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Abstract. In this article we show that the three equations known as commutativity, associativity,
and the Robbins equation are a basis for the variety of Boolean algebras. The problem was posed
by Herbert Robbins in the 1930s. The proof was found automatically by EQP, a theorem-proving
program for equational logic. We present the proof and the search strategies that enabled the
program to find the proof.

Key words: associative-commutative unification, Boolean algebra, EQP, equational logic, paramod-
ulation, Robbins algebra, Robbins problem.

1. Introduction

This article contains the answer to the Robbins question of whether all Robbins
algebras are Boolean. The answer is yes, all Robbins algebras are Boolean. The
proof that answers the question was found by EQP, an automated theorem-proving
program for equational logic.

In 1933, E. V. Huntington presented the following three equations as a basis
for Boolean algebra [6, 5]:

x+ y = y + x, (commutativity)
(x+ y) + z = x+ (y + z), (associativity)
n(n(x) + y) + n(n(x) + n(y)) = x. (Huntington equation)

The unary operation n can be read as complement. (Boolean algebra is ordinar-
ily presented in terms of addition, multiplication, complement, 0, and 1. From
Huntington’s basis, one can show that a 0 and a 1 with the appropriate prop-
erties exist, and if multiplication is defined in the obvious way, it also has the
appropriate properties.)

Shortly thereafter, Herbert Robbins posed the question of whether the Hunt-
ington equation can be replaced with the following equation, which is shorter by
one occurrence of n:

n(n(x+ y) + n(x+ n(y))) = x. (Robbins equation)
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264 WILLIAM McCUNE

The Robbins equation is clearly valid in all Boolean algebras, so the question
can be rephrased as Does the Huntington equation follow from commutativi-
ty, associativity, and the Robbins equation? (No algorithm exists for deciding
whether a finite set of equations is a basis for Boolean algebra [12].)

Robbins and Huntington could not find a proof or counterexample, and the
problem later became a favorite of Alfred Tarski, who gave it to many of his
students and colleagues [2], [3, p. 245]. Algebras satisfying commutativity, asso-
ciativity, and the Robbins equation became known as Robbins algebras, and the
question was sometimes phrased as Are all Robbins algebras Boolean??

As far as we know, automated deduction was first attempted on the problem
in 1979, when Steve Winker, a student visiting Argonne, learned of the problem
from Joel Berman. Larry Wos, one of Winker’s advisors at Argonne, suggested
attacking the problem by looking for properties, which we call sufficient condi-
tions, that force Robbins algebras to be Boolean. For example, it is nearly trivial
to show that Robbins algebras satisfying n(n(x)) = x are Boolean.??

Examples of conditions that were shown to be sufficient by Argonne’s theorem
provers are (1) ∀x(x+ x = x), (2) ∃c∀x(c+ x = x), and (3) ∃c∀x(c+ x = c).

Winker then proved (by hand) several weaker conditions sufficient. The two
such conditions that play a role in the present work are contained in the following
two lemmas.

LEMMA 1 (S. Winker [16, 17]). A Robbins algebra satisfying ∃c∃d(c+ d = c)
is a Boolean algebra.

LEMMA 2 (S. Winker [16, 17]). A Robbins algebra satisfying ∃c∃d(n(c+d) =
n(c)) is a Boolean algebra.

Appendix B contains a computer proof of Lemma 1. Lemma 2 is a strengthen-
ing of Lemma 1 (the hypothesis is weaker), and its proof is much more difficult;
it is included here mainly for historical purposes (see Sections 2 and 5).

2. The Solution

This section contains the key result—the proof of Lemma 3. The theorem that
Robbins algebras and Boolean algebras coincide then follows directly from Lem-
ma 1 (also from Lemma 2).
? In [6], Huntington included x+ x = x in his basis (along with commutativity, associativity,

and the Huntington equation) and incorrectly stated that the four equations are independent; the
correction appeared in [5], where he showed that x + x = x can be derived from the other
three (which are independent). Folklore incorrectly has it that the Robbins problem arose from
Huntington’s mistake, in particular, that the error in Huntington’s paper is that the Robbins equation
appears in place of the Huntington equation [6]. According to Robbins [14], the Robbins problem
is not related to Huntington’s error.
?? Proof. With the Robbins equation, let x be n(x), complement both sides of the equation, and

simplify with n(n(x)) = x to obtain the Huntington equation.
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SOLUTION OF THE ROBBINS PROBLEM 265

