
Alexander Leitsch

The Resolution Calculus

May 2, 2007

Springer-Verlag

Berlin Heidelberg NewYork
London Paris Tokyo
HongKong Barcelona
Budapest

Preface

The History of the Book

In August 1992 the author had the opportunity to give a course on resolution
theorem proving at the Summer School for Logic, Language, and Information
in Essex. The challenge of this course (a total of five two-hour lectures) con-
sisted in the selection of the topics to be presented. Clearly the first selection
has already been made by calling the course “resolution theorem proving”
instead of “automated deduction”. In the latter discipline a remarkable body
of knowledge has been created during the last 35 years, which hardly can be
presented exhaustively, deeply and uniformly at the same time. In this situ-
ation one has to make a choice between a survey and a detailed presentation
with a more limited scope. The author decided for the second alternative, but
does not suggest that the other is less valuable. Today resolution is only one
among several calculi in computational logic and automated reasoning. How-
ever, this does not imply that resolution is no longer up to date or its potential
exhausted. Indeed the loss of the “monopoly” is compensated by new appli-
cations and new points of view. It was the purpose of the course mentioned
above to present such new developments of resolution theory. Thus besides
the traditional topics of completeness of refinements and redundancy, aspects
of termination (resolution decision procedures) and of complexity are treated
on an equal basis. The script of the course on resolution theorem proving
appeared (in an improved version) as AILA preprint [Lei93a] and represents
the skeleton of this book.

How to Use this Book

Chapters 2 (basics of resolution), 3 (refinements), and 4 (deletion) can be
used for a traditional graduate course on resolution. However, some results
and methods already point to the more advanced Chapters 5 (resolution de-
cision procedures) and 6 (complexity). All the methods and results needed
in Chapters 5 and 6 are provided in the first part of the book. Therefore,
in principle, every student familiar with the basics of first-order logic can
read the whole book. There are a few points where a basic knowledge of
the theory of computability is needed to (fully) understand the material. On
the other hand, Chapters 5 and 6 contain results of recent research, most of
it published during the last five years. Thus the book is also addressed to

VI

researchers working in the field of automated deduction; to them it should
offer a source of information about new trends and paradigms in the form of
a unified and systematic presentation.

Acknowledgments

First of all my thanks go to Daniele Mundici. It was he who invited me to give
a course on resolution theorem proving at the Summer School LLI in Essex;
later he encouraged me to transform the course script into a AILA preprint,
which improved the substance of the material. Together with Cinzia Ferrari
(my thanks to her too) he also read and checked a draft of this book and
suggested many improvements. Reiner Hähnle thoroughly checked the first
four chapters, found many errors and proposed several substantial changes
and improvements. I also thank him for using the preprint mentioned above
as basis of a course on automated theorem proving; his experience and obser-
vations made on this occasion influenced the book already in an early stage.
Christian Fermüller read a draft of the whole book and gave many valu-
able hints to improve the presentation. Robert Matzinger not only checked
the draft, he somehow traversed the material to its utmost depth. He spent
several months on this task and his contribution to the improvement of the
book cannot be overestimated. Reinhard Pichler read most of the book and
made an interesting observation in Chapter 3. Matthias Baaz gave me some
very valuable comments on Chapter 6 (which is based almost entirely on our
common research). Special thanks go to the referees who wrote very com-
petent and valuable reports on this book; their comments led to essential
improvements of form and content. Gernot Salzer strongly assisted in LATEX
problems and substantially contributed to the physical existence of the text.
I am very grateful to Franziska Gusel for typing two thirds of the manuscript
– an activity extending her usual work and inflicting additional stress. Many
thanks go to Springer-Verlag, in particular to Hans Wössner and J. Andrew
Ross, for their assistance and guidance in the difficult matter of transforming
a text into a real book. Last, but not least, I have to thank my wife Marjan
and my two sons David and Emanuel for their patience and tolerance during
my work on this book. During the last four years I gave more to “resolu-
tion” than to them – sometimes forgetting that we are humans rather than
scientific machines.

Vienna, October 1996 Alexander Leitsch

Table of Contents

1. Introduction . 1

2. The Basis of the Resolution Calculus . 5
2.1 First-Order Logic . 5
2.2 Transformation to Clause Form . 11
2.3 Term Models and Herbrand’s Theorem . 23
2.4 Decision Methods for Sets of Ground Clauses 41

2.4.1 Gilmore’s Method . 41
2.4.2 The Method of Davis and Putnam 43

2.5 The Propositional Resolution Principle . 52
2.6 Substitution and Unification . 59
2.7 The General Resolution Principle . 72
2.8 A Comparison of Different Resolution Concepts 81

3. Refinements of Resolution . 89
3.1 A Formal Concept of Refinement . 89
3.2 Normalization of Clauses . 95
3.3 Refinements Based on Atom Orderings . 99
3.4 Lock Resolution . 108
3.5 Linear Refinements . 115
3.6 Hyperresolution . 131
3.7 Refinements: A Short Overview . 146

4. Redundancy and Deletion . 149
4.1 The Problem of Proof Search . 149
4.2 The Subsumption Principle . 157
4.3 Subsumption Algorithms . 181
4.4 The Elimination of Tautologies . 194
4.5 Clause Implication . 199

5. Resolution as Decision Procedure . 213
5.1 The Decision Problem. 213
5.2 A-Ordering Refinements as Decision Procedures 217
5.3 Hyperresolution as Decision Procedure . 232

VIII Table of Contents

5.4 Hyperresolution and Automated Model Building 239

6. On the Complexity of Resolution . 255
6.1 Herbrand Complexity and Proof Length 255
6.2 Extension and the Use of Lemmas . 271

6.2.1 Structural Normalization . 274
6.2.2 Functional Extension . 282

References . 291

Notation Index . 297

Subject Index . 299

1. Introduction

Logic calculi can serve for many purposes, such as reconstructing and an-
alyzing mathematical proofs in a formal manner or automating the search
for mathematical proofs. As the paradoxes of set theory struck the math-
ematical community around 1900, the formal and consistent representation
of theories became a central issue in foundational research. In the theory
of proofs fascinating results were obtained in the 1930s, which culminated in
the completeness and incompleteness (or better “incompletability”) results of
Gödel [Göd30],[Göd31]. Somewhat later Gentzen defined a natural notion of
formal proofs [Gen34], which is closer to actual mathematical deduction than
the so-called Hilbert-type systems. Like Herbrand [Her30] Gentzen investi-
gated the form and structure of mathematical proofs, while Gödel’s famous
theorems were more directed to provability.

