the expiration time span
Tb. The second part contains A’s name, the session key Kab and Tb encrypted
with key Kbt and the third part is the nonce Nb. The principal A receives the

316 Christoph Weidenbach

message, she uses her key Kat to decrypt the first part, verifies her nonce Na,
stores the session key Kab and then forwards the second part of T ’s message to
B and adds B’s nonce Nb encrypted with the session key Kab, message (iv). Now
B decrypts the first part of message (iv) with his key Kbt, extracts the session
key Kab and by decrypting the second part of the message using the session key
he ensures the correct identity of A.

In the sequel, we develop a formalization of this protocol in monadic first-
order Horn logic. We are particularly interested in a monadic Horn formalization,
because Horn clauses provide a nice minimal model semantics and we are able
to provide decidability results for a variety of monadic Horn theories. This will
be explained in more detail in the next section, Section 3. We introduce the
necessary symbols (predicates, functions, constants) in the course of subsequent
message formalization. We adhere to the usual first-order notation where the
used operators are ¬ (negation), ∧ (conjunction), ⊃ (implication), ∀ (universal
quantification), ∃ (existential quantification). The key idea of the approach is
to formalize the set M of messages that are sent during the execution of the
protocol. This model is realistic, because typically such a protocol takes place
in an asynchronous framework without any globally available clock. The initial
setup for principal A together with message (i) is represented by the formulae

(1) Ak (key(at , t))
(2) P(a)
(3) M(sent(a, b, pair(a, na))) ∧ Sa(pair (b, na))

where key , sent and pair are function symbols, a, b, t, na, at are constant
symbols and Ak , P and M are predicate symbols. We use the convention to
name function symbols, constant symbols and variables by lowercase letters and
predicate symbols start with an uppercase letter. In particular, variables always
start with one of the letters u–z. Formula (1) expresses that A holds the key at
for the server T . Formula (2) defines a to be one of the parties of the protocol.
Formula (3) states that A sends message (i) (see page 315) and stores that she
sent the message. A term sent(x, y, z) means that message z is sent by x to y. The
predicate M holds for all sent messages, P holds for all principals and predicates
named 〈Principal〉k hold all keys for Principal, cf. formula (1). Finally, Sa is A’s
local store that will eventually be used to verify her nonce in message (iii).

Principal B is only interested in fresh nonces. Hence, the formalization of his
initial setup and his action seeing A’s message (i), formula (3), is

(4) Bk (key(bt , t))
(5) P(b)
(6) Bf (na)
(7) ∀xa , xna [(M(sent(xa , b, pair(xa, xna))) ∧ Bf (xna)) ⊃

(Sb(pair(xa , xna)) ∧
M(sent(b, t, triple(b, nb(xna), encr(triple(xa , xna, tb(xna)), bt)))))]

where we formalized B to react properly on any message having the structure
of message (i), without knowing the principal in advance, formula (7). So our
formalization of the protocol is not a priori restricted to three parties or exactly
one execution. The premise Bf (xna) declares that xa’s nonce is fresh to B,
for otherwise B stops the protocol, since the premise of the above implication

Towards an Automatic Analysis of Security Protocols in First-Order Logic 317

becomes false. The initial nonce of A to be fresh to B, formula (6). Furthermore,
B is a principal, formula (5), and holds the secure key bt with t, formula (4).
The functions nb and tb in formula (7) compute B’s nonce and expiration time,
respectively. Assuming freshness, these functions only depend on xa ’s fresh nonce
xna . Therefore, for every fresh nonce, B will generate different random numbers
and expiration spans. So far, we only defined A’s nonce na to be fresh. At the
end of this section we will model an intruder that has infinitely many numbers
available that are fresh to B. Finally, B stores that he got the key request from
xa in his local store Sb to verify his time stamp in the final message (iv).

On seeing message (ii), generated by the succedent of formula (7), the server
T sends message (iii), formula (10):

(8) Tk(key(at , a)) ∧ Tk(key(bt , b))
(9) P(t)

(10) ∀xb, xnb, xa, xna , xbet, xbt , xat , xk
[(M(sent(xb, t, triple(xb, xnb, encr(triple(xa , xna, xbet), xbt))))∧
Tk(key(xbt , xb)) ∧ Tk(key(xat , xa)))

⊃
M(sent(t, xa, triple(encr (quadr (xb, xna , kt(xna), xbet), xat),

encr(triple(xa, kt(xna), xbet), xbt), xnb)))]
Formula (8) declares the respective keys the server holds for A and B. For-
mula (9) makes the server a principal. First, in formula (10), the server checks
whether he owns the secure key xbt for principal xb. Having the key xbt the
server can decrypt the third part of message (ii) and checks whether he also has
a secure key xat for communication with principal xa . If all this is satisfied, the
server generates a session key kt(xna) by applying the key generation function
kt to the nonce xna and sends message (iii) to xa . If xna is a fresh nonce, kt(xna)
is a fresh key.

