
Universität Innsbruck Academic Year 2013/14

Lecture Notes

Module Automated Reasoning

Notes for the Lectures in 2013/2014

Georg Moser

Winter 2013

c© G. Moser 2nd edition

This document has been produced with the help of KOMA-Script and LATEX.

Contents

I. Computational Logic 1

1. Why Logic is Good For You 3
1.1. Minesweeper 4
1.2. Program Analysis 5
1.3. Databases 5

2. Propositional Logic 7
2.1. Syntax and Semantics of Propositional Logic 7
2.2. Natural Deduction 8
2.3. Propositional Resolution 9
2.4. Many-Valued Propositional Logics 11

3. Syntax and Semantics of First-Order Logic 15
3.1. Syntax of First-Order Logic 15
3.2. Semantics of First-Order Logic 17
3.3. Models 19

4. Soundness and Completeness of First-Order Logic 23
4.1. Compactness and Löwenheim-Skolem Theorem 23
4.2. Model Existence Theorem 24
4.3. Soundness and Completeness 30
4.4. Normalisation 31

5. Craig’s Interpolation Theorem 35
5.1. Craig’s Theorem 35
5.2. Robinson’s Joint Consistency Theorem 37

6. Normal Forms and Herbrand’s Theorem 39
6.1. Prenex Normal Form 39
6.2. Skolem Normal Form 41
6.3. Herbrand’s Theorem 42
6.4. Eliminating Function Symbols and Identity 45

7. The Curry-Howard Isomorphism 49
7.1. A Problem with the Excluded Middle 49

iii

Contents

7.2. Natural Deduction for Intuitionistic Logic 50
7.3. Typed λ-Calculus 51
7.4. The Curry-Howard Isomorphism 53

8. Extensions of First-Order Logic 57
8.1. Limits of First-Order Logic 57
8.2. Second-Order Logic 58
8.3. Complexity Theory via Logic 60

II. Automated Theorem Proving 63

9. Why Automated Resoning is Good For You 65
9.1. Program Analysis 65
9.2. Databases 66
9.3. Issues of Security 66
9.4. Software Verification 67

10.Towards Automated Reasoning for First-Order Logic 69
10.1. Early Approaches in Automated Reasoning 69
10.2. Resolution for First-Order Logic 73
10.3. Tableaux Provers 79

10.3.1. Propositional Semantic Tableaux 79
10.3.2. First-Order Semantic Tableaux 80

10.4. Skolemisation 84
10.5. Redundancy Criteria and Deletion 91

11.Automated Reasoning with Equality 95
11.1. Ordered Resolution 95
11.2. Paramodulation and Ordered Paramodulation 97
11.3. Ordered Completion and Proof Orders 100
11.4. Superposition Calculus 103

12.Applications of Automated Reasoning 111
12.1. Neuman-Stubblebine Key Exchange Protocol 111
12.2. The Attack 112
12.3. Formalisation in First-Order 113

12.3.1. A −→ B : A,Na 114
12.3.2. B −→ T : B,EKbt

(A,Na,Time),Nb 114
12.3.3. T −→ A : EKat(B,Na,Kab,Time),EKbt

(A,Kab,Time),Nb 114
12.3.4. A −→ B : EKbt

(A,Kab,Time),EKab
(Nb) 115

12.4. Robbin’s Conjecture 116
12.5. Equational Prover EQP 119

iv

Preface

These course notes are for the module Automated Reasoning are are aimed at
students in the Master of Science program of Computer Science at the Univer-
sity of Innsbruck. The module consists of two lectures (i) Computational Logic
and (ii) Automated Reasoning, as well as a (practical) seminar. The lecture on
Computational Logic is held in the winter term, while the lecture on Automated
Reasoning is held in the successive summer term.

The lecture Automated Reasoning builds upon the material presented in the
lecture Computational Logic, so in principle it is suggested to first hear the logic
lecture. However, the lecture notes explain all topics in sufficient detail, so that
it is possible to understand (and pass) the lecture on Automated Reasoning, if
a mild amount of self-study on the logic part is performed. In the first part of
these lecture notes the following topics are mainly discussed:

– Syntax, Semantics and Formal Systems of Propositional and First-Order
Logic (including equality)

– Curry-Howard Isomorphism

– Herbrand’s Theorem

– Extensions of First-order Logic like Second-Order Logic

Furthermore in the second part (among others) the following topics are ad-
dressed:

– Resolution and Tableau provers for First-order Logic

– Paramodulation, Ordered Completion and Proof Orders, Superposition

– Applications of of Automated Reasoning

Note that these notes are not meant to replace the lecture, but to accompany
it. In particular in the following almost no examples will be given. This is
on purpose, as plenty of examples will be discussed in the lecture. Beware
that these lecture notes assume the reader to be familiar with general logical
concepts as for example provided by the lecture on Logic in Computer Science
(LICS for short) held by Prof. Aart Middeldorp1 or by text books covering this
topic (see for example [39, 10, 29]).

Similar material as is covered in these lecture notes can be found in the
following text books (in the order of importance): [11, 20, 36, 41]. For additional
references see [19, 23, 7, 27].

1 See http://cl-informatik.uibk.ac.at/teaching/ws11/lics for the online information
on the course “Logic in Computer Science” as offered in winter 2011.

v

http://cl-informatik.uibk.ac.at/teaching/ws11/lics

Part I.

Computational Logic

1

1.

Why Logic is Good For You

Logic is defined as the study of the principle of reasoning and mathematical
logic is defined as the study of principles of mathematical reasoning. In order to
explain what is meant with “study of reasoning” we consider the two (correct)
arguments given below.

A mother or father of a person is an ancestor of that person. An
ancestor of an ancestor of a person is an ancestor of a person. Sarah
is the mother of Isaac, Isaac is the father of Jacob. Thus, Sarah is
an ancestor of Jacob.

and

A square or cube of a number is a power of that number. A power
of a power of a number is a power of that number. 64 is the cube of
4, 4 is the square of 2. Thus, 64 is a power of 2.

On the surface these two argument are different: the first argument is con-
cerned with parenthood and ancestors, while the second one refers to mathe-
matics and number theory in particular. However, employing the language of
first-order logic (see Chapter 3) we can express both arguments as follows:

assume ∀x∀y((R1(x, y) ∨ R2(x, y))→ R3(x, y))

assume ∀x∀y∀z((R3(x, y) ∧ R3(y, z))→ R3(x, z))

assume R1(c1, c2) ∧ R2(c2, c3)

thus R3(c1, c3) .

Here R1, R2, R3 denote binary predicate constants (aka1 predicate symbols),
while c1, c2, c3 denote individual constants (aka constant symbols). Depending
on the way we interpret these symbols in a given structure we obtain either the
first argument or the second argument. Using a bit more formalism (again see
Chapter 3 for details) we can write the generalised argument as follows.

∀x∀y((R1(x, y) ∨ R2(x, y))→ R3(x, y))
∀x∀y∀z((R3(x, y) ∧ R3(y, z))→ R3(x, z))
R1(c1, c2) ∧ R2(c2, c3)

 |= R3(c1, c3) . (1.1)

1 also known as

3

1. Why Logic is Good For You

Using the technology discussed in Chapter 3 we can easily verify that the con-
sequence depicted in (1.1) is valid. Hence the argument used to deduce that
either Sarah is an ancestor of Jacob or that 64 is a power of 2 is not only correct,
but general in the sense that the correctness of this argument does not depend
on the interpretation of the symbols used in (1.1). Using standard methods in
automated resoning, the validity of (1.1) can be verified automatically (in an
instant).

Nowadays computer science is more prominent in the use of (mathematical)
logic than mathematics itself and logic has grown to be more relevant to com-
puter science than any other branch of mathematics (compare [52]). Below we
give some application areas of logic in computer science.

1.1. Minesweeper

Consider Figure 1.1 which shows a typical configuration that may appear during
a play of Minesweeper:2

Figure 1.1.: A Minesweeper Configuration

Richard Kaye has shown in [32] that the problem whether an arbitrary config-
uration on a Minesweeper is indeed a possible configuration that can be reached
through a sequence of moves is NP-complete. On the other hand, we can em-
ploy standard SAT solvers like for example MiniSat3 to play Minesweeper fully
automatically (although the first move has to be guessed). Such a Minesweeper
solver has been implemented by Christoph Rungg (see [47]).

The central idea of such an implementation is the encoding of the rules of the
game as a (large) set S of propositional formulas. As soon as this encoding is
established any satisfying assignment for S can be re-translated into a solution
to the original question in the context of the game. Due to the efficiency of
modern SAT solvers it is typically the case that this approach outperforms any
ad-hoc search method that tries to find the correct next move directly. Similar
ideas can be used to easily implement very efficient solvers for logic puzzles.4

2 http://en.wikipedia.org/wiki/Minesweeper_(computer_game).
3 http://minisat.se/
4 See http://cl-informatik.uibk.ac.at/software/puzzles/ for a collection of logic puzzle

solvers.

4

http://en.wikipedia.org/wiki/Minesweeper_(computer_game)
http://minisat.se/
http://cl-informatik.uibk.ac.at/software/puzzles/

1.2. Program Analysis

These (toy) examples serve as a reminder of the huge importance of SAT
technology in providing efficient and powerful techniques to implement search
methods (compare [33]).

1.2. Program Analysis

Interesting properties of programs (like termination) are typically undecidable.
Despite this limitation such properties are studied and automatic procedures
have been designed to (partially) verify whether certain properties hold.

In the analysis of programs one doesn’t study the concretely given program,
but abstracts it in a suitable way, abstract interpretations [14] formalise this
idea. Here the level of abstraction is crucial if one wants to prevent false nega-
tives: properties that hold true for the program become false for the abstraction.
In order to design expressive abstractions one combines simple abstractions into
more complicated and thus more expressive ones.

Sumit Gulwani and Ashish Tiwari have presented a methodology to automat-
ically combine abstract interpretations based on specific theories to construct
an abstract interpreter based on the combination of the studied theories. This
is encapsulated into the notion of logical product (compare [26]) and based on
the Nelson-Oppen method for combining decision procedures of different the-
ories (compare [38]). Here a theory is simply a set of sentences (over a given
language) that is closed under logical consequence. Examples of theories would
be for example the theory of linear arithmetic (making use of the symbols 0,
1, +, ×, 6, and =) or the theory of lists (making use of the symbols car, cdr,
cons, and =). If two theories T1, T2 fulfil certain conditions5 and it is known
that satisfiability of quantifier-free formulas with respect to the theories T1 and
T2 is decidable, then satisfiability of quantifier-free formulas with respect to the
union T1 ∪ T2 is decidable. In Chapter 5 we study a related result, Robinson’s
joint consistency theorem.

The methodology invented in [26] allows the modularisation of the analysis
of programs via abstract interpretations. Modularisation is possible for both
stages of the analysis: One one hand the technique can be employed to define
suitable interpretations for complex theories. On the other hand it can be
employed to simplify the implementation of such an abstract interpreter.

1.3. Databases

Datalog is a database query language based on the logic programming paradigm.
Syntactically it is a subset of Prolog (compare [12]). It is widely used in knowl-
edge representation systems, see for example [22]. Logically a datalog query is
a formula in Horn logic. Hence any such query has a unique model, its min-
imal model. This allows to assign a simple and unique semantics to datalog
programs.

5 To be precise the theories T1, T2 are supposed to be convex, disjoint, and stably infinite,
see [38].

5

1. Why Logic is Good For You

Datalog rules can be translated into inclusions in relational databases. Dat-
alog extends positive relational algebras as recursive queries can be formed,
which is not possible in positive relational algebras. The success of datalog can
for example be witnessed in changes to the database query language SQL that
has been extended by the possibility of recursive queries.

Contrary to full first-order logic, datalog queries are decidable. One can
distinguish two notions of complexity in this context. On one hand we have
expression complexity, where the complexity of fulfilling a given query is ex-
pressed in relation to the size of the query. On the other hand we have data
complexity, where the complexity is measured in the size of the database and
the query. The former notion is closely related to the notion of complexity of
formal theories. Hence we focus on this notion. The expression complexity
of datalog is EXPTIME-complete, that is, far beyond the complexity of typical
intractable problems like for example SAT.

Thomas Eiter et al. extended datalog to disjunctive datalog. Disjunctive dat-
alog allows disjunctions in heads of rules (compare [21]). It is a strict extension
of SQL and forms the basis of semantic web applications and has connections to
description logics and ontologies. Disjunctive datalog queries can be extended
with negation, so that the typical closed-world semantics of negation can be
overcome. To indicate the expressivity of disjunctive datalog observe that the
travelling salesperson problem can be directly formulated in this database query
language. Disjunctive datalog remains decidable, but the expression complexity
becomes NEXPTIMENP-complete. This implies that such queries can be only
solved on a nondeterministic Turing machine that runs in exponential time and
employs an NP-oracle.

6

2.

Propositional Logic

This chapter recalls the language of propositional logic, that is, its syntax and
its meaning, that is, its semantics (see Section 2.1). Furthermore, we recall the
rules of natural deduction and the rules of resolution for propositional logic (see
Section 2.2 and Section 2.3). Finally, in Section 2.4 we report on the use of
many-valued propositional logics in medical expert systems.

2.1. Syntax and Semantics of Propositional Logic

Let p1, p2, . . . , pj , . . . denote an infinite set of propositional atoms, denoted by
p, q, r. The set of all propositional atoms is denoted by AT. In addition we
make use of the truth constants > and ⊥.

Definition 2.1. The (propositional) connectives of propositional logic are

¬ ∧ ∨ → ,

and the (propositional) formulas are defined inductively as follows:

(i) A propositional atom p or a truth constant is a formula, and

(ii) if A, B are formulas, then

¬A (A ∧B) (A ∨B) (A→ B) ,

are also formulas.

Convention. In order to drop brackets, we use the following precedence: ¬
binds stronger than ∨ and ∧, which in turn bind stronger than→. Furthermore,
we tacitly assume right-associativity of →.

This completes the definition of the syntax of propositional logic. In the
remainder of this section we define its semantics. We write T, F for the two
truth values, representing “true” and “false” respectively.

Definition 2.2. An assignment v : AT → {T,F} is a mapping that associates
atoms with truth values.

We write v(F) for the valuation of the formula F . The valuation v(F) is
defined as the extension of the assignment v to formulas, using the following
truth tables:

7

2. Propositional Logic

¬
T F
F T

∧ T F

T T F
F F F

∨ T F

T T T
F T F

→ T F

T T F
F T T

Definition 2.3. The consequence relation, denoted as A1, . . . , An |= B, asserts
that v(B) = T, whenever v(A1), . . . , v(An) is true for any assignment v. We
write |= A, instead of ∅ |= A and call A a tautology or valid in this case.

We call two formulas (logically) equivalent (denoted as A ≡ B) if A |= B and
B |= A hold.

2.2. Natural Deduction

We recall the rules of natural deduction. We assume the reader is acquainted
with some notion of formal proof system and will only briefly motivate the rules.
See [29] for additional information.

Georg Gentzen introduced the calculus of natural deduction, whose rules for
propositional logic are given in Figure 2.1. The calculus aims to mimic the
“natural” way in which mathematical proofs are performed, for example the
disjunction elimination rule is best understood as an inference rule that repre-
sents a proof by case analysis.

Let G be a finite set of formulas and let F be a formula. A natural deduction
proof is a sequence of applications of rules depicted in Figure 2.1. If there exists
a natural deduction proof of F with assumptions G, then we say F is provable
(or derived) from G.

Definition 2.4. The provability relation, denoted as A1, . . . , An ` B, asserts
that B is derived from the assumptions A1, . . . , An. This notion extends to
infinite sets of formulas G: We write G ` F if there exists a finite subset G′ ⊆ G
such that G′ ` F . We write ` A instead of ∅ ` A and call the formula A
provable in this case.

We say that a set of formulas G is consistent if we cannot find a proof of ⊥
from G. A set of formulas G is called inconsistent if there exists a proof of ⊥
from G. A proof is sometimes also called a derivation.

The proof of the following theorem can for example be found in [29].

Theorem 2.1. Natural deduction is sound and complete for propositional
logic, that is, the following holds:

A1, . . . , An |= B ⇐⇒ A1, . . . , An ` B .

Note that natural deduction is not the only formal system that is sound and
complete for propositional logic, but only one among many. This motivates the
next definition.

Definition 2.5. If there exists a finite system of axioms and inference rules
that is sound and complete for a logic, we say this logic is finitely axiomatised
by such a system.

In the next section we briefly introduce propositional resolution which forms
another sound and complete proof system for propositional logic.

8

2.3. Propositional Resolution

introduction elimination

∧ E F
E ∧ F ∧ : i

E ∧ F
E

∧ : e E ∧ F
F

∧ : e

∨ E
E ∨ F ∨ : i

F
E ∨ F ∨ : i

E ∨ F

E
...
G

F
...
G

G
∨ : e

→

E
...
F

E → F
→ : i

E E → F
F

→ : e

¬

E
...
⊥
¬E ¬ : i

F ¬F
⊥ ¬ : e

> > > : i

⊥ ⊥
F
⊥ : e

¬¬ ¬¬F
F
¬¬ : e

Figure 2.1.: Natural Deduction for Propositional Logic

2.3. Propositional Resolution

A literal is a propositional atom p or its negation ¬p. A formula F is said to be
in conjunctive normal form (CNF for short) if F is a conjunction of disjunctions
of literals. For brevity we often speak of “a CNF F” instead of “a formula F
in CNF”.

The next lemma is easy, a complete proof can for example be found in [29].

Lemma 2.1. For all formulas A, there exists a formula B in CNF, such that
A ≡ B.

Definition 2.6. A clause is a disjunction of literals, defined inductively as
follows:

(i) The empty clause (denoted as �) is a clause,

(ii) literals are clauses, and

(iii) if C, D are clauses, then C ∨D is a clause.

9

2. Propositional Logic

As usual disjunction ∨ is associative and commutative. In addition we define
the following identities:

p = ¬¬p � ∨� = � C ∨� = � ∨ C = C ,

where p denotes a propositional atom and C an arbitrary clause.

Note that the language to define clauses is a variation of our language for
propositional logic: instead of the truth constant ⊥ we use � and we make
only use of the connectives ¬ and ∨. It is easy to see that a formula F in CNF
directly gives rise to a set of clauses C, where C is defined as the collection of
disjunctions in F . On the other hand Lemma 2.1 implies that for every formula
F there exists a CNF F ′, which can then be directly represented as a clause set
C. We call C the clause form of F .

John Alan Robinson invented the resolution calculus (for first-order logic),
whose propositional rules are given in Figure 2.2. The resolution calculus was
invented in the 1960s and various different presentations are known. See [36] for
a complete treatment of the differences between existing calculi. In particular
note that the resolution and factoring rule can also be combined into a single
rule [29].

resolution factoring

C ∨ p D ∨ ¬p
C ∨D

C ∨ l ∨ l
C ∨ l l a literal

Figure 2.2.: Resolution for Propositional Logic

Definition 2.7. Let C be a set of clauses. Then we define the resolution
operator Res(C) as follows:

Res(C) = {D | D is conclusion of an inference in Figure 2.2 with premises in C} .

Based on this we define the nth and the unlimited iteration of the resolution
operator as follows:

Res0(C) := C Resn+1(C):= Resn(C) ∪ Res(Resn(C))

Res∗(C) :=
⋃
n>0

Resn(C) .

We say the empty clause is derivable from C if � ∈ Res∗(C).

Let C be a set of clauses. If Res(C) ⊆ C, then the clause set C is called
saturated. Obviously, we have that Res∗(C) is saturated. If for a clause D,
D ∈ Res∗(C), then we say that D is derived from C by resolution. If for a
saturated set C, � 6∈ C, then C is called consistent, otherwise C is said to be
inconsistent.

Suppose C is inconsistent. Then it is easy to see that C (and the formula F
represented by C) are unsatisfiable. In other words (propositional) resolution

10

2.4. Many-Valued Propositional Logics

is a sound proof method. Furthermore, we have the following theorem, whose
proof can be found for example in [36, 29].

Theorem 2.2. Let F be a formula and let C denote its clause form. Proposi-
tional resolution is sound and complete, that is, the following holds:

F is unsatisfiable ⇐⇒ � ∈ Res∗(C) .

Observe that the resolution calculus is a refutation based technique, whose
aim is to derive the empty clause, that is, a contradiction. On the contrary
the calculus of natural deduction aims to prove the validity of a given formula.
Hence to prove the validity of a given formula F by resolution, we have to
consider the clause form C of its negation ¬F . This entails that an application
of resolution may require the translation of an arbitrary formula into CNF. If
the latter is done naively, this transformation may be quite costly.

Before we turn to an application of propositional logic in the next section,
we mention a general theorem on propositional logic, whose easy proof is left
to the reader.

Theorem 2.3. Let A → C be a valid formula. Then there exists a formula
B such that A → B and B → C are valid. Furthermore, the interpolant B
contains only propositional atoms that occur both in A and C.

2.4. Many-Valued Propositional Logics

We briefly remark on the possibility to replace the two truth values T and F
used in classical propositional logic with infinitely many truth values.

Let V ⊆ [0, 1] denote a set of finitely or infinitely many truth values containing
at least the truth values 0, 1, representing “false” and “true”, respectively.

Definition 2.8. A Lukasiewicz assignment (based on V) is a mapping v : AT→
V and the assignment v is extended to a (Lukasiewicz) valuation of formulas
as follows:

v(¬A) = 1− v(A)

v(A ∧B) = min{v(A), v(B)}
v(A ∨B) = max{v(A), v(B)}
v(A→ B) = min{1, 1− v(A) + v(B)}

A formula F is valid if v(A) = 1 for all assignments v based on V .

Logics with more than two truth values are called many-valued logics or
fuzzy logics. Many-valued logics, based on Lukasiewicz valuations are called
Lukasiewicz logics.

Theorem 2.4. Finite- or infinite-valued Lukasiewicz logics are finitely axioma-
tisable. Furthermore validity is decidable for propositional Lukasiewicz logics.
More precisely the validity problem for these logics is coNP-complete.

11

2. Propositional Logic

Although many-valued logics have been introduced for purely theoretical rea-
sons they find a number of applications in modelling uncertainty. Note for
example that the database language SQL uses a third truth value (called un-
known) to model unknown data.

If we consider infinitely many truth values V from the real interval [0, 1],
we can conceive these values as assigning probabilities to propositions. In this
interpretation infinite-valued logics can be used to model the behaviour of data
bases or medical expert systems.

CADIAG (Computer Assisted DIAGnosis) is a series of medical expert sys-
tems developed at the Vienna Medical University (since the 1980s). The latest
system is called CADIAG-2, see [53] for more details. This expert system is
rule based and for example contains rules of the following form:

IF suspicion of liver metastases by liver palpation

THEN pancreatic cancer

with degree of confirmation 0.3

CADIAG-2 is characterised by its ability to process not only definite truth or
falsity, but also indeterminate (vague or uncertain) information. The inference
system of CADIAG-2 can be expressed as an infinite valued fuzzy logics and
this formalisation revealed inconsistencies in the rule based knowledge repre-
sentation.

Problems

Problem 2.1. Verify whether the following propositional formulas are (i) sat-
isfiable, (ii) valid, or (iii) unsatisfiable:

(i) (p→ ¬q)→ (q → p)

(ii) (p→ (q → p))

(iii) ((p→ (q → r))→ ((p→ q)→ (p→ r)))

(iv) ((¬p→ ¬q)→ (q → p))

(v) p ∧ ¬(¬p→ q))

Problem 2.2. Show that the following claims about the consequence relation
are correct:

(i) (p→ q) ∧ p |= q

(ii) (p→ q) ∧ ¬q |= ¬p

(iii) p→ q 6|= q → p

(iv) (p ∨ q) ∧ ¬p |= q

(v) ¬(p ∧ q) 6|= (¬p ∧ ¬q)

12

2.4. Many-Valued Propositional Logics

Problem 2.3. Show that the following inference rules are derivable in (propo-
sitional) natural deduction:

(i)
A→ B ¬B

¬A

(ii)
A
¬¬A

(iii) A ∨ ¬A

Problem 2.4. Show that the following (propositional) clause sets are unsatis-
fiable:

(i) C = {p, q,¬r,¬p ∨ ¬q ∨ r}

(ii) C = {p ∨ q,¬p ∨ q, p ∨ ¬q,¬p ∨ ¬q}

(iii) C = {p,¬p∨ q∨ r,¬p∨¬q∨¬r,¬p∨ s∨ t,¬p∨¬s∨¬t,¬s∨ q, r∨ t, s∨¬t}

Problem 2.5. Show that the formula (p ∧ q → r)→ p→ q → r is valid, using
resolution.

Problem 2.6. Let F be a propositional formula, where zero, one or more
subformulas G are replaced by a logically equivalent formula G′. Then we
obtain a formula F ′ that is logically equivalent to the formula F .

(i) Give a precise definition of this process of substitution.

(ii) Show the correctness of the claim.

Problem 2.7. Show Theorem 2.3.
Hint : Proceed by induction on the number of atoms that occur in A but not

in B.

Problem 2.8. Consider the following alternative to Definition 2.7:

Res01(C) := C Resn+1
1 (C):= Res(Resn1 (C))

Res∗1(C) :=
⋃
n>0

Resn1 (C) .

Is this definition equivalent to the original one? In particular try to establish
whether we have � ∈ Res∗(C) iff � ∈ Res∗1(C) for any clause set C.

13

3.

Syntax and Semantics of First-Order
Logic

This chapter recalls the language of first-order logic, that is, its syntax and
its semantics. This will be established in the first two sections. Finally, in
Section 3.3 we state and prove the isomorphism theorem.

3.1. Syntax of First-Order Logic

A first-order language is determined by specifying its constants, variables, logical
symbols, and other auxiliary symbols like brackets or comma. In particular
constants are:

(i) Individual constants: k0, k1, . . . , kj , . . .

(ii) Function constants with i arguments: f i0, f
i
1, . . . , f

i
j , . . .

(iii) Predicate constants with i arguments: Ri0, R
i
1, . . . , R

i
j , . . .

Here i = 1, 2, . . . and j = 0, 1, 2, . . . While variables are

(i) x0, x1, . . . , xj , . . .

Here j = 0, 1, 2, . . . As logical symbols we have truth constants, propositional
connectives, and quantifiers:

(i) Truth contants: ⊥, >

(ii) Propositional connectives: ¬, ∧, ∨, →.

(iii) Quantifiers: ∀, ∃.

As soon as the constants of a language L are fixed, the language L is fixed.
Any finite sequence of symbols (from a language L) is called an expression. We
often include one more “logical symbol”, the equality sign =. To be precise the
expression = is a predicate constant, but for convenience we count it as a logical
symbol. This is done as we often want to assume that equality is part of our
language without explicitly remarking on its presence as one of the constants.
This is the only exception, all other (predicate) constants are referred to as
non-logical symbols.

15

3. Syntax and Semantics of First-Order Logic

Convention. If L is clear from context the phrase “of L” will be dropped.
The meta-symbols c, d, f , g, h, . . . are used to denote individual constants and
function symbols, while the meta-symbols P , Q, R, . . . vary through predicate
symbols. Variables are denoted by a, b, . . . or we use x, y, z, and so forth.

As defined above the cardinality of the constants and variables in any lan-
guage is countable. In this case we call the language countable or enumerable.
To assume a countable language is a restriction, but this restriction is standard.

Definition 3.1. Terms are defined as follows:

(i) Any individual constant c is a term.

(ii) Any variable x is a term.

(iii) If t1, . . . , tn are terms, f an n-ary function symbol, then f(t1, . . . , tn) is
a term.

Note that (as explained above) the phrase “of L” for a pre-assumed language
L has been dropped.

Definition 3.2. If P is a predicate constant with arity n and t1, . . . tn are
terms, then P (t1, . . . , tn) is called an atomic formula. If the equality sign is
present then t1 = t2 is also an atomic formula.

Definition 3.3. (First-order) formulas are defined as follows:

(i) Atomic formulas are formulas.

(ii) If A and B are formulas, then (¬A), (A ∧B), (A ∨B), and (A→ B) are
formulas.

(iii) If A is a formula, x is a variable, then ∀xA and ∃xA are formulas.

Convention. Terms are often denoted as s, t, . . . , and formulas are often
denoted by A, B, C, . . . , F , G,. . .

Let F be a formula. A variable x that occurs in F inside the scope of a
quantifier Q ∈ {∀, ∃} is called bound. If a variable x does not occur inside the
scope of any quantifier, this variable is called free. This definition is somewhat
imprecise. The precise definition is delegated to the problem section. A formula
that does not contain free variables is called closed. Sometimes we refer to a
closed formula as a sentence.

It is often convenient to indicate occurrences of variables in a formula. Sup-
pose F is a formula and let x denote a free variable occurring in F . We write
F (x) instead of F to indicate all occurrences of x in F . Let t be a term. We
write F (t) to denote the formula obtained from F (x), where all occurrences of
x are replaced by t.

Example 3.1. Let F be a formula over the language L = {P,Q}, where P
is unary and Q binary. Suppose F = ∀x(P(x) ∧ Q(x, y)). Using the above
convention, we set F = ∀xG(x), where G(x) := (P(x) ∧ Q(x, y)).

This notation is particular convenient, when one refers to instances of quan-
tified formulas. Let t be an arbitrary term. Then G(t) = (P(t) ∧ Q(t, y) is an
instance of the formula ∀xG(x).

16

3.2. Semantics of First-Order Logic

If this does not affect the readability of formulas we will omit parentheses.
In particular parentheses are omitted in the case of double negation. We write
¬¬A instead of ¬(¬A). Moreover we use the following convention on the priority
of the logical symbols.

Convention. Extending the convention introduced in Chapter 2 we assert
that quantifiers ∀, ∃ bind stronger than ¬. Furthermore we often write s 6= t
as abbreviation for ¬(s = t).

3.2. Semantics of First-Order Logic

In the following L always denotes an arbitrary, but fixed language. Recall that
we drop reference to L if no confusion can arise.

Definition 3.4. A structure is a pair A = (A, a) such that:

(i) A is a non-empty set, called domain or universe of the structure.

(ii) The mapping a associates constants with the domain:

– Every individual constant c is associated with an element a(c) ∈ A.

– Every n-ary function constant f is associated with an n-ary function
a(f) : An → A.

– Every n-ary predicate constant P is associated with a subset a(P) ⊆
An.

(iii) The equality sign = is associated with the identity relation a(=).

Instead of a(c), a(f), a(P), a(=) we usually write cA, fA, PA, =A, respectively.
Further, for brevity we write = for the equality sign and the identity relation.

Remark. The definition of a structure is equivalent to the definition of model
in [29]. The latter name is sometimes problematic, as the word “model” is often
used in a more restrictive way, see below.

Definition 3.5. An environment (or a look-up table) for a structure A is a
mapping ` : {xn | n ∈ N} → A from the set of variables into the universe of A.
By `{x 7→ t} we denote the environment mapping x to t and all other variables
y 6= x to `(y).