In general it was not the purpose of proof theory to develop inference sys-
tems for actual deduction or proof search. Taking into account the complexity
of relevant mathematical proofs this is hardly surprising.

The conceptual roots of automated deduction can be traced back to Leib-
niz’s brave vision of a calculus ratiocinator [Leib], which would allow slution
of arbitrary problems by purely mechanical computation, once they have been
translated into a special formalism. Although this dream of complete mech-
anization cannot become reality (as we know from results Gödel and Turing
obtained in the 1930s [Göd31] [Tur36]) we need not reject the whole idea.
Indeed if we choose first-order predicate logic to be our special formalism,
the problem of defining a (more modest) calculus ratiocinator makes sense
again. As the problem of validity of formulas in first-order logic is undecid-
able [Chu36], we cannot hope for a decision procedure that always terminates
and gives the right answer. However, there are complete calculi for first-order
logic, i.e., calculi in which all valid formulas of first-order logic can be derived.
Thus there exists a general mechanical method to prove the validity of first-
order sentences and thus to verify problems formulated in first-order logic.
Still the question remains whether the first-order calculi are really adequate
for problem solving in a practical sense.

As computers and programming languages developed, the problem of find-
ing mathematical proofs automatically was one of the first attacked in the
field today called Artificial Intelligence. A direct application of Herbrand’s

2 1. Introduction

proof theoretical result was given by Gilmore [Gil60] for performing auto-
mated deduction in first-order predicate logic.

The idea behind it was the following: Herbrand’s theorem defines a
method to reduce the provability of a formula F in predicate logic to the
provability of a corresponding propositional formula F ′. Because inference
in propositional logic is simpler than in predicate logic this method seems
to be quite natural from the point of view of logical complexity. But from
the computational point of view this method has two serious defects: 1) the
finding of such a formula F ′, 2) the costs of inference on F ′ itself.

Point 2) above was considerably improved by Davis and Putnam in the
same year [DP60], while the search for F ′ and also the (possibly enormous)
size of F ′ remained serious obstacles. The tactic of applying proof theory
(which was developed for other purposes) to automated deduction directly
has clearly failed. Obviously there was a need to model some natural tech-
niques of proof finding employed by humans within a logical calculus. The
invention of such a technique is the contribution of Robinson’s famous pa-
per [Rob65], which is a real landmark in automated deduction (and in some
sense its very beginning). Particularly the consequent use of the unification
principle created a substantially new type of logic calculus. The resolution
principle (a combination of a propositional cut rule and the substitutional uni-
fication principle) leads to a spectacular improvement in performance versus
Gilmore’s method. While the propositional part of the resolution rule (the
atomic cut) was changed in various ways and even abandoned (in Bibel’s
connection method [Bib82]), the unification principle is part of every rele-
vant computational proof calculus. Though (as indicated above) resolution is
no longer the only method in automated deduction today, it is still playing a
central role and some features (such as the unification principle) are common
to all computational calculi.

Taking into account some more recent developments in the field of au-
tomated deduction it would not be justified to call this book “Automated
Theorem Proving”. There are many other methods (like the tableau method,
the connection method, the systems based on rewriting, etc.) which deserve
a representation on an equal basis. Moreover, the term “Automated Theo-
rem Proving” would suggest information about implementation, experiments,
performance and applications; in fact many problems in program verification
and knowledge representation (which are expressible in first-order logic) were
successfully handled by methods of automated theorem proving. Another im-
portant area of applications is logic programming (the execution of a logic
program corresponds to a resolution deduction). In order to avoid the (prac-
tically unsolvable) problem of covering all these topics and (at the same time)
to give a detailed and deep analysis of the problems, we decided for a represen-
tation of the logical aspect of resolution. We will try to show that resolution
is not only a powerful method in automated deduction, but also a tool to
address problems in mathematical logic; particularly we will deal with the

1. Introduction 3

decision problem of first-order definable classes and with the complexity of
first-order inference. Thus besides the issue of completeness (which is a typ-
ical one in resolution theory) we also discuss termination and complexity of
resolution. As an application of resolution decision procedures we also present
a method of automated model building, thus extracting information from a
resolution prover even in cases where no refutation exists. The construction of
such (counter-) models is of central importance to interactive theorem prov-
ing and to model-based inference. Finally, we will discuss extension methods
for the purposes of formula normalization and of inference; here we will point
out that preservation and creation of logical structure essentially improves
the substance (and shortens the length) of proofs.

In Chapter 2 we present the basics of resolution theory by following the
usual path of textbook presentations (Herbrand’s theorem, the unification
principle, and resolution). A little more emphasis than usual is laid on the
transformation to clause form. Chapter 3 is devoted to resolution refinements;
here an attempt is made to explain the concept of refinement from a more
abstract point of view. Moreover, we handle clauses as disjunctions subjected
to different normalization operators; this gives us the means for a unifying
treatment of different formulations of resolution deductions (clauses may be
lists, sets of literals, multisets of literals, etc.). In Chapter 4 we discuss the
problem of redundancy and proof search. We define the concept of search
complexity and analyze its behavior under different deletion methods. Spe-
cial emphasis is laid on subsumption-based refinements and on subsumption
algorithms. In the last subsection of Chapter 4 we present the theorem of Lee
and applications to the clause implication problem. In Chapter 5 we show
how some of the resolution refinements defined in Chapter 3 can be used
as decision procedures for first-order classes. The method consists in select-
ing adequate refinements which always terminate (i.e., they produce finitely
many resolvents only) on the clausal forms of formulas belonging to such
a first-order decision class. Starting from results obtained by W.H.Joyner
[Joy76] we also present some more recent results and methods in resolution
decision theory. We also show that the satisfiable sets of clauses obtained
by the resolution decision procedures can be used as raw material for an
algorithmic model building procedure. This procedure does not require back-
tracking and constructs an atomic representation of a Herbrand model. In
Chapter 6 we present a complexity theory of resolution which is based on
the concept of Herbrand complexity. We distinguish proofs with and without
ground projections and show that resolution refinements may strongly differ
in their resolution proof complexity. We show that resolution proofs can be
very long relative to shortest proofs in full logic calculi (in fact there exists
no elementary bound); here the presentation is not completely self-contained
and we refer to some more advanced literature. Finally, we illustrate the im-
portance of extension methods in computational calculi. We present a struc-
tural transformation of negation normal forms to clause form (preservation

4 1. Introduction

of logical structure) and a method of functional extension (creation of logi-
cal structure). We show that functional extension (F-extension) is a natural
technique to formulate and use lemmas in automated deduction. The strength
added by F-extension to the resolution calculus may result in a nonelemen-
tary “speed-up” of proof complexity.