Principal A sees the server message, and tries to decrypt the first part of the
message using the secure key at she shares with the server, the antecedent of
formula (11). If this succeeds, she checks from her store Sa that this part of the
message starts with xb and the nonce she initially sent to xb. Then A forwards
the second part xm to xb and encrypts, using the new session key xk contained
in her encrypted part, xb’s nonce xnb and sends it to xb. In addition, A now
owns the session key xk for communication with xb.

(11) ∀xnb , xbet, xk , xm, xb, xna
[(M(sent(t, a, triple(encr(quadr (xb, xna , xk , xbet), at), xm, xnb))) ∧
Sa(pair (xb, xna))))

⊃
(M(sent(a, xb, pair(xm , encr(xnb , xk)))) ∧ Ak(key(xk , xb)))]

Finally, formula (12), B decrypts the first part of the message he received from
xa, checks whether it contains his expiration time xbet and uses the session key
xk to check whether the second part of the message contains his nonce in the
context of xa and xna which he stored in Sb. If all this succeeds, B accepts xk
as a secure session key for xa .

318 Christoph Weidenbach

(12) ∀xbet , xk , xnb, xa, xna
[(M(sent(xa , b, pair(encr (triple(xa , xk , tb(xna)), bt),

encr(nb(xna), xk)))) ∧ Sb(pair(xa , xna)))
⊃

Bk(key(xk , xa))]
This finishes the formalization of the Neuman-Stubblebine protocol and we now
start to analyze it using Spass. First, we want to verify that the protocol yields
the desired result, a key between A and B. To this end we saturate the for-
mulae (1)–(12). Recall that the complete below analysis is available via ftp, see
Section 1.

Fact 1 Spass (finitely) saturates the formulae (1)–(12) in less than one second.

All computations with Spass were performed on a Sun Sparc Ultra 10 with a
300MHz processor running Solaris. Spass computes a finite minimal model that
consists in addition to the ground atoms already contained in the formalization
of the ground atoms

1. Bk (key(kt(na), a))
2. M(sent(a, b, pair(encr(triple(a, kt(na), tb(na)), bt),

encr (nb(na), kt(na)))))
3. Ak(key(kt(na), b))
4. M(sent(t, a, triple(encr(quadr(b, na, kt(na), tb(na)), at),

encr (triple(a, kt(na), tb(na)), bt), nb(na))))
5. M(sent(b, t, triple(b, nb(na), encr(triple(a, na , tb(na)), bt))))
6. M(sent(a, b, pair(a, na)))
7. Sb(pair(a, na))
8. Sa(pair (b, na))

In the next section, Section 3, we will explain what saturation means and how
this model is in fact automatically computed by Spass. The model contains ex-
actly the messages that A, B and T communicate according to the protocol.
Atoms 1 and 3 indicate the established key kt(na) between A and B. This can
be automatically extracted.

Fact 2 Spass proves the conjecture ∃x [Ak(key(x, b)) ∧ Bk (key(x, a))] with re-
spect to the saturated theory (Fact 1) in less than one second.

So, we automatically proved a first important property of the protocol: The
protocol terminates and it establishes a key between A and B.

The rest of this section is devoted to an analysis to what extent an intruder
can disturb the protocol and how such attacks can be prevented using appropri-
ate implementations for A, B and T . We use the following assumptions for the
intruder: First, the intruder can record all sent messages. Second, the intruder
cannot break any secure key. In particular, he cannot break the initial keys at
and bt. Third, the intruder can send messages and can forge the sender of a
message. Fourth, the intruder has no access to the local stores Sa and Sb. The
first assumption is formalized by the formula

(13) ∀xa , xb, xm [M(sent(xa , xb, xm)) ⊃ Im(xm)]

Towards an Automatic Analysis of Security Protocols in First-Order Logic 319

where Im(xm) means that xm is a message recorded or composed by the in-
truder. We allow the intruder to decompose messages that are not encrypted

(14) ∀u, v [Im(pair(u, v)) ⊃ (Im(u) ∧ Im(v))]
(15) ∀u, v, w [Im(triple(u, v , w)) ⊃ (Im(u) ∧ Im(v) ∧ Im(w))]
(16) ∀u, v, w, z [Im(quadr (u, v , w , z)) ⊃ (Im(u) ∧ Im(v) ∧ Im(w) ∧ Im(z))]

and to newly compose and send these messages in an arbitrary way.
(17) ∀u, v [(Im(u) ∧ Im(v)) ⊃ Im(pair (u, v))]
(18) ∀u, v, w [(Im(u) ∧ Im(v) ∧ Im(w)) ⊃ Im(triple(u, v , w))]
(19) ∀u, v, w, x [(Im(u)∧ Im(v) ∧ Im(w) ∧ Im(x)) ⊃ Im(quadr (u, v , w , x))]
(20) ∀x, y, u [(P(x) ∧ P(y) ∧ Im(u)) ⊃ M (sent(x , y , u))]

So far, the intruder can only decompose messages, rearrange and send them in
an arbitrary way. The next two formulae allow the intruder to consider anything
he records/composes as a key for anybody and to encrypt messages that way.