Definition 3.6. An interpretation I is a pair (A, `) consisting of a structure
A and an environment `. The value of a term t (with respect to I) is defined
as follows:

tI :=

{
`(t) if t a variable

fA(tI1 , . . . , t
I
n) if t = f(t1, . . . , tn) .

Let I = (A, `) be an interpretation, we write I{x 7→ t} for the interpretation
(A, `{x 7→ t}).

Given an interpretation I and a formula F , we are going to define when I
is a model of F . We also say that I satisfies F or that F holds in I. In the
following the word “model” is exclusively used in this sense.

17

3. Syntax and Semantics of First-Order Logic

Definition 3.7. Let I = (A, `) be an interpretation and let F be a formula,
we define the satisfaction relation I |= F inductively.

I |= t1 = t2 :⇐⇒ tI1 = tI2

I |= P (t1, . . . , tn) :⇐⇒ (tI1 , . . . , t
I
n) ∈ PA

I |= ¬F :⇐⇒ I 6|= F

I |= F ∧G :⇐⇒ I |= F and I |= G

I |= F ∨G :⇐⇒ I |= F or I |= G

I |= F → G :⇐⇒ if I |= F , then I |= G

I |= ∀xF :⇐⇒ if I{x 7→ a} |= F holds for all a ∈ A
I |= ∃xF :⇐⇒ if I{x 7→ a} |= F holds for some a ∈ A .

If G is a set of formulas, we write I |= G to indicate that I |= F for all F ∈ G.
We say I models G whenever I |= G holds.

Definition 3.7 follows the presentation in [29, 20]. Note that this is not the
only possibility to define that a given interpretation I models a formula F .
Indeed in [27, 11] different approaches are taken that are essentially equivalent.
The above approach has the advantage that the satisfaction relation is defined
directly for formulas, whereas [27, 11] define the satisfaction relation first for
sentences, which is later lifted to formulas. The here followed approach is
slightly more technical, but conceptionally easier. The interested reader is
kindly referred to [27, 11].

The next definitions lifts the satisfaction relation to a consequence relation
(aka semantic entailment relation).

Definition 3.8. Let F , G be formulas and let G be a set of formulas. Then
G |= F iff each interpretation of G that is a model, is also a model of F . Instead
of {G} |= F we write G |= F .

A formula F is called satisfiable if there exists an interpretation that is a
model of F (denoted as Sat(F)); F is called unsatisfiable if no interpretation is
a model (denoted as ¬Sat(F)). If F is satisfied by any interpretation, then we
call F valid (denoted as |= F).

Lemma 3.1. For all formulas F and all sets of formulas G we have that G |= F
iff ¬Sat(G ∪ {¬F}).

Proof. We have G |= F iff any interpretation that is a model of G is a model of
F . This holds iff no interpretation is model of a G but not a model of F . This
again holds iff G ∪ {¬F} is not satisfiable.

We call two formulas F and G logically equivalent if F |= G and G |= F . As
above this is denoted as F ≡ G. Clearly this is equivalent to |= F ↔ G, where
the latter abbreviates |= (F → G) ∧ (G → F). It is easy to see that for any
formula F there exists a logically equivalent formula F ′ such that F ′ contains
only ¬, ∧ as connectives and the quantifier ∃. This fact comes in handy to
simplify proofs by induction on F .

The proof of the following lemma is delegated to the problem section.

18

3.3. Models

Lemma 3.2. Let I1 = (A1, `1) and I2 = (A2, `2) be interpretations such that
the respective universes coincide. Suppose F is a formula such that I1 and
I2 coincide on the constants and variables occurring in F . Then I1 |= F iff
I2 |= F .

Observe that the lemma states that for a given interpretation I = (A, `) only
a finite part of the look-up table ` is used as only finitely many variables may
occur in a given formula F . In particular if F is a sentence, we may simplify
the notation introduced in Definition 3.7. Instead of I |= F , we simply write
A |= F and say the structure A models F .

3.3. Models

In this section we state and prove the isomorphism theorem.

Definition 3.9. Let A, B be two structures (with respect to the same language
L) and let A, B denote the respective domains. Suppose there exists a bijection
m : A→ B such that

(i) for any individual constant c, m(cA) = cB,

(ii) for any n-ary function constant f and all a1, . . . , an ∈ A we have

m(fA(a1, . . . , an)) = fB(m(a1), . . . ,m(an)) , and

(iii) for any n-ary predicate constant P and all elements a1, . . . , an ∈ A we
have:

(a1, . . . , an) ∈ PA ⇐⇒ (m(a1), . . . ,m(an)) ∈ PB .

Then m is called an isomorphism. We write m : A ∼= B to denote m and write
A ∼= B if there exists an isomorphism m : A → B.

The proof of the next lemma is not difficult and left to the reader.

Lemma 3.3. Let A, B be sets such that there exists a bijection m between
them. Then if A is a structure with domain A, there exists a structure B with
domain B such that A ∼= B.

Theorem 3.1. Let A, B be structures such that A ∼= B. Then for every
sentence F we have A |= F iff B |= F .

Proof. Assume m : A ∼= B; in proof we show that the same formulas hold if one
uses corresponding environments together with the structures A, B. Let I be
an interpretation. With an environment ` ∈ I we associate the environment
`m := m ◦ `. Let I = (A, `) and J = (B, `m). Then we show by induction:

(i) For every term t: m(tI) = tJ .

(ii) For every formula F : I |= F iff J |= F .

19

3. Syntax and Semantics of First-Order Logic

The proof of the assertion (i) is left to the reader. We concentrate on the proof
of assertion (ii).

Suppose F is an atomic formula, that is, either F = (t1 = t2) or F =
P (t1, . . . , tn) for terms t1, t2, . . . , tn. In the first sub-case we have:

I |= t1 = t2 ⇐⇒ tI1 = tI2

⇐⇒ m(tI1) = m(tI2) m is injective

⇐⇒ tJ1 = tJ2 property (i)

⇐⇒ J |= t1 = t2 ,

and in the second

I |= P (t1, . . . , tn) ⇐⇒ (tI1 , . . . , t
I
n) ∈ PA

⇐⇒ (m(tI1), . . . ,m(tIn)) ∈ PB as m : A ∼= B
⇐⇒ (tJ1 , . . . , t

J
n) ∈ PB property (i)

⇐⇒ J |= P (t1, . . . , tn) .

Suppose F is a complex formula. The sub-cases where F = ¬G, F = (G∧H)
follow directly by the definition of the satisfaction relation |= and the induction
hypothesis. Hence, we assume F (x) = ∃xG.

I |= ∃xG ⇐⇒ there exists a ∈ A, I{x 7→ a} |= G

⇐⇒ there exists a ∈ A, J {x 7→ m(a)} |= G ind. hypothesis

⇐⇒ there exists b ∈ B, J {x 7→ b} |= G m is surjective

⇐⇒ J |= ∃xG

This concludes the proof.

Corollary 3.1. (i) Any set of formulas that has a finite model has a model
in the domain {0, 1, 2, . . . , n} for some n.

(ii) Any set of formulas that has a countable infinite model has a model whose
domain is the set of all natural numbers.

Proof. Follows directly from Lemma 3.3 and Theorem 3.1.

Problems

Problem 3.1. Indicate the form of the following argument, which is tradition-
ally called ’syllogism in Felapton’.

(i) No centaurs are allowed to vote.

(ii) All centaurs are intelligent beings.

(iii) Therefore, some intelligent beings are not allowed to vote.

20

3.3. Models

Problem 3.2. Let L = {F,P,=}, where F is unary, P is binary and let A
be a structure whose domain are sets of persons, such that P(a, b) denotes “a
is parent of b” and F “female”. Give informal explanations of the following
formulas:

(i) ∃z∃u∃v(u 6= v ∧ P(u, b) ∧ P(v, b) ∧ P(u, z) ∧ P(v, z) ∧ P(z, a) ∧ ¬F(b))

(ii) ∃z∃u∃v(u 6= v ∧ P(u, a) ∧ P(v, a) ∧ P(u, z) ∧ P(v, z) ∧ P(z, b) ∧ F(b))

Problem 3.3. Consider the following sentences:

À Each smurf is happy if all its children are happy.

Á Smurfs are green if at least two of their ancestors are green.

Â A smurf is really small if one of its parents is large.

Ã Large smurfs are not really small.

Ä There are red smurfs that are large.

For each of the sentences above, give a first-order formula that formalises it.
Use the following constants, functions and predicates:

– constants: green, red.

– functions: colour(a).

– predicates: Smurf(a), Large(a), ReallySmall(a), Happy(a), Child(a, b) (“a
is child of b”), Ancestor(a, b) (“a is ancestor of b”), =.

Problem 3.4. Show that the formalisation in the previous problem is satisfi-
able.

Problem 3.5. Let t be a term and let F be a formula.

– Give a formal definition of Var(t), the set of variables in t.

– Give a formal definition of FVar(F), the set of free variables in F .

Problem 3.6. Show the following statements, either by reduction to definitions
or by providing a counter-example:

(i) ∃y∀xP(x, y) |= ∀x∃yP(x, y).

(ii) ∀x∃yR(x, y) 6|= ∃y∀xR(x, y).

Problem 3.7. Define two formulas F and G, such that F 6|= G holds and
F 6|= ¬G holds.

Problem 3.8. Give a formal proof of Lemma 3.2.

Hint : First prove (by induction) that the value of a term is the same with
respect to I1 and I2. Based on this prove the lemma by structural induction.

Problem 3.9. Complete the proof of Theorem 3.1.

21

3. Syntax and Semantics of First-Order Logic

Problem 3.10. Let S be the set of satisfiable sets G of formulas and show the
following properties, where G ∈ S is assumed.

(i) If G0 ⊆ G, then G0 ∈ S.

(ii) If ¬¬F ∈ G, then G ∪ {F} ∈ S

(iii) If (E ∨ F) ∈ G, then either G ∪ {E} ∈ S or G ∪ {F} ∈ S

(iv) If ∃xF (x) ∈ G and the individual constant c doesn’t occur in G or ∃xF (x),
then G ∪ {F (c)} ∈ S

(v) If {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

22

4.

Soundness and Completeness of
First-Order Logic

In this chapter we show soundness and completeness of first-order logic. Fur-
thermore, we prove the compactness theorem and the Löwenheim-Skolem the-
orem. These theorems are often proved as corollaries to the completeness theo-
rem, cf. [27, 29, 20]. However, this has the disadvantage that the proof of these
theorems depends on a formal system, while their statement does not. This is
not elegant and comparable to the bad programming practice of first defining
a clean interface of a data type and then ignoring the interface and altering
private functions on the data type. Thus we give a direct proof of compact-
ness and Löwenheim-Skolem. Based on this proof we conclude completeness
essentially as a corollary.

In Section 4.1 we state the compactness theorem and Löwenheim-Skolem
theorem together with direct corollaries. In Section 4.2 we prove the model exis-
tence theorem, which forms the core of the proof of compactness and Löwenheim-
Skolem. Further, in Section 4.3 we recall the rules of natural deduction for
first-order logic and proof completeness of first-order logic.

4.1. Compactness and Löwenheim-Skolem Theorem

We state the compactness theorem and Löwenheim-Skolem theorem together
with direct corollaries. The proof of these theorems is given in Section 4.2
below.

Theorem 4.1 (Compactness Theorem). If every finite subset of a set of for-
mulas G has a model, then G has a model.

Theorem 4.2 (Löwenheim-Skolem Theorem). If a set of formulas G has a
model, then G has a countable model.

Corollary 4.1. If a set of formulas G has arbitrarily large finite models, then
it has a countable infinite model.

Proof. Define an infinite set of sentences (In)n>1 as follows. (Note that the
prefix of universal quantifiers is empty if n = 1).

In := ∀x1 . . . ∀xn−1∃y (x1 6= y ∧ · · · ∧ xn−1 6= y)

23

4. Soundness and Completeness of First-Order Logic

Note that if I |= In, then I has at least n elements. Consider

G′ := G ∪ {I1, I2, . . . } .

Any finite subset of G′ is a subset of G ∪
⋃

16i6n Ii for some n. By assumption
that G has arbitrarily large finite models, this finite subset has a model. Due
to compactness G′ has a model, which is also an infinite model of G. Finally,
we employ Löwenheim-Skolem to conclude that this model is countable.

Further we obtain the following strengthening of Corollary 3.1.

Corollary 4.2. (i) Any set of formulas G that has a model, has a model
whose domain is either the set of natural numbers < n for some positive
number n, or else the set of all numbers.

(ii) Suppose a set of formulas G, whose language L is based on individual and
predicate constants only and such that L doesn’t contain =. If G has a
model, then G has a model whose domain is the set of all natural numbers.

Proof. It suffices to prove the second assertion, the first follows from Corol-
lary 3.1 and Löwenheim-Skolem. Consider G: due to the first part G has either
a model I whose domain is the set of all numbers, or a model I whose domain
is {0, 1, . . . , n − 1} for n ∈ N. We assume the latter and we assume that the
environment of I is denoted as `. Let f : N → {0, 1, . . . , n − 1} be defined as
follows:

f(m) := min{m,n− 1} .

Then clearly f is surjective. We define an interpretation J with environment
`f induced by f . (Compare the proof of Theorem 3.1.) For any individual
constant c, we set cJ such that f(cJ) = cI and for any numbers n1, . . . , nk and
k-ary predicate constant P we set (n1, . . . , nk) ∈ PJ iff (f(n1), . . . , f(nk)) ∈ P I .
Note that this definition would not be well-defined if extended in the same way
to function symbols.

Now f is almost an isomorphism, but it is not injective. Inspection of the
proof of Theorem 3.1 shows that injectivity is only necessary when equality is
present. Hence we obtain for all formulas F : I |= F iff J |= F . In sum we
obtain J |= G, as I |= G. Further, the domain of J are the set of all natural
numbers, which concludes the proof.

4.2. Model Existence Theorem

Recall Theorem 4.1.

Theorem (Compactness Theorem). If every finite subset of a set of formulas
G has a model, then G has a model.

In proof we assume that the only propositional connectives used are ¬ and
∨. The only quantifier occurring in a formula is ∃. This simplifies the number
of cases we need to consider. Let S be the set of satisfiable formulas sets. The
next lemma consolidates certain properties of S to be exploited later on.

24

4.2. Model Existence Theorem

Lemma 4.1. Let S be the set of satisfiable sets of formulas G and let G ∈ S.
Then we have:

(i) If G0 ⊆ G, then G0 ∈ S.

(ii) For no formula F , both F and ¬F are in G.

(iii) If ¬¬F ∈ G, then G ∪ {F} ∈ S.

(iv) If (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S.

(v) If ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S.

(vi) If ∃xF (x) ∈ G, the individual constant c doesn’t occur in G or ∃xF (x),
then G ∪ {F (c)} ∈ S.

(vii) If ¬∃xF (x) ∈ G, then for all terms t, G ∪ {¬F (t)} ∈ S.

(viii) For any term t, G ∪ {t = t} ∈ S.

(ix) If {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S.

Proof. The proof of all 9 properties follows directly form the definition of sat-
isfiability. Compare also Problem 3.10.

Definition 4.1. The 9 properties in Lemma 4.1 are called satisfaction proper-
ties.

The proof of Theorem 4.1 is concluded if we can argue that the considered
formula set G belongs to S as defined above. In order to do so, we express the
assumption of this theorem as another set: Let S∗ denote the set of all formula
sets whose finite subsets belong to S.

Lemma 4.2. If S is a set of sets of formulas having the satisfaction properties,
then the set S∗ of all sets of formulas whose every finite subset is in S has the
satisfaction properties.

Proof. In proof one performs case distinction over all 9 properties to verify that
S∗ indeed admits the satisfaction properties. We consider the only interesting
case: disjunction.

Suppose G ∪ {E ∨ F} ∈ S∗. By definition, for every finite subset G′ of
G∪{E∨F}, G′ ∈ S. We have to prove that either every finite subset of G∪{E}
is in S or every finite subset of G ∪ {F} is in S, as this would imply that either
G ∪ {E} ∈ S∗ or G ∪ {F} ∈ S∗.

Assume there exists a finite subset G0 ⊆ G ∪ {E} such that G0 6∈ S. Clearly
G0 6⊆ G as otherwise G0 ∈ S follows from G0 ⊆ G ∪ {E ∨ F}, G ∪ {E ∨ F} ∈ S∗,
and the definition of S∗. Thus we assume there exists a finite set G1 ⊆ G such
that G0 = G1 ∪ {E}.

We claim that for any finite subset G2 ⊆ G ∪ {F}, G2 ∈ S. In proof of this
claim observe that the assumption G2 ⊆ G immediately implies that G2 ∈ S.
Thus we assume without loss of generality that there exists a finite set G3 ⊆ G
and G2 = G3 ∪ {F}. Consider G1 ∪ G3 ∪ {E ∨ F}. By assumption this is a

25

4. Soundness and Completeness of First-Order Logic

finite subset of G ∪ {E ∨ F}. Hence G1 ∪ G3 ∪ {E ∨ F} ∈ S and thus either
G1 ∪ G3 ∪ {E} ∈ S or G1 ∪ G3 ∪ {F} ∈ S. If G1 ∪ G3 ∪ {E} ∈ S, then observe:

G0 = G1 ∪ {E} ⊆ G1 ∪ G3 ∪ {E} ∈ S ,

which would imply G0 ∈ S, contrary to our assumption. Thus G1∪G3∪{F} ∈ S.
And also G2 = G3 ∪ {F} ∈ S. This completes the proof of this case.

Let L be a language, let L+ be an extension of L with infinitely many indi-
vidual constants. In the sequel we will prove the following theorem.

Theorem 4.3 (Model Existence Theorem). (i) If S∗ is a set of sets of for-
mulas of L+ having the satisfaction properties, then every set of formulas
of L in S∗ has a model M.

(ii) Every element of the domain of M is the denotation of some term in L+.

We momentarily assume Theorem 4.3. Based on this theorem, we conclude
compactness and Löwenheim-Skolem.

Theorem (Compactness Theorem). If every finite subset of a set of formulas
G has a model, then G has a model.

Proof. Let S denote the set of satisfiable sets of formulas (over L) and let S∗

denote the set of all sets of formulas (over L+) whose every finite subset belongs
to S. By Lemma 4.1 S admits the satisfaction properties. This together with
Lemma 4.2 yields that S∗ admits the satisfaction properties. Hence (due to
Theorem 4.3) every formula set in S∗ has a model. Consider the set G assumed
in the theorem. Then every finite subset of G is satisfiable, hence G ∈ S∗ and
thus G is satisfiable.

Theorem (Löwenheim-Skolem Theorem). If a set of formulas G has a model,
then G has a countable model.

Proof. Let S denote the set of satisfiable sets of formulas (over L). By Theo-
rem 4.3 every set of formulas in S has a modelM in which each element of the
domain is the denotation of some term in L+. The language L is countable,
thus the extended language L+ is countable and there are at most countably
many terms in L+. As every element of (the domain of) M is the denotation
of a term and a term can be the denotation of at most one element of M, M
is countable.

In proof of Theorem 4.3 we consider properties of formulas which are modelled
by some interpretation M (of L+).

Lemma 4.3. Let G denote the set of formulas true in M. Then we have:

(i) for no formula F and ¬F in G,

(ii) if ¬¬F ∈ G, then F ∈ G,

(iii) if (E ∨ F) ∈ G, then either E ∈ G or F ∈ G,

26

4.2. Model Existence Theorem

(iv) if ¬(E ∨ F) ∈ G, then ¬E ∈ G and ¬F ∈ G,

(v) if ∃xF (x) ∈ G, then there exists a term t (of L+), such that F (t) ∈ G,

(vi) if ¬∃xF (x) ∈ G, then for any term t (of L+), ¬F (t) ∈ G,

(vii) for any term t (of L+), t = t ∈ G, and

(viii) if F (s) ∈ G, and s = t ∈ G, then F (t) ∈ G.

Proof. The 8 properties follow as M |= G.

Definition 4.2. The 8 properties in Lemma 4.3 are called closure properties.

In addition to Lemma 4.3 we have its converse. For the moment we restrict
our attention to the case where the base language L is restricted. It is not
difficult to see that this restriction can be easily lifted.

Lemma 4.4. Let G be a set of formulas (of L) admitting the closure properties.
Suppose that L is free of the equality symbol and free of function constants.
Then there exists a model M such that every element of the domain of M is
the denotation of a term (of L+) and M |= G.

Proof. Let G be set of formulas. We construct a model of G. We define the
domain ofM as the set of all terms in L+. Thus, due to our restriction on L+,
the domain ofM consists of infinitely many individual constants and variables.
In order to define the structure underlying M, we set:

cM := c for any individual constant c .

In order to guarantee that M |= G it suffices to make all atomic formulas
occurring in G true. For that we set for any predicate constant P and for any
sequence of terms t1, . . . , tn:

PM(t1, . . . , tn)⇐⇒ P (t1, . . . , tn) ∈ G .

Finally, we lift this structure to an interpretation M by defining the look-up
table as follows:

`(x) := x for any variable x .

This completes the definition of the interpretation M. Note that each term of
L+ is interpreted by itself, that is, we have:

tM = t for any term t .

The definition ofM takes care of the demand that every element of its domain
is the denotation of a term. Any term t in L+ is denoted by an element of M,
namely the domain element t.

It remains to prove that for any formula F : F ∈ G implies M |= F . This we
proof by induction on F .

– For the base case F = P (t1, . . . , tn), we obtain: if F ∈ G, then by defini-
tion PM(t1, . . . , tn), hence M |= F .

27

4. Soundness and Completeness of First-Order Logic

– For the step case assume F = ∃xG(x) and F ∈ G. By induction hy-
pothesis for any term t such that G(t) ∈ G, we have M |= G(t). Now,
by assumption G fulfils the closure properties, hence there exists a term
t such that G(t) ∈ G. Thus M |= ∃xG(x) holds by definition of the
satisfaction relation |=. The other cases follow similarly.

Remark 4.1. In Chapter 6 we will study modelsM that feature the equation
tM = t (for any term t) in more detail. Such models are often called term or
Herbrand models.

Lemma 4.5. Let L be a language and let L+ denote an extension of L with
infinitely many individual constants. Suppose S∗ is a set of set of formulas (of
L+) with the satisfaction properties. Then every set G of formulas (over L) in
S∗ is extensible to a set G∗ of formulas (over L+) having the closure property.

Proof. We construct a sequence of sets, starting with G such that only elements
are added, never removed:

G = G0,G1,G2 . . . Gn ⊆ Gn+1 ,

Moreover, we demand that any Gi belongs to S∗. Finally we define G∗ :=⋃
n>0 Gn.
We have to verify that G∗ admits all 8 closure properties. The first one is

trivial. Assume that for a given formula F , F and ¬F occurs in G∗. As G∗ is
the union of the above sequence there exists an index k such that {F,¬F} ⊆ Gk,
but if we can guarantee that Gk ∈ S∗, then this contradicts the fact that S∗

admits the satisfaction properties. Thus we only need to consider the other 7
properties and make sure that for each n, Gn ∈ S∗.

At each stage n we aim to add only one formula to Gn. The remaining
7 closure properties define certain demands on G∗ that can be formulated as
follows.

(i) if ¬¬F ∈ Gn, then there exists k > n such that Gk+1 = Gk ∪ {F},

(ii) if (E ∨ F) ∈ Gn, then there exists k > n such that Gk+1 = Gk ∪ {E} or
Gk+1 = Gk ∪ {F},

(iii) if ¬(E ∨ F) ∈ Gn, then there exists k > n such that Gk+1 = Gk ∪ {¬E}
and Gk+1 = Gk ∪ {¬F},

(iv) if ∃xF (x) ∈ Gn, then there exists k > n such that there is a term t and
Gk+1 = Gk ∪ {F (t)}, and

(v) if ¬∃xF (x) ∈ Gn, then for any term t there exists k > n, such that
Gk+1 = Gk ∪ {¬F (t)},

(vi) for any term t, then there exists k > n such that t = t ∈ Gk, and

(vii) if F (s) ∈ Gn, and s = t ∈ Gn, then there exists k > n such that F (t) ∈ Gk.

28

4.2. Model Existence Theorem

In meeting these demands we use the fact that all previously constructed Gn
are contained in S∗ and that S∗ admits the satisfaction properties. Hence, we
can use the following facts. Note that we employ the fact that the sequence
(Gn)n>0 is growing: Gn ⊆ Gn+1.

(i) If ¬¬F ∈ Gn, then for any k > n, Gk ∪ {F} ∈ S∗.

(ii) If (E∨F) ∈ Gn, then for any k > n, either Gk∪{E} ∈ S∗ or Gk∪{F} ∈ S∗.

(iii) If ¬(E∨F) ∈ Gn, then for any k > n, Gk∪{¬E} ∈ S∗ and Gk∪{¬F} ∈ S∗.

(iv) If ∃xF (x) ∈ G, then for any k > n and any unused individual constant c,
Gk ∪ {F (c)} ∈ S∗.

(v) If ¬∃xF (x) ∈ G, then for any k > n and for any term t, Gk∪{¬F (t)} ∈ S∗.

(vi) For any term t, for any k > n, Gk ∪ {t = t} ∈ S∗.

(vii) If {F (s), s = t} ⊆ Gn, then for any k > n, Gk ∪ {F (t)} ∈ S∗.

The correspondence between demand and properties induced by the fact that
S∗ fulfils the satisfaction properties shows that we can in principle fulfil any
demand. It only remains to define a fair strategy such that eventually any of
the infinite demands is fulfilled.

However this is easy if we recall that any pair (i, n) can be encoded as a
single natural number. Associate to each demand a pair (i, n) such that i is
the number of the demand raised at stage n. Hence it remains to enumerate all
pairs (i, n) so that at a given stage k we decode the pair k represents and grant
the ith demand that was raised at stage n < k. In this way it is guaranteed
that all demands above (except Demand (vi)) can be eventually satisfied such
that all constructed sets Gn belong to S∗. In order to meet the 6th demand, we
encode the triple (i, n, ptq), where ptq denotes the Gödel number of the term t.
Then we proceed as before.

Based on Lemmas 4.4 and 4.5 we can prove the model existence theorem.
We recall the theorem:

Theorem. (i) If S∗ is a set of sets of formulas of L+ having the satisfaction
properties, then every set of formulas of L in S∗ has a model M.

(ii) Every element of the domain of M is the denotation of some term in L+.

Proof. In proof of the theorem we restrict our base language L to the case where
L is free of function constants and equality, cf. Lemma 4.4.

By assumption S∗ admits the satisfaction properties. Due to Lemma 4.5
we have that for any formula set G (over L) in S∗ is extensible to a set G∗ of
formulas (of L+) such that G∗ fulfils the closure properties. But then Lemma 4.4
is applicable to G∗ and we obtain a M such that M |= G∗. This takes care of
the first statement of the lemma.

Moreover M has the property that any element in the universe of M is the
denotation of a term (of L+). This takes care of the second statement of the
lemma.

29

4. Soundness and Completeness of First-Order Logic

4.3. Soundness and Completeness

In this section we prove soundness and completeness of predicate logic. The
propositional rules (for the connectives ¬, ∨, ∧, and →) are given in Figure 2.1
in Chapter 2. We only need to lift (or conceive) these rules in the present
context, the context of first-order logic. The rules for equality are given in
Figure 4.1 and quantifier rules for ∃ and ∀ are given in Figure 4.2.

introduction elimination

= t = t =: i
s = t F (s)

F (t)
=: e

Figure 4.1.: Natural Deduction: Equality Rules

introduction elimination

∃
F (t)

∃xF (x)
∃ : i

∃xF (x)

a F (a)
...
G

G
∃ : e

∀

a
...
F (a)

∀xF (x)
∀ : i

∀xF (x)

F (t)
∀ : e

Here the variable a in ∃ : e and in ∀ : i is local to the box it occurs in.

Figure 4.2.: Natural Deduction: Quantifier Rules

Let G be a finite set of formulas and let F be a formula. A natural deduction
proof is a sequence of applications of rules depicted in Figure 2.1, 4.1, and 4.2.
We adapt the definition of provability given above with respect to propositional
logic.

Definition 4.3. The provability relation, denoted as A1, . . . , An ` B, asserts
that B is derived from the assumptions A1, . . . , An. This notion extends to
infinite set of formulas G: We write G ` F if there exists a finite subset G′ ⊆ G
such that G′ ` F . We write ` A instead of ∅ ` A and call the formula A
provable in this case.

Theorem 4.4 (Soundness Theorem). Let G be a set of formulas and let F be
a formula such that G ` F . Then G |= F .

Sketch of Proof. We only sketch the proof. For a slightly different formal system
a completely worked out proof can be found in [11].

30

4.4. Normalisation

In proof of soundness one verifies that every single inference rule is correct.
For this one shows that if the assumptions of an inference rule are modelled by
a model M, then the consequence (of the rule) holds in M as well.

In order to prepare for the completeness theorem, we state two lemmas, whose
proof is left to the reader (compare also [11]). Recall that a set of formulas G
is called inconsistent if ⊥ is derivable from G.

Lemma 4.6. We have G ` F iff G ∪ {¬F} is inconsistent.

Lemma 4.7. The set S of all consistent sets of formulas has the satisfaction
properties.

Theorem 4.5 (Completeness Theorem). Let G be set of formulas and let F be
a formula such that G |= F . Then G ` F .

Proof. By compactness we know that there exists a finite subset G′ of G, such
that G′ |= F . Hence we can assume without loss of generality that the formula
set G is finite.

Thus in order to show completeness, we have to show that G ` F holds. We
show the contra-positive. Suppose F is not derivable form G, then F is not a
consequence of G. Due to Lemmas 4.6, G 6` F is equivalent to the assertion
that G ∪ {¬F} is consistent. On the other hand, due to Lemma 3.1 G 6|= F is
equivalent to the assertion that the set G ∪ {¬F} is satisfiable.

Hence, we have to prove that the consistency of G ∪ {¬F} implies that the
set G ∪ {¬F} is satisfiable. Thus it suffices to show that any consistent set is
satisfiable.

By the model existence theorem (Theorem 4.3) it suffices to verify that the
set S of consistent sets of formulas has the satisfaction properties. As the latter
follows by Lemma 4.7 we conclude completeness.

4.4. Normalisation

We conclude this chapter by briefly looking into the very important topic of
proof normalisation. While of restricted importance in establishing complete-
ness of natural deduction, normalisation of deductions becomes a major topic,
if we study derivations from the viewpoint of proof theory. In particular nor-
malisation yields the consistency of natural deduction by purely syntactic ar-
guments [24, 54, 45, 49]. Another application that we will come across in the
context of the Curry-Howard isomorphism, is the correspondence between nor-
malisation steps in natural deduction for intuitionistic logic (or more precisely
minimal logic) and β-reduction in the simple-typed λ-calculus, see Chapter 7.

In a natural deduction it may happen that an introduction rule is immediately
followed by an elimination rule, like for example in the following scenario:

Π1
E

Π2
F

E ∧ F ∧ : i

E
∧ : e

(4.1)

31

4. Soundness and Completeness of First-Order Logic

Clearly this derivation can be simplified and replaced by the following deriva-
tion, where the proof of Π2 has been deleted.