With the exception of some topics in Chapter 6 the book is self-contained
and directed to graduate students with a standard background in predicate
logic. Although all basic definitions for first-order predicate logic are given in
Chapter 2, the book is not really adequate as an introduction to mathemat-
ical logic. Some remarks are addressed to readers who know some recursion
theory, but they are not crucial to the understanding of the main results.

2. The Basis of the Resolution Calculus

2.1 First-Order Logic

Throughout the whole book we will focus on theorem proving in the context
of first-order logic. First-order logic plays an important role in mathematical
logic and computer science. First of all it is a rich language, by which algebraic
theories, computational problems, and substantial knowledge representation
in Artificial Intelligence can be expressed; due to its ability to represent un-
decidable problems (like the halting problem for Turing machines) first-order
logic (or more precisely, the validity problem for first-order logic) is unde-
cidable. On the other hand, the valid formulas of first-order logic can be
obtained by logical calculi and thus are recursively enumerable. In this sense,
first-order logic is mechanizable (we can find a proof for every valid sentence,
but there is no decision procedure for validity).

We assume the reader to be familiar with the basics of first-order logic and
do not give a motivation for its syntax and semantics. Nevertheless we need
clear and exact concepts of its language for our transformation to normal
forms and its semantic justification. Henceforth the language of first-order
predicate logic is denoted by PL.

We assume that there we are given countably infinite sets V (individual
variables), CS (constant symbols), FS (function symbols), and PS (predicate
symbols). FS =

⋃∞
i=1 FSi, where all sets FSi are countably infinite and

mutually disjoint (FSi is the set of i-ary function symbols).
Similarly PS =

⋃∞
i=1 PSi, PSi countably infinite for all i ∈ IN+, where

PSi is called the set of i-ary predicate symbols.
Symbols ∧,∨,¬,→ stand for the logical connectives and ∀, ∃ for the quan-

tifiers.

Definition 2.1.1 (term). The set of terms T is inductively defined by:

a) V ⊆ T (variables are terms),
b) CS ⊆ T (constant symbols are terms),
c) If t1, . . . , tn ∈ T and f ∈ FSn then f(t1, . . . , tn) ∈ T ,
d) No other objects are terms.

Statements like in point (d) “no other objects are ...” will henceforth be

6 2. The Basis of the Resolution Calculus

omitted and will be considered as included in the concept “definition”. If
t = f(t1, . . . , tn) for an f ∈ FSn and terms t1, . . . , tn then t is called a
functional term; the terms ti are called the arguments of t. Variables and
constant symbols have no arguments.

The occurrence of terms can be defined inductively: A term s occurs in a
term t if either s = t or s occurs in an argument of t.

The set of all variables occurring in a term t is denoted by V (t). A term
t with V (t) = ∅ is called a ground term .

A natural measure for the complexity of terms is term depth, which we
denote by τ . Formally we define

τ(t) = 0 for t ∈ V ∪ CS,

τ(f(t1, . . . , tn)) = 1 + max{τ(ti)|i = 1, . . . , n}

for f ∈ FSn, t1, . . . , tn ∈ T .

Definition 2.1.2 (atom formula). If P ∈ PSn and t1, . . . , tn ∈ T then
P (t1, . . . , tn) is called an atom formula (or simply an atom); P is called the
leading symbol and t1, . . . , tn are called the arguments of P (t1, . . . , tn).

If A is an atom formula then A,¬A are called literals. The set of all atom
formulas is denoted by AT , the set of all literals by LIT .

Definition 2.1.3 (predicate logic formula). We define the set of predi-
cate logic formulas PL inductively:

a) AT ⊆ PL (atom formulas are in PL),
b) If A,B ∈ PL then (A ∨B), (A ∧B), (A→ B) ∈ PL,
c) If A ∈ PL then ¬A ∈ PL,
d) If A ∈ PL and x ∈ V such that neither (∀x) nor (∃x) occurs in A then

(∀x)A, (∃x)A ∈ PL.

Property (d) guarantees that one does not quantify over a variable which
already occurs in bounded form. Thus by our definition (∀x)(∃x)P (x, x) is
not a formula. On the other hand dummy quantifiers are allowed. Sometimes
it is useful to restrict function symbols, constant symbols, and predicate
symbols to the set occurring in some fixed formulas. Thus if F ∈ PL, we
denote by FS(F) the set of function symbols occurring in F ; similarly we
define CS(F) and PS(F), and FSn(F), PSn(F). If Σ is a subset of FS∪CS
we denote by TΣ the set of all terms t with the property FS(t)∪CS(t) ⊆ Σ.
If Σ = FS(F)∪CS(F) for some formula F we also write T (F) instead of TΣ.
We call T (F) the set of terms over the signature of F . Similarly we define
PLΣ (the predicate logic over Σ) for every Σ ⊆ PS ∪ FS ∪CS and PL(F),
the set of formulas over the signature of F .

2.1 First-Order Logic 7

Example 2.1.1. x ∈ V . Let f ∈ FS1; then f(x) ∈ T . If R ∈ PS1 then
R(x), R(f(x)) ∈ AT .
Thus (R(x)→ R(f(x))) ∈ PL and (∀x)(R(x)→ R(f(x))) ∈ PL.

Henceforth (unless stated differently) we will use the following notational
conventions:

variables: x, y, z, u, v, w, x1, y1, . . .
constant symbols: a, b, c, d, e, a1, b1, . . .
function symbols: f, g, h, f1, g1, . . .
predicate symbols: P,Q,R, S, P1, Q1, . . .

Let A be a formula such that A = A1 ⊙ A2, A = ¬B, or A = (Qx)B
for ⊙ ∈ {∧,∨,→}, x ∈ V , and Q ∈ {∀, ∃}; then A1, A2 and B are called
immediate subformulas of A.

A formula A occurs in a formula B if either A = B or A occurs in an imme-
diate subformula of B. A is called subformula of B if A occurs in B.

We extend the concept of occurrence to that of terms in formulas:
Let s be a term and A be an atom formula. Then s occurs in A if s occurs in
an argument of A. If A is an arbitrary formula then s occurs in A if it occurs
in some subformula of A.