LEMMA 3. All Robbins algebras satisfy ∃c∃d(c+ d = c).
Proof. The proof (found automatically by the program EQP) starts with the

Robbins equation and uses paramodulation (Section 3.3) with built-in associative-
commutative (AC) unification (Section 3.1) and simplification with built-in AC
matching. We abbreviate x+x as 2x, x+x+x as 3x, and so on. The justifica-
tion ‘m → n’ indicates paramodulation from m into n, and ‘simp:n’ indicates
simplification with n.

7 n(n(n(x)+y)+n(x+y)) = y [Robbins equation?]
10 n(n(n(x+y)+n(x)+y)+y) = n(x+y) [7 → 7]
11 n(n(n(n(x)+y)+x+y)+y) = n(n(x)+y) [7 → 7]
29 n(n(n(n(x)+y)+x+2y)+n(n(x)+y)) = y [11 → 7]
54 n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+z) +n(y+z)) = z [29 → 7]
217 n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+

n(y+z)+z)+z) = n(y+z) [54 → 7]
674 n(n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+

n(y+z)+z)+z+u)+n(n(y+z)+u)) = u [217 → 7]
6736 n(n(n(n(3x)+x)+n(3x))+n(n(n(3x)+x)+5x)) = n(n(3x)+x) [10 → 674]
8855 n(n(n(3x)+x)+5x) = n(3x) [6736 → 7,simp:54,flip]
8865 n(n(n(n(3x)+x)+n(3x)+2x)+n(3x)) = n(n(3x)+x)+2x [8855 → 7]
8866 n(n(n(3x)+x)+n(3x)) = x [8855 → 7,simp:11]
8870 n(n(n(n(3x)+x)+n(3x)+y)+n(x+y)) = y [8866 → 7]
8871 n(n(3x)+x)+2x = 2x [8865,simp:8870,flip]

Equation 8871 asserts the existence of an object c, namely 2x, and an object d,
namely n(n(3x)+x), such that c+ d = c. 2

(The preceding proof is what the program presents to the user. The AC instanti-
ations and substitutions performed by the program are difficult to reconstruct by
hand, so we include a detailed version of the proof in Appendix A. See Sections
4 and 5 for statistics on the proof search.)

Note that Equation 8855 satisfies the Lemma 2 condition ∃c, namely 3x, and
∃d, namely n(n(3x)+x)+2x, such that n(c + d) = n(c), so we could have
stopped there and used Lemma 2 instead of Lemma 1. See Section 5.

THEOREM. The three equations {commutativity, associativity, Robbins} are a
basis for the variety of Boolean algebras.

Proof. This follows directly from Lemma 1, Lemma 3, and the observation
that the Robbins equation is valid in all Boolean algebras. 2

3. The Theorem Prover EQP

The theorem prover that found the proof of Lemma 3 is EQP, presented in [11].??

EQP is restricted to equational logic and can perform associative-commutative
? EQP automatically rearranges AC subterms and renames variables.
?? EQP is similar in many ways to our more well known theorem prover Otter [10]; the most

important differences are that Otter (1) does not have associative-commutative unification or match-
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266 WILLIAM McCUNE

(AC) unification and matching. The search algorithm is similar to Knuth–Bendix
completion [9], with the option of using the ‘basic’ restriction [1, 13].

We describe here some of EQP’s features that were used in the proof of
Lemma 3. See [11] for details on these and the other features of EQP.

3.1. AC UNIFICATION AND MATCHING

Associative-commutative (AC) unification [15] builds the properties of associa-
tivity and commutativity of a binary operation into the inference process so that
the corresponding equations need not be present as explicit axioms. Two terms
are AC identical if they can be made identical by reassociating and commuting
subterms. An AC unifier of two terms is a substitution (of terms for variables)
that makes the two terms AC identical. AC unification is the process of finding
the set of most general AC unifiers (which is always finite) for a pair of terms.
AC matching is a special case of AC unification in which only one of the two
given terms is instantiated; AC matching is used to simplify derived equations
and to determine whether one equation subsumes another.