Π1
E (4.2)

In the literature a situation as in (4.1) has been called detour. Intuitively such
a detour should be prevented, thus we want to rewrite a derivation by replacing
the fragment in (4.1) by the fragment in (4.2).

The process of eliminating all detours from a given proof is called normalisa-
tion. One can prove that normalisation terminates for any reduction sequence
terminates (strong normalisation). This result is well-known for (propositional)
intutitionistic logic, but it also holds for richer logics. In particular Gentzen
showed (in a long forgotten draft) normalisation for first-order intuitionistic
logic [54]. Essentially the same proof was found by Prawitz, who also ex-
tended the normalisation theorem to classical logic (for a restricted set of con-
nectives) [45]. Finally (among others) St̊almarck showed the same result for
first-order classical logic (over the usual language) [49].

To simplify the presentation, we restrict our attention to a fragment of propo-
sitional logic. More precisely, we study normalisation in the context of minimal
logic. The language of minimal logic contains ⊥ as truth constant (for falsity)
and ∧, ∨,→ as binary connectives. Negation is defined as follows ¬A := A→⊥.
Minimal logic is a restriction of intuitionistic propositional logic (see Chapter 7)
and classical propositional logic. In order to obtain intuitionistic logic it suffices
to add the rule

⊥
F
¬ : e

.

Alternatively, one can include ¬ again as logical symbol and add the usual rules
for introduction and eliminatin of ¬. To obtain classical logic it suffices to add
the rule

¬¬F
F
¬¬ : e

.

to minimal logic. Figure 4.3 makes the notion of reduction precise for the
connectives of minimal logic.

Let Π be a proof and Ψ be the result of applying one of the normalisations
steps given in Figure 4.3 to Ψ. Then we say that Π is immediately reduced to Ψ.
A sequence of immediate reduction steps is called a reduction. A derivation is
said to be normal, if it has no immediate reduction. In other words in a normal
derivations there are no detours (as given in Figure 4.3). A reduction sequence
is a sequence of derivations Π1, . . . ,Πn, such that for all i = 1, . . . , n1, Πi+1 is
an immediate reduct of Πi and Πn is normal.

The next theorem states that any proof can be normalised. Furthermore in
normalisation we need not take care of order of reduction sequences.

Theorem 4.6 (Normalisation and Strong Normalisation). Let Π be a proof in
minimal logic.

(i) Π reduces to a normal proof Ψ.

32

4.4. Normalisation

detour contraction

∧

Π1
E

Π2
F

E ∧ F ∧ : i

E
∧ : e

Assumptions of Π1,Π2

Π∗1

E

∨

Π1
E

E ∨ F ∨ : i

Π2

E
...
G

Π3

F
...
G

G
∨ : e

Π2

G

Π1

E

→
Π1
E

Π2

E
...
F

E → F
→ : i

F
→ : e

Π2

F

Π1

E

Figure 4.3.: Immediate Reductions

(ii) Any reduction sequence is finite.

The first part of the theorem can be expressed as saying that there exists
a reduction sequence for Π. This is usally called (weak) normalisation. The
second part expresses there is an upper bound n on the maximal length of any
reduction sequence.

Problems

Problem 4.1. Let Larith contain = and the constants 0, s, +, ·, <. By true
arithmetic we mean the set of sentences G of Larith that are true in the usual
interpretation in number theory.

By a non-standard model of arithmetic we mean a model of G that is not
isomorphic to the standard interpretation. Let H = G ∪ {c 6= 0, c 6= 1, . . . },
where c denotes a constant not in Larith. Prove that any model of H is a
non-standard model.

Problem 4.2. Complete the proof of Theorem 4.4.

Problem 4.3. Prove Lemma 4.6.

Problem 4.4. Prove Lemma 4.7.

Problem 4.5. Let G denote an interpretation that models a directed graph
G. Show that reachability is not expressible in first-order logic: there exists no

33

4. Soundness and Completeness of First-Order Logic

formula F (x, y) whose only free variables are x and y, such that G |= F (x, y)
iff `(y) is reachable from `(x) in G.

Problem 4.6. Consider classical propositional logic using only the connectives
⊥, ∧, →, such that negation and disjunction is defined as usual. Prove that for
any derivation there exists a normal derivation.

Hint : Prawitz proved the normalisation theorem for the first-order extension
of this logic [45] for a variant of the usual natural deduction rules. One keeps
only the introduction and elimination rules for ∧, →, but adds the following
proof by contradiction (PBC) rule:

¬E
...
⊥
E

⊥
.

It is easy to see that this calculus is equivalent to the standard natural deduction
for classical propositional logic.

Problem 4.7. Prove the following formulas with normal derivations:

a) A→ B → A

b) (A→ B → C)→ (A→ B)→ (A→ C)

c) (A ∧B → C)→ (A→ B → C)

34

5.

Craig’s Interpolation Theorem

Given an implication A→ C, Craig’s interpolation theorem tells us that there
exists a sentence B, the interpolant, such that B is implied by A and B implies
C. Moreover B employs only non-logical constants that occur in both A and
C. After presenting the theorem in some detail, we will employ it to prove
Robinson’s joint consistency theorem, a theorem that allows us to speak about
the satisfiability of the union S ∪ T of theories S and T , based only on the
satisfiability of S and T . The latter theorem is partly related to the Nelson-
Oppen method briefly mentioned in Chapter 9.

5.1. Craig’s Theorem

Recall Theorem 2.3 that stated the existence of interpolants for valid implica-
tions in the context of propositional logic. We extend this result to first-order
logic.

We start with the following simple lemma, whose proof is left to the reader.

Lemma 5.1. If the sentence A→ C holds, there exists a sentence B such that
A → B and B → C and only those individual constants occur in B that occur
in both A and C.

If we attempt to generalise the lemma such that B contains only individual,
function, and predicate constants that occur in both A and C, some care is
necessary.

Example 5.1. Let A :⇐⇒ ∃xF (x) ∧ ∃x¬F (x) and let C :⇐⇒ ∃x∃y(x 6= y).
Then A→ C holds, but there exists no interpolant B such that only individual,
function, or predicate constants occur in B that are shared by A and C.

Theorem 5.1. If the sentence A → C holds, there exists a sentence B such
that A→ B and B → C such that only those non-logical constants occur in B
that occur in both A and C.

Note that the example above doesn’t contradict the theorem as we consider
the equality sign as logical symbol, compare Section 3.1. Before proving this
theorem we deal with two degenerated cases. Suppose A → C holds and A is

35

5. Craig’s Interpolation Theorem

unsatisfiable. Then any unsatisfiable sentence can be used as interpolant that
only uses non-logical constants that occur in A and C. Consider for example

∃x(F (x) ∧ ¬F (x))→ ∃G(x) .

Then ∃x(x 6= x) serves as interpolant: Clearly ∃x(F (x) ∧ ¬F (x))→ ∃x(x 6= x)
and ∃x(x 6= x) → ∃G(x). The dual case occurs if C is valid. Then any
valid sentence serves as interpolant if the condition on non-logical constants is
fulfilled. As a side-remark observe that for languages without the equality sign
= Craig’s interpolation theorem for these degenerated cases holds only true if
we extend the language by logical constants like > and ⊥.

We are ready to give the proof of the theorem.

Proof. From the above discussion it is clear that we can restrict to those im-
plications A → C, where neither A is unsatisfiable nor C is valid. Moreover
we will only treat the special case where equality and individual and function
constants are absent. The general case follows from the special case by the use
of the pattern of the proofs of Lemma 6.1 and 6.2.

In proof we proceed indirectly and assume that no interpolant exists. Then
we show that the set of sentences {A,¬C} is satisfiable, which contradicts the
assumption that A implies C. The general proof plan is as follows. We make use
of the model existence theorem. Thus we consider a language L that contains
all the non-logical symbols occurring in both A and C and its extension L+
containing infinitely many individual constants. Then we define a collection
S of sets of sentences such that {A,¬C} ∈ S and S fulfils the satisfaction
properties, cf. Definition 4.1. Then Theorem 4.3 is applicable to yield that any
set of formulas of L in S has a model and thus {A,¬C} is satisfiable.

First, we define the collection S. We call a set of sentences G (of L+) A-
sentences (C-sentences) if all sentences in G contain only predicate constants
that occur in A (C). A pair of set of sentences (G1,G2) such that G1 are
satisfiable A-sentences and G2 are satisfiable C-sentences is barred by a sentences
B, if B is both an A-sentence and a C-sentence and G1 |= B and G2 |= ¬B
holds. Note that the assumption that there exists no interpolant B (of L) is
equivalent to say that no sentences bars (A,¬C). Moreover no sentence of L+
can bar (A,¬C) if this assumption holds. (This follows by similar argument as
used in the proof of Lemma 5.1.) Let S be the collection of set of sentences
G that admit an unbarred division, that is, there exists a pair (G1,G2) of A-
sentences and C-sentences such that G = G1 ∪G2, G1 and G2 are satisfiable and
no sentence bars G1,G2. This concludes the definition of S.

Next, we verify that S admits the satisfaction properties. We consider the
only interesting case.

– Let G ∈ S. If (E ∨ F) ∈ G, then either G ∪ {E} ∈ S or G ∪ {F} ∈ S.

As G ∈ S there exists a pair (G1,G2) such that G = G1 ∪ G2 and (G1,G2) is
unbarred. Without loss of generality assume (E∨F) ∈ G1. Then both E and F
are A-sentences. It suffices to show that either (G1 ∪ {E},G2) or (G1 ∪ {F},G2)
forms an unbarred division of G ∪ {E}. In proof, first observe that if G1 ∪ {E}

36

5.2. Robinson’s Joint Consistency Theorem

is unsatisfiable then G1 |= ¬E and G1 |= E ∨ F holds by assumption. Hence
G1 |= F . Then we see that (G1∪{F},G2) forms an unbarred division as follows.
Suppose there exists an A- and C-sentence B that bars (G1 ∪ {F},G2), that is,
G1∪{F} |= B and G2 |= B. But from G1 |= F , we conclude that B bars (G1,G2),
which is a contradiction. Similar for the case that G1∪{F} is unsatisfiable. Thus
we can assume that G1 ∪ {E} and G1 ∪ {F} are satisfiable.

Suppose both alternatives fail to be unbarred divisions. This means there
exist sentences Bi (i ∈ {1, 2}) that bar (G1 ∪ {E},G2) and (G1 ∪ {F},G2) re-
spectively, that is, G1 ∪ {E} |= B1, G2 |= ¬B1 and G1 ∪ {F} |= B2, G2 |= ¬B2.
Thus G1 |= B1 ∨ B2. Moreover G2 |= ¬(B1 ∨ B2) follows from G2 |= ¬B1 and
G2 |= ¬B2. Therefore (B1 ∨ B2) bars the pair (G1,G2), which is a contradic-
tion to the assumption that (G1,G2) is unbarred. Hence either of the pairs
(G1 ∪ {E},G2) or (G1 ∪ {F},G2) forms an unbarred division. From this we con-
clude that G ∪ {E} ∈ S or G ∪ {F} ∈ S. Thus the satisfaction property of S
has been verified for the considered case.

In sum, there exists a collection of sets S admitting the satisfaction properties.
Furhtermore from the assumption that there exists no interpolation for the
sentence A → C, we conclude that {A,¬C} ∈ S. Thus by model existence
{A,¬C} is satisfiable. However then A → C cannot be valid. This shows the
existence of an interpolant for A→ C.

5.2. Robinson’s Joint Consistency Theorem

For the next result we need to define precisely what is to be understood by a
theory of a language.

Definition 5.1. A theory in a language L is a set of sentences of L that is closed
under the consequence relation. We call an element of a theory a theorem. A
theory T is called complete if for every sentence F of L either F ∈ T or ¬F ∈ T .

A theory T ′ is an extension of a theory T if T ⊆ T ′. An extension T ′ is
conservative if any sentence F of the language of T that is a theorem of T ′ is a
theorem of T .

Note that any mathematical theory like for example the natural numbers
together with the usual operations can be expressed as an (infinite) theory in
the above sense. Moreover any reasoning over data-types like for example arrays
can be so represented, compare also Chapter 9.

The (not difficult) proof of the next lemma is omitted, but see Problem 5.3
below.

Lemma 5.2. The union S ∪ T of two theories S and T is satisfiable iff there
is no sentence in S whose negation is in T .

Theorem 5.2. Let L0, L1, and L2 be languages such that L0 = L1 ∩ L2. Let
Ti be a theory in Li (i ∈ {0, 1, 2}). Let T3 be the set of sentences of L1 ∪ L2
that are consequences of T1 ∪ T2. If T1, T2 are conservative extensions of T0,
then T3 is a conservative extension of T0.

37

5. Craig’s Interpolation Theorem

Proof. Suppose A is a sentence of L0 that is a theorem of T3. Set U2 := {B |
T2 ∪{¬A} |= B}. As A ∈ T3, T1 ∪T2 ∪{¬A} is unsatisfiable hence also T1 ∪U2

is unsatisfiable.
By the lemma there exists a theorem C ∈ T1 whose negation ¬C is in U2. It

is easy to see that C, ¬C are sentences of L0. Moreover ¬A→ ¬C is of L0. By
assumption on T1, C is a theorem of T0, while ¬A → ¬C is in T2 and thus a
theorem of T0. Thus also C → A ∈ T0, which together with C ∈ T0 yields that
A ∈ T0.

Based on the above theorem we can state and prove Robinson’s joint consis-
tency theorem.

Corollary 5.1 (Robinson’s Joint Consistency Theorem). Let Li and Ti (i ∈
{0, 1, 2}) be as in the theorem. If T0 is complete and T1, T2 are satisfiable
extensions of T0, then T1 ∪ T2 is satisfiable.

Proof. Note that a satisfiable extension of a complete theory T is conservative.
Assume there exists a theorem A of the extension in the language of the com-
plete theory. Then if A ∈ T we are done and if ¬A ∈ T , then the extension
cannot be satisfiable. On the other hand a conservative extension of a satisfiable
theory has to be satisfiable. Otherwise, assume the extension is unsatisfiable,
then by the completeness theorem this extension is inconsistent and any for-
mula is contained in it, for example ∀x(x 6= x). The latter is clearly a sentence
that must not be a theorem of the original theory.

Based on these observations the corollary is a direct consequence of the the-
orem.

Problems

Problem 5.1. Show Lemma 5.1. Hint : Those individual constants that occur
in A but not in C have to be suitably replaced, for example with fresh variables.
And observe that since A → C is valid so is ∀x1 . . . xn(A′ → C), where A′

denotes the result of the replacement of constants.

Problem 5.2. Consider the proof of Theorem 5.1.

(i) Show that all applicable satisfaction properties are fulfilled by the set S.

(ii) Extend the theorem to languages containing equality. Hint : Study the
proof of Lemma 6.1 and observe that the existence of a valid implication
A→ C is equivalent to the statement that A ∧ ¬C is unsatisfiable.

(iii) Extend the theorem to languages containing individual and function con-
stants.

Problem 5.3. Show Lemma 5.2. Hint : The direction from right to left is
obvious and the other direction follows by the use of compactness and Craig’s
interpolation theorem.

Problem 5.4. Show that (i) a satisfiable extension of a complete theory is
conservative and (ii) that a conservative extension of a satisfiable theory is
satisfiable.

38

6.

Normal Forms and Herbrand’s Theorem

The central result in this chapter is Herbrand’s theorem, a theorem that is as
important in formal logic as in automated reasoning and which we will employ
in latter chapters. As forerunner to this theorem two normal form theorems
will be presented in the first two sections.

Such a normal form theorem falls into two categories: either the theorem
tell us that for a given formula F there exists a formula G of specific syntactic
form such that F and G are logically equivalent, or it tells us that F and G are
equivalent for satisfaction. The aim of normal form theorems is to provide us
with (simple) procedures to transform arbitrary formulas into a form that can
later easily analysed.

In Section 6.3 Herbrand’s theorem is proven together with some corollaries
that will be used later. In Section 6.4 it is shown that equality, individual
and function constants can be eliminated from formulas without affecting the
satisfiability.

6.1. Prenex Normal Form

In this section we state and prove a normal form theorem of the first type: a
given formula F is shown to be transformable into prenex normal form and this
transformation preserves logical equivalence.

Definition 6.1. A formula F is in prenex normal form if it has the form

Q1x1 · · ·Qnxn G(x1, . . . , xn) Qi ∈ {∀, ∃} ,

where G is quantifier-free. The subformula G is also called matrix. If the matrix
G is a conjunction of disjunctions of literals, we say F is in conjunctive prenex
normal form (CNF for short). Recall that a literal is an atomic formula or a
negated atomic formula.

Remark 6.1. Observe the overloading of the abbreviation for conjunctive
prenex normal form. In Chapter 2 we used CNF to denote the conjunctive
normal form of a propositional formula. In the following we will sometimes also
call a quantifier-free formula that is a conjunction of disjunctions of literals a
CNF. No confusion will arise from this.

39

6. Normal Forms and Herbrand’s Theorem

Note that the conjunctive prenex normal form need not be unique as illus-
trated by the next example.

Example 6.1. Consider ∀xF (x)↔ G(a), which abbreviates:

(∀xF (x)→ G(a)) ∧ (G(a)→ ∀xF (x)) .

One logically equivalent CNF would be

∀x∃y((¬F (y) ∨G(a)) ∧ (¬G(a) ∨ F (x)) .

Another logically equivalent CNF is obtained if the quantifiers are pulled out
in different order. That is

∃y∀x((¬F (y) ∨G(a)) ∧ (¬G(a) ∨ F (x)) ,

is also a CNF of F .

Theorem 6.1. For any formula F there exists a formula G in prenex normal
form such that F ≡ G.

Proof. To prove the theorem we give a construction to transform F into a
formula G in prenex normal form. Each step performed preserves logical equiv-
alence of formulas.

(i) We replace all occurring implication signs → in F , employing the equiv-
alence (E → F) ≡ (¬E ∨ F).

(ii) We rename bound variables such that each quantifier introduces a unique
bound variable. The proof that this step preserves equivalence is left to
the reader, see Problem 6.2.

(iii) We pull quantifiers out using one of the following equivalences:

¬∀xF (x) ≡ ∃x¬F (x) ¬∃xF (x) ≡ ∀x¬F (x)

QxE(x)� F ≡ Qx(E(x)� F)

where Q ∈ {∀, ∃}, � ∈ {∧,∨}, and in the last equivalence the variable x
must not occur free in F . It is easy to see that replacement of logically
equivalent formulas preserves logical equivalence, see Problem 6.1.

By adapting the transformation procedure so that also the matrix of the
obtained prenex normal form is normalised, we immediately get the next result.

Corollary 6.1. For any formula F there exists a formula G in CNF such that
F ≡ G.

40

6.2. Skolem Normal Form

6.2. Skolem Normal Form

In this section we state and prove a normal form theorem of the second type:
a given formula F is shown to be transformable into Skolem normal form and
this transformation is satisfiability preserving.

An existential formula F is of form

∃x1 · · · ∃xn G(x1, . . . , xn) ,

where the matrix G is quantifier free. A universal formula is of form

∀x1 · · · ∀xn G(x1, . . . , xn) .

For later arguments we note that any quantifier-free formulas is existential and
universal: simply set n = 0 in the above presentation.

Definition 6.2. A formula F is in Skolem normal form (SNF for short) if F
is universal and in CNF.

Let L be a language and L+ an extension of L, that is, the constants in L
form a subset of the constants in the language L+. Suppose further that I is an
interpretation of L and I+ an interpretation of L+ such that I and I+ coincide
on L. Then I+ is called expansion of I.

Definition 6.3. Given a sentence F , we define its Skolemisation FS as follows:

(i) Transform F into a CNF F ′ such that F ′ can be represented as

Q1x1 · · ·Qmxm G(x1, . . . , , xm) .

(ii) Set F ′′ = F ′ and repeatedly transform F ′′ by replacing the sentence

∀x1 · · · ∀xi−1∃xiQi+1xi+1 · · ·Qmxm G(x1, . . . , xi, . . . , xm)

by the sentences s(F ′′)

∀x1 · · · ∀xi−1Qi+1xi+1 · · ·Qmxm G(x1, . . . , f(x1, . . . , xi−1), . . . , xm)

where f denotes a fresh function symbol of arity i−1. The transformation
ends if no existential quantifier remains.

The fresh function symbols introduced in the process of Skolemisation are
often called Skolem functions. We say formulas F and G are equivalent for
satisfiability if F is satisfiable iff G is satisfiable. This is denoted as F ≈ G.

Theorem 6.2. For any formula F there exists a computable formula G in SNF
such that F ≈ G.

Proof. Without loss of generality we assume that F is already in CNF. Oth-
erwise we transform it in CNF using Corollary 6.1. It suffices to prove that

41

6. Normal Forms and Herbrand’s Theorem

F ≈ s(F), as the theorem then follows by an inductive argument from the
special case. We fix some notation:

F := ∀x1 · · · ∀xi−1∃xiQi+1xi+1 · · ·Qmxm G(x1, . . . , xi, . . . , xm)

s(F) := ∀x1 · · · ∀xi−1Qi+1xi+1 · · ·Qmxm G(x1, . . . , f(x1, . . . , xi−1), . . . , xm)

H(a1, . . . , ai) := Qi+1xi+1 · · ·Qmxm G(a1, . . . , ai, xi+1, . . . , xm)

where a1, . . . , ai are fresh variables.
First assume that s(F) is satisfiable, that is, there exists a model M such

that M |= s(F). Then clearly M also models F . Indeed the stronger assertion
s(F)→ F is valid.

The other direction is more involved. Suppose F is satisfiable and let M
be a model of F . Then we can expand M to a model M+ such that for any
assignment of the variables a1, . . . , ai−1

M+ |= H(a1, . . . , ai−1, f(a1, . . . , ai−1)) . (6.1)

To define fM
+

we fix i − 1 elements b1, . . . , bi−1 ∈ M and consider the set B
of all elements b ∈ M such that H holds, where the variables a1, . . . , ai−1 are
interpreted as b1, . . . , bi−1, respectively.

By assumption B 6= ∅. Thus we can pick (in an arbitrary but fixed way) an
element b ∈ B and set

fM
+

(b1, . . . , bi−1) := b .

In this way the interpretation of the function constant f is completely described
and the assertion (6.1) follows. Hence ∀x1 · · · ∀xi−1H(x1, . . . , f(x1, . . . , xi−1)) =
s(F) is satisfiable.

6.3. Herbrand’s Theorem

In this section we state and prove the main result of this chapter. A term t is
called closed or ground, if t does not contain (free) variables.

Definition 6.4. A Herbrand universe for a language L is the set of all closed
terms (of L). If L doesn’t contain an individual constant, then we add a fresh
constant to L.

An interpretation I (of L) is a Herbrand interpretation if

(i) the universe of I is the Herbrand universe H for L and

(ii) the interpretation I is defined such that

tI := t for any closed term t

A Herbrand interpretation I is a Herbrand model of a set of formulas G if I |= G.

A specific Herbrand model has been constructed in the proof of Lemma 4.4
in Chapter 4.3. Thus (by the proof of) Lemma 4.4 we already know that a
satisfiable set of (universal) sentences G has a Herbrand model. In preparation

42

6.3. Herbrand’s Theorem

for Herbrand’s theorem, we argue directly. Let t1, . . . , tn be terms. Then the
formula F (t1, . . . , tn) is called an instance of ∀x1 · · · ∀xnF (x1, . . . , xn). If all
terms ti (1 6 i 6 n) are ground, F (t1, . . . , tn) is called a ground instance.

Suppose that I models G and let ∀x1 · · · ∀xnF (x1, . . . , xn) ∈ G. By definition
of the satisfaction relation I also models every ground instance F (t1, . . . , tn) of
∀x1 · · ·xnF (x1, . . . , xn). Consider a Herbrand interpretation J (of the language
of G) that satisfies exactly the same instances F (t1, . . . , tn) as I. This amounts
to set J as the collection of all true atoms F (t1, . . . , tn) in the interpretation
I. Then J |= ∀x1 · · · ∀xnF (x1, . . . , xn) and thus J is a Herbrand model of G.

This observation motivates a new notation. Let I = (A, `) be an interpreta-
tion and let F be a formula. Recall that Lemma 3.2 states that only a finite
part of the look-up table ` is necessary to conclude the truth value of F as only
finitely many variables may occur in a given formula F .

Let a1, . . . , an denote the set of (free) variables in F . Then only the values
`(a1), . . . `(an) of the environment ` are important. Thus instead of (A, `) |= F
we sometimes write:

A |= F [`(a1), . . . , `(an)] .

Theorem 6.3. Let G be a set of universal sentences (of L) without =. Then
the following assertions are equivalent:

(i) G is satisfiable.

(ii) G has a Herbrand model (over L).

(iii) every finite subset of Gr(G) has a Herbrand model (over L).

here we set

Gr(G) := {F (t1, . . . , tn) | ∀x1 · · · ∀xnF (x1, . . . , xn) ∈ G,where the ti are closed} .

Proof. The argument for the equivalence of the first two statements has already
been given above.

To see that the third item is equivalent, it suffices to show that item (iii)
implies item (i). Thus we assume that any finite subset of Gr(G) has a Herbrand
model. Then in particular any finite subset of Gr(G) has a model and hence
Gr(G) itself has a model by compactness. Thus (using the equivalence of the
first two statements) Gr(G) has a Herbrand model M.

Now let ∀x1 · · · ∀xnF (x1, . . . , xn) ∈ G, then for any sequence of (closed)
terms t1, . . . , tn, we have F (t1, . . . , tn) ∈ Gr(G). Thus M |= F (t1, . . . , tn) for
any sequence t1, . . . , tn. Hence, M |= F [t1, . . . , tn] for all domain elements
t1, . . . , tn ∈M. This impliesM |= ∀x1 · · · ∀xnF (x1, . . . , xn) by definition. This
holds for any sentence in G and thus M |= G.

To simplify later developments we represent Herbrand’s theorem in a more
condensed form below.

Corollary 6.2. Let G be a set of universal sentences (of L) without =. Either
G has a Herbrand model or G is unsatisfiable. For the latter case the following
assertions hold (and are equivalent):

43

6. Normal Forms and Herbrand’s Theorem

(i) There exists a finite subset of Gr(G) whose conjunction is unsatisfiable.

(ii) There exists a finite subset S of Gr(G) such that the disjunction of the
negation of formulas in S is valid.

Proof. By the theorem G either has a Herbrand model or is unsatisfiable. More-
over in the latter case there exists a finite subset of Gr(G) whose conjunction
is unsatisfiable by the theorem. Otherwise all finite subset of Gr(G) would be
satisfiable from which we would conclude that G is satisfiable.

Hence it remains to verify that both items in the corollary are equivalent.
For that suppose there exists a finite subset of Gr(G) whose conjunction C is
unsatisfiable. Then clearly the negation of this conjunction C is a disjunction
D of negations of formulas in Gr(G) and D is finite. Moreover D is valid.

We can paraphrase Herbrand’s theorem (and Corollary 6.2) as the statement:
A universal sentence ∀xF (x) is unsatisfiable if and only if there exists a finite
sets S of ground instances F (t) for terms t in the Herbrand universe such that
S is unsatisfiable.

Note that the restriction to universal sentences in Theorem 6.3 and Corol-
lary 6.2 is essential: On one hand we cannot generalise the theorem to universal
formulas, on the other we cannot generalise it to general sentences, see Prob-
lem 6.3. One way to overcome this problem is to assert that any formula
F (a1, . . . , an) (with free variables a1, . . . , an) is understood to be implicitly uni-
versally quantified as follows: ∀x1 · · ·xnF (x1, . . . , xn), see for example [27].

Corollary 6.3. If F (a1, . . . , an) is a quantifier-free formula in a language L
with at least one constant, then ∃x1 · · · ∃xnF (x1, . . . , xn) is valid iff there are
ground terms tk1, . . . , t

k
n, k ∈ N such that the Herbrand disjunction F (t11, . . . , t

1
n)∨

· · · ∨ F (tk1, . . . , t
k
n), is valid.

Proof. If ∃x1 · · · ∃xnF (x1, . . . , xn) is valid, then ∀x1 · · · ∀xn¬F (x1, . . . , xn) is
unsatisfiable and vice versa. By Corollary 6.2 there exists a finite disjunction
of formulas F (tk1, . . . , t

k
n) that is valid.

Based on Herbrand’s theorem a naive form of automating the verification
of a given sentence F becomes possible. Let F be an arbitrary sentence in a
language L. Then by Theorem 6.2 there exists a formula F ′ in SNF such that
F ≈ F ′. Suppose F ′ has the following shape:

∀x1 · · · ∀xn G(x1, . . . , xn) .

Let H be the Herbrand universe for L. Recall that G is in CNF. Then we
consider all possible Herbrand interpretations of L. For that we make use of so
called semantic trees. LetA be a set of atomic formulas (of L) over the Herbrand
universe H and let A0, A1, . . . be some enumeration of A. The semantic tree T
is inductively defined as follows.

– The tree which contains only the root is a semantic tree.

– The two edges leaving the root are labelled by A0 or ¬A0, respectively

44

6.4. Eliminating Function Symbols and Identity

– Let I be a node in T . Then I is either a

(i) leaf node or

(ii) the edges e1, e2 leaving node I are labelled by An+1 and ¬An+1

respectively, when the edge that enters node I is labelled by An or
¬An.

Any path in T gives rise to a partial Herbrand interpretation I of F ′. We
traverse the path and set all literals used as edge labels true in I. In this way
a semantic tree represents all possible Herbrand interpretations of F ′ (as L is
assumed to be countable).

Let I denote a node in T and let I denote the partial Herbrand interpretation
induced by this node. We call I closed if there exists a ground instance D of a
disjunction in G such that I 6|= D and thus I 6|= F ′. Clearly when all leaves in
T are closed, then there exists a finite sets S of ground instances:

G(tk1, . . . , t
k
n) ,

for closed terms tk1, . . . , t
k
n, k > 1 in the Herbrand universe H such that S is

unsatisfiable.
By Herbrand’s theorem this implies that F ′ is unsatisfiable and thus F is

unsatisfiable.
Hence in order to prove that a given existential formula is valid or that a

given universal formula is unsatisfiable, we construct the semantic tree T as
above iteratively. Note that we can stop the construction of T as soon as all
leaf nodes in T are closed.

This procedure can be automated and provides us with a sound and complete
algorithm A. Here soundness means that A will never refute a formula F that
is satisfiable and completeness means that for any unsatisfiable formula F we
will find a finite semantic tree witnessing that F is unsatisfiable. Of course the
algorithm A need not terminate and is hopelessly inefficient. Still, this idea
forms the basis of modern tools in automated reasoning.

6.4. Eliminating Function Symbols and Identity

Above we restricted Herbrand’s theorem to languages without equality. In this
section we show how to overcome this restriction. In addition we show how to
eliminate individual and function constants from the language.