(21) ∀v, w [(Im(v) ∧ P(w)) ⊃ Ik (key(v , w))]
(22) ∀u, v, w [(Im(u) ∧ Ik (key(v , w)) ∧ P(w)) ⊃ Im(encr(u, v))]

So Ik (key(v, w)) holds if the intruder considers v to be a key for principal w.
Next we tried Spass to saturate the formulae (1)–(22).

Fact 3 Spass does not terminate on saturating the formulae (1)–(22).

An analysis (by hand) of the produced clauses shows that the formulae (1)–
(22) generate infinitely many clauses of the form
∀u [Im(u) ⊃ M (sent(t , a, triple(encr (quadr (b, kti(na), kt i+1 (na), tb(na)), at),

encr (triple(a, kti+1(na), tb(na)), bt), u)))]
where kt i(na) abbreviates the i-fold application of kt to na . In terms of the pro-
tocol this corresponds to the following potentially infinite sequence of messages:

I : B → T : : B, EKbt (A, K0
ab, Tb), Nb

T : T → A: : EKat(B, Na, K1
ab, Tb), EKbt (A, K1

ab, Tb), Nb

I : B → T : : B, EKbt (A, K1
ab, Tb), Nb

T : T → A: : EKat(B, Na, K2
ab, Tb), EKbt (A, K2

ab, Tb), Nb

...
where the first column shows the real sender of the message (the intruder I fakes
the sender to be B) and Ki

ab is the ith key generated by T with K0
ab = Kab. Thus,

the server can be used by the intruder to generate arbitrarily many messages of
the form EKbt (A, Ki

ab, Tb). Since the intruder knows part of the clear-text mes-
sage (the principal A) and he knows that only the key Ki

ab differs in all these
messages and he can get as many messages of this form as he needs, he may
be able to start a known-plaintext attack to the protocol. What may be really
crucial here is that the intruder can get as many messages of the above format
as he may need to break the key Kbt (accordingly for Kat).

Fact 4 The non-termination of Spass on formulae (1)–(22) indicates a poten-
tial attack to the protocol.

We can get rid of this attack by a modification to the server T that causes him
to reject his own keys as nonces. The (modified) formulae are

320 Christoph Weidenbach

(10)′ ∀xb, xnb, xa, xna, xbet , xbt, xat , xk
[(M(sent(xb, t, triple(xb , xnb, encr(triple(xa , xna , xbet), xbt))))∧
Tk(key(xbt , xb)) ∧ Tk(key(xat , xa)) ∧Nonce(xna))

⊃
M(sent(t, xa, triple(encr (quadr(xb , xna, kt(xna), xbet), xat),

encr(triple(xa , kt(xna), xbet), xbt), xnb)))]
(23) Nonce(na)
(24) ∀x¬Nonce(kt(x))
(25) ∀x [Nonce(tb(x)) ∧ Nonce(nb(x))]

We give the modified set of formulae to Spass.

Fact 5 Spass terminates on saturating the formulae (1)–(9),(10)′,(11)–(25) in
less than one second.

The minimal model generated by Spass is infinite, contains the finite mini-
mal model computed out of the formulae (1)-(12) and is described by 64 clauses.
For example, it still contains clauses like Im(x), Im(y) → Im(pair(x , y)), for-
mula (17), that cause the set of potential intruder messages in the minimal
model to be infinite. This clause together with formula (20) and one formula out
of (9), (2), (5) implies that the set of sent messages is infinite in the minimal
model, too

Now we want to check whether the intruder is able to break the protocol. To
this end we give Spass the conjecture ∃x [Ik(key(x, b))∧Bk(key(x, a))] expressing
that the intruder owns a key for B which B assumes to be a secure key for A.

Fact 6 Spass proves the conjecture ∃x [Ik(key(x, b))∧Bk(key(x, a))] in less than
one second.

The proof indicates a potential attack to the protocol and it was based on
the minimal model generated before (Fact 5). By an inspection of the proof
it can be seen that the nonce na is the key shared by the intruder and B to
communicate with A. With respect to the original protocol and following the
proof found by Spass, the intruder sends instead of message (iv) the message
EKbt(A, Na, Tb), EKNa

(Nb) to B, where he knows Na from message (i) and Nb,
EKbt(A, Na, Tb) from message (ii). So, without breaking the keys at or bt , the
intruder can break the protocol, if nonces can be confused with keys. We can
also get rid of this attack by a refinement to B’s behavior on A’s message (iv),
where B does not accept nonces as keys.

(7)′ ∀xbet , xk , xnb, xa , xna
[(M(sent(xa, b, pair(encr (triple(xa , xk , tb(xna), bt),

encr(nb(xna), xk)))) ∧
Sb(pair (xa, xna) ∧ Key(xk)) ⊃ Bk (key(xk , xa))]

(26) ∀x¬[Key(x) ∧ Nonce(x)]
(27) ∀x Key(kt(x))

Fact 7 Spass terminates on saturating the formulae (1)–(6), (7)′, (8), (9),
(10)′, (11)–(27) in less than one second. With respect to the saturation, Spass
disproves the conjecture ∃x, y, z [Ik (key(x, y)) ∧ Bk(key(x, z))] in less than one
second.