Definition 2.1.4 (free and bounded occurrences of variables). Let
A be an atom formula and x be a variable occurring in A; then x occurs
free in A. If x occurs free in A and B is of the form A ⊙ C, C ⊙A, ¬A, or
(Qy)A (for ⊙ ∈ {∧,∨,→}, y 6= x, Q ∈ {∀, ∃}) then x occurs free in B.

x occurs bounded in A if there exist a subformula of A of the form (Qx)B
such that x occurs in B.

Example 2.1.2. Let A = P (x) ∧ (∀x)(∃y)Q(x, y). Then x occurs free and
bounded in A; y only occurs bounded in A. x occurs free in the subformula
(∃y)Q(x, y).

For formula transformations it is convenient to have some kind of “unique”
occurrences of variables, i.e., variables cannot bind different occurrences of
subformulas and cannot occur bounded and free in the same formula.

Definition 2.1.5 (standard form). A formula A is in standard form if the
following property is fulfilled: If B1 ⊙B2 (for ⊙ ∈ {∧,∨,→) is a subformula
of A and a variable x occurs bounded in B1 (B2) then x does not occur in
B2 (B1).

Example 2.1.3. The formulas P (x) ∧Q(x) and (∀x)P (x) ∧Q(y) are in stan-
dard form, but (∀x)P (x) ∧Q(x) and (∀x)P (x) ∧ (∀x)Q(x) are not.

A formula without free variables is called closed or a sentence. A formula
without bounded variables is called open.

8 2. The Basis of the Resolution Calculus

If A is an open formula containing the variables x1, . . . , xn then
(∀x1) . . . (∀xn)A is called the universal closure of A. Strictly speaking the
universal closure is not unique as the order of the variables is not fixed;
however, all closures are semantically equivalent.

We are now in a position to define the semantics of PL. The key concept
is that of an interpretation.

Definition 2.1.6 (interpretation). An interpretation of a formula F in
PL is a triple Γ = (D,Φ, I) having the following properties:

1) D is a nonempty set, called the domain of Γ .
2) Φ is a mapping defined on CS(F) ∪ FS(F) ∪ PS(F) such that

2.1) Φ(c) ∈ D for c ∈ CS(F).
2.2) For f ∈ FSn(F), Φ(f) is a function of type Dn → D.
2.3) For P ∈ PSn(F), Φ(P) is a function of type Dn → {T,F} (i.e.,

Φ(P) is an n-ary predicate over D).
3) I is a function of type V → D, called the environment or variable assign-

ment.

The range of Φ(P) for predicate symbols P consists of T,F which clearly
symbolize the truth values true and false. An alternative way to interpret
predicate symbols P ∈ PSn is as subsets A of Dn, where A can be identified
with Φ(P)−1({T}).

Interpretations Γ are the basis for the interpretation functions uΓ for
terms, and vΓ for formulas.

Let F ∈ PL and Γ be an interpretation of F ; we define uΓ : T (F) → D
by

uΓ (x) = I(x) for x ∈ V,
uΓ (c) = Φ(c) for c ∈ CS(F) and

uΓ (f(t1, . . . , tn)) = Φ(f)(uΓ (t1), . . . , uΓ (tn)) for f(t1, . . . , tn) ∈ T (F).

In order to introduce an interpretation function for quantified formulas we
require the concept of variable-equivalence of interpretations.

Definition 2.1.7 (equivalence of interpretations). Two interpretations
Γ,∆ of a formula F are called equivalent modulo x1, . . . , xk if there are
D,Φ, I, J such that Γ = (D,Φ, I) and ∆ = (D,Φ, J) and I(v) = J(v) for
v ∈ V \ {x1, . . . , xk} (I and J differ at most on some of the xi). If Γ is
equivalent to ∆ modulo x we write Γ ∼x ∆.

Equivalent interpretations have the same domain and the same interpretation
for constant, function, and predicate symbols; but they may differ on a finite
set of variables.

We are now ready to define the evaluation of predicate logic formulas in
PL(F) via an interpretation Γ .

2.1 First-Order Logic 9

vΓ : PL(F)→ {T,F}.

Let F be in PL and Γ = (D,Φ, I) be an interpretation of F . vΓ is defined
inductively over the structure of formulas in PL(F):

1. If A is an atom formula in PL(F) and A = P (t1, . . . , tn)
then vΓ (A) = Φ(P)(uΓ (t1), . . . , uΓ (tn))

2. vΓ ((A ∧B)) = and(vΓ (A), vΓ (B))
vΓ ((A ∨B)) = or(vΓ (A), vΓ (B))
vΓ ((A→ B)) = impl(vΓ (A), vΓ (B))
vΓ (¬C) = not(vΓ (C))
for A,B,C ∈ PLF and the usual truth functions and, or and impl:

{T,F}2 → {T,F} and not: {T,F} → {T,F}, defined classically by the
following tables:

and T F
T T F
F F F

or T F
T T T
F T F

impl T F
T T F
F T T

not
T F
F T

It remains to define vΓ for quantifiers:

vΓ ((∀x)A) = T iff for all ∆ such that ∆ ∼x Γ we have v∆(A) = T.

Similarly, vΓ ((∃x)A) = T iff there exists a ∆ such that ∆ ∼x Γ and v∆(A) =
T.

An interpretation Γ of A verifies A if vΓ (A) = T; if vΓ (A) = F then we
say that Γ falsifies A.

Definition 2.1.8 (model). Let A be a formula containing the free variables
x1, . . . , xn and Γ be an interpretation of A. Then Γ is called a model of A if
all ∆ that are equivalent to Γ modulo {x1, . . . xn} verify A. If A is a closed
then Γ is a model iff Γ verifies A.

Example 2.1.4. F = (∀x)(P (x, a)→ Q(x, f(a))).
Γ = (IN, Φ, I) such that IN is the set of natural numbers, I(x) = 3 and Φ is
defined as:

Φ(a) = 0, Φ(f)(n) = n+1 for all n ∈ IN, Φ(P) = ≤, Φ(Q) = <.

We set Γ ∗
x = {∆ | ∆ ∼x Γ} and compute vΓ (F).

vΓ (F) = T iff

For all ∆ ∈ Γ ∗
x : v∆((P (x, a)→ Q(x, f(a))) = T

iff

For all ∆ ∈ Γ ∗
x : impl(v∆(P (x, a), v∆(Q(x, f(a))) = T

iff

For all J ∼x I : impl(J(x) ≤ u∆(a), J(x) < u∆(f(a))) = T

10 2. The Basis of the Resolution Calculus

iff

For all k ∈ IN : impl(k ≤ 0, k < 0 + 1) = impl(k = 0, k < 1) = T.