We start with the transformation rules to eliminate individual and function
constants. For that observe that any formula F is logically equivalent to a for-
mula G such that individual and function constants only occur immediately to
the right of an equality sign. So the only occurrence of an n-place function sym-
bol or a constant is in atomic formulas of the following shape: a = f(b1, . . . , bn),
where the indicated terms a, b1, . . . , bn are variables. To obtain the formula G
from F we iteratively apply the following transformation. Suppose the n-place
function symbol occurs somewhere else in F than immediately to the right of =.
Suppose f is the first symbol (also known as root symbol) of a term t occurring
in a subformula A of F . Let x be a fresh bound variable and denote as F ′ the

45

6. Normal Forms and Herbrand’s Theorem

result of replacing A(t) by ∃x(x = t∧A(x)). It is not difficult to argue that F ′

is logically equivalent of F .
Hence, we assume that in the given formula F individual and function con-

stants only occur immediately to the right hand of =. Based on this infor-
mation we show how to replace any of the occurring individual and function
constants. Let F be a formula, f an n-place function symbol or a constant
occurring in a = f(b1, . . . , bn). Then we replace all occurrences of this equality
by a P (b1, . . . , bn, a), where the predicate constant P is fresh. The result of
this transformation is denoted as F ′′. Let C(f) denote the following sentence,
denoted as functionality axiom:

∀x1 · · · ∀xn∃y∀z(P (x1, . . . , xn, z)↔ z = y) .

Then we obtain the following lemma, whose not difficult proof is left to the
reader.

Lemma 6.1. F is satisfiable if and only if F ′′ ∧ C(f) is satisfiable.

We turn our attention to the elimination of the symbol =. For that we assume
without loss of generaltiy that the formula F admits only predicate constants
as non-logical symbols. (Otherwise we first employ Lemma 6.1.) We make
use of an additional binary predicate symbol � together with the following
equivalence axioms E.

∀x x� x ∧ ∀x∀y (x� y → y � x) ∧ ∀x∀y∀z ((x� y ∧ y � z)→ x� z) .

In addition for each n-ary predicate constant P we consider the following sen-
tence C(P)

∀x1 · · · ∀xn∀y1 · · · ∀yn ((x1 � y1 ∧ · · · ∧ xn � yn)→
→ (P (x1, . . . , xn)↔ P (y1, . . . , yn)) .

For any formula F let F ′′′ denote the result of replacing the equality sign =
everywhere by� and let C(F) denote the conjunction of all congruence axioms
C(P) for any constant P . Then we obtain the following lemma, whose proof
follows similarly to Lemma 6.1.

Lemma 6.2. F is satisfiable if and only if F ′′′ ∧ E ∧ C(F) is satisfiable.

Lemma 6.1 and 6.2 allow us to eliminate individual and function constants
and the equality symbol from considered formulas, while preserving satisfaction.
In particular this means that Herbrand’s theorem (in all variants discussed
above) remains valid. We conclude this chapter with the following theorem.

Theorem 6.4. For any formula F there exists a formula G such that G does
neither contain individual or function constants nor equality and F ≈ G.

Problems

Problem 6.1. Two formulas are equivalent over an interpretation I if they
have the same truth value with respect to I. Show that the following hold for

46

6.4. Eliminating Function Symbols and Identity

equivalence over any interpretation I (and hence for logical equivalence):

(i) If sentence G is obtained from sentence F by replacing each occurrence
of an atomic sentence A by an equivalent sentence B, then F and G are
equivalent.

(ii) Show the same holds for an atomic formula A and an equivalent formula
B.

(iii) Show that this holds for arbitrary subformulas A.

Problem 6.2. Show that

(i) If F is a formula and x a bound variable in F , then F is logically equivalent
to a formula in which x doesn’t occur at all.

(ii) Generalise this to any number of variables x1, . . . , xn.

Problem 6.3. Let L = {c,P}.

(i) Give the Herbrand universe for L.

(ii) Give two examples of Herbrand interpretations of L.

(iii) Let G1 = {P(c), ∃x¬P(x)}. Show that G1 is satisfiable, but doesn’t have
a Herbrand model.

(iv) Let G2 = {P(c),¬P(x)}. Show that G2 is satisfiable, but doesn’t have a
Herbrand model.

Problem 6.4. Prove Lemma 6.1.
Hint : It simplifies the argument if the following auxiliary axiom D is em-

ployed:
∀x1 · · · ∀xn∀z(P (x1, . . . , xn, z)↔ z = f(x1, . . . , xn))

Note that D |= C and D |= F ↔ F ′′.

Problem 6.5. Prove Lemma 6.2.
Hint : Only the direction from right to left is of interest. Start with a model
M for F ′′′ ∧ E ∧ C(F) and define an interpretation whose universe consists of
all equivalence classes (with respect to �) and whose denotation of � is the
identity.

47

7.

The Curry-Howard Isomorphism

In this chapter we consider the connection between proofs and programs in
more detail. For that we describe the Curry-Howard isomorphism between
intuitionistic natural deduction and the typed λ-calculus. This correspondence
allows us to speak of programs and proofs interchangingly and transform or
develop formalisms and methods in one area to apply it to the other. We restrict
ourselvs to the bare essentials in presenting the Curry-Howard correspondence.
For a complete account the reader is kindly referred to Goubault-Larrecq and
Makie, see [35].

7.1. A Problem with the Excluded Middle

In order to set the table for the presentation of the Curry-Howard isomorphism
it is necessary to describe intuitionistic logic and the λ-calculus. In this sec-
tion we give the usual motivating example of intuitionistic logic and present a
calculus for this logic.

Theorem 7.1. There are solutions of the equation xy = z with x and y irra-
tional and z rational.

Proof. We give a non-constructive proof. Clearly
√

2 is an irrational number.

Consider
√

2
√
2
: One of the following two cases has to occur:

(i)
√

2
√
2

is rational. In this case put

x =
√

2 y =
√

2 z =
√

2

√
2

Clearly these settings solve the equation xy = z. Thus the theorem is
proven.

(ii)
√

2
√
2

is irrational. In this case put

x =
√

2

√
2

y =
√

2 z = (
√

2

√
2
)
√
2 =
√

2

√
2·
√
2

= 2

Again the equation xy = z is solved and the theorem is proven.

49

7. The Curry-Howard Isomorphism

introduction elimination

∧ E F
E ∧ F ∧ : i

E ∧ F
E

∧ : e E ∧ F
F

∧ : e

∨ E
E ∨ F ∨ : i

F
F ∨ F ∨ : i

E ∨ F

E
...
G

F
...
G

G
∨ : e

→

E
...
F

E → F
→ : i

E E → F
F

→ : e

Figure 7.1.: Intuitionistic Propositional Rules (Part I)

The problem with the above proof is that it is non-constructive: The state-
ment of the theorem is existential: something should exist namely the numbers
x, y, and z. Despite this the proof does not provide a method to actually con-
struct these numbers. This is a serious problem if we want to extract a program
out of the given proof which is exactly the point of the Curry-Howard corre-
spondence. To overcome this problem we consider proofs of a specific form:
intuitionistic proofs.

7.2. Natural Deduction for Intuitionistic Logic

In this section we introduce a formal system for intuitionistic logic and claim its
soundness and completeness with respect to the standard Kripke-semantics. As
the focus of this section is on the correspondence between proofs and programs
we are not concerned with the semantics of intuitionistic logic here. (For more
information see [18].) Note that the semantics of intuitionistic logic (even for
the propositional case) is more complex than the one considered for classical
(propositional) logic.

It suffices if we consider propositional logic only. Below we give the natural
deduction rules of intuitionistic logic, denoted as NJ, see Figure 11.2 and Fig-
ure 11.3. In the following the natural deduction rules as defined in Figure 2.1
are denoted as NK.

The only difference between the classical rules and those given here is the
absence of the double-negation rule:

¬¬F
F
¬¬ : e

50

7.3. Typed λ-Calculus

introduction elimination

¬

E
...
⊥
¬E ¬ : i

F ¬F
⊥ ¬ : e

⊥ ⊥
F
¬ : e

Figure 7.2.: Intuitionistic Proposition Rules (Part II)

This seemingly small change has the effect that in NJ the tertium non-datur
F ∨ ¬F is no longer derivable: NJ 6` F ∨ ¬F .

7.3. Typed λ-Calculus

In this section we (very) briefly introduce the typed λ-calculus. See [8] for
extensive information on the untyped λ-calculus and see [9, 28] for background
information on the typed system.

Definition 7.1. We define the set of types T as follows:

– a variable type: α, β, γ, . . .

– if σ, τ are types, then (σ × τ) is a (product) type

– if σ, τ are types, then (σ → τ) is a (function) type

Definition 7.2. The typed λ-terms are defined as follows:

– any (typed) variable x : σ is a (typed) term

– if M : σ, N : τ are terms, then 〈M,N〉 : σ × τ is a term

– if M : σ × τ is a term, then fst(M) : σ and snd(M) : τ are terms

– if M : τ is a term, x : σ a variable,
then the abstraction (λxσ.M) : σ → τ is a term

– if M : σ → τ , N : σ are terms, then the application (MN) : τ is a term.

Example 7.1. The following are (well-formed, typed) terms

λfx.fx : (σ → τ)→ σ → τ 〈λx.x, λy.y〉 : (σ → σ)× (τ → τ) ,

but λx.xx cannot be typed!

Definition 7.3. The set of free variables of a term is defined as follows

– FV(x) = {x}.

51

7. The Curry-Howard Isomorphism

– FV(λx.M) = FV(M)− {x}

– FV(MN) = FV(〈M,N〉) = FV(M) ∪ FV(N).

– FV(fst(M)) = FV(snd(M)) = FV(M).

Occurrences of x in the scope of λ are called bound : λx.xy(λy.xy(λx.z))y.
This notion is made precise in the next definition.

Definition 7.4. The set of bound variables of a term is defined as follows

– BV(x) = ∅.

– BV(λx.M) = BV(M) ∪ {x}.

– BV(MN) = BV(〈M,N〉) = BV(M) ∪ BV(N).

– BV(fst(M)) = BV(snd(M)) = BV(M).

In the definition of β-reduction below we make use of substitution.

Definition 7.5. M [x := N] denotes the result of substituting N for x in M

– x[x := N] = N and if x 6= y, then y[x := N] = y

– (λx.M)[x := N] = λx.M

– (λy.M)[x := N] = λy.(M [x := N]), if x 6= y and y 6∈ FV(N)

– (M1M2)[x := N] = (M1[x := N])(M2[x := N])

– 〈M1,M2〉[x := N] = 〈M1[x := N],M2[x := N]〉

– fst(M)[x := N] = fst(M [x := N])

– snd(M)[x := N] = snd(M [x := N])

Now we introduce the notion of computation in the (typed) λ-calculus. This
reduction rules are called β-reduction.

Definition 7.6.

(λx.M)N
β−→M [x := N]

fst(〈M,N〉) β−→M

snd(〈M,N〉) β−→ N

Note that β-reduction is closed under context:

M
β−→ N =⇒



LM
β−→ LN

ML
β−→ NL

λx.M
β−→ λx.N

〈M,L〉 β−→ 〈N,L〉
〈L,M〉 β−→ 〈L,N〉
fst(M)

β−→ fst(N)

snd(M)
β−→ snd(N)

52

7.4. The Curry-Howard Isomorphism

x : σ ` x : σ
ref

×
Γ `M : σ Γ ` N : τ

Γ ` 〈M,N〉 : σ × τ
pair

Γ `M : σ × τ
Γ ` fst(M) : σ

fst
Γ `M : σ × τ
Γ ` snd(M) : τ

snd

→
Γ, x : σ `M : τ

Γ ` λx.M : σ → τ
abs

Γ `M : σ → τ Γ ` N : σ
Γ `MN : τ

app

Figure 7.3.: Type Checking System

introduction elimination

F ` F Ax

∧ Γ ` E Γ ` F
Γ ` E ∧ F ∧ : i

Γ ` E ∧ F
Γ ` E ∧ : e

Γ ` E ∧ F
Γ ` F ∧ : e

∨ Γ ` E
Γ ` E ∨ F ∨ : i

Γ ` F
Γ ` E ∨ F ∨ : i

Γ ` E ∨ F Γ, E ` G Γ, F ` G
Γ ` G ∨ : e

→
Γ, E ` F

Γ ` E → F
→: i

Γ ` E Γ ` E → F
Γ ` F →: e

Figure 7.4.: Minimal Logic Propositional Rules (Sequent Style)

7.4. The Curry-Howard Isomorphism

In this section we introduce the Curry-Howard isomorphism also know as the
Curry-Howard correspondence. We start by presenting a basic type checking
system for the typed λ-calculus in Figure 7.3

Note that the system presented in Figure 7.3 is closely related to the type
checking system introduced in the lecture on functional programming, see [50,
Chapter 9]. The only difference is that we have extended the rules (ref), (abs),
and (app) as in [50, Chapter 9] by rules governing the product types. This is
due to a different design choice in crafting our type system which is inessential,
but simplifies the description of the Curry-Howard isomorphism.

We recall minimal logic, briefly introduced in Chapter 4.3. It is useful to
change the style of presentation of these rules. For the sequel of this chapter
we use the sequent style form to present these rules, see Figure 7.4. It is easy
to see that these rules are equivalent to those natural deduction rules presented
in Figure 11.2 and 11.3.

The crucial advantage of the presentation of natural deduction rules as in
Figure 4.4 is the direct correspondence to the type checking system given in
Figure 4.3. For instance the rule defining (app) in Figure 7.3 and implication
elimination (→: e) are essentially the same rule. More precisely, the type of
a term in the type checking system corresponds to a formula in the natural

53

7. The Curry-Howard Isomorphism

∨
Γ `M : σ

Γ ` inl(M) : σ + τ
Γ ` N : τ

Γ ` inr(N) : σ + τ

Γ `M : σ + τ Γ, x : σ ` N1 : γ Γ, y : τ ` N2 : γ

Γ ` case M of inl(x) −→ N1 | inr(y) −→ N2 : γ

Figure 7.5.: Type Checking System (Part II)

deduction rules and vice versa. Observe the following correspondence:

(ref) ∼ (Ax)
(abs) ∼ (→: i)
(app) ∼ (→: e)
(pair) ∼ (∧ : i)
(fst) ∼ (∧ : e)
(snd) ∼ (∧ : e)

In order to make this correspondence complete it suffices to give a simple
extension of our type system by adding sum types. These correspond precisely
to the natural deduction rules (∨ : i) and (∨ : e). This is the purpose of the rules
given in Figure 7.5. The case of destructor encodes pattern matching. Based
on these type checking rules we can complete the table above:

(inl) ∼ (∨ : i)
(inr) ∼ (∨ : i)
(case) ∼ (∨ : e)

The here described correspondence between types and formulas is often referred
to as “types as formulas” paradigm. We summarise the isomorphism in the
following table:

formulas ∼ types
proofs ∼ programs
normalisation ∼ computation

Above we have already seen the precise connection between formulas and
types. What is missing is some intuition about the last correspondence: nor-
malisation of proofs and computations in a (typed) λ-calculus. A detailed
presentation of the relation is outside the scope of this lecture. But it is easy
to sketch the idea. Consider the following proof Ψ in the type checking system:

Π1
...

Γ `M : σ

Π2
...

Γ ` N : τ
Γ ` 〈M,N〉 : σ × τ
Γ ` fst(〈M,N〉) : σ

If we conceive this proof as a natural deduction proof and focus on the formulas
proven we observe that there exists some redundancy in this proof. Essentially

54

7.4. The Curry-Howard Isomorphism

we derive the “formula” σ by first introducing the “formula” σ × τ and then
eliminating × again. A shorter proof Ψ′ is given below:

Π1
...

Γ `M : σ

We already know that this proof transformation is called normalisation, cf. Chap-
ter 4.3.

If we now consider the terms occurring in these proofs we see that in the first
proof Ψ the term fst(〈M,N〉) is shown to be well-typed with type σ, while in the
second proof Ψ′ the term M is shown to have type σ. Thus the normalisation
from Ψ to Ψ′ directly corresponds the the β-reduction step fst(〈M,N〉) β−→ M
and thus to a computation. This correspondence between normalisation of
proofs and computation in the typed λ-calculus holds in general. As another
example we consider the β-reduction (λx.M)N

β−→ M [x := N] together with
the following proof normalisation:

Π1
...

Γ, x : σ `M : τ

Γ ` λx.M : σ → τ

Π2
...

Γ ` N : τ
Γ ` (λx.M)N : τ

=⇒
Π1[x\Π2]

...

Γ `M [x := N]

Here the right proof is to be understood as the extension of proof Π1 by the
inferences in Π2 such that all occurrences of x in Π1 are replaced by the term N .

Problem 7.1. Give a type system for the restriction of the λ-calculus, where all
variables occur exactly once in the body of a term. More precisely we have the
following terms: (i) variables x, (ii) abstractions λx.M , and (iii) applications
MN . For (ii) we have the constraint that x ∈ FV(M), and for (iii) that FV(M)∩
FV(N) = ∅. Furthermore, we define FV(x) := {x}, FV(λx.M) := FV(M)−{x},
and FV(MN) := FV(M) ∪ FV(N).

Hint : Look-up linear logic

Problem 7.2. Consider the restriction of the λ-calculus defined in Problem 11.7.
Prove strong normalisation of the calculus. (Hence also for the corresponding
logic.)

55

8.

Extensions of First-Order Logic

In this chapter we consider the limits of expressivity of first-order logic (see
Section 8.1) and consider a specific extension of first-order logic: second-order
logic (see Section 8.2). Finally, we conclude by mentioning a specific application
of (second-order) logic to complexity theory. The complexity class P is captured
by existential second-order logic on finite structures.

8.1. Limits of First-Order Logic

Let G be a directed graph with distinct nodes u, v. Recall that reachability in
G is not expressible in first-order logic, that is, there is no formula F (x, y) such
that F holds in an interpretation with environment `(x) = u, `(y) = v iff there
exists a path in G from u to v. This formulation does not (yet) clarify, whether
an (infinite) set of formulas F is sufficient to express reachability. In order
to solve this issue, we introduce the notion of elementary and ∆-elementary
collections of structures. Let F be a set of sentences (over some language L),
we define:

Mod(F) = {A | A is a structure (of L) and A |= F} .

We call Mod(F) the class of models of F . Instead of Mod({F}) we simply write
Mod(F).

Definition 8.1. Let K be a collection of structures.

– K is called elementary if there exists a sentence F such that K = Mod(F).

– K is called ∆-elementary if there exists a set of sentences F such that
K = Mod(F).

Each elementary class is ∆-elementary. Moreover, every ∆-elementary class
is the intersection of elementary classes:

Mod(F) =
⋂
F∈F

Mod(F) .

Reachability is not expressible in first-order logic, even with an infinite set
of formuals. More precisely the class K1 of strongly connected graphs is not

57

8. Extensions of First-Order Logic

∆-elementary. Let G be a structure defined over the language L = {R} with the
domain G. Here R is a binary relation symbol that represents the (directed)
edge relation of the graph G.
G is called strongly connected if for arbitrary, but distinct u, v ∈ G there

exists a path in G from u to v. For each number n, the regular polygon with
n + 1 nodes is denoted as Gn. More precisely, we set Gn = (Gn, R

Gn), where
Gn = {0, . . . , n} and

RGn := {(i, i+ 1) | i < n} ∪ {(n, 0)} ,

while we define the following sentences (n ∈ N):

Fn(a, b) := a = b ∨ ∃x1 · · · ∃xn
(
a = x1 ∧ xn = b ∧R(x1, x2) ∧ · · · ∧R(xn−1, xn)

)
.

Suppose, in order to derive a contradiction, that K1 = Mod(F) for set of sen-
tences F .

We set H := F ∪{¬Fn | 2 6 n}. Then it is easy to see that H is unsatisfiable
as by assumption any model of F is a strongly connected graph, while the family
of formulas (¬Fn)n>2 can only be modelled if there exists at least two nodes
which are not connected. However, each finite subset F ′ of H has a model.
Namely there exists a number m such that F ′ ⊆ F ∪ {¬Fn | 2 6 n 6 m} and
G2m |= F ′. For the latter observe that we can interpret the free variables a and
b by 0 and m, respectively. This contradicts compactness.

8.2. Second-Order Logic

A second-order language extends a first-order language by a collection of vari-
ables for relations and functions. I.e., variables are:

(i) First-order variables, which are also called individual variables.

(ii) Relation variables with i arguments: V i
0 , V

i
1 , . . . , V

i
j , . . .

(iii) Function variables with i arguments: ui0, u
i
1, . . . , u

i
j , . . .

Here i = 1, 2, . . . and j = 0, 1, 2, . . .

Definition 8.2. Second-order terms are defined like first-order terms together
with the following clause:

(iv) If t1, . . . , tn are second-order terms, u an n-ary function variable, then
u(t1, . . . , tn) is a second-order term.

A second-order term without function variables is a first-order term.

Convention. The meta-symbols c, f , g, h, . . . , are used to denote constants
and function symbols, while the meta-symbols u, v, w are used to denote func-
tion variables. P , Q, R, . . . , vary through predicate symbols or predicate vari-
ables. Individual variables are denoted as x, y, z, . . . , and predicate variables
are denoted by V ,X,Y ,Z, etc.

58

8.2. Second-Order Logic

Definition 8.3. Second-order formulas are defined like first-order formulas
together with the following clauses:

(iv) If t1, . . . , tn are (second-order) terms, X an n-ary predicate variable, then
X(t1, . . . , tn) is a second-order formula.

(v) If A(f) is a second-order formula, f a function constant, u a function
variable, such that A(u) denotes the replacement of all occurrences of f
by u, then

∀u A(u) ∃u A(u) ,

are second-order formulas.

(vi) If A(P) a second-order formula, P a predicate constant, X a predicate
variable, then

∀X A(X) ∃X A(X) ,

are second-order formulas.

A second-order formula without predicate and function variables is a first-order
formula.

Definition 8.4. Let A denote a structure and A its domain. A second-order
environment for A associates with any individual variable a an element in A,
moreover with any n-ary function variable u a function f : An → A is associated
and finally any n-ary relation variable X is assigned to a subset of An.

Let ` be a second-order environment and let A′ ⊆ An be an n-ary relation
over A. Then we write `{X 7→ A′} for the environment mapping predicate
variable X to the relation A′ and all other variables Y 6= X to `(Y). A similar
notion is used for function variables.

Based on the above extension of the notion of environment it is easy to
define interpretations in the context of a second-order language. A second-
order interpretation I is a pair (A, `) such that A is a structure and ` is a
second-order environment. Thus the value of a second-order term t is defined
as follows:

tI =


`(t) if t an individual variable

fA(tI1 , . . . , t
I
n) if t = f(t1, . . . , tn), f a constant

`(u)(tI1 , . . . , t
I
n) if t = u(t1, . . . , tn), u a variable

Definition 8.5. Let I = (A, `) be a second-order interpretation, let A be the
domain of A, let F be a formula, and let A′ be a relation. We write I{X 7→ A′}
as abbreviation for (A, `{X 7→ A′}).

We define the satisfaction relation I |= F as before, but add the following

59

8. Extensions of First-Order Logic

clauses:

I |= X(t1, . . . , tn) :⇐⇒ if `(X) = P ⊆ An and (tI1 , . . . , t
I
n) ∈ P

I |= ∀XF (X) :⇐⇒ if I{X 7→ A′} |= F (X) holds for all A′ ⊆ An

I |= ∃XF (X) :⇐⇒ if I{X 7→ A′} |= F (X) holds for some A′ ⊆ An

I |= ∀uF (u) :⇐⇒ if I{u 7→ f} |= F (u) holds for all f ∈ An → A

I |= ∃uF (u) :⇐⇒ if I{u 7→ f} |= F (u) holds for some f ∈ An → A

The next example shows that reachability (in a directed graph) becomes
definable in second-order logic.

Example 8.1. Consider the following second order formula F (x, y):

∃P
(
∀z1∀z2∀z3 (¬P (z1, z1) ∧ (P (z1, z2) ∧ P (z2, z3)→ P (z1, z3))) ∧

∧ ∀z1∀z2(P (z1, z2) ∧ ∀z3(¬(P (z1, z3) ∧ P (z3, z2)))→ R(z1, z2)) ∧ P (x, y)
)

.

The idea of the formula is to assert the existence of a predicate P whose in-
terpretation is that of a path in the graph. For that we assert with the first
subformula that a path is transitive, but not reflexive. The second formula
says that every direct successor in a path is connected by an edge in the graph.
Finally, the last subformula expresses that the interpretations of x and y are
connected.

It is not difficult to see that for any finite second-order model G of F with
environment `, there exists a path in G from `(x) to `(y).

While first-order logic features compactness, Löwenheim-Skolem, and com-
pleteness, none of these properties hold for second-order logic. This is sum-
marised in the next theorem, whose proof we omit. The interested reader is
kindly referred to [11] or [20].

Theorem 8.1. (i) Compactness fails for second-order logic.

(ii) Löwenheim-Skolem fails for second-order logic.

(iii) Completeness fails for second-order logic, i.e., there does not exists a cal-
culus that is sound and complete for second-order logic. In particular the
set of valid second-order sentences is not recursively enumerable.

8.3. Complexity Theory via Logic

In the remainder of this chapter we consider a specific application of the ex-
pressivity of second-order logic, namely the characterisation of the class NP of
non-deterministic programs that run in polynomial time. For this purpose we
suit the definition of problems to finite structures and state that a complexity
problem denotes a (subset of a) set of finite structures. This re-formulation is
standard, compare [44].

Definition 8.6. Let K be a set of finite structures (of a finite language L) and
let F be a sentence (of L). SupposeM is a (second-order) structure in K. Then
the F -K problem asks, whether M |= F holds.

60

8.3. Complexity Theory via Logic

We call a second-order formula F existential (∃SO for short) if F has the
following form:

∃X1∃X2 · · · ∃Xn G ,

where G is essentially a first-order formula that may contain the free second-
order variables X1, . . . , Xn.

Let K be a set of finite structures and let L denote a finite language. Suppose
F is a second-order sentence (of L), i.e., no variable occurs free in F . The proof
of the following lemmas can be found in [27].

Lemma 8.1. If F is ∃SO, then the F -K problem is in NP.

Lemma 8.2. If F -K is decidable by a NTM M that runs in polynomial time
then F is equivalent to an existential second-order sentence.

Based on Lemma 8.1 and Lemma 8.2 we obtain the following characterisation
theorem due to Fagin.

Theorem 8.2. A sentence F (of L) is equivalent to a sentence in ∃SO iff
F -K ∈ NP. Moreover if F -K ∈ NP, then it can be assumed that the first-order
part of F is a universal formula.

Proof. Suppose F is an existential second-order sentence. Then by Lemma 8.1
the corresponding problem F -K is in NP. Conversely assume there exists a
sentence F together with a set of structures K such that F -K ∈ NP. Then
by definition of the complexity class NP there exists a TM (not necessarily
deterministic) that runs in polynomial time and decides the F -K problem. Due
to Lemma 8.2, F is equivalent to an ∃SO sentence G. Moreover it follows from
the proof of Lemma 8.2 (see [27]) that the first-order part of G is universal.

As an easy corollary to this theorem we obtain an easy proof that the satis-
fiability problem of proposition logic (SAT for short) is complete for NP with
respect to the polytime reducibility relation. (The interested reader is encour-
aged to compare the below given proof sketch to the standard argument, see
for example [44].)

Corollary 8.1. SAT is complete for NP (with respect to polytime reducibility).

Proof. It is easy to see that SAT ∈ NP, as this is a consequence of Lemma 8.1.
On the other hand consider any problem A ∈ NP. Then we can reformulate
the problem A as an F -K problem for some set of finite structures K and some
sentence F . Due to Theorem 8.2 the sentence F is ∃SO and the first-order part
of F is universal.

Let M ∈ K be a finite model. In order to reduce the F -K problem (with
respect to M) to a SAT-problem, consider the finite (!) conjunction of all in-
stances of the the first-order part of F , where we instantiate the bound variables
by constants representing all elements in M. We obtain a quantifier-free for-
mula effectively forming a propositional logic formula, when we conceive the
atomic formulas as propositional atoms.

61

8. Extensions of First-Order Logic

It is not difficult to argue that any interpretation of F is conceivable as an
assignment of this propositional formula, while on the other hand any assign-
ment that satisfies the propositional formula can be re-interpreted as model of
F .

In sum SAT ∈ NP and any problem A in NP is reducible (with an algorithm
that runs in polynomial time) to a SAT problem. Hence SAT is complete for
NP.

The next corollary to Theorem 8.2 we state without proof.

Corollary 8.2. The following is equivalent:

– NP = co− NP and

– ∃SO is equivalent to (full) second-order logic.

Problems

Problem 8.1. Let K be a ∆-elementary class of structures. Show that the
subclass K∞ ⊆ K of structures in K with infinite domain is ∆-elementary, too.

Hint : Observe the difference between elementary and ∆-elementary class of
structures.

Problem 8.2. Show Lemma 8.1.
Hint : Use non-determinism to simulate the effect of the existential quantifier.

Problem 8.3. Show Lemma 8.2.
Hint : Represent the Turing machine computation as a directed graph and

use the construction in Example 8.1 to encode reachability in this graph.

Problem 8.4. Show that SAT ∈ NP, using the results of this chapter.
Hint : It suffices to formulate SAT as an F -K problem for a suitable class of

structures K and an ∃SO sentence F .

62

Part II.

Automated Theorem Proving

63

9.

Why Automated Resoning is Good For
You

9.1. Program Analysis

Interesting properties of programs (like termination) are typically undecidable.
Despite this limitation such properties are studied and automatic procedures
have been designed to (partially) verify whether certain properties hold.

In the analysis of programs one doesn’t study the concretely given program,
but abstracts it in a suitable way, abstract interpretations [14] formalise this
idea. Here the level of abstraction is crucial if one wants to prevent false nega-
tives: properties that hold true for the program become false for the abstraction.
In order to design expressive abstractions one combines simple abstractions into
more complicated and thus more expressive ones.

Sumit Gulwani and Ashish Tiwari have presented a methodology to automat-
ically combine abstract interpretations based on specific theories to construct
an abstract interpreter based on the combination of the studied theories. This
is encapsulated into the notion of logical product (compare [26]) and based on
the Nelson-Oppen method for combining decision procedures of different the-
ories (compare [38]). Here a theory is simply a set of sentences (over a given
language) that is closed under logical consequence. Examples of theories would
be for example the theory of linear arithmetic (making use of the symbols 0,
1, +, ×, 6, and =) or the theory of lists (making use of the symbols car, cdr,
cons, and =). If two theories T1, T2 fulfil certain conditions1 and it is known
that satisfiability of quantifier-free formulas with respect to the theories T1 and
T2 is decidable, then satisfiability of quantifier-free formulas with respect to the
union T1 ∪ T2 is decidable. In Chapter 5 we study a related result, Robinson’s
joint consistency theorem.

The methodology invented in [26] allows the modularisation of the analysis
of programs via abstract interpretations. Modularisation is possible for both
stages of the analysis: One one hand the technique can be employed to define
suitable interpretations for complex theories. On the other hand it can be
employed to simplify the implementation of such an abstract interpreter.