Towards an Automatic Analysis of Security Protocols in First-Order Logic 321

Note that we have generalized the conjecture of Fact 6 as we now proved in
Fact 7 that the intruder I and B do not share any key at all. The same can be
proved by Spass for possible keys between A and the intruder or the server T
and the intruder.

Finally, we also allow the intruder to generate infinitely many nonces that
are fresh to B. This enables him to enter the protocol from the very beginning.

(28) If (ni)
(29) ∀x [If (x) ⊃ If (nif (x))]
(30) ∀x [If (x) ⊃ (Bf (x) ∧ Im(x))]

The predicate If holds for all fresh intruder nonces that are generated by appli-
cation of nif to the initial fresh nonce ni , formulae (28), (29). All fresh intruder
nonces are also fresh to B and can be used by the intruder to compose messages,
formula (30).

Fact 8 Spass terminates on saturating the formulae (1)–(6), (7)′, (8), (9),
(10)′, (11)–(30) in less than one second. With respect to the saturation, Spass
disproves the conjecture ∃x, y, z [Ik (key(x, y)) ∧ Bk(key(x, z))] in less than one
second.

So this extension to the possibilities of the intruder does not cause an ad-
ditional attack. In summary, our analysis showed that the protocol terminates,
establishes a secure key between A and B and that an intruder cannot break the
protocol as long as nonces are not confused with keys.

3 Monadic Horn Theories

In this section we study the monadic Horn theories involved in the previous
section. We adhere to the usual definitions for variables, terms, substitutions,
atoms, (positive and negative) literals, multisets, and clauses. We give just the
most important definitions for our purpose.

The function vars maps terms, atoms, literals, clauses and sets of such objects
to the set of variables occurring in these objects. A term t is called shallow if
t is a variable or is of the form f(x1, . . . , xn) where the xi are not necessarily
different. A term t is called linear if every variable occurs at most once in t. It is
called semi-linear if it is a variable or of the form f(t1 , . . . , tn) such that every
ti is semi-linear and whenever vars(ti)∩ vars(tj) 6= ∅ we have ti = tj for all i, j.

A clause is a multiset of literals. We denote clauses by implications of the
form Γ → ∆ where the multiset Γ contains all atoms occurring negatively in the
clause and ∆ contains all atoms occurring positively in the clause. We abbreviate
{A} ∪ Γ by A, Γ for some atom A.

An (Herbrand) interpretation I is a set of ground atoms. For any predicate
symbol P , we define I(P) = {(t1, . . . , tn) | P (t1, . . . , tn) ∈ I}. A ground clause
Γ → ∆ is satisfied by I if Γ 6⊆ I or ∆ ∩ I 6= ∅. A non-ground clause is satisfied
by I if all its ground instances are satisfied by I. If a clause C is satisfied by
I we also say that I is a model for C and write I |= C. An interpretation is a
model for a set of clauses N (I |= N), if it is a model for all C ∈ N . A model

322 Christoph Weidenbach

I is minimal for some set of clauses N , if there is no model J with J ⊂ I and
J |= N . The model relation |= can be extended to first-order formulae in the
usual way.

A Horn clause is a clause with at most one positive literal. A monadic Horn
theory is a set of Horn clauses where all occurring predicates are monadic. A
declaration is a clause S1(x1), . . . , Sn(xn) → S(t) with {x1, . . . , xn} ⊆ vars(t).
It is called a term declaration if t is not a variable and a subsort declaration
otherwise. A subsort declaration is called trivial if n = 0. A term declaration
is called shallow (linear, semi-linear) if t is shallow (linear, semi-linear). Note
that shallow term declarations do not include arbitrary ground terms. However,
any ground term declaration can be equivalently represented, with respect to
the minimal model semantics defined below, by finitely many shallow term dec-
larations. A sort theory is a finite set of declarations. It is called shallow (linear,
semi-linear) if all term declarations are shallow (linear, semi-linear).

Let N be a sort theory. Then we define the interpretation TN recursively as
follows: (i) for every declaration → S(t) ∈ N , substitution σ such that S(t)σ is
ground, we define S(t)σ ∈ TN (ii) for every ground substitution σ, declaration
S1(x1), . . . , Sn(xn) → S(t) ∈ N , if Si(xi)σ ∈ TN , for all 1 ≤ i ≤ n, tσ ground,
then S(t)σ ∈ TN . It is well-known that TN is the minimal Herbrand model for
a sort theory N .

If N is a sort theory then the first-order theory over N is the set of all first-
order formulae using only predicate and function symbols occurring in N . The
first-order theory over N is decidable, if we can decide TN |= φ for any formula
φ in the first-order theory over N .