Because k = 0 really implies k < 1, vΓ (F) = T and Γ is a model of F .

Definition 2.1.9 (satisfiability and validity). Let F,G be arbitrary for-
mulas in PL.

a) F is called satisfiable if F has a model.
b) F is called valid if every interpretation of F is a model of F .
c) F and G are logically equivalent (notation: F ∼ G) if F and G have the

same models.
d) F and G are called satisfiability-equivalent (shorthand: sat-equivalent) if:

F is satisfiable iff G is satisfiable; we write F ∼sat G.

Note that with respect to ∼sat there are only two equivalence classes, the
satisfiable and the unsatisfiable formulas.

Example 2.1.5. (∀x)P (x, a) ∼sat (∀x)P (a, x), as both formulas are satisfi-
able. But clearly (∀x)P (x, a) 6∼ (∀x)P (a, x) (interpret a as 0 and P as ≤ over
IN).
F1 : (∃x)P (x, a) ∧ ¬P (b, a) is satisfiable, but F2 : P (b, a) ∧ ¬P (b, a) is not.
Thus F1 is not sat-equivalent to F2 (the existential variable x may not be re-
placed by the constant symbol b). Transforming F1 into F2 does not preserve
sat-equivalence.

As opposed to classical logical calculi, where there is not much emphasis on
term structures and substitutions, the concept of substitution plays a central
role in resolution theory and computational logic. For this reason we have to
introduce some basic notations and terminology for substitutions.

Definition 2.1.10 (substitution). A substitution is a mapping λ of type
V → T such that λ(v) 6= v only for finitely many v ∈ V .

If λ is a substitution, the set {v|v ∈ V, λ(v) 6= v} is called the domain of λ
(notation: dom(λ)).
{λ(v)|v ∈ dom(λ)} is called the range of λ (notation: rg(λ)). If rg(λ) ⊆

TΣ then we say that λ is a substitution over Σ. If dom(λ) = {x1, . . . , xn} and
λ(xi) = ti for i = 1, . . . , n we represent λ by the set {x1 ← t1, . . . , xn ← tn}.

As usual in automated theorem proving we use a post-fix notation for
substitutions and define:

2.2 Transformation to Clause Form 11

xλ = λ(x) for x ∈ V,
aλ = a for a ∈ CS,

f(t1, . . . , tn)λ = f(t1λ, . . . , tnλ) for f ∈ FSn, t1, . . . , tn ∈ T,
P (t1, . . . , tn)λ = P (t1λ, . . . , tnλ) for atom formulas P (t1, . . . , tn),

(A ◦B)λ = (Aλ ◦Bλ) for ◦ ∈ {∧,∨,→},
(¬A)λ = ¬(Aλ),

((Qx)A)λ = (Qx)Aλ provided that x /∈ dom(λ), Q ∈ {∀, ∃}.

On a quantified formula containing the bounded variables x1, . . . xn no
substitution λ with xi ∈ dom(λ) for 1 ≤ i ≤ n is admissible.

Instead of A{x← t} we frequently write A[xt]. A substitution λ, for which
the range consists of variable-free terms only, is called a ground substitution.

2.2 Transformation to Clause Form

Essential to automated theorem proving is the inference on formulas of re-
stricted syntax-type. On simpler formulas more efficient inference rules can
be defined and it is easier to control proof search. There is the disadvantage,
however, that the structure of the formulas is destroyed, which can lead to an
increase in proof complexity (this problem will be analyzed in Chapter 6) and
to the loss of the intuitive meaning. We will present a method of structural
transformation in Section 6.2 which preserves most of the original structure
of the formulas.

Before applying the inference method itself, we transform the formulas to
quantifier-free conjunctive normal form. As our inference methods are based
on the idea of proof by contradiction, we transform ¬A to normal form (A
being the PL-formula to be proved). Afterwards the normal form of ¬A will
be refuted by resolution.

The transformation to normal form consists of three steps:

1. Transform ¬A into a formula B such that B ∼ ¬A, B does not contain
“ → ” anymore and “¬” appears only in front of atom formulas (B is
built up by literals and ∧,∨, ∀, ∃ only).

2. Eliminate all existential quantifiers; i.e., construct an ∃-free formula C
such that B ∼sat C (in this step only sat-equivalence is preserved).

3. Transform C into a quantifier-free conjunctive normal form (CNF) D
such that C ∼sat D. We call D a clause form of ¬A.

Remark: The third step (transformation into CNF) can performed in various
ways. In this section we define two methods, the first one preserving logical
equivalence and the second one satisfiability equivalence only.

12 2. The Basis of the Resolution Calculus

Step 1) : Let F, F1, F2 be formula variables for PL-formulas and A ⇒ B
mean “A is transformed to B”. We have to apply ⇒ until no further
reduction is possible.

1.1) (F1 → F2)⇒ (¬F1 ∨ F2)
1.2) ¬(F1 ∧ F2)⇒ (¬F1 ∨ ¬F2)
1.3) ¬(F1 ∨ F2)⇒ (¬F1 ∧ ¬F2)
1.4) ¬¬F ⇒ F
1.5) ¬(∀x)F ⇒ (∃x)¬F
1.6) ¬(∃x)F ⇒ (∀x)¬F

Formally, 1.1)–1.6) define a canonical rewrite rule system; thus every order
of applications of the rules 1.1)–1.6) leads to the same irreducible form. Now
assume that ¬A⇒∗ B and B is irreducible under 1.1)–1.6) (⇒∗ denotes the
reflexive and transitive closure of ⇒). Then it is easy to verify that B does
not contain → and ¬ only occurs in front of atoms.

Moreover for every reduction X ⇒ Y in 1.1)–1.6) we have X ∼ Y . As ∼
is an equivalence relation we also obtain ¬A ∼ B; i.e., the transformation to
B is logically correct.

Example 2.2.1. A = (∀x)(∃y)((P (x, y) ∧Q(y))→ R(y)).