1 To be precise the theories T1, T2 are supposed to be convex, disjoint, and stably infinite,
see [38].

65

9. Why Automated Resoning is Good For You

9.2. Databases

Datalog is a database query language based on the logic programming paradigm.
Syntactically it is a subset of Prolog (compare [12]). It is widely used in knowl-
edge representation systems, see for example [22]. Logically a datalog query is
a formula in Horn logic. Hence any such query has a unique model, its min-
imal model. This allows to assign a simple and unique semantics to datalog
programs.

Datalog rules can be translated into inclusions in relational databases. Dat-
alog extends positive relational algebras as recursive queries can be formed,
which is not possible in positive relational algebras. The success of datalog can
for example be witnessed in changes to the database query language SQL that
has been extended by the possibility of recursive queries.

Contrary to full first-order logic, datalog queries are decidable. One can
distinguish two notions of complexity in this context. On one hand we have
expression complexity, where the complexity of fulfilling a given query is ex-
pressed in relation to the size of the query. On the other hand we have data
complexity, where the complexity is measured in the size of the database and
the query. The former notion is closely related to the notion of complexity of
formal theories. Hence we focus on this notion. The expression complexity
of datalog is EXPTIME-complete, that is, far beyond the complexity of typical
intractable problems like for example SAT.

Thomas Eiter et al. extended datalog to disjunctive datalog. Disjunctive dat-
alog allows disjunctions in heads of rules (compare [21]). It is a strict extension
of SQL and forms the basis of semantic web applications and has connections to
description logics and ontologies. Disjunctive datalog queries can be extended
with negation, so that the typical closed-world semantics of negation can be
overcome. To indicate the expressivity of disjunctive datalog observe that the
travelling salesperson problem can be directly formulated in this database query
language. Disjunctive datalog remains decidable, but the expression complexity
becomes NEXPTIMENP-complete. This implies that such queries can be only
solved on a nondeterministic Turing machine that runs in exponential time and
employs an NP-oracle.

9.3. Issues of Security

Security protocols are small programs that aim at securing communications
over a public network. The design of such protocols is difficult and error-prone.

In [40] Clifford Neuman and Stuart Stubblebine invented a key exchange
protocol.2 The goal of this protocol is to establish a secure key between two
principals Alice and Bob that already share secure keys with a trusted third
party. As shown by Tzonelih Hwang, Narn-Yoh Lee, Chuang-Ming Li, Ming-
Yung Ko, and Yung-Hsiang Chen in 1995 this protocol is not safe, but there
exists a potential attack for a fourth person, such that the attacker can imper-
sonate Alice and learn the shared key, while Bob believes this is the key of Alice

2 http://en.wikipedia.org/wiki/Neuman-Stubblebine_protocol

66

http://en.wikipedia.org/wiki/Neuman-Stubblebine_protocol

9.4. Software Verification

(compare Chapter 12). It is relative simple to repair the protocol by putting
type checks on the messages.

The potential attacks found by Hwang et al., where found manually, but
they can also be detected automatically by formalising the protocol in first-
order logic and employing an automated theorem prover. This observation is
due to Christoph Weidenbach, see [55]. Not only is it possible to find the bug
automatically, it is also possible to verify that the repaired protocol is now safe.
Or to be more precise: safe against an intruder with the assumed capabilities.

9.4. Software Verification

As already mentioned above termination of programs is an undecidable prop-
erty. Despite this negative result termination is a very active area in program
analysis and in the last decade a number of techniques have been developed to
analyse termination of a given program automatically. This is true for abstract
program like term rewrite system (see [51]), but also for concrete programming
languages like C or Java.

Here we focus on a short description of the program Terminator, developed
by Byron Cook and others at the Microsoft Research laboratory at Cambridge
University.3 Terminator employs abstract interpretations and model-checking
techniques to prove the termination of (concurrent) C-programs fully automat-
ically.

In the early years of model checking mainly hardware was verified. During
that time the research was driven by the need to prevent another design error
like the one that lead to the costly Intel Pentium FDIV bug.4 In the last decade
the approach was extended to the verification of software, where initially only
safety properties could be analysed. Such studies aim at verifying that a given
program is safe with respect to a given specification, that is, nothing bad should
happen in the program. Recently also liveness properties became of interest,
that is, the specification represents a positive property and the program is
checked against this positive specification.
Terminator makes use of model-checking to verify liveness properties of a given

(concurrent) C-program P. As termination is a liveness property, termination
of P can be established in the same way. The central idea is the automatic
generation of disjunctive well-founded transition invariants. A binary relation
R is called a transition invariant if the transitive closure of the transition re-
lation →P (with respect to P) is contained in R. A relation R that is covered
by finitely many well-founded relations U1, . . . , Un is called disjunctive well-
founded. The existence of a disjunctive well-founded transitive invariant for P
is equivalent to termination of P. Transition invariants can be found automat-
ically by exploiting abstract interpretations and other techniques in program
analysis (compare [13]).

3 http://research.microsoft.com/en-us/um/cambridge/projects/terminator/
4 http://en.wikipedia.org/wiki/Pentium_FDIV_bug

67

http://research.microsoft.com/en-us/um/cambridge/projects/terminator/
http://en.wikipedia.org/wiki/Pentium_FDIV_bug

10.

Towards Automated Reasoning for
First-Order Logic

In this chapter we revisit early approaches in automated reasoning (see Sec-
tion 10.1) and introduce a modern theory of automated reasoning. While it is
in principle possible to automate proof search in a natural deduction calculus,
as introduced in Section 4.3, such provers are rarely used in practise. To sim-
plify the presentation we will first disregard languages containing the equality
sign. (We know from earlier results that theoretically this is no restriction in
power.)

We will introduce the resolution calculus in Section 10.2, a system of in-
ference rules well-suited for automation. Furthermore, we will briefly study
tableaux calculi (see Section 10.3) and continue this chapter with results on
structural skolemisation (Section 10.4) as well as redundancy criteria and dele-
tion (Section 10.5). The here introduced automated techniques are easily pow-
erful enough to show the validity of the semantic entailment (1.1) mentioned in
Chapter 9.

10.1. Early Approaches in Automated Reasoning

As detailed in Chapter 6 Herbrand’s Theorem yields a reduction of validity of
a first-order existential formula ∃xF (x) to the validity of a finite disjunction
F (t1) ∨ · · · ∨ F (tn) of instances of ∃xF (x), where the ti are arbitrary (ground)
terms over the base language. In the context of automated reasoning, one
typically phrases this result in terms of (un)satisfiability as in Theorem 6.3. In
particular a universal formula ∀xF (x) is unsatisfiable, if there exists a finite
set of ground instances {F (t1), . . . , F (tn)} such that this set is unsatisfiable,
cf. Corollary 6.2.

Based on this observation, Paul Gilmore wrote the first automated theorem
prover for first-order logic [25]. The basic idea is quite simple. Consider an
arbitrary first-order sentence F (over language L) and transforms its negation
into Skolem normal form, so that ¬F is equivalent for satisfiability to a formula
F ′ of the form

∀x1 · · · ∀xnG(x1, . . . , xn) ,

69

10. Towards Automated Reasoning for First-Order Logic

contr := f a l s e ;
n := 0 ;
whi l e (¬ contr) do {
D′ := DNF(C′n) ;
contr := a l l c o n s t i t u e n t s o f D′

conta in complementary l i t e r a l s ;
n := n + 1 ;

}

Figure 10.1.: Gilmore’s Prover in Pseudo-Code

where G is in CNF. Then one considers all possible Herbrand interpretations of
L and F is valid if there exists a finite unsatisfiable subset S of ground instances
of F ′.

The question is of course how to find a suitable set S. In Chapter 6 this
was achieved by the method of semantic trees. Here we describe more closely
what constitutes Gilmore’s prover. For that we informally conceive the above
subformula G(x1, . . . , xn) as a set of clauses C and make use of the following def-
inition.1 The Herbrand universe for a language L can be constructed iteratively
as follows:

H0 :=

{
{c | c is a constant in L} ∃ constants in L
{c} otherwise

Hn+1 := {f(t1, . . . , tk) | fk ∈ L, t1, . . . , tk ∈ Hn}

Finally H :=
⋃
n>0Hn denotes the Herbrand universe for L. This stratification

of the Herbrand universe for L allows the definition of suitable ground instances
of the clause set C: define C′n as the ground instances of C using only terms from
Hn. The resulting theorem prover is given in Figure 10.1, where “DNF(C′n)”
denotes a method to transform the clauses in the clause set C′n into disjunctive
normal form. The idea being that (un)satisfiablity of a DNF can be checked in
O(n log n) time, where n is the length of the formula.

It is clear that Gilmore’s prover is sound and complete for first-order logic.
However, the following disadvantes are striking:

– generation of all C′n

– transformation to DNF

While the former point is intrinsic to any direct application of Herbrand’s the-
orem, the second point is an unnecessary bottleneck. Clearly for any CNF,
transformation into DNF almost always takes exponential time. Thus, it should
not come as a surprise that Gilmore’s prover did not yield actual proofs of even
simple (predicate logic) formulas.

1 We refer to clauses here, as it simplifies the presentation of Gilmore’s prover. Clause logic
will be formally introduced in the next section.

70

10.1. Early Approaches in Automated Reasoning

To overcome the mentioned bottleneck, Davis and Putnam developed an
original method for satisfiability checking of ground clauses [16, 17]. We start
with a simple definition.

Definition 10.1. A clause C is called reduced, if every literal occurs at most
once in C. Furthermore, a clause set C is called reduced for tautologies, if every
clause in C is reduced and does not contain complementary literals.

The rules of the Davis, Putnam, Logemann, and Loveland (DPLL for short)
method are given as follows.2

Definition 10.2. Let C′ denote a reduced ground set of clauses.

(i) Tautology rule: delete all clauses containing complementary literals. (For
the subsequent rules it is assumed that C′ doesn’t contain tautologies.)

(ii) One-literal rule: let C ∈ C′ and suppose C consists of just one literal L.
Then remove all clauses D ∈ C′ such that L occurs in D. Furthermore
remove ¬L from all remaining clauses in C′.

(iii) Pure literal rule: let D′ ⊆ C′ such that there exists a literal L that appears
in all clauses in D′ but ¬L doesn’t appear in C′. Then replace C′ by C′\D.

(iv) Splitting rule: suppose the clause set C can be written as follows:

C′ = {A1, . . . , An, B1, . . . , Bm} ∪ D ,

where there exists a literal L, such that neither L nor ¬L occurs in D.
Furthermore L occurs in any Ai (but in no Bj) and ¬L occurs in any Bj
(but in no Ai). The rule consists in splitting C′ into C′1 := {A′1, . . . , A′n}∪D
and C′2 := {B′1, . . . , B′m} ∪D, where A′i is the result of deleting L from Ai
and B′j is the result of deleting ¬L from Bj .

The proof of the next theorem is easy and hence omitted.

Theorem 10.1. The rules of the DPLL-method are correct. In particular this
means that if D is a set of ground clauses and either D′ or D1 and D2 are
obtained by the above rules, then D is satisfiable if D′ (D1 or D2) is satisfiable.

It is not difficult to see that the above rules constitutes an abstraction of
the semantic tree method. In particular the splitting rule is reminiscent of
the branching in a semantic tree. Furthermore, the efficiency of the method
stems from the fact that it is reductive: any rule shrinks the newly considered
clause set(s). To picture this reduction, one defines DPLL-trees T inductively
as follows. Let C′ be a set of reduced ground clauses.

– The tree T which consists only of the root, labelled by C′, is a DPLL-tree.

– Let N be a node in T , labelled by D. Then N is either a

2 A word of warning: we already use the later developed notion for clause logic, in particular
we write L and ¬L for complementary pairs of literals.

71

10. Towards Automated Reasoning for First-Order Logic

(i) leaf node,

(ii) N has one successor N ′, labelled by D′, where D′ is obtained as the
application of either a tautology, one-literal, or pure literal rule to
D, or

(iii) N has two successors N1, N2 labelled by the clause sets obtained by
an application of the split rule to D.

A DPLL-tree for C′ is called a DPLL-decision tree or simply a decision tree for
C′ if either all leafs are labelled by the empty clause �, or there exists a leaf
labelled by the empty clause set ∅. Let T be a decision tree for C′. We say
T proves the satisfiability of C′ if there exists a leaf labelled by ∅. Otherwise,
if all leaves are labelled with �, T proves the unsatisfiability of C′. The next
theorem states correctness of the DPLL-method. Again the proof is easy, and
thus omitted.

Theorem 10.2 (Correctness). Let C′ be a reduced set of ground clauses and
let T be a decision tree proving satisfiability or unsatisfiability for C′. Then C′
is satisfiable or unsatisfiable, respectively.

In order to obtain completeness of the method, we prove the following stronger
assertion. Note that completeness essentially states that any clause set C′ ad-
mits a decision tree. The below theorem also shows that any strategy in apply-
ing the above rules yields a decision tree.

Theorem 10.3 (Strong Completeness). Let C′ be as above and let T be a
DPLL-tree for C′. Then T can be extended to a decision tree for C′.

Proof. We proceed by induction on the number ` of atoms in C′. For ` = 0
the assertion is easy as C′ can then either be empty or just contains the empty
clause. In both cases T is already a decision tree. Hence we can assume ` > 0.
We distinguish the following cases:

(i) T consists only of the root, labelled by C′. Then C′ contains at least one
literal and we can either employ a one-literal or pure literal rule, or a
splitting rule. In either case we can extend T such that the successors
nodes are labelled with smaller clause sets. Thus induction hypothesis
applies to construct a decision tree that extends T .

(ii) T contains more than one node. Then let D1, . . . ,Dn denote all leaf nodes
of T . Arguing exactly as in the first case we find an extension of T that
forms a decision tree for C′.

Note that we can apply the tautology rule as a prepprocessing steps as tau-
tologies cannot be introduced by the other rules. Hence the DPLL-method
gives rise to the following decision procedure for sets of ground clauses C′:

DPLL(a) Remove multiple occurrences of literals in C′ to obtain a reduced
clause set D1.

72

10.2. Resolution for First-Order Logic

i f C does not conta in func t i on symbols
then apply DPLL(a)−DPLL(c) on C′0
e l s e {

n := 0 ;
contr := f a l s e ;
whi l e (¬ contr) do {

apply DPLL(a)−DPLL(c) on C′n ;
i f the d e c i s i o n t r e e proves u n s a t i s f i a b i l i t y ,
then contr := true
e l s e contr := f a l s e ;
n := n + 1 ;

}
}

Figure 10.2.: Davis-Putnam-Logemann-Loveland Method in Pseudo-Code

DPLL(b) Apply the tautology rule exhaustively to D1 to obtain a reduced
clause set D2 that is reduced for tautologies.

DPLL(c) Construct a decision tree for D2.

It is easy to see that the construction of a decision tree in the last step is in
the worst-case exponential in the number of atoms in D2. If we pluck this
satisfiability check into Gilmore’s prover, we obtain the refined theorem prover
for first-order logic presented in Figure 10.2. The prover excepts a clause set C
as input.

The DPLL-method is not competitive with more advanced methods in au-
tomated reasoning for first-order logic. However the method still forms a very
efficient method for SAT-solving.

10.2. Resolution for First-Order Logic

In Chapter 2 we introduced resolution for propositional logic. In this section we
extend this calculus to first-order logic. For that we restrict the syntax of first-
order logic. This restricted language is sometimes called (first-order) clause
logic. As in Section 3.1 our language consists of constants, variables, logical
symbols, and other auxiliary symbols. In particular we have individual constants
k0, k1, . . . , kj , . . . , function constants (with i arguments) f i0, f

i
1, . . . , f

i
j , . . . and

predicate constants (with i arguments) Ri0, R
i
1, . . . , R

i
j , . . . In addition to these

constants we make use of variables: x0, x1, . . . , xj , . . . We collect the (infinite)
set of variables as V.

Convention. The meta-symbols c, f , g, h, . . . , are used to denote constants
and function symbols, while the meta-symbols P , Q, R, . . . , vary through
predicate symbols. Variables are denoted by a, b, . . . or we use x, y, z, and so
forth.

The most noticeable restriction to our earlier used languages is the restriction
of the logical symbols to ¬ and ∨. Note that in such a restricted language the

73

10. Towards Automated Reasoning for First-Order Logic

notion of a term or atomic formula is still meaningful. However, we can not
really speak of first-order formula of this language, simply because elementary
logical symbols, in particular quantifiers, are missing. We will see shortly how
to overcome this restriction.

Definition 10.3. If t1, . . . , tn denote terms, and P denotes an n-placed pred-
icate constant, then P (t1, . . . , tn) is called an atomic formula. A literal is an
atomic formula or its negation. A clause is a disjunction of literals.

Let C be a clause. We write Var(C) for the set of variables (from V) that occur
in C. Let L denote a standard first-order language (as defined in Section 3.1)
and let L′ be the restriction of L according to the above settings. Let F be a
sentence (of L). Due to Theorem 6.2 there exists a sentence G in SNF such that
F ≈ G. By definition G is an universal formula, whose matrix is in conjunctive
normal from and for wlog., we can suppose G has the following shape:

∀x1 · · · ∀xn (H1(x1, . . . , xn) ∧ · · · ∧Hm(x1, . . . , xn)) ,

where each Hi (i = 1, . . . ,m) is a disjunction of literals. Thus each Hi is actually
a clause and we can represent G as a set C of clauses. This set is called clause
form of G (and of F).

Theorem 10.4. For any first-order sentence F (of L) there exists a computable
set of clauses C = {C1, . . . , Cm} (of L′) such that F ≈ ∀x1 · · · ∀xn(C1∧· · ·∧Cm).

Proof. The theorem follows from the considerations above.

In order to make the clause form C unique for a given formula F , we fix
the specific transformation steps applied to obtain C. Thus we can speak of
the clause form C of F . The next definition fixes the representation of clauses
we will use in the sequel, compare also the corresponding definition given in
Section 2.3.

Definition 10.4. We define a clause inductively.

(i) � is a clause (the empty clause),

(ii) literals are clauses, and

(iii) if C, D are clauses, then C ∨D is a clause.

When speaking about clauses, we use the equivalences A ≡ ¬¬A, where A
denotes an atomic formula. Moreover disjunction ∨ is associative and com-
mutative. In addition we define the following identities: � ∨ � = � and
C ∨� = � ∨ C = C, where C is an arbitrary clause.

Let T denote the set of terms in our language. Terms are denoted by
s, t, u, v, w, . . . A substitution σ is a mapping V → T , such that σ(x) = x,
for almost all x. Notation: {x1 7→ t1, . . . , xn 7→ tn}, the empty substitution
is denoted by ε. We call the set dom(σ) = {x | σ(x) 6= x} the domain of σ.
The set rg(σ) = {σ(x) | x ∈ dom(σ)} is called the range of σ. Var(rg(σ)) is
abbreviated by vrg(σ). A substitution σ is called ground if vrg(σ) = ∅.

74

10.2. Resolution for First-Order Logic

For a given expression E the application of a substitution σ to E is denoted
as Eσ; Eσ is called an instance of E. The composition of substitutions σ =
{x1 7→ t1, . . . , xn 7→ tn} , τ = {y1 7→ r1, . . . , y1 7→ rm} (denoted as στ) is
defined as follows:

{x1 7→ t1τ, . . . , xn 7→ tnτ} ∪ {yi → ri | for all j = 1, . . . , n, yi 6= xj} .

A substitution σ is more general than a substitution τ , if there exists a substi-
tution ρ such that σρ = τ .

Definition 10.5. A unifier σ of expressions E and F is a substitution such
that Eσ = Fσ. A unifier σ is most general if σ is more general than any other
unifier (of E, F). Unifiers and most general unifiers naturally generalise to sets
of expressions.

The sequence E = u1
?
= v1, . . . , un

?
= vn is called an equality problem.

Here ui, vi denotes either terms or atomic formulas. The unifier of an equal-

ity problem E = x1
?
= v1, . . . , xn

?
= vn is defined as the unifier of the set

{u1 = v1, . . . , un = vn}. The rules in Figure 10.3 define a simple, rule based
unification algorithm that acts on equality problems.

u
?
= u,E ⇒ E

f(s1, . . . , sn)
?
= f(t1, . . . , tn), E ⇒ s1

?
= t1, . . . , sn

?
= tn, E

f(s1, . . . , sn)
?
= g(t1, . . . , tm), E ⇒⊥ if f 6= g

x
?
= v,E ⇒ x

?
= v,E{x 7→ v} if x ∈ Var(E),

x 6∈ Var(v)

x
?
= v,E ⇒⊥ if x 6= v, x ∈ Var(v)

v
?
= x,E ⇒ x

?
= v,E if v 6∈ V

For brevity the symbol f and g may either denote a function or a predicate
constant.

Figure 10.3.: Rule Based Standard Unification

If E = x1
?
= v1, . . . , xn

?
= vn, with xi pairwise distinct and xi 6∈ Var(vj),

for all i, j, then E is an equality problem in solved form. An equality problem

E = x1
?
= v1, . . . , xn

?
= vn in solved form induces the substitution σE := {x1 7→

v1, . . . , xn 7→ vn}.

Theorem 10.5. An equality problem E is unifiable iff the unification algorithm
of Figure 10.3 stops with a solved form. Moreover if E ⇒∗ E′ such that E′ is
a solved form, then σE′ is a most general unifier (mgu for short) of E.

Proof. It suffices to verify the following three properties:

75

10. Towards Automated Reasoning for First-Order Logic

(i) If E ⇒ E′, then σ is a unifier of E iff σ is a unifier of E′.

(ii) If E ⇒∗⊥, then E is not unifiable.

(iii) If E ⇒∗ E′ such that E′ is a solved form, then σE′ is a mgu of E.

The first item follows by case distinction on each rule. The remaining items are

consequences of the first, together with the fact that if E = x1
?
= v1, . . . , xn

?
= vn

is a solved form, then the induced substitution σE = {x1 7→ v1, . . . , xn 7→ vn}
is a mgu of E.

It is not difficult to see that the algorithm terminates, but may produce
exponentially large terms. Now, we are ready to state the two inference rules
of the resolution calculus in Figure 10.4. In the application of these inferences,
we can always assume that the premises are variable disjoint. Otherwise, we
make them variable disjoint by renaming variables consistently.

C ∨A D ∨ ¬B
(C ∨D)σ

C ∨A ∨B
(C ∨A)σ

Here σ is a mgu of the atomic formulas A and B. The first inference is called
resolution, while the second one is called factoring.

Figure 10.4.: Resolution Calculus

Remark. Observe that the factoring rule is only defined for atoms A and B,
that is, factoring is restricted to positive literals. In this sense factoring defined
as in Figure 10.4 is more restrictive than the definition in Chapter 2.

The next definition lifts Definition 2.7 to first-order logic, or more precisely
to first-order clause logic.

Definition 10.6. Let C be a set of clauses. We define the resolution operator
Res(C) as follows:

Res(C) =
{
D | D is conclusion of an inference in Figure 10.4 with premises

in C

}
.

We define Res0(C) := C and Resn+1(C) := Resn(C) ∪ Res(Resn(C)). Finally, we
set: Res∗(C) :=

⋃
n>0 Res

n(C). We say the empty clause is derivable from C if
� ∈ Res∗(C).

Recall that if Res(C) ⊆ C, then the clause set C is called saturated. Obviously,
we have that Res∗(C) is saturated. If for a clause D, D ∈ Res∗(C), then we say
that D is derived from C by resolution. If for a clause set C, � 6∈ Res∗(C), then
C is called consistent.

Theorem 10.6. Resolution is sound. Moreover let F be a sentence and C its
clause form such that � ∈ Res∗(C). Then F is unsatisfiable.

76

10.2. Resolution for First-Order Logic

Sketch of Proof. We only sketch the proof of the theorem, see [36] for a complete
proof. Similar to the proof of the soundness theorem for natural deduction, we
have to verify that every inference rule of the resolution calculus is sound. For
this one shows that if the assumptions of resolution and factoring are modelled
by an interpretation M, then the consequence (of the rule) holds in M as
well.

In order to proof completeness of resolution, we make use of the following
lemmas.

Lemma 10.1. Let S denote the set of all consistent ground clause sets. A
clause is called ground if it doesn’t contain variables. Then S has the satisfac-
tion properties.

Proof. As the syntax of clause logic is restricted, it suffices to verify the prop-
erties (i)–(iv) of the satisfaction properties. The other properties are trivially
satisfied.

We exemplarily consider property (iv) and suppose there exists ground clauses
E, F such that E ∨ F ∈ C for C ∈ S. We have to show that either C ∪ {E} or
C ∪{F} is consistent. Assume to the contrary that C ∪{E} and C ∪{F} are not
consistent. This implies that � ∈ Res∗(C ∪ {E}) and � ∈ Res∗(C ∪ {F}). We
name the first derivation of � from C ∪ {E} by D1 and the second derivation
of � from C ∪ {F} is denoted as D2.

As C is free of variables, these proofs are free of variables, too. Thus we
take the derivation D1 and replace in this derivation the clause E with the
clause E ∨F . The result will be a valid derivation of clause F in the resolution
calculus: the only condition in each inference that could possibly be affected
is the condition on the unifiers. However, as all clauses are ground, this does
not cause any problems. Thus we obtain a derivation D of the clause F from
the set of clauses C. Now, we consider the derivation D2 of � from C ∪ {F}.
We transform D2 as follows: at any position in the proof, where the clause F
is used, the derivation D is used instead. In sum, we obtain a derivation of the
empty clause from the set of clauses C. This contradicts the assumption.

The next two lemma allow us to lift a ground resolution derivation to the
general level. The lemmas follow essentially by definition of a most general
unifier, cf. Definition 10.5. See [36] for a complete proof.

Lemma 10.2 (Lifting Lemma). A ground substitution is a substitution whose
range contains only terms without variables. Let τ1 and τ2 be a ground substi-
tutions and consider the following ground resolution step:

Cτ1 ∨Aτ1 Dτ2 ∨ ¬Bτ2
Cτ1 ∨Dτ2 ,

where Aτ1 = Bτ2. Then there exists a mgu σ of A and B, such that σ is more
general then τ1 and τ2 and the following resolution step is valid:

C ∨A D ∨ ¬B
(C ∨D)σ .

77

10. Towards Automated Reasoning for First-Order Logic

Lemma 10.3 (Lifting Lemma). Let τ be a ground substitution and consider
the following ground factoring step:

Cτ ∨Aτ ∨Bτ
Cτ ∨Aτ ,

where Aτ = Bτ . Then there exists a mgu σ, such that σ is more general then
τ and the following factoring step is valid:

C ∨A ∨B
(C ∨A)σ

Our completeness proof for resolution follows the pattern of the proof of
the completeness theorem for natural deduction, that is, we want to apply
the model existence theorem in conjunction with Lemma 10.1. However, we
have not yet proven the model existence theorem in the full generality that is
required here. The arguments given upto now restricted base language such
that function constants were not allowed. This is not a major restriction in the
context of first-order logic, but it is a rather strong restriction in the context
of clause logic, as the latter depends on Skolemisation. We recall the crucial
lemma (compare Chapter 4.3) and extend it suitably to the current context.

Lemma 10.4. Let G be a set of formulas (of L) admitting the closure properties.
Suppose that L is free of the equality symbol. Then there exists an interpretation
M such that every element of the domain of M is the denotation of a term (of
L+) and M |= G.

Proof. Based on the proof of Lemma 4.4 it suffices to extend the definition of
the Herbrand model M of G as follows. Let t1, . . . , tn denote elements of M
and f an n-ary function symbol in L+. We define:

fM(t1, . . . , tn) := f(t1, . . . , tn) .

Following the argument given in the proof of Lemma 4.4 it is an easy exercise
to verify that M |= G holds.

Theorem 10.7. Resolution is complete. Let F be a sentence and C its clause
form. Then � ∈ Res∗(C) if F is unsatisfiable.

Proof. If F is unsatisfiable then due to Corollary 6.2 there exists a set of ground
clauses C′ that are instances of the clauses in C such that C′ is unsatisfiable.

Suppose � 6∈ Res∗(C′). Then by definition the clause set Res∗(C′) is satu-
rated and thus consistent. By the model existence theorem in conjunction with
Lemma 10.1 we conclude that C′ is satisfiable. This is a contradiction to our
assumption. Hence � ∈ Res∗(C′).

It remains to lift this derivation of the empty clause from C′ to a derivation
of the empty clause from the original set of clauses C. This is possible due to
the lifting lemmas, Lemmas 10.2 and 10.3.

78

10.3. Tableaux Provers

10.3. Tableaux Provers

In this section we briefly present the method of semantic tableaux, first for the
propositional case, then for the case for first-order logic. The insight we obtain
here is that semantic tableaux (without further restrictions) is very close to
natural deduction.

10.3.1. Propositional Semantic Tableaux

In the literature on tableaux it is customary to categories formulas according
to a uniform notation due to Smullyan [48]. Following this tradition, we group
all formulas of the form A�B and ¬(A�B) into those that act conjunctively,
which are called α-formulas, and those that act disjunctively, called β-formulas.
The components of these formulas are denoted as αi (i = 1, 2) and βj (j = 1, 2)
respectively. See Figure 10.5 for this categorisation.

conjunctive disjunctive

α α1 α2 β β1 β2
A ∧B A B ¬(A ∧B) ¬A ¬B
¬(A ∨B) ¬A ¬B A ∨B A B
¬(A→ B) A ¬B A→ B ¬A B

Figure 10.5.: Uniform Notation for Propositional Connectives

Similar to resolution, semantic tableaux is a refutation based technique, but
in contrast to resolution it does not presuppose conjunctive normal form. In-
stead the expansion rules given in the next definition act on arbitrary formulas.

Definition 10.7 (Propositional Expansion Rules).

¬¬A
A

α
α1

α2

β

β1|β2

Definition 10.8. Let {A1, . . . , An} be a set of propositional formulas

– The following one-branch tree T is a tableau for {A1, . . . , An}:

A1

A2
...
An

– Suppose T is a tableau for {A1, . . . , An} and T ∗ is obtained by applying
a tableau expansion rule to T , then T ∗ is a tableau for {A1, . . . , An}.

Definition 10.9. A branch is closed if the formulas F and ¬F occur on it; if
F is atomic, then the branch is said to be atomically closed. A tableau is closed

79

10. Towards Automated Reasoning for First-Order Logic

if every branch is closed. A tableau proof of F is a closed tableau for {¬F}. In
a strict tableau no formula is expanded twice on the same branch.

Theorem 10.8. Let F be a formula. The tableau procedure is sound and
complete for propositional logic, that is, the following holds:

F is a tautology ⇐⇒ F has a tableau proof .

Despite the non-surprising assertion of the above theorem, cf. Theorems 2.1
and 2.2, we will prove it, as this allows us to present a simple completeness
argument which easily extends to a restricted calculus. In order to show sound-
ness it suffices to prove the following lemma, which we leave as exercise to the
reader.

Lemma 10.5. Any application of a tableau expansion rule to a satisfiable
tableau yields another satisfiable tableau.