EQP uses Stickel’s AC unification algorithm [15]. Let + be an AC operation,
and suppose we are trying to unify s ≡ s1 + · · ·+ sn with t ≡ t1 + · · ·+ tm. The
algorithm constructs a linear homogeneous Diophantine equation that represents
identity of s and t; then it computes the basis of solutions. The basis has the
property that every solution is a linear combination of the members of the basis.
To find all most general AC unifiers, the algorithm considers each subset of the
basis. A subset produces a potential unifier if it passes all unification conditions
except unification of subterms, say si and tj .

A pair of terms can have a great number of most general AC unifiers, and
we have an optional heuristic, the super-0 strategy, that eliminates the more
complicated unifiers.? The effect of the super-0 strategy is that if a subset S
produces a potential unifier, no supersets of S are considered. Since a different
variable is associated with each member of the subset, the corresponding AC
unifier, if it exists, is more complicated for larger subsets.

The super-0 strategy causes incompleteness of the proof procedure because it
eliminates some of the most general unifiers,?? but we have not seen any cases
in practical work where it blocks all proofs. (We have seen cases, however, in
which it blocks short proofs, increasing the time required to find a proof.) The
heuristic was used to find the proof of Lemma 3, and its role seems to have been
important because a similar search without the heuristic failed to find a proof.

ing, (2) applies to full first-order statements, (3) has fewer paramodulation options, and (4) always
uses the given clause algorithm to drive the search.
? The RRL system [8] has a strategy similar to our super-0 strategy.
?? With the benchmark problem to find the AC unifiers of the pair of terms x + x + x and
y+ z+u+ v, EQP ordinarily returns 1,044,569 unifiers; with the super-0 restriction, EQP returns
139 unifiers.
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SOLUTION OF THE ROBBINS PROBLEM 267

Although AC matching is a special case of AC unification, we use a different
algorithm, because (1) AC matching is less complicated (conceptually and prac-
tically), (2) when using AC matching, we need only one matching substitution,
(3) speed of AC matching is much more important than the speed of AC unifica-
tion because for each AC unifier, the AC matching code can be called hundreds
of thousands of times when simplifying the derived equation. For AC matching,
we use a backtracking algorithm of our own design, with ideas from the RRL
system [8]. See [11] for details on EQP’s AC unification and matching.

3.2. PARAMODULATION AND DEMODULATION

The search for a proof uses paramodulation (an inference rule for equality) and
demodulation (simplification of inferred equations) [18]. A simplification order-
ing � on terms is used to orient equations and to guarantee termination of
demodulation. The term ordering is t1 � t2 if length(t1) > length(t2) and no
variable has more occurrences in t2 than in t1.? Every input and derived equation
is oriented, if possible, so that the left-hand side is greater, and each oriented
equation is added to the set of demodulators.

Paramodulation is not permitted from or into right-hand sides of oriented
equations, and paramodulation is not permitted from or into variables. Each
equation inferred by paramodulation is simplified with the set of demodulators.
If the simplified equation passes the retention tests (typically subsumption and a
length limit) and is orientable, it is then used to simplify all other equations in
memory.

EQP provides the option of using the ‘basic’ restriction on paramodulation. In
summary, the ‘basic’ restriction says that terms that arise by instantiation alone
are ineligible as ‘into’ terms. In more detail, consider each equation as a pair,
〈skeleton,substitution〉. Input equations have an empty (or identity) substitution,
and derived equations are constructed as follows. The ‘into’ term must exist
as a nonvariable term in the skeleton of the ‘into’ parent. The skeleton of the
paramodulant is constructed from the skeletons of the parents by simple equality
replacement, and the substitution of the paramodulant is constructed from the
substitutions of the parents and the unifier for the inference.?? Without the ‘basic’
restriction, terms that exist only in the substitution part would be admissible ‘into’
terms as well.

As far as we know, the ‘basic’ restriction was first used in the context of
narrowing [4] for unification problems in equational theories. It has been proved

? The length of a term is the number of function, constant, and variable symbols, and the length
of an AC term is computed from the binary tree representation. Demodulation clearly terminates,
because each rewrite decreases the length of the equation. This ordering is primitive, but adequate
for this work.
?? The ‘basic’ restriction is not implemented by storing equations as 〈skeleton,substitution〉.