¬A
1.5
⇒ (∃x)¬(∃y)((P (x, y) ∧Q(y))→ R(y))
1.6
⇒ (∃x)(∀y)¬((P (x, y) ∧Q(y))→ R(y))
1.1
⇒ (∃x)(∀y)¬(¬(P (x, y) ∧Q(y)) ∨R(y))
1.3
⇒ (∃x)(∀y)(¬¬(P (x, y) ∧Q(y)) ∧ ¬R(y))
1.4
⇒ (∃x)(∀y)((P (x, y) ∧Q(y)) ∧ ¬R(y)).

The last formula is irreducible and of the appropriate form.

The (unique) formula obtained from a formula F after reduction via 1.1)–1.6)
will be denoted by α(F).

From now on, we only deal with closed PL-formulas in standard form; this
is no real restriction, as the semantics of closed formulas is invariant under
renaming of variables.

Step 2) : Eliminate the ∃-quantifiers. To perform this task, we introduce
some additional formalism first: Let Q1, Q2 be quantifiers and F ∈ PL.
We define (Q1x) ≺q (Q2y) ((Q1x) is in the scope of (Q2y)) if there is
a subformula F1 of F such that F1 = (Q2y)G and (Q1x) occurs in G.
Because the formulas are in standard form, ≺q is irreflexive, antisymmet-
ric, and transitive. As an example take (∀y)(P (y)∧ (∃x)Q(x, y)); here we
have (∃x) ≺q (∀y). From now on we will call expressions of the form (Qx)
(Q being a quantifier and x a variable) quantifier expressions.

Reading the formulas from left to right (in the standard parenthesis no-
tation), we can speak of the “first” quantifier, or of the first ∃-quantifier. The

2.2 Transformation to Clause Form 13

idea of the following transformation is to eliminate the first ∃-quantifier and
to insert a new term for the (∃-quantified) variable.

Definition 2.2.1 (Definition of A∗). Let A be a closed PL-formula in
standard form and α(A) = A. Let A− be A after omission of the first existen-
tial quantifier expression (∃x) from A; if A is ∃-free then we define A− = A.

case a) A is ∃-free: A∗ = A− = A

case b) There is no ∀-quantifier expression (∀y) with (∃x) ≺q (∀y). Then
A∗ = [A−][xa], where a ∈ CS − CS(A) (a is a new constant symbol)

case c) Suppose that (∀y1), . . . , (∀yn) is the sequence of quantifier expressions
(Q) (from left to right) with (∃x) ≺q (Q) in A. Let f ∈ FSk \ FS(A) (f
is a new function symbol); we define A∗ = [A−][xf(y1,...,yk)].

Example 2.2.2.

A = ((∀x)(∃y)P (x, y) ∨ (∀u)(∃v)¬Q(u, v)) ∧ (∃z)¬P (z, z)
A∗ = ((∀x)P (x, f(x)) ∨ (∀u)(∃v)¬Q(u, v)) ∧ (∃z)¬P (z, z)

(A∗)∗ = ((∀x)P (x, f(x)) ∨ (∀u)¬Q(u, g(u))) ∧ (∃z)¬P (z, z)
((A∗)∗)∗ = ((∀x)P (x, f(x)) ∨ (∀u)¬Q(u, g(u))) ∧ ¬P (a, a)

We have seen in Example 2.2.2 that * can be iterated until the formula is
∃-free; the end formula is also closed and in standard form.

Definition 2.2.2 (Definition of transformation β). Let B0 = α(A),
Bk+1 = B∗

k for k ∈ IN and m = min{l|Bl = Bl+1} (m is the number of
∃-quantifiers in A). Then we define β(A) = Bm.

If A is a closed formula in standard form then β(A) is ∃-free (closed and in
standard form too). It remains to show that β is semantically admissible, i.e.,
β(A) ∼sat A for all α-normalized A.

Note that we do not require a prenex form for A in order to eliminate the
∃-quantifiers. Indeed the outcome is different when we first transform A into
prenex form B and then compute β(B). Let us take A from Example 2.2.2;
the possible prefix structures of a prenex normal form of A are:

∃∀∃∀∃, ∃∀∀∃∃, ∀∃∃∀∃, ∀∃∀∃∃, ∀∀∃∃∃.

It is easy to see that for all these prenex forms F the transformed formula
β(F) contains at least one two-place function symbol; on the other hand β(A),
for A in Example 2.2.2, contains one-place function symbols only. In [BL94]
it is proved that elimination of ∃-quantifiers without prior construction of
prenex forms is always better and can lead to dramatic speed-up of proof
complexity.

14 2. The Basis of the Resolution Calculus

The elimination of ∃-quantifiers via β is usually called “skolemization”
after the Norwegian logician Thoralf Skolem [Sko20].

The skolemization β essentially differs from the transformation α:
while α(A) ∼ A for all PL-formulasA, β(A) usually is not logically equivalent
to A. For example, for A = (∀x)(∃y)P (x, y) we get β(A) = (∀x)P (x, f(x));
clearly β(A) → A is valid, but A → β(A) is not. However, A ∼sat β(A). In
order to show the preservation of sat-equivalence under application of β we
first prove two technical lemmas:

Lemma 2.2.1. Let A be a predicate logic formula in standard form such
that A = α(A). Suppose that A contains a quantifier expression (Qx) such
that (Qx) is maximal with respect to ≺q ((Qx) is not in the scope of another
quantifier): We define A(Qx) to be A after omission of the expression (Qx).
Then A ∼ (Qx)A(Qx) (the quantifier can be shifted in front).

Proof. By induction on the number of connectives ∧,∨ in A (conn(A)).
conn(A) = 0: Because α(A) = A we have A = (Q1x1) . . . (Qnxn)F , where
F is a literal: (Q1x1) is the only maximal Q-expression with respect to ≺q.
Thus we have (Q1x1)A(Q1x1) = A and (trivially) A ∼ (Q1x1)A(Q1x1).

Induction hypothesis: Suppose the assertion holds for all A (fulfilling the
conditions above) such that conn(A) ≤ k.

Case conn(A) = k + 1:

a) A = (Qx)F . Again, (Qx) is the only Q-expression which is maximal. Thus
A = (Qx)A(Qx) and A ∼ (Qx)A(Qx).

b) A = (F1 ◦ F2) for ◦ ∈ {∧,∨}.
Let (Qx) be a quantifier which is maximal and suppose that (Qx) occurs
in A (the case (Qx) in B is completely analogous).