In the remainder of the section, we consider completeness. We make the
following refinement to our tableau procedure. First of all, we only consider
atomically closed tableau proofs. Moreover, we demand that the constructed
tableau proofs are strict : a tableau expansion rule can be applied to a formula
on a branch at most once. Our completeness argument will work for this re-
stricted calculus. As exercise we leave the completeness proof for unrestricted
tableua, as straightforward adaption of the model existence theorem, cf. Prob-
lem 10.8.

Lemma 10.6. Suppose F is a valid formula. A strict tableau construction for
{¬F} that is continued as long as possible must terminate in an atomically
closed tableau.

Proof. First observe that any strict tableau construction for {¬F} has to ter-
minate as each expansion rule reduces the logical complexity of the formulas.
To show the lemma, we argue indirectly. Suppose T is a strict tableau for
{¬F} that is not atomically closed. Then there exists a branch in T which
does not contain conflicting literals. Furthermore all possible expansion rules
have been applied on the non-literal formulas on this branch. Hence we can
read-off an assignment for the atoms in ¬F from this branch. This contradicts
the assumption that F is a tautology.

10.3.2. First-Order Semantic Tableaux

We adapt the uniform notation to first-order formulas, see Figure 10.6 for the
categorisation into γ- and δ-formulas.

The next definition enlarges the set of expansion rules; as usally L denotes
the base language, that is, the language of the original formula that we consider.

Definition 10.10 (First-Order Expansion Rules).

γ

γ(t)
t term in L+ δ

δ(k)
k fresh constant in L+

80

10.3. Tableaux Provers

universal existential

γ γ(t) δ δ(t)

∀xA(x) A(t) ∃xA(x) A(t)

¬∃xA(x) ¬A(t) ¬∀xA(x) ¬A(t)

Figure 10.6.: Uniform Notation for First-Order

Here L+ denotes extension of L by new constants as introduced in applications
of δ-rules. Fresh means that the constant k is new to the branch of the tableau.

With respect to propositional tableaux we defined the notion of strict tableau,
cf. Definition 10.9. We can only keep this notion for the propositional part and
the δ-rules of first-order tableau, but must not extend it to γ-rules, if we want
to preserve completeness.

Definition 10.11. We call a tableau branch satisfiable, if the set G of sentences
on it is satisfiable, that is, there exists a model of G. A tableau is satisfiable if
some branch is satisfiable.

Theorem 10.9. If F has a tableau proof, then F is valid.

Sketch of Proof. We only sketch the proof: if any tableau expansion rule is
applied to a satisfiable tableau, the result is satisfiable. See [23] for a complete
proof.

Theorem 10.10. If a sentence F is valid, then F has a tableau proof

Proof. We call a set G tableau consistent if there is no closed tableau for G.
The collection of all tableau consistent sets fulfills the satisfaction properties.
Hence by an application of the Model Existence Theorem 4.3 we conclude that
if F does not have a tableau proof, then ¬F is satisfiable. Contradiction.

The expansion rules presented in Definition 10.10 are not suitable for au-
tomation. The reason is that we have not essentially advanced from Gilmore’s
prover, if we have to enumerate all possible ground terms (over L+) as it is
required in the application of γ-rules as defined above. To overcome this, we
introduce free-variable semantic tableaux. However, note that we still restrict
to tableau proofs of sentences although the below defined expansion rules in-
troduce free variables.

Definition 10.12 (First-Order Expansion Rules).

γ

γ(x)
x a free variable

δ

δ(f(x1, . . . , xn))
f a Skolem function

Here the arguments x1, . . . , xn denote all free variables of the formula δ and the
Skolem function f must be new on the branch.

81

10. Towards Automated Reasoning for First-Order Logic

The above notion of free-variable tableau, and in particular the formulation
of the δ-rule leave a lot of room for improvement. The requirement that f must
be new on the branch forces the introduction of inefficiently many new Skolem
functions, which can be prevented with cleverer notions of the δ-rule. See [4]
and follow-up work for this development.

Definition 10.13 (Atomic Closure Rule). We define the following atomic clo-
sure rule: if T is a tableau and such that some branch in T contains two literals
A and ¬B, where σ is a mgu of A and B. Then Tσ is also a tableau.

Note that the proposed tableau substitution rule is a restriction of the fol-
lowing general substitution rule that could alternatively be chosen: if T is a
tableau for G and σ is free for any sentence in G, then Tσ is also a tableau.

In the sequel of this section we prove soundness and completeness of free-
variable semantic tableaux. Like for propositional tableaux, we do not follow
the proof pattern of using the model existence theorem, but give a strong com-
pleteness proof that also takes care of an arbitrary strategy employed in proof
search.

First, we consider soundness. For this we adapt the notion of satisfiable
tableau to free-variable tableau.

Definition 10.14. A branch in a free-variable tableau is called satisfiable, if
there exists a structure A and for any environment `, we have (A, `) |= G.
Analogous to above, we have that a free-variable tableau is satisfiable, if there
exists a satisfiable branch.

Lemma 10.7. Let T be a satisfiable (free-variable) tableau. If an expansion
rule according to Definition 10.7 or Definition 10.12 is applied to T , then the
result is satisfiable.

Proof. In proof, we only consider the δ-rule, the other cases are left to the
reader as exercise.

Suppose B is a branch in T such that δ occurs on B. We extend B with
δ(f(x1, . . . , xn)) and call the result B′. Let T ′ denote the tableau T where B is
replaced by B′. It suffices to prove that if B is satisfiable, then B′ is satisfiable.
Let G collect all formulas on B and assume (A, `) |= G for a structure A and
any interpretation `. Furthermore let x denote the existentially bound variable
x replaced by the term f(x1, . . . , xn) in the formula δ(f(x1, . . . , xn)).

We momentarily fix the environment `. By the definition of the satisfaction
relation |= we find a witness a ∈ A for x such that (A, `{x 7→ a}) |= δ(x).
Thus we can construct a new structure A′ (interpreting the language extended
by the Skolem function f) such that:

fA
′
(`(x1), . . . , `(xn)) := a .

As ` is abitrary and (A, `) |= δ for any environment `, we can extend this
interpretation of f to a total definition. Finally, it is easy to check that (A, `) |=
δ implies that (A′, `) |= δ(f(x1, . . . , xn)), from which the lemma follows.

82

10.3. Tableaux Provers

Lemma 10.8. If the atomic closure rule is applicable to a tableau T and T is
satisfiable, then the result is also satisfiable.

Proof. In proof, we show a more general statement. If the substitution rule
is applied to a satisfiable tableau T , then its result is satisfiable. From this
claim the lemma follows, as the atomic closure rule is a restricted form of the
substitution rule.

Now with respect to the claim, we first observe observe that for any environ-
ment ` there exists an environment `′ such that for any term t: t(A,`

′) = tσ(A,`).
This observation follows easily by induction on t. Based on this observation the
claim follows from the definition of satisfiability.

Theorem 10.11. If the sentence F has a free-variable tableau proof, then F is
valid.

Proof. Consequence of Lemmata 10.7 and 10.9.

On our way to show completeness of free-variable semantic tableaux, we first
observe that we may consider a sequence of atomic closure rules that leads
to an (atomically closed) tableau as one block. This motivates the following
definition.

Definition 10.15. Let T be a tableau with branches B1, . . . , Bn and for each
i Ai and ¬Bi are literals on Bi. If σ is a mgu of A1 = B1, . . . , An = Bn, then
σ is called most general atomic closure substitution.

Recall that finding a mgu for a list of equations essentially boils down to
finding an mgu for (instances of) each equation. Thus a sequence of atomic
closure rules that leads to an (atomically closed) yields a most general atomic
closure substitution, while vice versa the existence of such a substitution implies
that the tableau T can be closed by n applications of the atomic closure rule.

Lemma 10.9 (Lifting Lemma). Suppose T is a tableau and τ a substitution
free for T such that each branch in Tτ is atomically closed. Then there exists a
most general atomic closure substitution σ and Tσ is closed by n applications
of the atomic closure rule.

Proof. Suppose B1, . . . , Bn are the branches of T and consider the set of equa-
tions A1 = B1, . . . , An = Bn representing the closure literals as above. Then τ
is a unifier for this equations. Hence there exists a mgu σ such that Aiσ = Biσ
for each i. Put differently σ is a most general atomic closure substitution. This
concludes the argument for the first part of the lemma; the second part follows
from the observations above.

In construction a tableau proof we cannot use any strategy, but need to re-
strict to fair strategies. To be precise a strategy S for constructing a tableau
(strategy S for short) has to detail, perhaps using extra information carried
along, which expansion rule is supposed to be applied to a given tableau or
that no further expansion is possible. For the first alternative the strategy
may also update the extra information. We say a sequence of tableaux is se-
quence of tableau following S, if the tableau expansion rules are only applied
in conformance with the strategy S.

83

10. Towards Automated Reasoning for First-Order Logic

Definition 10.16. A strategy S is fair if for any sequence of tableaux T1, T2, . . .
following S we have for each i ∈ N:

(i) Every non-literal formula in Ti is eventually expanded on each branch it
occurs, and

(ii) every γ-formula occurrence in Ti has the γ-rule applied to it arbitrarily
often on each branch it occurs.

Theorem 10.12 (Strong Completeness). Let S be a fair strategy and let F be
a valid sentence. Then F has a tableau proof with the following properties:

(i) All tableau expansion rules are considered first and follow the strategy S,
and

(ii) a block of atomic closure rules closes the tableau.

Proof. In proof, we show the equivalent statement that the claimed tableau
proof will end in one single tableau substitution rule employing a most general
atomic closure substitution σ, cf. Lemma 10.9.

Let T1, T2, . . . denote a sequence of tableaux for ¬F following S, where no
Ti admits a most general atomic closure substitution. We show that ¬F is
satisfiable. Wlog. we assume that the sequence is infinite and picture its limit
as an infinite tree T . Futhermore we can assume an enumeration x1, x2, . . .
of the free variables introduced by γ-rules in T and an enumeration of closed
terms t1, t2, . . . over L+, the extension of L by all Skolem function introduced
by δ-rules in T .

Define a substitution τ as follows: τ(xi) = ti. We claim Tτ is not atomically
closed. Suppose Tτ would be atomically closed, then there exists a finite subtree
T ′ ⊆ T such that T ′τ is atomically closed and T ′ ⊂ Ti for some i. Hence Tiτ is
atomically closed and thus by Lemma 10.9 there exists a most general atomic
closure substitution σ. Contradiction to the assumption that no Ti admits a
most general atomic closure substitution.

Thus Tτ is not atomically closed and there exists a branch B in Tτ such that
for no formula F and ¬F occurs on B. Let G collect the sentences on B. From
the definition of fairness we conclude that G admits the closure properties.
Hence, Lemma 4.4 becomes applicable to conclude that G is satisfiable. As
¬F ∈ G we obtain that ¬F is satisfiable, contrary to our assumption.

10.4. Skolemisation

In this section we will first be concerned with inner and outer Skolemisation,
the presentation is partly based on [46]. Before we can make these notions more
precise some additional definitions are necessary. In particular we review some
results on lower and upper bounds of the Herbrand complexity of a clause set C.

We recall the following definition of the ground instances of a set of universal
sentences G from Chapter 6:

Gr(G) := {F (t1, . . . , tn) | ∀x1 · · · ∀xnF (x1, . . . , xn) ∈ G,where the ti are closed} .

84

10.4. Skolemisation

Definition 10.17. Let C be an unsatisfiable set of clauses and let Gr(C) denote
the ground instances of C. Then the Herbrand complexity of C is defined as
follows:

HC(C) = min{|C′| : C′ is unsatisfiable and C′ ⊆ Gr(C)} .

Theorem 10.13. Let Γ be a resolution refutation of a clause set C and let n
denote the length |Γ| of this refutation (counting the number of clauses in the
refutation). Then HC(C) 6 22n.

Proof. In proof it suffices to construct a suitable ground refutation Γ′ of the
refutation Γ, as HC(C) 6 |Γ′|. We show the following slight generalisation: let Γ
be a derivation of Cn from C with |Γ| 6 n, then there exists a ground derivation
Γ′ of a ground instance C ′n (of clause Cn) from a subset C′ ⊆ Gr(C). The length
of Γ′ is 6 22n.

To show the claim, we argue inductively and only consider the step case. We
fix a derivation Γ of length n+1. Wlog. let Cn+1 = Eσ∨Fσ, which is the result
of a resolution step between E ∨ A and F ∨ ¬B. Here σ is the mgu of A and
B. There exists a ground substitution τ such that Aτ = Bτ and by induction
hypothesis there exist derivations Γ′1, Γ′2 of Eτ∨Aτ and Fτ∨¬Bτ , respectively,
where |Γ′1| 6 22n and |Γ′2| 6 22n. Hence there exists a ground derivation Γ′ of
C ′n+1 = Eτ ∨ Fτ such that

|Γ′| 6 2 · 22n + 1 6 22(n+1) ,

Hence the theorem follows.

In order to precisely formulate the next result, we need the following defini-
tion:

20 := 1 2n+1 = 22n .

We remark that 2n is a non-elementary function.

Theorem 10.14. There exists a (finite) set of clauses Cn such that HC(Cn) >
1
2 · 2n.

The proof of the theorem is essentially based on the following example by
Statman.

Example 10.1. Consider the following clause set Cn parametrised in n:

Cn := ST ∪ ID ∪ {p · q 6= p · ((Tn · q) · q)}
ST := {Sxyz = (xz)(yz),Bxyz = x(yz),Cxyz = (xz)y, Ix = x, px = p(qx)}
T := (SB)((CB)I)

T1 := T

Tk+1 := TkT ,

where ID abbreviates a suitably chosen set of equality axioms for the language
of Cn. Note that the only function symbol is application (denoted as ·), in
particular p and q are individual constants.

85

10. Towards Automated Reasoning for First-Order Logic

Lemma 10.10. Tyx = y(yx) is derivable

Proof.

(SB)((CB)I)yx = (By)((CB)Iy)x =

= (By)((By)I)x = y((ByI)x) = y(y(Ix)) = y(yx) .

We make use of the following abbreviations:

H1(y) = ∀x px = p(yx) Hm+1(y) = ∀x (Hm(x)→ Hm(yx)) .

The proof of the next lemma is not difficult and delegated to the problem
section.

Lemma 10.11. H1(y)→ H1(Ty) and ∀y (H1(y)→ H1(Ty)) are derivable.

Lemma 10.12. Hm+1(y) → Hm+1(Ty) and ∀y (Hm+1(y) → Hm+1(Ty)) are
derivable.

Proof. Following the pattern of the proof of Lemma 10.11 one shows that
∀x (A(x) → A(yx)) → ∀x(A(x) → A(y(yx))) is derivable. Using y(yx) = Tyx
and setting A = Hm this implies

Hm+1(y)→ Hm+1(Ty) ∀y (Hm+1(y)→ Hm+1(Ty)) .

Hence the lemma follows.

We say a proofs in family of proofs (Πn)n>0 are short if the lenght of the
proofs Πn are independent of n.

Corollary 10.1. H2(T), . . . , Hn+1(T) are derivable by short proofs.

Proof. To see the corollary, it suffices to formalise the informal proofs used for
the correctness of Lemmas 10.11 and 10.12.

Lemma 10.13. Statman’s example is unsatisfiable; which can be shown with a
proof linear in n.

Proof.

pq 6= p(Tnq)q

∀x px = p(qx)

Hn(T)

∀x (Hn(x)→ Hn(Tx))

Hn(T)→ Hn(T2)

∀x (Hn−1(x)→ Hn−1(T2x))

H2(Tn)

∀x px = p(qx)→ ∀x px = p(Tnq)x

∀x px = p(Tnq)x

pq = p(Tnq)q

�

86

10.4. Skolemisation

As a corollary to Theorem 10.14 and Lemma 10.13 we conclude the following
result.

Corollary 10.2. There exists clause sets whose refutation in resolution is non-
elementarily longer than its refutation in natural deduction

Proof. Consider Statman’s example Cn in conjunction with Theorem 10.13 The
shortest resolution refutation of Cn is > 2n−1, but the length of the (infor-
mal) refutation given in Lemma 10.13 is O(n). The informal refutation can be
formalised in natural deduction.

It can be shown that a similar speed-up in proof length can be achieved by
structural (outer) Skolemisation in comparion to (standard) prenex Skolemisa-
tion. A formula is called rectified if different quantifiers bind different variables.

Definition 10.18. Let A be a rectified formula and Qx G a subformula of
A. For any subformula Q′y H of G we say Q′y is in the scope of Qx. This is
denoted as Qx <A Q′y.

Based on the notion of scope, we clarify the concepts of inner and outer
Skolemisation. Recall the definition of negation normal form (NNF for short).
A formula is in NNF, if it does not contain implication, and every negation
signs occur directly in front of an atomic formula.

Definition 10.19. Let A be a rectified sentence in NNF and let ∃xB a subfor-
mula of A at position p. Furthemore let {y1, . . . , yk} = {y | ∀y <A ∃x} and let
{z1, . . . , zl} = FVar(∃xB). We say that A[B{x 7→ f(y1, . . . , yk)}] is obtained
by an outer Skolemisation step, while A[B{x 7→ f(z1, . . . , zl)}] is obtained by
an inner Skolemisation step.

We define the structural (outer) Skolem form.

Definition 10.20. Let A be a rectified sentence in NNF. We define the mapping
rsk as follows:

rsk(A) :=

{
A no existential quantifier in A

rsk(A−∃y){y 7→ f(x1, . . . , xn)} ∀x1, . . . ,∀xn <A ∃y

where

(i) ∃y is the first existential quantifier in A,

(ii) A−∃y denotes A after omission of ∃y, and

(iii) the Skolem function symbol f is fresh.

The formula rsk(A) is the structural (outer) Skolem form of A.

We remark that in the literature (in particular in [5]) the above definition
is generalised to arbitrary formulas. For that one distinguishes between strong
and weak quantifiers. Let A be a formula. If ∀x occurs positively (negatively) in
A then the quantifier ∀x is called strong (weak); dual for ∃x. Then one adapts

87

10. Towards Automated Reasoning for First-Order Logic

Definition 10.20 to a Skolemisation of weak quantifers; the resulting definition
is called refutational Skolem form in [5]. To clarify this connection we employ
the notation from [5].

Definition 10.21. Let A be a sentence in NNF and A′ a prenex normal form
of A. Then rsk(A′) is the prenex Skolem form of A. On the other hand the
antiprenex form of A is obtained my minimising the quantifier range by quan-
tifier shifting rules. Then if A′ is the antiprenex form of A, then rsk(A′) is the
antiprenex Skolem form

Theorem 10.15. Let A be a sentence in NNF, then A ∼ rsk(A).

Proof. The proof follows the pattern of the proof for equivalence of satisfiabilty
for “standard” Skolemisation, see Chapter 6.

The following theorem is stated without proof, the interested reader is re-
ferred to [5].

Theorem 10.16. There exists a set of sentences Dn with HC(D′n) = 22
2O(n)

for the structural Skolem form D′n of Dn. On the other hand HC(D′′n) > 1
22n

for the prenex Skolem form D′′n of Dn.

Before we turn to inner Skolemisation we present Andrew’s Skolem form a
mixture of inner and outer Skolemisation.

Definition 10.22. Let A be a rectified in NNF; Andrew’s Skolem form is
defined as follows:

rskA(A) :=

{
A no existential quantifiers

rskA(A−∃y){y 7→ f(~x)} ∀1x1, . . . ,∀nxn <A ∃y ,

where

(i) ∃y B is a subformula of A and ∃y is the first strong quantifer in A and

(ii) all x1, . . . , xn occur free in ∃y B.

The proof of the following theorem can be found in [1, 2].

Theorem 10.17. Let A be a sentence in NNF, then A ∼ rskA(A).

In the sequel of this section we study inner Skolemisation techniques.

Definition 10.23 (Optimised Skolemisation). Let A be a sentence in NNF and
B = ∃x1 · · ·xk(E∧F) a subformula of A with FVar(∃~x(E∧F)) = {y1, . . . , yn}.
Suppose A = C[B] and suppose A → ∀y1, . . . , yn∃x1 · · ·xkE is valid. Then we
define an optimised Skolemisation step as follows:

opt step(A) := ∀~yE{. . . , xi 7→ fi(~y), . . . } ∧ C[F{. . . , xi 7→ fi(~y), . . . }] ,

where f1, . . . , fk are new Skolem function symbols.

88

10.4. Skolemisation

Theorem 10.18. Optimised Skolemisation preserves satisfiability.

Proof. We restrict our attention to the interesting case, were we show satis-
fiability of opt step(A) from the satisfiabilty of A. A full proof can be found
in [42].

Suppose A is satisfiable with some interpretation I and consider an arbitrary
sequence a1, . . . , an of domain elements in I. We define an interpretation I ′ of
the Skolem functions f1, . . . , fk occurring in opt step(A) by case distinction.

Case I{~y 7→ ~a} |= ∃~x(E∧F): we set fI
′

i (a1, . . . , an) according to the witness
for the existentially quantified variables xi in E ∧F . Case I{~y 7→ ~a} 6|= ∃~x(E ∧
F): we set fI

′
i (a1, . . . , an) := bi, where I{~y 7→ ~a, ~x 7→ bi} |= E. (Here we

exploit the extra condition A→ ∀y1, . . . , yn∃x1 · · ·xkE.)
The definition of the interpretation of the fi is clearly well-defined. Further-

more we have:

I ′ |= A ∧ (∃~x(E ∧ F)→ F{. . . , xi 7→ fi(~y), . . . }) ,

from which we conclude (i) I ′ |= C[F{. . . , xi 7→ fi(~y), . . . }] as I ′ |= A. Fur-
thermore, we obtain:

I ′ |= ∀y1, . . . , yn∃x1 · · ·xkE ∧ (∃x1 · · ·xkE → E{. . . , xi 7→ fi(~y), . . . } .

This follows from the assumption A→ ∀y1, . . . , yn∃x1 · · ·xkE and the definition
of fI

′
i . Thus we obtain (ii) I ′ |= ∀~yE{. . . , xi 7→ fi(~y), . . . }.

Due to (i) and (ii) we have I ′ |= opt step(A) and the theorem follows.

We remark that in comparison to (standard) inner Skolemisation is that some
literals from clauses are deleted. We say a clause C subsumes clause D, if ∃ σ
such that the multiset of literals of Cσ is contained in the multiset of literals
of D (denoted Cσ ⊆ D). A clause C is a condensation of D if C is a proper
(multiple) factor of D that subsumes D.

Definition 10.24. Let B = ∃~x(E1 ∧ · · · ∧ E`) be a formula and let {~z1} :=

FVar(E1)\{~x} and for all i = 2, . . . , `: {~zi} = FVar(Ei)\
(⋃

j<iFVar(Ej) ∪ {~x}
)

.

Then we call 〈{~z1}, . . . , {~z`}〉 the (free variable) splitting of B.

Note that in a splitting {~zi} contains the free variables of Ei which have
not yet occurred minus ~x. Suppose that each conjunction Ei contains at least
one of the variables from x. Then we have the following easy observation: Let
〈{~z1}, . . . , {~z`}〉 be a splitting of ∃~x(E1 ∧ · · · ∧ E`). Then 〈{~z1, ~z2}, . . . , {~z`}〉 is
a splitting of ∃~v(E2 ∧ · · · ∧ E`){xi 7→ fi(~z1, ~v)} where ~v are new.

Definition 10.25. Let A be a sentence in NNF and B = ∃x1, . . . , xk(E1 ∧
· · · ∧ E`) a subformula such that A = C[B]. Further let 〈{~z1}, . . . , {~z`}〉 be
a free variable splitting of B. Then a strong Skolemisation step is defined as
str step(A) = C[D] where

D := ∀~w2, . . . , ~w`E1{xi 7→ fi(~z1, ~w2, . . . , ~w`)} ∧ · · ·
· · · ∧ E`{xi 7→ fi(~z1, ~z2, . . . , ~z`)} .

89

10. Towards Automated Reasoning for First-Order Logic

Here every variable sequence ~wi has equal length as the variable sequence ~zi
and for all j = 1, . . . , `: fj is a new Skolem function symbol.

Lemma 10.14. If ∃x1, . . . , xk(E ∧F) is satisfiable, then the following formula
is satisfiable as well:

∀w1, . . . , wkE{xi 7→ fi(~y, ~w)} ∧ ∃v1, . . . , vkF{xi 7→ fi(~y,~v)}

where {y1, . . . , yn} = FVar(E) \ {x1, . . . , xk}.

Proof. We restrict our attention to the case k = 1 as the general case follows
similarly. Suppose ∃x(E ∧F) is satisfiable with interpretation I. Then for any
sequence a1, . . . , an of domain elements, there exists b ∈ I such that:

I{~y 7→ ai, x 7→ b} |= E ∧ F . (10.1)

Let S(~a) = {b1, . . . , bm} denote the set of b’s such that b fullfils (10.1). Then
we have (i) for all b ∈ S(~a): I{~y 7→ ai, x 7→ b} |= E and (ii) for some b ∈ S(~a):
I{~y 7→ ai, x 7→ b} |= F .

Let D denote the domain of I. We define a mapping h : Dn ×D → D such
that h(~a, b) = c iff b ∈ S(~a). Thus by construction, we have (i) for all c ∈ D:
I{~y 7→ ai, x 7→ h(~a, c)} |= E and (ii) for some c ∈ D: I{~y 7→ ai, x 7→ h(~a, c)} |=
F . Finally we extend I to an interpretation I ′ of the new function symbol f
such that f I

′
(~a, c) := h(~a, c). In sum, we obtain:

I ′{~y 7→ ai, w 7→ c} |= E{x 7→ f(~y, w)} for all x ∈ D
I ′{~y 7→ ai, w 7→ c} |= F{x 7→ f(~y, w)} for some x ∈ D .

Thus the lemma follows.

Theorem 10.19. Strong Skolemisation preserves satisfiability.

Proof. For the interesting direction that str step(A) is satisfiable, whenever A
is satisfiable, one proceeds by induction on the context C. We only treat the
case where the context is empty as the inductive step essentially follows from
the induction hypothesis. The full proof can be found in [42].

Let A = B = ∃~x(E1 ∧ · · · ∧ E`). We proceed by side-induction on `. The
base case follows from the satisfaction preservence of inner Skolemisation (see
Problem 10.12). Hence we continue with the induction step.

By assumption A is satifiable in an interpretation I. By Lemma 10.14 there
exists an extension I ′ of I ′ such that

I ′ |= ∀~wE1{xi 7→ hi(~z1, ~w)} ∧ ∃~v(E2 ∧ · · · ∧ E`){xi 7→ hi(~z1, ~v)} ,

where 〈{~z1}, . . . , {~z`}〉 denotes the splitting of B. Induction hypothesis is ap-
plicable on

∃~v(E2 ∧ · · · ∧ E`){xi 7→ hi(~z1, ~v)} ,

as 〈{~z1, ~z2}, . . . , {~z`}〉 is its splitting (recall the above observation). Hence there

90

10.5. Redundancy Criteria and Deletion

exists an extension I ′′ of I ′ that models the following formula:

∀~w3, . . . , ~w`E2{xi 7→ hi(~z1, ~v)}{vj 7→ gj(~z1, ~z2, ~w3, . . . , ~w`)} ∧
∧ ∀~wkE`−1{xi 7→ hi(~z1, ~v)}{vj 7→ gj(~z1, ~z2, . . . , ~w`)} ∧

∧ E`{xi 7→ hi(~z1, ~v)}{vj 7→ gj(~z1, ~z2, . . . , ~z`)} .

Moreover we have that I ′′ |= ∀~wE1{xi 7→ hi(~z1, ~w1)} and thus in particular I ′′
models:

∀~w2, . . . , ~w`E1{xi 7→ hi(~z1, ~v)}{vj 7→ gj(~z1, ~w2, ~w3, . . . , ~w`)} .

Finally we set

fi(~u1, . . . , ~u`) := hi(~u1, g1(~u1, . . . , ~u`), . . . , gm(~u1, . . . , ~u`) ,

where m = |~z1|. Then I ′′′ |= str step(A).

10.5. Redundancy Criteria and Deletion

We recall the definition of the resolution operator Res and its n-fold iteration
Resn from Definition 10.6.

Definition 10.26. Let d(C) := min{n | � ∈ Resn(C)}. The search complexity
of Res with respect to a clause set C is defined as scomp(C) := |Resd(C)(C)|.

Refinements reduce the search space as fewer derivations are possible, however
the minimal proof length may be increased. On the other hand redundancy tests
cannot increase the proof length, but may be costly. The next lemma essentially
follows from the definitions.

Lemma 10.15. Application of subsumption and tautology elimination as pre-
procession steps preserves completeness.

A more interesting question is whether the application of these redundancy
criteria during proof search affect (refutational) completeness. In general we
speak of tautology elimination if newly derived tautological clauses are removed.
Subsumption and resolution can be combined in the following ways: In forward
subsumption newly derived clauses subsumed by existing clauses are deleted.
In backward subsumption existing clauses subsumed by newly derived clauses
become inactive. Finally replacement means that the the set of all clauses
(derived and intital) are frequently reduced under subsumption.

The proof of the next lemma can be found in [36].

Lemma 10.16. Let C and D be clauses and C a tautology. Any resolvent of
C and D is either a tautology or subsumed by D.

Theorem 10.20. Resolution remains complete under forward subsumption and
elimination of tautologies.

Proof. Straighforward application of Lemma 10.16.

91

10. Towards Automated Reasoning for First-Order Logic

Problems

Problem 10.1. Consider the class of first-order formulas of the following form:

∀x1 · · · ∀xn∃y1 · · · ∃ynM ,

where M is a matrix, that is, quantifier-free. Show that the DPLL-method
constitutes a decision procedure for this class.

Problem 10.2. Consider the following family of clause sets Cn:

Cn = {P(a)} ∪
n−1⋃
i=0

{¬P(f(i)(a)) ∨ P(f(i+1)(a))} ∪ {¬P(f(n)(b))} ,

where f0(t) := t, fi+1(t) := f(fi(t)) for any term t. Show (using the DPLL-
method) that all Cn are satisfiable.

Problem 10.3. Show that the satisfiability of a set of ground Horn clauses,
that is at most one positive literal, can be decided by the DPLL rules without
splitting rule.

Problem 10.4. Employ Problem 10.3 to show that satisfiability of ground
Horn clauses is polytime computable.

Problem 10.5. Show Lemma 10.5.

Problem 10.6. Let S be a collection of sets of propositional formulas. Fol-
lowing Fitting, we call S a propositional consistency property if the following
conditions are met for every G ∈ S:

(i) For no propositional atom A, both A and ¬A are in G.

(ii) If ¬¬F ∈ G, then G ∪ {F} ∈ S.

(iii) If α ∈ G, then G ∪ {α1, α2} ∈ S.

(iv) If β ∈ G, then G ∪ {β1} ∈ S or G ∪ {β2} ∈ S.

Show the following propositional model existence property: if S is a proposi-
tional consistency property and G ∈ S, then G is satisfiable.