Instead, ‘basic’ positions in equations are marked, and the marks are inherited during paramodu-
lation.
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268 WILLIAM McCUNE

complete for several variants variants of paramodulation in the full first-order
predicate calculus with equality [1, 13], and it is related to the idea of prime
superpositions [7].

The ‘basic’ restriction imposes an order on derivations, but, like most other
strategies, its use can interfere with searches as well as help them. It appears to
have been a key strategy in finding the proof of Lemma 3 and similar proofs.

3.3. THE SEARCH ALGORITHM

A pairing algorithm is used to select the next equations for application of
paramodulation. Let the weight of a pair of equations be the sum of the lengths
of its members, and let the age of a pair be the sum of the ages of its members.
(The age of an equation is determined by its position in the sequence of retained
equations.) In each iteration of the search loop, either the lightest pair not yet
selected or the oldest pair not yet selected is chosen. The pair selection ratio, one
of EQP’s important search parameters, is used to specify the ratio, lightest:oldest.
The default value is 1:0, that is, to always select the lightest pair.

4. Use of EQP

EQP is not an interactive program. The user states the conjecture, sets a few
search parameters, and starts the search. As EQP searches, it sends derived equa-
tions and some statistics to the output file. If the search fails or does not look
promising, the user can adjust the parameters and try again. By iterating in this
way, we try to achieve a well-behaved search [11]. We had up to three generic
UNIX workstations available when working on this project, so we ran (indepen-
dent) searches in parallel as well.

The attack that led to the solution of the Robbins problem took place over
the course of five weeks (September 6 through October 11, 1996). The search
parameters were varied in the following ways in various combinations: (1) the
limit on the length of retained equations started at 36 and was raised to 40, 50,
60, 70, and 80; (2) searches were run with and without the super-0 restriction
on AC unifiers; (3) searches were run with and without the ‘basic’ restriction on
paramodulation; and (4) several searches were run with pair selection ratio 1:0,
and several with 1:1.

After about fourteen multiday searches, using a total of about five CPU-weeks
of computer time, a proof of the Lemma 2 sufficient condition, ∃c∃d(n(c+d) =
n(c)), was found. The successful search took almost 8 days and used about 30
megabytes of memory. The successful search parameters were a length limit of
70, the super-0 restriction, the ‘basic’ restriction, and a pair selection ratio of
1:1.

During the successful search, 49,548 equations (i.e., critical pairs) were deriv-
ed; during simplification of those derived equations, rewriting was attempted on
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SOLUTION OF THE ROBBINS PROBLEM 269

2,612,977 terms, and 5,981 terms were rewritten. Of the simplified equations,
17,663 were retained, all of which were oriented and became demodulators.
Of the total search time, 0.1% was spent deriving equations (including all AC
unification time), 74% was spent simplifying equations, 22% was spent finding
existing equations that could be simplified with newly adjoined demodulators,
and 3% was spent deciding whether simplified equations were subsumed by
existing equations.

5. Proofs of the Huntington Equation

We ran several more searches to try to (1) determine whether a proof could have
been found earlier or quicker if we had used different search parameters, (2) find
a simpler proof, and (3) find proofs of other sufficient conditions.

Table I lists a summary of the experiments, including the first successful
search (m5-70).

Table I. Statistics for various proofs

Search Max-weight Ratio Proof Days Length

m5-70 70 1:1 Cond. 2 7.85 15

m5-60a 60 1:1 Cond. 2 5.71 15
Cond. 1 5.72 17
Hunt. 8.83 194

m5-60b 60 4:1 Cond. 2 3.08 15
Cond. 1 3.09 17
Hunt. 5.68 194

m5-50 50 1:1 Cond. 2 10.03 8
Cond. 1 10.03 12
Hunt. 10.75 86

m5-50b 50 4:1 Cond. 2 4.89 8
Cond. 1 4.90 12
Hunt. 5.56 86

All of the listed searches started with the Robbins equation and used AC
unification with the super-0 strategy and the ‘basic’ restriction on paramodulation.
All searches except m5-70 had multiple goals, including the Lemma 1 condition
(Cond. 1), the Lemma 2 condition (Cond. 2), and the Huntington equation (Hunt.).
For the searches with multiple goals, EQP was told to keep searching and prove
as many goals as it could.