An atom ordering is a well-founded, total ordering on ground atoms. Given
an atom ordering �, we will call an atom A maximal with respect to a multiset of
atoms Γ , if for any B in Γ we have B 6� A. Any atom ordering � is extended to
an ordering on literals by taking the multiset extension of � and by identifying
any positive literal A with the singleton {A} and any negative literal ¬A with
the multiset {A, A}. With this definition, ¬A is greater than A, but is smaller
than any literal B or ¬B with B � A. The multiset extension of the literal
ordering induces an ordering on ground clauses. Let us also use � to denote
both the extension to literals and clauses of any given atom ordering �. The
clause ordering is compatible with the atom ordering; if the maximal literal in C
is greater than the maximal literal in D then C � D. These notions are lifted to
the non-ground level as usual: For two non-ground atoms A, B we define A � B
if Aσ � Bσ for all ground instances Aσ, Bσ. We say that a Horn clause Γ → A
is reductive for the positive literal A, if A is the maximal literal with respect to
Γ .

A selection function assigns to each (ground) clause a possibly empty set of
occurrences of negative literals. If C is a clause and sel a selection function then
the literal occurrences in sel(C) are called selected. In particular, sel(C) = ∅
indicates that no literal is selected.

Towards an Automatic Analysis of Security Protocols in First-Order Logic 323

Definition 1. An inference by ordered resolution (with selection) between two
Horn clauses takes the form

Γ → A B, Λ → ∆

Γσ, Λσ → ∆σ

such that (i) σ is the most general unifier between A and B (ii) Γσ → Aσ is
reductive for Aσ, (iii) no literal is selected in Γ , and (iv) B is selected, or else
no literal is selected in B, Λ → ∆ and Bσ is maximal in Bσ, Λσ → ∆σ. The
multiset ∆ is either empty or contains exactly one atom.

The inference rule sort resolution we employ in this paper is an instance
of ordered resolution. Using an appropriate option setting Spass implements
sort resolution with respect to the theories considered in the previous section.
The used ordering is any atom ordering satisfying T (s) � S(t) if s contains t
as a proper subterm. For example, a Knuth-Bendix ordering where all function
and predicate symbols have weight one has this property. Given a clause C =
S1(t1), . . . , Si(tn) → S(t) the selection function sor for sort resolution is defined
by Si(ti) ∈ sor(C) if (i) ti is a non-variable term or (ii) all tj are variables and
ti is a variable that does not occur in t or (iii) all tj are variables occurring in t
and t is a variable.

Let � be a total atom ordering and sel a selection function. Given a set
of ground clauses N , we use induction with respect to � to define a Herbrand
interpretation IC and a set EC, for each clause C in N , as follows.

Definition 2. Let IC be the set
⋃

C�D ED. Furthermore, EC = {A} if (i) C =
Γ → A is reductive for A, (ii) Γ ⊆ IC and (iii) A 6∈ IC . Otherwise, EC is the
empty set.

If EC = {A}, we also say that C produces A and call C a productive clause.
Finally, by I, we denote the Herbrand interpretation

⋃
C∈N EC. Whenever we

need to emphasize the dependency of the interpretation I from the particular
clause set N , we will use the notation IN . If N is clause set containing non-
ground clauses, then IN is the interpretation generated by all ground instances
of clauses from N . A non-ground clause C ∈ N is called productive if a ground
instance of C is productive for IN .

A clause C is a condensation of a clause D, if C is a proper (unordered)
factor of D that subsumes D. A set of clauses N is called saturated if it is
closed under condensation, the deletion of subsumed clauses and any clause
generated by an ordered resolution inference from clauses from N is subsumed
by some clause in N . Ordered resolution in general allows more powerful notions
of simplification/redundancy (Bachmair & Ganzinger 1994), but for the purpose
of this paper subsumption and condensation suffices.

Corollary 1 (Bachmair & Ganzinger (1994)). Let N be a set of Horn
clauses saturated by ordered resolution. Then either N contains the empty clause
or IN is a model for N .

324 Christoph Weidenbach

Lemma 1. Let N be a monadic Horn theory saturated by sort resolution that
does not contain the empty clause. Then IN = TN′

where N ′ is the set of all
term declarations and trivial subsort declarations occurring in N .

Proof. First, we show by contradiction that all productive clauses in N are ei-
ther term declarations or trivial subsort declarations. This implies IN = IN′

.
So assume Cσ = S1(t1)σ, . . . , Sn(tn)σ → S(t)σ is the minimal (with respect to
�) ground instance of a clause C ∈ N that produces S(t)σ but some Si(ti) is
selected in C. Since Cσ produces S(t)σ, we know {S1(t1)σ, . . . , Sn(tn)σ} ⊆ IN

Cσ
and S(t)σ 6∈ IN

Cσ. So there is a ground clause Dτ = T1(s1)τ, . . . , Tm(sm)τ →
Si(s)τ , D ∈ N , Si(s)τ = Si(ti)σ where Dτ ≺ Cσ. No literal in D is se-
lected (we chose Cσ to be minimal) and therefore we can generate a sort resolu-
tion resolvent R from C and D. This resolvent has a ground instance Rλ =
(S1(t1), . . . , Si−1(ti−1), T1(s1)τ, . . . , Tm(sm)τ, Si+1(ti+1), . . . , Sn(tn) → S(t))σ,
Rλ ≺ Cσ, is productive and produces S(t)σ contradicting that Cσ produces
S(t)σ. Therefore, every productive clause in N has no selected literal and is
hence a term declaration or a trivial subsort declaration.