Problem 10.7. Let a set G of propositional formulas be tableau consistent
if there is no closed tableau for G. Show that the collection of all tableau
consistent formulas is a propositional consistency property.

Problem 10.8. Employ the model existence property from Problem 10.7 to
show that propositional tableau is complete.

Problem 10.9. Employ the model existence property for first-order (Theo-
rem 4.3) to show completeness of first-order semantic tableaux.

Problem 10.10. Complete the proof of Lemma 10.7.

92

10.5. Redundancy Criteria and Deletion

Problem 10.11. Give a proof of Lemma 10.11 and show more generally that
∀x (A(x)→ A(yx))→ ∀x(A(x)→ A(y(yx))) is derivable.

Problem 10.12. Show that structural (outer) Skolemisation preserveres sat-
isfiability, cf. Theorem 10.15.

Problem 10.13. Show that inner Skolemisation preserves satisfiability. Com-
pare to the proof for structural (outer) Skolemisation.

93

11.

Automated Reasoning with Equality

In this chapter we introduce the theory of automated reasoning with equality
as well as more advanced techniques of automated reasoning for predicate logic
without equality. Most importantly we introduce ordered resolution in Sec-
tion 11.1. In Section 11.2 we extend resolution by suitably defined inference
rules to overcome this (practical) restriction. The obtained calculus is called
paramodulation calculus. As preparation step for the superposition calculus, we
recall its origin in completion techniques introduced in rewriting. In Section 11.3
we study ordered completion and proof orders. Finally, in Section 11.4 we study
a refined version of the paramodulation calculus, the superposition calculus,

11.1. Ordered Resolution

If the inference rules in Chapter 10 are implemented, the inefficiency quickly
becomes apparent. One of the reasons for their inefficiency is the large search
space. To overcome this restriction ordered resolution has been invented.

A proper order � is an irreflexive and transitive relation. The converse of �
is written as ≺. A quasi-order is a reflexive and transitive relation and a partial
order is an anti-symmetric quasi-order. A proper order � on a set A is well-
founded (on A) if there exists no infinite descending sequence a1 � a2 � · · · of
elements of A. A well-founded proper order is called a well-founded order. A
proper order is called linear (or total) on A if for all a, b ∈ A, a different from b,
a and b are comparable by �. A linear well-founded order is called a well-order.

Definition 11.1. Given an arbitrary well-founded and total order � on ground
atomic formulas, we extend � to a well-founded proper order �L on ground
literals such that the following conditions are fulfilled:

(i) If A � B, then (¬)A �L (¬)B

(ii) ¬A �L A.

Let �L be a total order on ground literals according to Definition 11.1. We
say a (not necessarily ground) literal L is maximal if there exists a ground
substitution σ such that for no other literal M : Mσ �L Lσ. We say L is
strictly maximal if there exists a (ground) substitution σ such that for no other
literal M : Mσ <L Lσ. Here <L denotes the reflexive closure of �L.

95

11. Automated Reasoning with Equality

In Figure 11.1 we give the inference rules for ordered resolution. This variant
of the resolution calculus remains sound and complete, but allows to narrow
the search space considerably.

C ∨A D ∨ ¬B
(C ∨D)σ

C ∨A ∨B
(C ∨A)σ

Here σ is a mgu of A and B. The first inference is called ordered resolution,
while the second one is called ordered factoring.

– For ordered resolution Aσ is strictly maximal with respect to Cσ and
¬Bσ is maximal with respect to Dσ.

– For ordered factoring Aσ is strictly maximal with respect to Cσ.

Figure 11.1.: Ordered Resolution Calculus

Definition 11.2. Let C be a set of clauses. We define the ordered resolution
operator ResOR(C) as follows:

ResOR(C) = {D | D is conclusion of inferencex in Fig. 11.1 with premises in C} .

The nth (unrestricted) iteration ResnOR (Res∗OR) of the operator ResOR is defined
as above.

Theorem 11.1. Ordered resolution is sound and complete. Let F be a sentence
and C its clause form. Then F is unsatisfiable iff � ∈ Res∗OR(C).

Sketch of Proof. Soundness of ordered resolution is a consequence of Theo-
rem 10.6 as ordered resolution restricts resolution.

In order to adapt the completeness proof we first have to extend the under-
lying order �L on literals (see Definition 11.1) to an order on clauses. For that
one usually employs the so called multiset extension of an order (see [51] for
a definition). In this context we only need to know that any well-founded and
total order on literals is extensible to a well-founded and total order on clauses
(denoted as �C).

We can refine Corollary 6.2 in such a way that if F is an unsatisfiable formula
corresponding to C there exists a maximal set of clauses D such that D is
unsatisfiable and each clause in D is ground. Furthermore, any clause in D
is an instance of a clause in C. Here a set of clauses D is called maximal if
there exists no set of clauses D′ ∪ {D}, fulfilling the above requirements, such
that D = D′ ∪ {D1, . . . , Dn} and for all 1 6 i 6 n we have D �C Di, while
there is no clause in D′ that is larger than D. Then completeness of ground
ordered resolution follows if we follow the pattern of the proof of Theorem 10.7
but replace the application of Corollary 6.2 by the refinement described above.
Finally, in order to prove completeness of ordered resolution it remains to adapt
the lifting lemmas, Lemmas 10.2 and 10.3, suitably, which does not provide any
problems.

96

11.2. Paramodulation and Ordered Paramodulation

11.2. Paramodulation and Ordered Paramodulation

We are ready to admit the equality sign = to our base language. In princi-
ple we can eliminate equality from our language and apply the aforementioned
(ordered) resolution calculi to deal with formulas containing =. This is a con-
sequence of Lemmas 6.1 and and 6.2 studied in Chapter 6. However, this would
be hopelessly inefficient. Instead one expands the (ordered) resolution calculus
by a new inference rule, designated to deal with equality. This rules is called
paramodulation. In order to give a precise definition, we need an additional
definition.

Let s, t be terms and let A be a formula. In Chapter 3 we used the notation
A(x) to indicate an occurrence of the variable x in A and we wrote A(t) to
indicate the simultaneous replacement of x by t in A. In the following we need
to make this definition more precise.

Let � be a fresh constant and let L be our basic language. Then terms of
L ∪ {�} such that � occurs exactly once, are are called contexts. The empty
context is denoted as �. For a context C[�] and a term t (of L), we write C[t]
for the replacement of � by t.

In Figure 11.2 we give the inference rules for the paramodulation calculus.
This extension of the resolution calculus to languages that contain = remains
sound and complete. However, due to the presence of equality the search space
explodes.

C ∨A D ∨ ¬B
(C ∨D)σ

C ∨A ∨B
(C ∨A)σ

C ∨ s 6= s′

Cσ′
C ∨ s = t D ∨ L[s′]

(C ∨D ∨ L[t])σ′ .

Here σ is a mgu of A and B and σ′ is a mgu of s and s′.

Figure 11.2.: Paramodulation Calculus

Definition 11.3. Let C be a set of clauses. We define the paramodulation
operator ResP(C) as follows:

ResP(C) = {D | D is conclusion of inferences in Fig. 11.2 with premises in C} .

The nth (unrestricted) iteration ResnP (Res∗P) of the operator ResP is defined as
above.

Before we can prove soundness and completeness of the paramodulation cal-
culus, we need to update the proof of the model existence theorem. More
precisely we have to adapt the proof of Lemma 4.4 to a language containing the
equality symbol = (compare also Section 10.2). Finally, we are in the position
to state the lemma in its full generality.

Lemma 11.1. Let G be a set of formulas (of L) admitting the closure properties.

97

11. Automated Reasoning with Equality

Then there exists an interpretation M such that every element of the domain
of M is the denotation of a term (of L+) and M |= G.

Proof. LetM denote the Herbrand model defined in the proof of Lemma 10.4.
Now, the crucial difference is the presence of the equality sign = in L. Suppose
(s = t) ∈ G, where s and t are syntactically different. Then M 6|= s = t as in
M the terms s and t are interpreted by different symbols.

To overcome this, we define a variant of the term model M, denoted as M′.
For that it suffices to consider the set E of all equations induced by G:

E := {s = t | G |= s = t} .

Note that the assumption that G fulfils the closure properties implies that the
definition of E is well-defined and that E gives rise to an equivalence relation ∼.

Based on the relation ∼ we define the domain of M′ as the set of equivalent
classes for the set of terms of L+. Let [t]∼ denote the equivalence class of t
with respect to the equivalence ∼. We define the structure underlying M′ as
follows:

(i) cM := [c]∼ for any individual constant c,

(ii) fM([t1]∼, . . . , [tn]∼) := [f(t1, . . . , tn)]∼ for any n-ary function constant f
and any tuple of equivalence classes [t1]∼, . . . , [tn]∼ in M′.

Furthermore, for any predicate constant P and for any sequence of equivalence
classes [t1]∼, . . . , [tn]∼ in M′ we set:

PM([t1]∼, . . . , [tn]∼)⇐⇒ P (t1, . . . , tn) ∈ G ,

and interpret equality = as the equivalence ∼. (Note that this amounts to the
interpretation of = as syntactic equality on the domain of M′.)

Finally, we lift this structure to an interpretationM′ by defining the look-up
table as follows:

`(x) := [x]∼ for any variable x .

This completes the definition of the interpretation M′. The fact that M′ is a
model of G follows by induction on formulas as before.

Recall the lifting lemmas for resolution, Lemmas 10.2 and 10.3. The following
example shows that lifting of paramodulation steps is not possible without
further ado.

Example 11.1. Consider the clause set C = {a = b, f(x) = c}. The only
possible (non-ground) paramodulation inference is f(b) = c. On the other hand
the following inference is a correct ground step:

a = b f(f(a)) = c

f(f(b)) = c .

No lifting for this inference is possible. In order to overcome this problem, one
has to add so called functional reflexivity equation f(x) = f(x). Then lifting

98

11.2. Paramodulation and Ordered Paramodulation

becomes possible (using two steps):

a = b f(x) = f(x)

f(a) = f(b) f(x) = c

f(f(b)) = c .

For any n-ary function symbol the equation f(x1, . . . , xn) = f(x1, . . . , xn) is
called a functional reflexivity equation. We employ the following variant of the
lifting lemma, whose proof is delegated to the problem section.

Lemma 11.2. Let τ1 and τ2 be a ground substitution and consider the inference:

Cτ1 ∨ (s = t)τ1 Dτ2 ∨ Lτ2[xτ2]
Cτ1 ∨Dτ2 ∨ Lτ2[f(tτ1)] ,

where xτ2 = f(s′τ3) and sτ1 = s′τ3. Then the following derivation is admissible:

C ∨ s = t f(x) = f(x)

C ∨ f(s) = f(t) D ∨ L[x]

C ∨D ∨ L[f(t)] .

Theorem 11.2. Paramodulation is sound and complete. Let F be a sentence
and C its clause form (containing all functional reflexive equations). Then F is
unsatisfiable iff � ∈ Res∗OR(C).

Sketch of Proof. To show soundness we have to verify that every inference rule
of the resolution calculus is sound. For this one shows that if the assumptions
of resolution and factoring are modelled by a model M, then the consequence
(of the rule) holds in M as well.

In order to show completeness it remains to show that the set of consistent
set of ground clauses fulfils the satisfaction properties. For that we need to take
into account the properties (viii) and (ix) which have not yet been considered.
Due to the presence of paramodulation among the rules of the paramodulation
calculus this is an easy exercise and left to the reader.

Then ground completeness of paramodulation follows as completeness of nat-
ural deduction or resolution. In order to lift this to a proof of completeness of
paramodulation we employ Lemma 11.2.

It is not difficult to see that the paramodulation calculus is still inefficient
due to the presence of the paramodulation rule

C ∨ s = t D ∨ L[s′]

(C ∨D ∨ L[t])σ ,

where σ is a mgu of s and s′ in the calculus. A first step to restrict the search
space is to combine paramodulation with ordered resolution instead of the un-
restricted resolution calculus. The corresponding rules are given in Figure 11.3.

Definition 11.4. Let C be a set of clauses. We define the ordered paramodu-

99

11. Automated Reasoning with Equality

C ∨A D ∨ ¬B
(C ∨D)σ

C ∨A ∨B
(C ∨A)σ

C ∨ s 6= s′

Cσ′
C ∨ s = t D ∨ L[s′]

(C ∨D ∨ L[t])σ′ .

Here σ is a mgu of A and B and σ′ is a mgu of s and s′. The last rule is called
ordered paramodulation.

– For ordered resolution Aσ is strictly maximal with respect to Cσ and
¬Bσ is maximal with respect to Dσ.

– For ordered factoring Aσ is strictly maximal with respect to Cσ.

– For ordered paramodulation the equation (s = t)σ′ and the literal L[s′]σ′

is maximal with respect to Dσ′

Figure 11.3.: Ordered Paramodulation Calculus

lation operator ResOP(C) as follows:

ResOP(C) = {D | D is conclusion of inferences in Fig. 11.3 with premises in C} .

The nth (unrestricted) iteration ResnOP (Res∗OP) of the operator ResOP is defined
as above.

As a consequence of Theorem 2.3 and 11.2 we conclude the following theorem.

Theorem 11.3. Ordered paramodulation is sound and complete. Let F be a
sentence and C its clause form (containing all functional reflexive equations).
Then F is unsatisfiable iff � ∈ Res∗OP(C).

11.3. Ordered Completion and Proof Orders

We assume familiarity with term rewriting, see [3, 51]. We recall the fact that
a convergent (confluent and terminating) term rewrite system (TRS for short)
forms a decision procedure for the underlying equational theory: s ↔∗ t iff
s ↓ t. More precisely the word problem becomes decidable. We define the word
problem as the validity of the consequence relation E |= s = t, where E is an
equational system and s = t an arbitrary equation.

Definition 11.5. Consider the following inference:

s→ t w[u]→ v

(w[t] = v)σ .

Here σ is a mgu of s and u and u not a variable. The equation (w[t] = v)σ is
called critical pair and the term w[u]σ is the overlapping term.

100

11.3. Ordered Completion and Proof Orders

deduction E ;R ` E ∪ {s = t};R
if s↔E∪R w ↔E∪R t, s 6� w, t 6� w

orientation E ∪ {s = t};R ` E ;R∪ {s→ t} if s � t

deletion E ∪ {s = s};R ` E ;R

simplification E ∪ {s = t};R ` E ∪ {u = t};R if s −→R u

composition E ;R∪ {s→ t} ` E ;R∪ {s→ u} if t −→R u

collapse E ;R∪ {s[w]→ t} ` E ∪ {s[u]→ t};R
if w −→R u, either t � u or w 6= s

Figure 11.4.: Ordered (or Unfailing) Completion

Theorem 11.4. A terminating TRS R is confluent iff all critical pairs between
rules in R converge.

Reduction orders that are total on ground terms are called complete. Suppose
� is a reduction order and E a set of equations. Consider the set of reductive
instances of equations in E defined as follows:

E� := {sσ → tσ | s = t ∈ E , sσ � tσ} .

Ordered rewriting is rewriting over the rewrite relation −→E� .

Definition 11.6. Let � be a reduction order. The equations E are called
ground convergent wrt � if E� is ground convergent, that is, the induced rewrite
relation on ground terms is confluent.

The next definition generalises Definition 11.5 to equational unit clauses.

Definition 11.7. Consider the following inference over equational unit clauses:

s = t w[u] = v

(w[t] = v)σ .

Here σ is mgu of s and u; tσ 6� sσ, vσ 6� w[u]σ and u is not a variable. The
equation (w[t] = v)σ is called an ordered critical pair.

The proof of the following theorem can be found in [34].

Theorem 11.5. Let � be a complete reduction order. A set of equations
E is ground convergent wrt � iff for all ordered critical pairs (w[t] = v)σ
(with overlapping term w[u]σ) and for all ground substitutions τ , we have: if
w[u]στ � w[t]στ and w[u]στ � vστ then w[t]στ ↓ vστ .

In Figure 11.4 we give the rules for ordered (or unfailing) completion, cf. [7].
A sequence (E0;R0) ` (E1;R1) ` · · · is called a derivation, where usually E0 is

101

11. Automated Reasoning with Equality

the set of initial equations and R0 = ∅. The limit of a derivation is defined as
(E∞;R∞), where E∞ :=

⋃
i>0

⋂
j>i Ej and R∞ :=

⋃
i>0

⋂
j>iRj .

Definition 11.8. A proof of s = t wrt E ;R, denoted as s ↔E∪R t, is defined
as follows:

s = s0 ρ0 s1 ρ1 s2 · · · sn−1 ρn−1 sn = t n > 0 ,

where

(i) (si ρi si+1) = (w[uσ]↔ w[vσ]) with u = v ∈ E ,

(ii) (si ρi si+1) = (w[uσ]→ w[vσ]) with u→ v ∈ E� ∪R, or

(iii) (si ρi si+1) = (w[uσ]← w[vσ]) with v → u ∈ E� ∪R.

A proof of the following form

s = s0 → s1 → s2 · · · → sm ← · · · sn−1 ← sn = t ,

is called a rewrite proof.

There exists a rewrite proof iff the equations converge wrt R∪ E�. Further-
more, whenever E ;R ` E ′;R′ then the same equations are provable in E ;R as in
E ′;R′. However proofs may become simpler. In the following we define a proof
order that precises our notion of “simpler”. First, we recall the encompassment
order. The term s encompasses t if s = C[tσ] for some context C and some
substitution σ. If s encompasses t, then s is larger than t in the encompassment
order. The encompassment order is a preorder, cf. [3].

Definition 11.9. We define the costs of proof steps as follows:

cost of s[u] ρ s[v] :=


({s[u]}, u, ρ, s[v]) if s[u] � s[v]

({s[v]}, v, ρ, s[u]) if s[v] � s[u]

({s[u], s[v]},⊥,⊥,⊥) otherwise

These costs are compared by the lexicographic product of the following orders:

(i) the multiset extension of �,

(ii) the encompassment order,

(iii) some order with ↔ > → and ↔ > ←, and

(iv) the reduction order �.

Here ⊥ is supposed to be minimal in all orders.

We call a derivation fair if each ordered critical pair u = v ∈ E∞ ∪R∞ is an
element of some Ei.

The proof of the following theorem can be found in [6].

Theorem 11.6. Let (E0;R0), (E1;R1), . . . be a fair ordered completion deriva-
tion with R0 = ∅; then the following is equivalent:

102

11.4. Superposition Calculus

(i) s = t is a consequence of E0,

(ii) s = t has a rewrite proof in E�∞ ∪R∞, and

(iii) ∃ i such that s = t has a rewrite proof in E�i ∪Ri

The word problem becomes a refutation theorem proving problem once we
consider the clause form of the negation of the word problem. Then the cor-
responding clause set contains positive unit equations from E and a ground
disequation obtained by negation and Skolemisation of s = t.

Corollary 11.1. Superposition with equations is sound and complete, that is,
if C is the clause representation of the (negated) word problem E |= s = t, then
the saturation of C wrt to superposition (and equality resolution) contains � iff
E |= s = t.

Proof. Let C′ denote a saturation of C and suppose � ∈ C′. Then E |= s = t
is due to soundness of superposition. Otherwise assume � 6∈ C′. Then the
equation s = t does not have a proof in C′. From Theorem 11.6 we conclude
that E 6|= s = t.

11.4. Superposition Calculus

Unfortunately the ordered paramodulation calculus as defined in Section 11.2 is
still to inefficient to be used. While the literals in the considered clauses are now
ordered, no restriction on the way the equality s = t is used in paramodulation
is present. To overcome this one incorporates ideas from ordered rewriting and
completion to combine ordered resolution and paramodulation to the superpo-
sition calculus. First, we restrict our attention to equational Horn logic.

Definition 11.10. An equational Horn clause C ≡ (u1 = v1, . . . , uk = vk →
s = t) is reductive for s→ t (with respect to a reduction order �) if s is strictly
maximal in C, that is (i) s � t, (ii) for all i: s � ui, and (iii) for all i: s � vi.

If C is reductive for s → t, we can write C as a conditional rewrite rule as
follows: u1 = v1, . . . , uk = vk ⊃ s → t. Here we use the alternative notation ⊃
for logical implication to be able to keep the standard notion for rewrite rules.

Let R be a set of reductive clauses. Then R induces the rewrite relation −→R:
s −→R t if

(i) there exists a reductive clause C ⊃ l→ r,

(ii) there exists a substitution σ such that s = lσ and t = rσ, and

(iii) for all equations u′ = v′ ∈ C: u′σ ↓ v′σ holds.

The next definition generalises critical pairs to conditional rewriting.

Definition 11.11.
C ⊃ s→ t D ⊃ w[u]→ v

(C,D ⊃ w[t]→ v)σ .

Here σ is a mgu of s and u and u is not a variable.

103

11. Automated Reasoning with Equality

The proof of the next lemma and theorem can be found in [31]; for general
reading material on conditional rewrite systems, see [43, Chapter 7].

Lemma 11.3. A reductive conditional rewrite system is confluent iff all critical
pairs converge.

Theorem 11.7. Let � be a reduction order and let C be a set of reductive
equational Horn clauses. Then the word problem for C is decidable if all critical
pairs in C converge.

We leave Horn logic, and consider full clause logic. First, we need to extend
the underlying reduction order � on terms to an order on literals and in partic-
ular on clauses. This is always possible in a way that we obtain a well-founded
clause order �C that is total on ground clauses, if the initial term order � is
well-founded and total on ground terms. For notational convenience we denote
the obtained clause order �C simply as �. The rules for the superposition
calculus are given in Figure 11.5.

C ∨A D ∨ ¬B
(C ∨D)σ

C ∨A ∨B
(C ∨A)σ

C ∨ s = t D ∨ ¬A[s′]

(C ∨D ∨ ¬A[t])σ

C ∨ s = t D ∨A[s′]

(C ∨D ∨A[t])σ

C ∨ s = t D ∨ u[s′] 6= v

(C ∨D ∨ u[t] 6= v)σ

C ∨ s = t D ∨ u[s′] = v

(C ∨D ∨ u[t] = v)σ

C ∨ s 6= t

Cσ
C ∨ u = v ∨ s = t

(C ∨ v 6= t ∨ u = t)σ

The first two rules are called ordered resolution and ordered factoring respec-
tively. They are restricted to atoms A and B that do not contain = and the
same order constraints hold as in Figure 11.1.
The last four rules are called superposition rules, the seventh is denoted as
equality resolution, while the last one is called equality factoring.

– For the superposition rules: σ is a mgu of s and s′, s′ not a variable,
tσ 6< sσ, vσ 6< u[s′]σ, (s = t)σ is strictly maximal with respect to Cσ.
Moreover ¬A[s′] and u[s′] 6= v are maximal, while A[s′] and u[s′] = v are
strictly maximal with respect to Dσ. And (s = t)σ 6< (u[s′] = v)σ.

– For the equality resolution rule: σ is a mgu of s and t, and (s 6= t)σ is
maximal with respect to Cσ.

– Finally for equality factoring: σ is mgu of s and u, (s = t)σ is strictly
maximal in Cσ. And (s = t)σ 6< (u = v)σ.

Figure 11.5.: Superposition Calculus

104

11.4. Superposition Calculus

Definition 11.12. Let C be a set of clauses. We define the superposition
operator ResSP(C) as follows:

ResSP(C) := {D | D is conclusion of inference in Fig. 11.5 with premises in C} .

The nth (unrestricted) iteration ResnSP (Res∗SP) of the operator ResSP is defined
as above.

The following example clarifies the need for the seemingly artificial equality
factoring rule. If we delete this rule from the superposition calculus, we obtain
strict superposition.

Example 11.2. Consider the following set of clauses C:

c 6= d

b = d

a 6= d ∨ a = c

a = b ∨ a = d

It is easy to see that C is unsatisfiable. However this contradiction cannot be
derived by strict superposition if based on the term order �, where a � b �
c � d. The only derivable clause is the following tautology:

a 6= d ∨ b = c ∨ a = d .

In order to show (refutational) completeness of the superposition calculus it is
no longer possible to adapt the standard completeness proof for first-order logic
as we did before. Furthermore it is also not possible to adapt the frequently
used semantic tree method. Instead one has to re-design a suitable variant
of the model existence theorem taking the underlying reduction order � into
account. For this on makes use of so called candidate models. First, we explain
the general set-up of the completeness proof and state the necessary results for
instantiating the framework for the superposition calculus.

Let O be a clause inference operator and let I denote a mapping that assigns
to each ground clause set C an equality Herbrand interpretation, the candidate
model IC . If IC |= C, then the candidate model is indeed a model. Otherwise,
suppose IC 6|= C. Then there exists a minimal counter-example, denoted as C.
We say the inference operator O has the reduction property if for all clause sets
C and all minimal counter-examples C for IC there exists an inference I from
C that is admissible with respect to O of the following form:

C1 . . . Cn C
D ,

where for all i = 1, . . . , n: Ci ∈ C such that IC |= Ci. Furthermore IC 6|= D and
C � D. The next theorem is a consequence of the definitions.

Theorem 11.8. Let O be a sound inference operator that has the reduction
property and let C be a ground clause that is saturated with respect to O, that
is, O(C) ⊆ C. Then the clause set C is unsatisfiable iff � ∈ C.

105

11. Automated Reasoning with Equality

Without loss of generality we assume in the following that our basic language
contains only the equality sign = as predicate constant. Thus term interpreta-
tions I are respresentable as convergent ground rewrite systems (with respect
to the reduction order �). This allows to describe truth in I through rewrit-
ing: a (ground) clause C is true in I iff whenever all negated equations in C
have rewrite proofs then also some of the unnegated equations has a rewrite
proof. Furthermore a reductive (general) clause can be conceived as a condi-
tional rewrite rule, where negation is interpreted as non-derivability. For the
next definition we tactily assume the existence of a clause > larger than all
considered clauses. This allows us to denote every clause set as a set CC for
some clause C.

Definition 11.13. Let C denote a clause set; we set CC := {D ∈ C | C � D}
and define a mapping I that assigns to all clause sets CC a rewrite system IC .

The definition is by induction on �. IC is the set of all ground rewrite rules
s→ t such that there exists a clause D = C ′ ∨ s = t ∈ C with C � D and

(i) D is reductive for s = t,

(ii) D is counter-example for ID,

(iii) s is in normal form with respect to ID, and

(iv) C ′ is counter-example for ID ∪ {s = t}

If such a clause D exists, it is called productive.

Note that IC is convergent (with respect to �) by construction. Furthermore,
we have the following result, cf. [7].

Theorem 11.9. Let C be a ground clause set and let C be a minimal counter-
example to the candidate model IC constructed as above. Then there exists a
clause D ∈ ResSP(C) such that C � D and D is also a counter-example.

As a consequence of this theorem, the superposition calculus has the reduction
property and hence is refutational complete for ground clauses. In order to
obtain completeness also for non-ground inferences, we need a suitable variant
of the lifting lemmas. According to Example 11.1 this is a non-trivial task.
But, we observe that the initial ground inference is actually redundant, for a
suitable definition of redundancy of inferences.

Definition 11.14. A ground clause C is redundant with respect to a ground
clause set C if there exists clauses C1, . . . , Ck in C such that

C1, . . . , Ck |= C ,

where for all i = 1, . . . , k: C � Ci. Let R(C) denote the set of redundant clauses
with respect to C. Furthermore a ground inference

C1 . . . Cn C
D

106

11.4. Superposition Calculus

is redundant (with respect to C) if eitherD � C or there exists clausesD1, . . . , Dk

in CC such that
D1, . . . , Dk, C1, . . . , Cn |= D .

By RO(C) we denote the set of redundant inferences in O with respect to C.

Note that an inference is redundant for any (ground) clause set C for which the
conclusion of the inference is contained in C ∪R(C). Furthermore note that the
redundancy operators R and RO are monotone: if C ⊆ C′, then R(C) ⊆ R(C′)
and RO(C) ⊆ RO(C′). Moreover if C′ ⊆ R(C), then R(C) ⊆ R(C \ C′) and
RO(C) ⊆ RO(C \ C′).

We say a (ground) clause set is saturated upto redundancy if all inferences
from non-redundant premises are redundant. The next result generalises The-
orem 11.8 to the proposed notion of redundancy.

Theorem 11.10. Let O be a sound inference operator that has the reduction
property and let C be a ground clause that is saturated upto redundancy. Then
the clause set C is unsatisfiable iff � ∈ C.

Proof. Suppose � 6∈ C and let C′ := C \R(C). We consider the candidate model
IC′ . Suppose I ′C is a model of C′. Then we are done, as any model of C′ is a
model of C.

Thus suppose otherwise IC′ 6|= C′. Hence there exists a minimal counter-
example C. Since O has the reduction property there is an inference I from
C′ with respect to O such that I has premises C1, . . . , Cn, C and conclusion D,
where D is a smaller counter-example to IC′ and for all i = 1, . . . , n: IC′ |= Ci.

Due to the assumption that C is saturated, the inference I has to be redun-
dant. Thus there are clauses Dj ∈ CC such that D1, . . . , Dk, C1, . . . , Cn |= D
holds. Wlog. all Dj are non-redundant and true in IC′ . The former can be
achieved by an iteration of the construction and the latter follows as C is the
minimal counter-example to IC′ . Then for all j = 1, . . . , k: IC′ |= Dj and
for all i = 1, . . . , n: IC′ |= Ci, from which IC′ |= D is immediate, which is a
contradiction.

In sum IC′ has to be a model of C′ (and thus a model of C).

Lemma 11.4. Non-redundant superposition inferences are liftable.

Proof. Let C be a (non-ground) clause set. Wlog we suppose the existence of
a ground superposition inference I (with respect to Gr(C)) where we replace a
substitution position:

C ′ ∨ s = t D′ ∨ L′[s]
C ′ ∨D′ ∨ L′[t] ,

where D′ ∨ L′[s] is a (ground) instance of some clause D ∨ L[x] ∈ C such that
(D ∨ L[x])τ = D ∨ L′[s] and xτ = u[s] for a substitution τ . We define the
reduced substitution ρ as follows:

ρ(y) :=

{
u[t] if y = x

τ(y) otherwise .

107

11. Automated Reasoning with Equality

Then (D ∨ L[x])ρ ∈ Gr(C) and (D ∨ L[x])ρ, C ′ ∨ s = t |= C ′ ∨ D′ ∨ L′[t]. As
D′ ∨ L′[s] � (D ∨ L[x])ρ by admissibility of the inference, we obtain that I is
redundant (with respect to Gr(C)).

As a consequene of Theorems 11.10 and 11.9 together with Lemma 11.4 we
finally obtain refutational completeness of the superposition calculus.

Theorem 11.11. Superposition is sound and complete. Let F be a sentence
and C its clause form. Then F is unsatisfiable iff � ∈ ResSP

∗(C).

Problems

Problem 11.1. Consider the unification algorithm given in Figure 10.3. Show
that this algorithm produced exponential large terms in the worst case.

Problem 11.2. Consider the (propositional) clauses:

C1 ∨A C2 ∨ ¬A ∨B C3 ∨ ¬B

(i) Give two different resolution derivations of the clause C1 ∨ C2 ∨ C3.