In all cases, the first proof found and the shortest proofs found are of the
Lemma 2 condition. The Lemma 1 condition was always found shortly thereafter
in just two or four more steps. In Section 2, we chose to present the proof of the
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270 WILLIAM McCUNE

Lemma 1 condition (from the search m5-50) because it leads to a simpler overall
proof – Winker’s proof (and the computer proof in Appendix B) that Condition 1
is sufficient is much less complicated than his proof (or our computer proof [11])
that Condition 2 is sufficient.

The most important result of these additional experiments is that the Hunt-
ington equation was proved directly, giving us automatic solutions that do not
rely on either of the Winker lemmas. In particular, the following theorem was
proved automatically.


x+y = y+x

(x+y)+z = x+(y+z)

n(n(x+y)+n(x+n(y))) = x (Rob.)


⇒ n(n(x)+y)+n(n(x)+n(y)) = x (Hunt.)

We have not presented any of the Huntington equation proofs because of their
lengths.?

World Wide Web Reference

The program EQP (including the source code), the input files, and the EQP
proofs referred to in this article are available on the World Wide Web through
the following page.

http://www.mcs.anl.gov/home/mccune/ar/robbins/

Also available at that location are the results of several attempts to translate our
proofs into more human-readable forms.

Appendix A: Detailed Proof of Lemma 3

This appendix contains a detailed proof of Lemma 3 (i.e., Condition 1). We start
with the Robbins equation (7) and derive equation (8871) with AC unification
and matching. The numbering of the steps is the same as in the less-detailed
proof in Section 2.

n(n(n(x)+y)+n(x+y)) = y (7)
n(n(3x)+x)+2x = 2x (8871)

? The Huntington axiom proof lengths (194 and 86), when compared with the Condition 1 proof
lengths (17 and 12), do not indicate relative complexity of the proofs. After Condition 1 is proved,
other Boolean properties such as x + x = x are proved, and the nature of the search changes
dramatically. In particular, most of the steps toward the ends of the proofs of the Huntington
equation are trivial.
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STEP 10

With (7), let x be n(x)+y and y be n(x+y):

n(n(n(n(x)+y)+n(x+y))+n(n(x)+y+n(x+y))) = n(x+y).

Use (7) to replace the underlined term; then rearrange:

n(n(n(x+y)+n(x)+y)+y) = n(x+y). [7→7] (10)

STEP 11

With (7), let y be n(n(x)+y) and x be x+y:

n(n(n(x+y)+n(n(x)+y))+n(x+y+n(n(x)+y))) = n(n(x)+y).

Use (7) to replace the underlined term; then rearrange:

n(n(n(n(x)+y)+x+y)+y) = n(n(x)+y). [7→7] (11)

STEP 29

With (7), let x be n(n(x)+y)+x+y and y be y:

n(n(n(n(n(x)+y)+x+y)+y)+n(n(n(x)+y)+x+2y)) = y.

Use (11) to replace the underlined term; then rearrange:

n(n(n(n(x)+y)+x+2y)+n(n(x)+y)) = y. [11→7] (29)

STEP 54

With (7), let x be n(n(n(x)+y)+x+2y)+n(n(x)+y) and y be z:

n(n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y))+z)+n(n(n(n(x)+y)+x+2y)+
n(n(x)+y)+z)) = z.

Use (29) to replace the underlined term; then rearrange:

n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+z)+n(y+z)) = z. [29→7] (54)

STEP 217

With (7), let x be n(n(n(x)+y)+x+2y)+n(n(x)+y)+z and y be n(y+z):
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n(n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+z)+n(y+z))+
n(n(n(n(x)+y)+x+2y)+ n(n(x)+y)+z+n(y+z))) = n(y+z).

Use (54) to replace the underlined term; then rearrange:

n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+n(y+z)+z)+z)
= n(y+z). [54→7] (217)

STEP 674

With (7), let y be u and x be n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+n(y+z)+z)+z:

n(n(n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+n(y+z)+z)+z)+u)+
n(n(n(n(n(x)+x+2y)+n(n(x)+y)+n(y+z)+z)+z+u)) = u.