Second, we show IN′ ⊆ TN′
by induction on the clause ordering. If S(t)σ ∈

IN′
then there is a productive clause S1(x1), . . . , Sn(xn) → S(t) ∈ N ′. If n =

0 then by definition of TN′
, case (i), we have S(t)σ ∈ TN′

. If n 6= 0 then
by definition of IN′

we know {S1(x1), . . . , Sn(xn)}σ ⊆ IN′
and therefore by

induction hypothesis {S1(x1), . . . , Sn(xn)}σ ⊆ TN′
. Now, by definition of TN′

,
case (ii), we have S(t)σ ∈ TN′

.
Third, we show TN′ ⊆ IN′

by structural induction on the definition of TN′
.

If S(t)σ ∈ TN′
is generated by some clause → S(t) ∈ N ′ then → S(t)σ is

productive and hence S(t)σ ∈ IN′
. If S(t)σ ∈ TN′

is generated by some clause
C = S1(x1), . . . , Sn(xn) → S(t) ∈ N ′ we know {S1(x1), . . . , Sn(xn)}σ ⊆ TN′

and hence, by induction hypothesis, {S1(x1), . . . , Sn(xn)}σ ⊆ IN′
. Furthermore,

C is a term declaration and by definition of our ordering C is reductive for S(t).
Hence, S1(x1)σ, . . . , Sn(xn)σ → S(t)σ is productive and generates S(t)σ ∈ IN′

.

Lemma 2. Let N be a semi-linear sort theory. Then the first-order theory over
N is decidable.

Proof. First, we transform N into a shallow sort-theory N ′. We recursively re-
place every declaration S1(x1), . . . , Sn(xn) → S(f(t1 , . . . , tn)) where ti is not a
variable by two new declarations

Sm1 (xm1), . . . , Sml (xml), R(y)→S(f(s1 , . . . , sn))
Sj1(xj1), . . . , Sjk(xjk)→R(ti)

where y and R are new, sj = tj if tj 6= ti, sj = y if tj = ti for all 1 ≤ j ≤ n,
vars(ti) = {xj1 , . . . , xjk} and vars(f(t1 , . . . , tn)) \ vars(ti) = {xm1 , . . . , xml}.
Since f(t1 , . . . , tn) is semi-linear, ti and f(s1 , . . . , sn) are semi-linear as well.
The transformation terminates generating a shallow sort theory N ′ and by an
induction argument it can be proved that TN(P) = TN′

(P) for any (monadic)
predicate P occurring in N . Second, Weidenbach (1998) showed that any shal-
low sort theory N ′ can be transformed into a Rec= tree automaton (Bogaert &
Tison 1992) such that for any monadic predicate P the language accepted by the

Towards an Automatic Analysis of Security Protocols in First-Order Logic 325

tree automaton in the state corresponding to P is exactly TN′
(P). Third, Comon

& Delor (1994) showed that the first-order theory over Rec= automata can be
decided.

Theorem 9. Let N be a monadic Horn theory finitely saturated by sort reso-
lution. If all term declarations in N are semi-linear, then the first-order theory
over the productive clauses in N is decidable.

Proof. By Lemma 1 and Lemma 2.

The technique used to prove Theorem 9 is a combination of results obtained
in the context of saturation based theorem proving with results developed in
the area of finite tree automata. In particular, saturation based theorem proving
cannot be a priori used to decide the first-order theory for some finitely saturated
semi-linear sort theory. One problem is that Skolemization cannot be carried out
in the usual way, since existential quantifiers must not introduce new symbols but
have to be interpreted over the minimal model of the sort theory. The fragment
for conjectures we used in the previous section is indeed decidable by saturation
based methods in general.

Lemma 3. Let N be a semi-linear sort theory. Then the first-order fragment
∃x1, . . . , xn [A1 ∧ . . . ∧ Ak] from the first-order theory over N where all Ai are
atoms can be decided by sort resolution.

Proof. The formula ∃x1, . . . , xn [A1∧ . . .∧Ak] holds in TN iff ∀x1, . . . , xn [¬A1∨
. . .∨¬Ak] does not hold in TN . This can be checked by sort resolution saturating
the set N ∪ {A1, . . . , Ak →}. This was shown to be decidable by Jacquemard,
Meyer & Weidenbach (1998).

