Automated Reasoning: Errata

Chapter "Propositional Logic"

- Page 8: The following sentences is no longer true as truth constants are now part of the language: "Note that the symbol \perp, representing contradiction, or falsity, is not part of our language of propositional logic." Similar statments are made later in the context of resolution.
- Page 9, Definition of natural deduction: the rule for truth constant T is missing.
- Page 11, Theorem 2.3: "propositional axioms" \rightarrow "propositional atoms"

Chapter "Syntax and Semantics of First-Order Logic"

- Page 15: The language contains also the truth constants \perp and T.

Chapter "Soundness and Completenss of First-Order Logic"

- Page 24, Corollary 4.2. Change the definition of $c^{\mathcal{J}}$ as follows: "For any individual constant c, we set $c^{\mathcal{J}}$ such that $f\left(c^{\mathcal{J}}\right)=c^{\mathcal{I}}$ "
- Page 32, Equation (4.2): " Π_{2} " \rightarrow " Π_{1} ".
- Page 36, extended the proof by the following paragraph: "In sum, there exists a collection of sets S admitting the satisfaction properties. Furhtermore from the assumption that there exists no interpolation for the sentence $A \rightarrow C$, we conclude that $\{A, \neg C\} \in S$. Thus by model existence $\{A, \neg C\}$ is satisfiable. However then $A \rightarrow C$ cannot be valid. This shows the existence of an interpolant for $A \rightarrow C$."

Chapter "Normal Forms and Herbrand's Theorem"

- Page 46 , the equivalence axioms E should read:

$$
\forall x x \leftrightharpoons x \wedge \forall x \forall y(x \leftrightharpoons y \rightarrow y \leftrightharpoons x) \wedge \forall x \forall y \forall z((x \leftrightharpoons y \wedge y \leftrightharpoons z) \rightarrow x \leftrightharpoons z)
$$

Chapter "Towards Automated Reasoning for First-Order Logic"

- Page 70. The definition of H_{n} should read as follows:

$$
\begin{aligned}
H_{0} & := \begin{cases}\{c \mid c \text { is a constant in } \mathcal{L}\} & \exists \text { constants in } \mathcal{L} \\
\{c\} & \text { otherwise }\end{cases} \\
H_{n+1} & :=\left\{f\left(t_{1}, \ldots, t_{k}\right) \mid f^{k} \in \mathcal{L}, t_{1}, \ldots, t_{k} \in H_{n}\right\}
\end{aligned}
$$

- Page 71. The definition of the splitting rule should be as follows: "The rule consists in splitting \mathcal{C}^{\prime} into $\mathcal{C}_{1}^{\prime}:=\left\{A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right\} \cup \mathcal{D}$ and $\mathcal{C}_{2}^{\prime}:=\left\{B_{1}^{\prime}, \ldots, B_{m}^{\prime}\right\} \cup \mathcal{D}$, where A_{i}^{\prime} is the result of deleting L from A_{i} and B_{j}^{\prime} is the result of deleting $\neg L$ from B_{j}."
- Page 87: adapt definition of NNF: "A formula is in NNF, if it does not contain implication, and every negation signs occur directly in front of an atomic formula."
- Page 88: drop the indices in the condition " $\forall x_{1}, \ldots, \forall x_{n}<A \exists y$ "
- Page 89: Proof of Theorem 10.18: " $E \wedge\left(\exists \vec{x}(E \wedge F) \rightarrow F\left\{\ldots, x_{i} \rightarrow f_{i}(\vec{y}), \ldots\right\}\right.$ " \rightarrow " $A \wedge\left(\exists \vec{x}(E \wedge F) \rightarrow F\left\{\ldots, x_{i} \rightarrow f_{i}(\vec{y}), \ldots\right\}\right)$ "
- Page 89: Add the following condition before the observation on splittings: "Suppose that each conjunction E_{i} contains at least one of the variables from \bar{x}."

Automated Reasoning with Equality

- Page 99: " $r \rightarrow_{\mathcal{R}} u$ " $\rightarrow t \rightarrow_{\mathcal{R}} u ; " s[u] \rightarrow_{\mathcal{R}} t " \rightarrow s[u]=t$
- Page 100:"the literal $L[t] \sigma^{\prime}$ is maximal with respect to $D \sigma^{\prime \prime} \rightarrow$ "the literal $L\left[s^{\prime}\right] \sigma^{\prime}$ is maximal with respect to $D \sigma^{\prime \prime}$,
- Page 102: "For the equality resolution rule: σ is a mgu of s and t, and $(s \neq t) \sigma$ is strictly maximal with respect to $C \sigma$. ." "For the equality resolution rule: σ is a mgu of s and t, and $(s \neq t) \sigma$ is maximal with respect to $C \sigma$."