(ii) Can this behaviour be avoided by the use of ordered resolution?

Problem 11.3. Consider the following clause set:

P(x) ∨ Q(x) ¬P(x) ∨ Q(f(y)) P(x) ∨ ¬Q(f(x)) ¬P(x) ∨ ¬Q(x) .

– Decide its satisfiability using ordered resolution.

– Consider the variant where the clause ¬P(x) ∨ Q(f(y)) is replaced by
¬P(x) ∨ Q(f(x)) and again decide satisfiability.

Problem 11.4. Use (the propositional variant) of ordered resolution to show
Theorem 2.3 for propositional logic.

Hint : Let A → C be the considered implication. Then choose the order �
underlying ordered resolution such that those variables that occur in A but not
in C are maximal.

Problem 11.5. Formulate and prove the lifting lemmas for ordered resolution.

Problem 11.6. Show the following claim:

Let S denote the set of all consistent ground clause sets with respect
to paramodulation. Then S has the satisfaction properties.

Problem 11.7. Prove the adapted lifting lemma for paramodulation, Lemma 11.2.

Problem 11.8. Complete the proof of Theorem 11.2.

Problem 11.9. Show that all ordered completion inference rules simplify proofs
with respect to the cost measure for proofs defined in Definition 11.9.

108

11.4. Superposition Calculus

Problem 11.10. Consider the following clause set:

f(f(x)) 6= x ∨ f(x) = g(x) a 6= c ∨ f(c) = c

a = b b = c g(a) 6= a

Show that the clause set is unsatisfiable, using superposition.

Problem 11.11. Show the following properties:

– If C ⊆ C′, then R(C) ⊆ R(C′) and RO(C) ⊆ RO(C′).

– If C′ ⊆ R(C), then R(C) ⊆ R(C \ C′) and RO(C) ⊆ RO(C \ C′)

109

12.

Applications of Automated Reasoning

In this chapter we study two applications of automated reasoning machinery.
The first (see Sections 12.1–12.2) is concerned with security of protocols. The
second presents McCune’s proof of Robbin’s conjecture (see Section 12.4).

12.1. Neuman-Stubblebine Key Exchange Protocol

The Neuman-Stubblebine key exchange protocol (see [40]) aims to establish a
secure key between two agents that already share secure keys with a trusted
third party. In this chapter we give a formalisation of this protocol in first-order
logic and show how it can be analysed by a state-of-the-art theorem prover for
first-order logic.

In Section 12.1 we describe the protocol and indicate how it should work. In
Section 12.2 we mention a possible attack, which makes the protocol erroneous.
Further, we indicate how this attack can be prevented. Finally, in Section 12.3
we show how the protocol can be formalised in first-order logic.

The protocol aims to establish a secure key between two agents Alice and
Bob that already share secure keys with a trusted third party, the server. We
use the following notations:

– A is the identifier of Alice.

– B is the identifier of Bob.

– T is the identifier of the server.

– Kat is the symmetric key shared between Alice and the server.

– Kbt is the symmetric key shared between Bob and the server.

– Kab is the symmetric key shared between Alice and Bob to be established.

– Na denotes a nonce created by Alice. Here a nonce is a fresh number used
to prevent replay attacks.

– Nb denotes a nonce created by Bob.

– Ekey(message) denotes the encryption of message using the key key.

111

12. Applications of Automated Reasoning

– Time defines the time span of the validity of the key Kab.

The protocol proceeds as follows, where we write A −→ B : M when Alice
sends Bob the message M . Further, message composition is denoted by “,”.

(i) A −→ B : A,Na, that is, Alice sends her identifier and a freshly generated
nonce.

(ii) B −→ T : B,EKbt
(A,Na,Time),Nb, that is, Bob encrypts the triple (A,Na,Time)

using his shared key with the server and sends this together with his iden-
tity and a freshly generated nonce.

(iii) T −→ A : EKat(B,Na,Kab,Time),EKbt
(A,Kab,Time),Nb, that is, the server

generates the shared key Kab and sends it encrypted to Alice using the
shared key. Furthermore he encrypts the shared key with the key shared
with Bob, which is also sent to Alice. Finally, the nonce Nb is part of the
message to Alice.

(iv) A −→ B : EKbt
(A,Kab,Time),EKab

(Nb), that is, Alice encrypts Bob’s nonce
with the new key and forwards part of the message to Bob.

After reception of the message from Alice, Bob can first extract the shared key
Kab and then verifies that the key comes from Alice by decrypting EKab

(Nb).

12.2. The Attack

The behaviour of a possible intruder (denoted as I) is governed by the following
assumptions.

(i) The intruder can record all sent messages.

(ii) The intruder can send messages and can forge the sender of a message.

(iii) The intruder can encrypt messages, when he finds out a key.

(iv) The intruder has no access to information private to Alice, Bob, or the
server.

(v) The intruder cannot break any secure key.

Based on these assumptions the intruder can impersonate Alice and the server
and thus convince Bob to share all secrets with him as follows:

(i) I(A) −→ B : A,Na.

(ii) B −→ I(T) : B,EKbt
(A,Na,Time),Nb.

(iii) I(A) −→ B : EKbt
(A,Na,Time),ENa(Nb).

112

12.3. Formalisation in First-Order

Here I(A) means that the intruder impersonates Alice, while I(T) means that
the intruder plays the role of the server.

The intruder only needs to send the message EKbt
(A,Na,Time) back to Bob,

and uses the nonce Na to encrypt the message ENa(Nb). From Bob’s point of
view the nonce Na is actually the new shared key Kab and everything seems to
be in order.

This possible attack was first found by Hwang et al. (see [30]) who already
described a solution to this attack. It suffices to distinguish nonces and keys,
so that they cannot be confused.

12.3. Formalisation in First-Order

Following [55] we formalise the set of messages sent during the execution of the
protocol. The formalisation makes use of unary predicate symbols only. This is
necessary to make sure that the obtained consequence relations can be verified
automatically.

We start with fixing the first-order language L used and then consider each
of the four messages sent during the protocol in turn. We assert that L contains
the following individual constants:

a b t na at bt ,

where a, b, t are to be interpreted as the identifiers A, B, and T, respectively.
The constant na refers to Alics’s nonce and at (bt) represents the key Kat (Kbt).

Further, L contains the following function constants:

nb tb kt key sent pair triple encr quadr ,

where nb, tb, kt are unary and compute Bob’s fresh nonce and the time-stamp
Time, while kt formalises the computation of the new key by the server. The
symbols key, pair, encr are binary, sent, triple are ternary, and quadr is 4-ary.
These latter symbols essentially serve as containers.

Finally, L contains the following predicate constants:

Ak Bk Tk P M Fresh Nonce Storea Storeb .

Here the constants Ak, Bk, Tk will be used in conjunction with the function
symbol key to assert the existence of shared keys. The constant P will only
be true for principals of the protocol and M is used to encode the messages
sent. Furthermore Fresh asserts that its argument is a fresh nonce. The latter
is necessary, as we assume that Bob is only interested in fresh nonces. The
predicate Nonce denotes that its argument is a nonce and the predicates Storea,
Storeb denote information that is in the store of Alice or Bob.

To simplify the readability of the formalisation, we indicate the type of a
bound variable in its name as subscript. For example the bound variable xna
indicates that this variable plays the role of the nonce Na in the protocol. This
is only a notational simplification and doesn’t affect the semantics.

113

12. Applications of Automated Reasoning

12.3.1. A −→ B : A,Na

The first message of Alice is represented by the following set of formulas

1: Ak(key(at, t))

2 : P(a)

3 : M(sent(a, b, pair(a, na))) ∧ Storea(pair(b, na))

12.3.2. B −→ T : B,EKbt
(A,Na,Time),Nb

The second message of Bob to the server is represented by the following set of
formulas. The formalisation asserts that Bob is only sending a message if he
has received a message from Alice.

4 : Bk(key(bt, t))

5 : P(b)

6 : Fresh(na)

7 : ∀xa∀xna (M(sent(xa, b, pair(xa, xna))) ∧ Fresh(xna)→
→ Storeb(pair(xa, xna)) ∧
∧M(sent(b, t, triple(b, nb(xna), encr(triple(xa, xna, tb(xna)), bt)))))

Formula 7 expresses that Bob reacts to any message sent by any principal
that need not be known in advance. Hence the formalisation is slightly more
general than the protocol and allows repeated execution.

12.3.3. T −→ A : EKat(B,Na,Kab,Time),EKbt
(A,Kab,Time),Nb

On seeing the second message, generated by the right-hand side of the impli-
cation in formula 7, the server sends the third message. This is formalised as
follows.

8 : Tk(key(at, a)) ∧ Tk(key(bt, b))

9 : P(t)

10: ∀xb∀xnb∀xa∀xna∀xtime∀xbt∀xat
(M(sent(xb, t, triple(xb, xnb, encr(triple(xa, xna, xtime), xbt)))) ∧ Tk(key(xbt, xb)) ∧
∧ Tk(key(xat, xa)) ∧ Nonce(xna)→ M(sent(t, xa,

triple(encr(quadr(xb, xna, kt(xna), xtime), xat),

encr(triple(xa, kt(xna), xtime), xbt), xnb))))

11: Nonce(na)

12: ∀x¬Nonce(kt(x))

13: ∀x (Nonce(tb(x)) ∧ Nonce(nb(x)))

The last 3 formulas represent that the server will not accept his generated
key as nonce. Accordingly the assumption for sending his message has been
strengthened. This requirement is not part of the protocol, but prevents that

114

12.3. Formalisation in First-Order

the intruder can generate arbitrarily many keys. These could possible be used
to learn the key.

12.3.4. A −→ B : EKbt
(A,Kab,Time),EKab

(Nb)

Alice sees the server message and tries to decrypt the first part of the message
using the secure key at she shares with the server. If this succeeds she checks
her store that this part of the message starts with the same identifier, she sent
her first message to. In this case she sends the fourth message.

14: ∀xnb∀xk∀xm∀xb∀xna∀xtime

((M(sent(t, a, triple(encr(quadr(xb, xna, xk, xtime), at), xm, xnb))) ∧
∧ Storea(pair(xb, xna)))→ M(sent(a, xb, pair(xm, encr(xnb, xk)))) ∧ Ak(key(xk, xb)))

15: ∀xk∀xa∀xna
((M(sent(xa, b, pair(encr(triple(xa, xk, tb(xna)), bt), encr(nb(xna), xk)))) ∧
∧ Storeb(pair(xa, xna)))→ Bk(key(xk, xa)))

We collect these 15 sentences into the set G. Then it is not difficult to verify
by hand that the following consequence is valid:

G |= ∃x(Ak(key(x, a)) ∧ Bk(key(x, b))) .

This shows that the protocol terminates with the desired result that Alice and
Bob share a symmetric key. Furthermore completeness tells us that this fact
can also be formally proven, for example in natural deduction.

Fact 12.1. The formula ∃x(Ak(key(x, a)) ∧ Bk(key(x, b))) is derivable from G
fully automatically by SPASS in less than a second.

In the remainder of the section, we formalise the behaviour of the intruder.
Recall the assumptions made above in Section 12.2. These are formalised as
follows.

We extend our base language L by the predicate constants Ik and Im. Ik will
be used to express that the intruder has learnt a key of another principal and
Im states that a message is recorded or faked by the intruder.

16: ∀xa∀xb∀xm (M(sent(xa, xb, xm))→ Im(xm))

17: ∀u∀v (Im(pair(u, v))→ Im(u) ∧ Im(v))

18: ∀u∀v∀w (Im(triple(u, v, w))→ (Im(u) ∧ Im(v) ∧ Im(w)))

19: ∀u∀ v∀w∀z (Im(quadr(u, v, w, z))→ (Im(u) ∧ Im(v) ∧ Im(w) ∧ Im(z)))

20: ∀u∀v (Im(u) ∧ Im(v)→ Im(pair(u, v)))

21: ∀u∀v∀w ((Im(u) ∧ Im(v) ∧ Im(w))→ Im(triple(u, v, w)))

22: ∀u∀v∀w∀z ((Im(u) ∧ Im(v) ∧ Im(w) ∧ Im(z))→ Im(quadr(u, v, w, z)))

23: ∀x∀y∀u ((P(x) ∧ P(y) ∧ Im(u))→ M(sent(x, y, u)))

24: ∀u∀v ((Im(u) ∧ P(v))→ Ik(key(u, v)))

25: ∀u∀v∀w ((Im(u) ∧ Ik(key(v, w)) ∧ P(w))→ Im(encr(u, v)))

115

12. Applications of Automated Reasoning

Formula 24 represents that anything the intruder receives can be used as a
key, while Formula 25 represents that the intruder can use such a key to encrypt
messages. Based on this formalisation we can automatically detect that there
is a problem with this protocol. Let H denote the extension of the formula set
G by the sentences 16–25.

Fact 12.2. The formula ∃x(Ik(key(x, b)) ∧ Bk(key(x, a))) is derivable from H
fully automatically by SPASS in less than a second.

This fact expresses that the attack reported in [30] can indeed by detected
fully automatically. As mentioned above we can get rid of this attack, if nonces
are no longer to be confused with keys. If this is suitably formalised (see [55]),
then one can formally and automatically verify that the (updated) protocol is
safe.

12.4. Robbin’s Conjecture

In this section we report on a remarkable achievement of the automated de-
duction community: the automatic proof of Robbin’s conjecture. Robbin’s
conjecture states that all Robbin’s algebra (see below for the definition) are
Boolean algebra. This question, originally posed in the early 1930ies was posi-
tively answered in the 1990ies by William McCune [37, 15] using the equational
prover EQP.

We recall the standard definition of Boolean algebras.

Definition 12.1. B = 〈B; +, ·, , 0, 1〉 is a Boolean algebra if

(i) 〈B; +, 0〉 and 〈B; ·, 1〉 are commutative monoids

(ii) ∀ a, b, c ∈ B:

a · (b+ c) = (a · b) + (a · c) a+ (b · c) = (a+ b) · (a+ c)

(iii) ∀ a ∈ B: a+ a = 1 and a · a = 0

a is called complement (or negation) of a

The next definition introduces Huntington’s Basis, an alternative axiomati-
sation of Boolean algebras.

Definition 12.2. Consider the following axioms:

x+ y = y + x commutativity

(x+ y) + z = x+ (y + z) associativity

x+ y + x+ y = x Huntington equation .

Theorem 12.1 (Huntington). The provided axioms form a minimal axiomati-
sation of Boolean algebras, that is all axioms are independent from each other.

The next definition introduces an alternative to the Huntingtion equation.

116

12.4. Robbin’s Conjecture

Definition 12.3. Robbins equation is defined as follows:

x+ y + x+ y = x . (12.1)

Based on (12.1) we define a Robbins algebra as an algebra satisfying (i) com-
mutativity (ii) associativity and (iii) Robbins equation.

In the sequel of the chapter we will answer the following question positively:
Can Huntington’s equation safely replaced by Robbins equation and still yields
an axiomatisation of Boolean algebras? Put differently, we clarify that any
Robbins algebra is Boolean. This proof was not found by a human, but by the
equational prover EQP. Still the proof requires a number of number of auxiliary
lemmas. We will not prove these lemmas, but rather report on the performance
of EQP on these problems, see [37].

Lemma 12.1. A Robbins algebra satisfying ∃x(x+x = x) is a Boolean algebra.

Proof (Sketch). This is automatically provable by EQP in about 5 seconds.

Lemma 12.2. A Robbins algebra satisfying ∃x∃y(x + y = x) is a Boolean
algebra.

Proof (Sketch). Originally the lemma was manually proven by Steve Winker.1

Based on the above lemma EQP can find a proof in about 40 minutes.

Lemma 12.3. A Robbins algebra satisfying ∃x∃y(x+ y = x) is a Boolean
algebra.

Proof (Sketch). Originally the Lemma was manually proven by Steve Winker,
but can also be proven automatically by EQP. However 8 days were necessary
to prove this lemma.

The next lemma is the main lemma in the proof of the theorem.

Lemma 12.4. All Robbin algebras satisfy ∃x∃y(x+ y = x).

Proof. The proof by EQP required a very carefully crafted and incomplete
heuristics, for examples SPASS cannot handle the problem in 12 hours. We
present some of the crucial steps of the proof in Figure 12.1. The function n(·)
represents complement.

The last line in the proof asserts ∃x∃y(x+ y = x). Furthermore the line fifth
line from below proves ∃x∃y(x+ y = x), a lemma also first manually proven by
Winker.

Remark that this lemma is beyond the scope of SPASS.

1 Steve Winker was a student of Larry Wos and the first to think of attacking Robbins problem
by automated deduction.

117

12. Applications of Automated Reasoning

n(n(n(x) + y) + n(x+ y)) = y 7, (R)

n(n(n(x+ y) + n(x) + y) + y) = n(x+ y) 10, [7 → 7]

n(n(n(n(x) + y) + x+ y) + y) = n(n(x) + y) 11, [7 → 7]

n(n(n(n(x) + y) + x+ 2y) + n(n(x) + y)) = y 29, [11 → 7]

n(n(n(n(n(x) + y) + x+ 2y) + n(n(x) + y) + z) +

+ n(y + z)) = z 54, [29 → 7]

n(n(n(n(n(x) + y) + x+ 2y) + n(n(x) + y) +

+ n(y + z) + z) + z) = n(y + z) 217, [54 → 7]

n(n(n(n(n(n(x) + y) + x+ 2y) + n(n(x) + y) +

+ n(y + z) + z) + z + u) + n(n(y + z) + u)) = u 674, [217 → 7]

n(n(n(n(3x) + x) + n(3x)) + n(n(n(3x) + x) + 5x)) =

= n(n(3x) + x) 6736, [10 → 674]

n(n(n(3x) + x) + 5x) = n(3x) 8855, [6736 → 7]

n(n(n(n(3x) + x) + n(3x) + 2x)) = n(n(3x) + x) + 2x 8865, [8855 → 7]

n(n(n(3x) + x) + n(3x)) = x 8866, [8855 → 7]

n(n(n(n(3x) + x) + n(3x) + y) + n(x+ y)) = y 8870, [8866 → 7]

n(n(3x) + x) + 2x = 2x 8871, [8865]

Figure 12.1.: Automatic Proof of Main Lemma

118

12.5. Equational Prover EQP

12.5. Equational Prover EQP

In this section we report on the equational prover EQP; EQP is restricted to
equational logic and performs AC unification and matching. It is based on
basic superposition, that is, paramodulation into substitution parts of terms
are forbidden. The heuristics is incomplete.

AC unifiers are found by finding a basis of a linear Diophantine equation.
The complete set of unifiers is given as linear combinations of (members of)
the basis. In contrast to standard unification, AC unification is not unique.
Instead of a single most general unifier, there are finitely many most general
unifiers. In particular in an automatic search a huge number of AC unifiers
has to be generated and tested. In order to cut down the number of these
unifiers the super-0 strategy is employed in EQP. For this one defines a subset of
potential unifier such that unification conditions except unification of subterms
are fulfilled. Then the super-0 strategy strategy restricts the number of AC
unifiers by ignoring supersets if a potential unifier is found. This strategy is
incomplete and causes the incompleteness of EQP. For AC matching a dedicated
algorithm based on backtracking is used.

In addition various selection strategies are employed. The weight of a pair
of equations be the sum of the size of its members. The age of a pair is the
sum of the ages of its members. A pairing algorithm used to select the next
equation: either the lightest or the oldest pair (not yet selected) is chosen. the
pair selection ratio specifies the ratio lightest

oldest . The default setting is 1
0 , that is,

always the lightest pair is chosen.

In a nutshell the use of EQP can be summarised as follows:

– Successful attack took place over the course of five weeks.

– The following search parameters were varied:

(i) limit on the size of retained equations,

(ii) with or without super-0 heuristics,

(iii) with or without basic restriction,

(iv) pair selection ratio 1
0 or 1

1 .

– Subsequent experiments searched for shorter proofs.

– Yielded direct proof without the use of Winker’s lemmas

Problems

Problem 12.1. Update the formula set H so that the additional requirement
that keys are different from nonces is properly expressed.

Hint : Introduce a new unary predicate constant Key, update formula 7 cor-
respondingly, and add formulas that express that nonces and keys are different.

119

12. Applications of Automated Reasoning

Problem 12.2. Consider the formalisation in Problem 12.1 and let H′ denote
the corresponding set of formulas. Show that the following consequence

H′ |= (∃x y z(Ik(key(x, y)) ∧ Bk(key(x, z))))

does not hold.

Problem 12.3. Download the theorem prover SPASS together with the formal-
isation of the Neuman-Stubblebine protocol from the SPASS homepage: http:
//www.spass-prover.org/. Verify Facts 12.1 and 12.2 using SPASS and show
that you can automatically disprove the consequenceH′ |= (∃x y z(Ik(key(x, y))∧
Bk(key(x, z)))) in Problem 12.2.

120

http://www.spass-prover.org/
http://www.spass-prover.org/

Bibliography

[1] Peter B. Andrews. Resolution in type theory. J. Symb. Logic, 36(3):414–
432, 1971.

[2] Peter B. Andrews. Theorem proving via general matings. J. ACM, 28(2):
193–214, 1981.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[4] M. Baaz and C.G. Fermüller. Non-elementary speedups between different
versions of tableaux. In Proc. 4th TABLEAUX, volume 918 of LNCS, pages
217–230, 1995.

[5] M. Baaz, U. Egly, and A. Leitsch. Normal form transformations. In Hand-
book of Automated Reasoning, pages 273–333. 2001.

[6] L. Bachmair and N. Dershowitz. Completion for rewriting modulo a con-
gruence. Theoretical Computer Science, 67(2&3):173–201, 1989.

[7] L. Bachmair and H. Ganzinger. Resolution theorem proving. In Handbook
of Automated Reasoning, pages 19–99. Elsevier and MIT Press, 2001.

[8] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies
in Logic and the Foundations of Mathematics. Elsevier, second edition,
1985.

[9] H. Barendregt and E. Barendsen. Introduction to lambda calculus. In
Aspenæs Workshop on Implementation of Functional Languages, Göteborg.
Programming Methodology Group, University of Göteborg and Chalmers
University of Technology, 1988. Available at ftp://ftp.cs.kun.nl/pub/
CompMath.Found/lambda.pdf.

[10] M. Ben-Ari. Mathematical Logic for Computer Science. Springer Verlag,
second edition, 2001.

[11] G.S. Boolos, J.P. Burgess, and R.C. Jeffrey. Computability and Logic.
Cambridge University Press, fifth edition, 2007.

[12] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about
datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng., 1(1):
146–166, 1989.

121

ftp://ftp.cs.kun.nl/pub/CompMath.Found/lambda.pdf
ftp://ftp.cs.kun.nl/pub/CompMath.Found/lambda.pdf

Bibliography

[13] B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety.
In Proceedings of 18th International Conference on Computer Aided Veri-
fication, pages 415–418, 2006.

[14] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proceedings of 4th Symposium on Principles of Programming
Languages, pages 238–252, 1977.

[15] B. Dahn. Robbins algebras are Boolean: A revision of McCune’s computer-
generated solution of Robbins problem. Journal of Algebra, pages 526–532,
1998.

[16] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1960.

[17] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, 1962.

[18] M. Dummett. Elements of Intuitionism. Oxford Logic Guides. Oxford
University Press, second edition, 2000.

[19] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Under-
graduate Texts in Mathematics. Springer Verlag, second edition, 1994.

[20] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathe-
matische Logik. Hochschul Taschenbuch. Spektrum Akademischer Verlag,
fünfte edition, 2007.

[21] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM Trans.
Database Syst., 22(3):364–418, 1997.

[22] D. Fensel, J. Angele, and R. Studer. The knowledge acquisition and repre-
sentation language KARL. IEEE Trans. Knowl. Data Eng., 10(4):527–550,
1998.

[23] M. Fitting. First-Order Logic and Automated Theorem Proving. Graduate
Texts in Computer Science. Springer Verlag, second edition, 1996. out of
print.

[24] G. Gentzen. Untersuchungen über das logische Schließen I–II. Mathema-
tische Zeitschrift, 39:176–210, 405–431, 1934.

[25] P. Gilmore. A proof method for quantification theory; its justification and
realization. IBM J. Res. Develop, 4:28–35, 1960.

[26] S. Gulwani and A. Tiwari. Combining abstract interpreters. In Proceedings
of the ACM SIGPLAN 2006 Conference on Programming Language Design
and Implementation, pages 376–386. ACM, 2006.

[27] S. Hedman. A First Course in Logic. Number 1 in Oxford Texts in Logic.
Oxford University Press, second edition, 2006.

122

Bibliography

[28] J.R. Hindley and J.P. Seldin. Lambda-Calculus and Combinators: An In-
troduction. Cambridge University Press, second edition, 2008.

[29] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Rea-
soning about Systems. Cambridge University Press, third edition, 2006.

[30] T. Hwang, N.-Y. Lee, C.-M. Li, M.-Y. Ko, and Y.-H. Chen. Two attacks
on neuman-stubblebine authentication protocols. Inf. Process. Lett., 53(2):
103–107, 1995.

[31] J.-P. Jouannaud and B. Waldmann. Reductive conditional term rewriting
systems. In Proc. 3rd IFIP Working Conference on Formal Description of
Programming Concepts, pages 223–244, 1986.

[32] R. Kaye. Minesweeper is NP-complete. Mathematical Intelligencer, 22(2):
9–15, 2000.

[33] D. Kroening and O. Strichman. Decision Procedures – An Algorithmic
Point of View. Springer Verlag, 2008.

[34] D. Lankford. Canonical inference. Technical Report ATP-32, University
of Austin, Dept. of Mathematics and Computer Science, 1975.

[35] J.G. Larrecq and I. Makie. Proof Theory and Automated Deduction. Num-
ber 6 in Applied Logic Series. Kluwer Academic Publishers, first edition,
2001.

[36] A. Leitsch. The Resolution Calculus. EATCS Texts in Theoretical Com-
puter Science. Springer Verlag, first edition, 1997.

[37] W. McCune. Solution of the robbins problem. J. Autom. Reasoning, 19
(3):263–276, 1997.

[38] G. Nelson and D.C. Oppen. Simplification by cooperating decision proce-
dures. ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[39] A. Nerode and R.A. Shore. Logic for Applications. Graduate Texts in
Computer Science. Springer Verlag, second edition, 1997.

[40] B.C. Neuman and S.G. Stubblebine. A note on the use of timestamps as
nonces. Operating Systems Review, 27(2):10–14, 1993.

[41] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. LNCS. Springer Verlag, first edition, 2002. An
updated version of this tutorial is available online at http://www4.in.

tum.de/~nipkow/LNCS2283/.

[42] A. Nonnengart and C. Weidenbach. Computing small clause normal forms.
In Handbook of Automated Reasoning, pages 335–367. 2001.

[43] E. Ohlebusch. Advanced topics in term rewriting. Springer, 2002.

123

http://www4.in.tum.de/~nipkow/LNCS2283/
http://www4.in.tum.de/~nipkow/LNCS2283/

Bibliography

[44] C.H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.

[45] D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover Pubn
Inc, 1965. 2006 reprint of Prawitz’s Phd Thesis.

[46] J.A. Robinson and A. Voronkov, editors. Handbook of Automated Reason-
ing (in 2 volumes). Elsevier and MIT Press, 2001.

[47] C. Rungg. Minesweeper, 2008. Bachelor Thesis.

[48] R.M. Smullyan. First-Order Logic. Dover Press, New York, 1994.

[49] G. St̊almarck. Normalization theorems for full first order classical natural
deduction. J. Symb. Logic, 56(1):129–149, 1991.

[50] C. Sternagel. Functional Programming. Institute for Computer Science,
2009. Available at http://cl-informatik.uibk.ac.at/teaching/ws09/
fp/material/fpln.pdf.

[51] TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracks in The-
oretical Computer Science. Cambridge University Press, 2003.

[52] W. Thomas. Logic for computer science: The engineering challenge. In
Informatics - 10 Years Back. 10 Years Ahead, volume 2000 of LNCS, pages
257–267, 2001.

[53] T. Vetterlein and K-P. Adlassnig. The medical expert system Cadiag-2,
and the limits of reformulation by means of formal logics. In Proceedings
of eHealth 2009 - Health Informatics meets eHealth, pages 123 – 128, 2009.

[54] J. von Plato. Gentzen’s proof of normalization for natural deduction. Bul-
letin of Symbolic Logic, 14(2):240–257, 2008.

[55] C. Weidenbach. Towards an automatic analysis of security protocols in
first-order logic. In Proceedings of the 16th International Conference on
Automated Deduction, volume 1632 of LNCS, pages 314–328, 1999.

124

http://cl-informatik.uibk.ac.at/teaching/ws09/fp/material/fpln.pdf
http://cl-informatik.uibk.ac.at/teaching/ws09/fp/material/fpln.pdf

	Computational Logic
	Why Logic is Good For You
	Minesweeper
	Program Analysis
	Databases

	Propositional Logic
	Syntax and Semantics of Propositional Logic
	Natural Deduction
	Propositional Resolution
	Many-Valued Propositional Logics

	Syntax and Semantics of First-Order Logic
	Syntax of First-Order Logic
	Semantics of First-Order Logic
	Models

	Soundness and Completeness of First-Order Logic
	Compactness and Löwenheim-Skolem Theorem
	Model Existence Theorem
	Soundness and Completeness
	Normalisation

	Craig's Interpolation Theorem
	Craig's Theorem
	Robinson's Joint Consistency Theorem

	Normal Forms and Herbrand's Theorem
	Prenex Normal Form
	Skolem Normal Form
	Herbrand's Theorem
	Eliminating Function Symbols and Identity

	The Curry-Howard Isomorphism
	A Problem with the Excluded Middle
	Natural Deduction for Intuitionistic Logic
	Typed -Calculus
	The Curry-Howard Isomorphism

	Extensions of First-Order Logic
	Limits of First-Order Logic
	Second-Order Logic
	Complexity Theory via Logic

	Automated Theorem Proving
	Why Automated Resoning is Good For You
	Program Analysis
	Databases
	Issues of Security
	Software Verification

	Towards Automated Reasoning for First-Order Logic
	Early Approaches in Automated Reasoning
	Resolution for First-Order Logic
	Tableaux Provers
	Propositional Semantic Tableaux
	First-Order Semantic Tableaux

	Skolemisation
	Redundancy Criteria and Deletion

	Automated Reasoning with Equality
	Ordered Resolution
	Paramodulation and Ordered Paramodulation
	Ordered Completion and Proof Orders
	Superposition Calculus

	Applications of Automated Reasoning
	Neuman-Stubblebine Key Exchange Protocol
	The Attack
	Formalisation in First-Order
	A -3muB2mu-:6muplus1muA, Na
	B -3muT2mu-:6muplus1muB, EKbt(A,Na,Time), Nb
	T -3muA2mu-:6muplus1muEKat(B,Na,Kab,Time), EKbt(A,Kab,Time),Nb
	A -3muB2mu-:6muplus1muEKbt(A,Kab,Time),EKab(Nb)

	Robbin's Conjecture
	Equational Prover EQP