Use (217) to replace the underlined term; then rearrange:

n(n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+n(y+z)+z)+z+u)+
n(n(y+z)+u)) = u. [217→7] (674)

STEP 6736

With (10), let x be 3v and y be n(n(3v)+v)+2v:

n(n(n(3v+n(n(3v)+v)+2v)+n(3v)+n(n(3v)+v)+2v)+n(n(3v)+v)+2v) =
n(3v+n(n(3v)+v)+2v). (10′)

With (674), let x be 3v, y be v, z be 2v, and u be n(n(3v)+v):

n(n(n(n(n(n(3v)+v)+5v)+n(n(3v)+v)+n(3v)+2v)+2v+n(n(3v)+v))+
n(n(3v)+n(n(3v)+v))) = n(n(3v)+v). (674′)

Replace the underlined term of (674′), which is AC-identical to the left-hand side of
(10′), with the right-hand side of (10′):

n(n(3v+n(n(3v)+v)+2v)+n(n(3v)+n(n(3v)+v))) = n(n(3v)+v).

Rename the variable, and rearrange:

n(n(n(n(3x)+x)+n(3x))+n(n(n(3x)+x)+5x)) = n(n(3x)+x). [10→674] (6736)

STEP 8855

With (7), let x be n(n(3x)+x)+n(3x) and y be n(n(n(3x)+x)+5x):

n(n(n(n(n(3x)+x)+n(3x))+n(n(n(3x)+x)+5x))+n(n(n(3x)+x)+n(3x)+
n(n(n(3x)+x)+5x))) = n(n(n(3x)+x)+5x).
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SOLUTION OF THE ROBBINS PROBLEM 273

Use (6736) to replace the underlined term:

n(n(n(3x)+x)+n(n(n(3x)+x)+n(3x)+n(n(n(3x)+x)+5x)))
= n(n(n(3x)+x)+5x).

With (54), let x be 3x, z be n(3x), and y be x:

n(n(n(n(n(3x)+x)+5x)+n(n(3x)+x)+n(3x))+n(x+n(3x))) = n(3x).

The left-hand sides of the preceding two equations are AC-identical; hence

n(n(n(3x)+x)+5x) = n(3x). [6736→7:54] (8855)

STEP 8865

With (7), let y be n(n(3x)+x)+2x and x be 3x:

n(n(n(3x)+n(n(3x)+x)+2x)+n(3x+n(n(3x)+x)+2x)) = n(n(3x)+x)+2x.

Uset (8855) to replace the underlined term; then rearrange:

n(n(n(n(3x)+x)+n(3x)+2x)+n(3x)) = n(n(3x)+x)+2x. [8855→7] (8865)

STEP 8866

With (7), let x be n(n(3x)+x)+4x and y be x:

n(n(n(n(n(3x)+x)+4x)+x)+n(n(n(3x)+x)+5x)) = x.

Replace the underlined term with the right-hand side of (8855):

n(n(n(n(n(3x)+x)+4x)+x)+n(3x)) = x. (A2)

With (11), let x be 3x and y be x:

n(n(n(n(3x)+x)+4x)+x) = n(n(3x)+x). (A3)

Use (A3) to replace the underlined term of (A2):

n(n(n(3x)+x)+n(3x)) = x. [8855→7:11] (8866)

STEP 8870

With (7), let x be n(n(3x)+x)+n(3x):

n(n(n(n(n(3x)+x)+n(3x))+y)+n(n(n(3x)+x)+n(3x)+y)) = y.

JARS26.tex; 11/09/1997; 11:57; v.7; p.11



274 WILLIAM McCUNE

Use (8866) to replace the underlined term; then rearrange:

n(n(n(n(3x)+x)+n(3x)+y)+n(x+y)) = y. [8866→7] (8870)

STEP 8871

With (8870), let y be 2x:

n(n(n(n(3x)+x)+n(3x)+2x)+n(3x)) = 2x.

Use the preceding equation to simplify (8865):

n(n(3x)+x)+2x = 2x. [8865:8870] (8871)
2

Appendix B: Proof of Lemma 1

This appendix contains a proof of Lemma 1, conjectured and first proved by
Winker [16, 17], then later proved automatically by EQP [11].

To simplify the presentation, we first prove a stronger condition sufficient.
Both computer proofs were found by EQP, the first in about 5 seconds, and the
second in about 2319 seconds.

LEMMA 0. A Robbins algebra satisfying ∃c(c+ c = c) is a Boolean algebra.
Proof. We assert that the Huntington equation fails to hold, and we derive

a contradiction. The terms A, B, and C are constants. (In the justification, n′

indicates the extension of equation n; that is, if n is t1 = t2, n′ is t1 +x = t2 +x.)