The above Lemma 3 explains the success of Spass on the queries tested for
Fact 2, Fact 6 and Fact 7 in Section 2. The saturated theory, Fact 1, is a ground
theory and therefore semi-linear. This ground theory is the result of saturating
the clauses resulting from the formulae (1)–(12), see Section 2, by sort resolution.
By deleting all non-productive clauses, the remaining clauses are exactly the
atoms shown on page 318 plus the ground atoms that are already contained
in the formulae (1)–(12). Hence, Spass can in fact decide the query of Fact 2.
The saturated theories that are the basis for the conjectures investigated in
Fact 6 and Fact 7 are syntactically not semi-linear but contain non-linear variable
occurrences at different depth. However, all these occurrences are restricted by
monadic predicates having a finite extension in the minimal model. Lemma 3
also holds for this extension.

Saturating a sort theory extended by a clause A1, . . . , Ak → is a process
closely related to sorted unification (Weidenbach 1998). This is even decidable
for sort theories extended by certain, restricted forms of equations as shown
by Jacquemard et al. (1998). What remains to be shown is in which cases satu-
ration of a monadic Horn theory terminates.

Lemma 4. Let N be a monadic Horn theory where all positive literals are lin-
ear and shallow. Then N can be finitely saturated by sort resolution and the
productive clauses of the saturated theory form a linear shallow sort theory.

326 Christoph Weidenbach

Proof. Since any clause where no negative literal is selected is either a trivial
subsort declaration or a linear shallow term declaration, any application of sort
resolution takes one of the following three forms:

S1(xi1), . . . , Sk(xik) → S(f(x1 , . . . , xn)) S(f(t1 , . . . , tn)), Λ → ∆

S1(xi1)σ, . . . , Sk(xik)σ, Λ → ∆

where σ = {x1 7→ t1, . . . , xn 7→ tn}, {xi1, . . . , xik} ⊆ {x1, . . . , xn} or

S1(xi1), . . . , Sk(xik) → S(f(x1 , . . . , xn)) S(y), Λ → ∆

S1(xi1), . . . , Sk(xik), Λτ → ∆τ

where τ = {y 7→ f(x1, . . . , xn)}, again {xi1, . . . , xik} ⊆ {x1, . . . , xn} or

→ S(x) S(t), Λ → ∆

Λ → ∆

For all three types of inferences the following invariant holds: All non-variable
terms in the resolvent are proper subterms of the right parent clause or the re-
solvent contains at most one linear shallow non-variable term. Since N contains
only finitely many different terms and only monadic predicates, there are only
finitely many resolvents that can be generated with respect to subsumption and
condensation. Hence, the saturation terminates. Furthermore, for every type of
a resolution inference, if the resolvent contains a positive atom S(t) then t is a
linear shallow term. Hence, all productive clauses in the saturated theory are ei-
ther trivial subsort declarations or linear shallow term declarations and therefore
form a linear shallow sort theory.

The restrictions on the terms required for Lemma 4 are close to the border
of non-termination (undecidability). If we only require declarations to be linear,
then even if we additionally require that every literal is linear, the saturation
process does not terminate, in general. This can be shown by a reduction of the
ground word problem for word equations to this problem. We encode equality
by a two place function symbol e and add one monadic predicate T for “truth”.
Then all axioms of equality, except reflexivity, result monadic Horn clauses with
linear literals. The congruence axioms result in linear clauses because all function
symbols (except e itself) are monadic. Reflexivity would result in a non-linear
clause. However, it is sufficient for the reduction to code reflexivity for ground
terms, i.e, the occurring constants, resulting in linear clauses. Finally, any word
equation can be transformed into a linear Horn clause by expressing non lin-
earities through linear disequations. For example, the word equation ab ≈ a
that corresponds to the term equation a(b(x)) ≈ b(x) is expressed by the linear
monadic Horn clause T (e(b(x), y)) → T (e(a(b(x)), y)).

If we only require the positive literals in the Horn theories of Lemma 4 to be
shallow, the resulting theories can also not be finitely saturated, in general. We
can simply reduce the undecidable unifiability problem for arbitrary sort theories
to this problem. We code an arbitrary term declaration S1(x1), . . . , Sn(xn) →

Towards an Automatic Analysis of Security Protocols in First-Order Logic 327

S(t) by S1(x1), . . . , Sn(xn), T (f(y, t)) → S(y) where y, f and T are new and
add the shallow declaration → T (f(x, x)).

With respect to the saturation results in Section 2, Lemma 4 partly explains
the behavior of Spass. All considered sets of formulae in Section 2, have positive
occurrences of non-linear atoms and Fact 3 shows that the suggested techniques
are in general not strong enough to guarantee termination. However, the theory
we used in the previous section for the intruder, is a theory where all positive
atoms are linear and shallow. So, by Lemma 4, this theory can always be finitely
saturated. Note that this theory is independent of the investigated protocol as
long as it can be represented by a set of messages. Furthermore, this theory can
still be finitely saturated if we add finitely many ground term declarations. The
productive clauses of the saturation of the initial protocol, Fact 1, solely contains
ground declarations. Hence, the non-termination of the saturation of the protocol
theory extended by the intruder theory indicates an infinite number of messages
“exchanged” by the protocol and the intruder, the messages we isolated below
Fact 3. Note that none of the above termination results for sort resolution holds
for standard resolution or ordered resolution without our particular selection
strategy.