By definition of conn we have conn(F1) ≤ k. Clearly α(F1) = F1 and
(Qx) is maximal in F1. Thus we apply the induction hypothesis and get
F1 ∼ (Qx)F1(Qx)

. Clearly, also A ∼ ((Qx)F1(Qx)
◦ F2) holds. Because A is

in standard form, x does not occur in F2. By elementary quantifier shifting
rules for ∧,∨ we get:

((Qx)F1(Qx)
◦ F2) ∼ (Qx)(F1(Qx)

◦ F2)

But F2 = F2(Qx)
. So we obtain

(Qx)(F1(Qx)
◦ F2) = (Qx)(F1 ◦ F2)(Qx) = (Qx)A(Qx).

As a consequence we get A ∼ (Qx)A(Qx). 3

Remark: Note that in Lemma 2.2.1 it is not required that A is closed. Thus
by iterating the quantifier shifting (as indicated in Lemma 2.2.1) we get a
prenex normal form; however we are not interested in a transformation to
prenex normal form.

2.2 Transformation to Clause Form 15

In the next theorem we prove the semantical justification of the ∃- elimi-
nation. As already mentioned, we cannot hope to preserve logical equivalence.

Lemma 2.2.2. Let A be a closed formula in standard form such that α(A) =
A. Then A ∼sat A

∗.

Proof. a) A is ∃-free; by A = A∗ we have A ∼sat A
∗.

b) A contains existential quantifiers and the first ∃-quantifier expression (∃x)
is maximal in A. From Lemma 2.2.1 we conclude A ∼ (∃x)A−. By def-
inition of A∗ we have A∗ = (A−)[xa] for a ∈ CS \ CS(A). We prove
(∃x)A− ∼sat A

∗.

(⇐) b-1) If A∗ is satisfiable then (∃x)A− is satisfiable. This is trivial by
the validity of A−[xa]→ (∃x)A−.

(⇒) b-2) If (∃x)A− is satisfiable then A∗ is satisfiable. Suppose that Γ =
(D,Φ, I) is a model of (∃x)A−, i.e., vΓ ((∃x)A−) = T. By definition of
vΓ this is equivalent to: There exists an interpretation Γ1 = (D,Φ, I1)
such that Γ1 ∼x Γ and vΓ1(A

−) = T. Define Γ2 = (D,Φ1, I1) with
Φ1(a) = I1(x) and Φ1 = Φ otherwise. Then Γ2 is an interpretation of
A∗ and vΓ2(A

∗) = vΓ1(A
−) = T.

We conclude that Γ2 is a model of A∗ and that A∗ is satisfiable.

c) A contains ∃-quantifiers and the first ∃ -quantifier expression (∃x) is not
maximal.
Therefore there are quantifier expressions (∀y1), . . . , (∀yk) such that

k ≥ 1 and (∃x) ≺q (∀y1), . . . , (∃x) ≺q (∀yk).

Suppose also that (∀y1), . . . , (∀yk) occur in A in the order above (it is
easy to verify that the (∀yi) themselves can be ordered by ≺q.
Because A is in standard form, α(A) = A and (∀y1) is maximal in A, we
apply Lemma 2.2.1 and get A ∼ (∀y1)A(∀y1). But α(A(∀y1)) = A(∀y1) and
Lemma 2.2.1 can be applied again. An easy induction argument yields

A ∼ (∀y1) . . . (∀yk)A0 for A0 = A(∀y1) . . .(∀yk) .
But in A0 (∃x) is the first existential (and a maximal) quantifier ex-
pression. By A0 = α(A0) and by Lemma 2.2.1 we get A0 ∼ (∃x)A−

0 .
Defining
A1 = (∀y1) . . . (∀yk)(∃x)A−

0

we obtain A ∼ A1.

We show now that A1 ∼sat A
∗ holds.

c1) (⇐) A∗ satisfiable implies A1 satisfiable. First of all we note that
A∗ ∼ A∗

1; this is easy to realize, as the quantifiers (∀y1), . . . , (∀yk)
can be shifted in A like in A∗, and (∃x) is in the range of the same
quantifiers in A and A1. Moreover we also have that

(∀y1) . . . (∀yk)(A−
0)[xf(y1,...,yk)]→ (∀y1) . . . (∀yk)(∃x)(A−

0)

16 2. The Basis of the Resolution Calculus

is valid, i.e., A∗
1 → A1 is valid. Thus also A∗ → A1 is valid and the

satisfiability of A∗ implies that of A1.
c2) (⇒) A1 satisfiable implies A∗ satisfiable. Suppose that Γ = (D,Φ, I)

is a model of A1. By definition of vΓ we conclude: For all Γ1 such
that

Γ1 ∼ Γ mod y1, . . . , yk we obtain vΓ1 ((∃x)(A
−
0)) = T.

By the semantics of ∃-quantifiers we get:
For all Γ1, such that Γ1 ∼ Γ mod y1, . . . , yk, there exists a
Γ2 such that Γ2 ∼x Γ1 and vΓ2(A

−
0) = T.

Γ2 is of the form (D,Φ, I2).
That means for all Γ1 above there exist elements ξ(Γ1) in D such that
I2(x) = ξ(Γ1), particularly we get for every tuple (I1(y1), . . . , I1(yk))
elements ξ(Γ1). By the axiom of choice there exists a function ϕ :
Dk → D such that ϕ selects (exactly) one ξ(Γ1) for every tuple in
Dk.

Let A2 = A∗
1 for A∗

1 = (∀y1), . . . , (∀yk)A−
0 [xf(y1,...,yk)].

We define Γ3 = (D,Φ′, I) such that Φ′(f) = ϕ and Φ′ = Φ otherwise.
By definition of ϕ, Γ3 is a model of A2. Moreover A∗ ∼ A2 because
in A∗

1 and A the order relations of the quantifiers (∀y1), . . . , (∀yn)
and (∃x) are the same. Thus we can obtain A2 from A∗ by shifting
(∀y1), . . . , (∀yn) in front. Therefore Γ3 is also a model of A∗ and A∗

is satisfiable. 3

Theorem 2.2.1. Let A be a closed formula in standard form. Then β(A) is
∃-free and β(A) ∼sat A.

Proof. That β(A) is ∃-free is trivial by definition. Because A ∼ α(A), it is
sufficient to prove that α(A) ∼sat β(A). By definition of β
β(A) = Bm for B0 = α(A), Bk+1 = B∗

k for all k and m = min{k |
Bk+1 = Bk}. Thus it is sufficient to prove

α(A) ∼sat Bk for all k ∈ N.

We proceed by induction on k.

k = 0 : B0 = α(A) and thus α(A) ∼sat B0.