1 C + C = C [hypothesis]
2 n(n(n(x) + y) + n(x+ y)) = y [Robbins equation]
3 n(B + n(A)) + n(n(B) + n(A)) 6= A [denial of Huntington equation]
4 n(n(C) + n(C + n(C))) = C [1 → 2]
5 n(n(C + n(C) + x) + n(C + x)) = C + x [1′ → 2]
8 n(n(C + x) + n(n(C) + n(C + n(C)) + x)) = x [4 → 2]
9 n(C + n(C + n(C) + n(C))) = n(C) [4 → 2]
13 n(n(C) + n(C + n(C) + n(C + n(C)))) = C [1 → 8]
20 n(n(C) + n(C + n(C) + n(C))) = C [9 → 2,simp:1]
22 n(C + n(C) + n(C)) = n(C + n(C)) [9 → 2,simp:20,flip]
24 n(C + n(C + n(C))) = n(C) [9,simp:22]
32 C + n(C + n(C)) = C [24 → 5,simp:13,flip]
35 n(C + n(C)) + x = x [32′ → 2,simp:8,flip]
42 n(n(n(x)) + n(x)) = n(C + n(C)) [35 → 2,simp:35]
50 n(n(n(n(x)) + x)) = n(n(x)) [42 → 2,simp:35]
52 n(n(n(x))) = n(x) [42 → 2,simp:35,50]
58 n(n(x)) = x [2 → 52,simp:2]
87 n(n(x) + y) + n(x+ y) = n(y) [2 → 58,flip]
88 A 6= A [3,simp:87,58]
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LEMMA 1 (S. Winker [16, 17]). A Robbins algebra satisfying ∃c∃d(c+ d = c)
is a Boolean algebra.

Proof. The terms C and D are constants.

2 D + C = C [hypothesis]
3 n(n(n(x) + y) + n(x+ y)) = y [Robbins equation]
4 n(n(C) + n(D + n(C))) = D [2 → 3]
8 n(n(D + n(C + x) + y) + n(C + x+ y)) = D + y [2′ → 3]
20 n(D + n(C + n(D + n(C)))) = n(D + n(C)) [4 → 3]
34 n(n(n(n(x) + y) + n(x+ y) + z) + n(y + z)) = z [3 → 3]
35 n(n(n(n(x) + y) + x+ y) + y) = n(n(x) + y) [3 → 3]
56 n(n(C) + n(D + n(C + n(x)) + n(C + x))) = D [2 → 34]
151 n(n(D + n(C + n(D + n(C))) + x) + n(n(D + n(C)) + x)) = x [20 → 3]
152 n(n(D + n(C)) + n(C + n(D + n(C)))) = D [20 → 3,simp:2]
173 n(D + n(D + n(C) + n(C + n(D + n(C)))))

= n(C + n(D + n(C))) [152 → 3]
197 n(n(C + n(D + n(C))) + n(C + n(C + n(D + n(C))))) = C [2′ → 151]
280 n(n(n(n(n(x) + y) + x+ y) + y + z) + n(n(n(x) + y) + z)) = z [35 → 3]
837 n(C + n(D + n(C))) = n(C) [4 → 151,simp:173]
839 n(n(C) + n(C + n(C))) = C [197,simp:837,837]
842 n(n(C + x) + n(n(C) + n(C + n(C)) + x)) = x [839 → 3]
844 n(C + n(C + n(C + n(C)))) = n(C + n(C)) [839 → 3]
883 n(n(C + n(C)) + n(C + C + n(C + n(C)))) = C [844 → 3]
946 n(C+n(C+n(C)+n(C+C+n(C+n(C)))))

= n(C+C+n(C+n(C))) [883 → 3]
1706 n(C + C + n(C + n(C))) = n(C) [839 → 280,simp:946]
1734 D + n(C + n(C)) = D [1706 → 8,simp:56,flip]
1745 C + n(C + n(C)) = C [2′ → 1734′,simp:2]
1802 n(C + n(C)) + x = x [1745′ → 3,simp:842,flip]

From Equation 1802, we have a term e, namely n(C+n(C)), such that e+e = e;
the result follows by Lemma 0. 2
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