4 Conclusion

This paper consists of two major parts: First, it shows that using automated
theorem proving techniques security protocols like the Neumann-Stubblebine
protocol can be successfully analyzed. The suggested techniques apply to a va-
riety of protocols, e.g, further key exchange protocols (see Schneier (1996)). In
particular, we can finitely model an “infinite” intruder. Second, we have been
able to prove that parts of the used first-order fragments can be decided in gen-
eral. This includes more sophisticated properties than the properties we tested
for the Neumann-Stubblebine protocol. The decidability results are also useful
in a more general context. For example, Lemma 4 offers a new fine grained ap-
proximation for Horn programs (Charatonik, McAllester, Niwinski, Podelski &
Walukiewicz 1998).

So far our formalization mainly models “reachability”, i.e., that certain situ-
ations can(not) occur. For many protocols “liveness” properties, e.g., that a cer-
tain situation will definitely occur, require a more sophisticated formalization.
We already successfully analyzed signature exchange protocols with respect to
such properties using Spass. In order to explain the termination of Spass on
these experiments, the results of Section 3 have to be extended to the non-
Horn equality case. So an important direction of future research is to extend
the decidability results with respect to the needed fragments. The results of the
experiments with Spass we did so far support that this should be possible. Fur-
thermore, our results indicate that it should be possible to design an automatic
tool for the analysis of security protocols that is not restricted to a finite state
model.

328 Christoph Weidenbach

Acknowledgments: I’m indebted to Harald Ganzinger, Andreas Nonnengart,
Birgit Pfitzmann and Matthias Schunter for numerous useful comments and
discussions. The comments of the reviewers helped a lot in improving the quality
of the paper.

References

Bachmair, L. & Ganzinger, H. (1994), ‘Rewrite-based equational theorem proving with
selection and simplification’, Journal of Logic and Computation 4(3), 217–247.

Bogaert, B. & Tison, S. (1992), Equality and disequality constraints on direct subterms
in tree automata, in A. Finkel & M. Jantzen, eds, ‘Proceedings of 9th Annual
Symposium on Theoretical Aspects of Computer Science, STACS92’, Vol. 577 of
LNCS, Springer, pp. 161–171.

Burrows, M., Abadi, M. & Needham, R. (1990), ‘A logic of authentication’, ACM
Transactions on Computer Systems 8(1), 18–36.

Charatonik, W., McAllester, D., Niwinski, D., Podelski, A. & Walukiewicz, I. (1998),
The horn mu-calculus, in ‘Proceedings 13th IEEE Symposium on Logic in Com-
puter Science, LICS’98’, IEEE Computer Society Press, pp. 58–69.

Comon, H. & Delor, C. (1994), ‘Equational formulae with membership constraints’,
Information and Computation 112, 167–216.

Jacquemard, F., Meyer, C. & Weidenbach, C. (1998), Unification in extensions of shal-
low equational theories, in T. Nipkow, ed., ‘Rewriting Techniques and Applications,
9th International Conference, RTA-98’, Vol. 1379 of LNCS, Springer, pp. 76–90.

Mitchell, J. C. (1998), Finite-state analysis of security protocols, in A. J. Hu & M. Y.
Vardi, eds, ‘Computer Aided Verification (CAV-98) : 10th International Confer-
ence’, Vol. 1427 of LNCS, Springer, pp. 71–76.

Neuman, B. C. & Stubblebine, S. G. (1993), ‘A note on the use of timestamps as
nonces’, ACM SIGOPS, Operating Systems Review 27(2), 10–14.

Paulson, L. C. (1997), Proving properties of security protocols by induction, in
J. Millen, ed., ‘Proceedings of the 10th IEEE Computer Security Foundations
Workshop’, IEEE Computer Society, pp. 70–83.

Schneier, B. (1996), Applied Cryptography, 2 edn, Wiley.
Schumann, J. (1997), Automatic verification of cryptographic protocols with setheo,

in ‘Proceedings of the 14th International Conference on Automated Deduction,
CADE-14’, Vol. 1249 of LNAI, Springer, Townsville, Australia, pp. 87–100.

Weidenbach, C. (1998), Sorted unification and tree automata, in W. Bibel & P. H.
Schmitt, eds, ‘Automated Deduction - A Basis for Applications’, Vol. 1 of Applied
Logic, Kluwer, chapter 9, pp. 291–320.

Weidenbach, C., Afshordel, B., Brahm, U., Cohrs, C., Engel, T., Keen, E., Theobalt,
C. & Topic, D. (1999), System description: Spass version 1.0.0, in H. Ganzinger,
ed., ‘16th International Conference on Automated Deduction, CADE-16’, LNAI,
Springer. This volume.

	Introduction
	The Neuman--Stubblebine Protocol
	Monadic Horn Theories
	Conclusion
	References