(IH) Suppose that α(A) ∼sat Bk holds.
Because A is closed, α(A) andBk are closed as well; moreover α(Bk) = Bk

(the normal form under α is not affected by quantifier eliminations). Thus
Lemma 2.2.2 is applicable and we obtain Bk ∼sat B

∗
k , or Bk ∼sat Bk+1. As

∼sat is an equivalence relation we get α(A) ∼sat Bk+1. 3

In the formula β(A) the only remaining quantifiers are universal. As con-
nectives we only have ∧,∨,¬, where ¬ only appears in front of atom formulas.
Because of this syntax type, the positions of the ∀-quantifiers in β(A) are ir-
relevant. Particularly β(A) is equivalent to a purely universal prefix form.

2.2 Transformation to Clause Form 17

Let (∀y1), . . . , (∀yn) be the quantifiers in β(A) and A1 = (∀y1) . . . (∀yn)M
for M = β(A)(∀y1)...(∀yn).

Then M is a quantifier free matrix defined by ∧,∨ over literals. Such a
form is called negation normal form. There are several automated theorem
proving methods working on negation normal forms, (e.g., path resolution
[MR85]), but for the classical resolution calculus, the matrix is required to
be in conjunctive normal form. Thus if β(A) is like above we define

γ(A) = (∀y1) . . . (∀yn)CNF(M)

where CNF(M) is a conjunctive normal form for M . There is a well-known
standard method to transform M into a logically equivalent conjunctive nor-
mal form. Let us assume that CNF(M) is such a form; we will discuss other
methods of constructing CNFs (under preservation of sat-equivalence only)
later.

Theorem 2.2.2. Let A be a closed predicate logic formula in standard form.
Then A ∼sat γ(A).

Proof. By Theorem 2.2.1 we know that A ∼sat β(A) and α(β(A)) = β(A),
β(A) closed, ∃-free, and in standard form. Let (∀y1) . . . (∀yk) be all universal
quantifiers in β(A) occurring in this order. We define

C0 = β(A),
Cm = (∀y1) . . . (∀ym)β(A)(∀y1)...(∀ym) for 1 ≤ m ≤ k.

Then Ck = (∀y1) . . . (∀yk)M for M = β(A)(∀y1)...(∀yk).

An easy induction argument yields Ck ∼ β(A) :
As α(β(A)(∀y1)...(∀ym)) = β(A)(∀y1)...(∀ym) Lemma 2.2.1 is applicable and we
get

β(A)(∀y1)...(∀ym) ∼ (∀ym+1)β(A)(∀y1)...(∀ym+1)

for m < k.
By prefixing the quantifiers (∀y1), . . . , (∀ym) we obtain Cm ∼ Cm+1.

By CNF(M) ∼M we get

β(A) ∼ (∀y1) . . . (∀yk)CNF(M) = γ(A).

Thus γ(A) is sat-equivalent to A. 3

As the quantifiers in β(A) and γ(A) contain no information (stored in
their position within the formula) we may omit them completely. Then we are
left with a quantifier-free conjunctive normal form. That means, for γ(A) =
(∀y1) . . . (∀yk)M we omit the quantifiers and get M . Formally M is still
a PL-formula, but as it is a conjunction of disjunctions we may delete all

18 2. The Basis of the Resolution Calculus

superfluous parentheses on the formula level of M . By this transformation
we obtain a form:

F : (L1
1 ∨ . . . ∨ L

1
k1

) ∧ . . . ∧ (Lm
1 ∨ . . . ∨ L

m
km

)

where the Li
j are all literals. We call such a form a conjunctive normal form.

Furthermore we may describe F as a list of lists and omit all ∧,∨ connec-
tives. But (for convenience only) we keep ∨ as a separation symbol between
literals and delete the “∧” only. Instead of F we get a set

C = {L1
1 ∨ . . . ∨ L

1
k1
, . . . , Lm

1 ∨ . . . ∨ L
m
km
}.

The forms Li
1 ∨ . . . ∨ L

i
ki

are called clauses.
C is called the clause form of A. Note that C is only unique with respect to a
specific transformation algorithm; by focusing on such an algorithm we may
indeed speak about “the” clause form of A.

In computing a clause form of A, the form γ(A) can be skipped; rather it
is sufficient to do the following:

1) compute α(A)
2) compute β(A)
3) omit all quantifiers, construct a CNF and, eventually, a clause form.

According to our concept of model (see Definition 2.1.8) the quantifier-
free CNF obtained in (3) is logically eqivalent to β(A) and thus satisfiability
equivalent to A. The clause form is, strictly speaking, not a logical formula
and requires some additional semantics (given in Definition 2.3.1).

Example 2.2.3 (Transformation to clause form).

A = ((∀x)(∃y)P (x, y) ∧ (∀u)(∀v)(P (u, v)→ R(u)))→ (∀z)R(z).

In order to prove the validity of A we transform ¬A to clause form.

α(¬A) = (∀x)(∃y)P (x, y) ∧ (∀u)(∀v)(¬P (u, v) ∨R(u)) ∧ (∃z)¬R(z),
β(¬A) = (∀x)P (x, f(x)) ∧ (∀u)(∀v)(¬P (u, v) ∨R(u)) ∧ ¬R(a),
CNF : P (x, f(x)) ∧ (¬P (u, v) ∨R(u)) ∧ ¬R(a),

clause form: {P (x, f(x)),¬P (u, v) ∨R(u),¬R(a)}.

Definition 2.2.3 (clause).

a) 2 is a clause (the empty clause).
b) Literals are clauses.
c) If C,D are clauses then C ∨D is a clause.

For clauses we define the identities A ∨ 2 ∨B = A ∨B, 2 ∨ 2 = 2.

There are different definitions of the clause concept in literature. Clauses

2.2 Transformation to Clause Form 19

may be defined as sets [Rob65], [CL73], [Lov78] or as sequents [Llo87]. In
J.A. Robinson’s book [Rob79] the so-called Quad-notation is used, which is
essentially sequential and separates positive from negative atoms (no negation
sign is required); it is based on a more general concept of clause (there are
existential and universal clauses). Our form (defined in [BL92]) is close to the
sequent notation and facilitates certain types of logical analysis.
¬P (x) ∨Q(x, y) ∨R(x) can thus be represented as

{¬P (x), Q(x, y), R(x)} or

P (x) ⊢ Q(x, y), R(x).

In the sequent notation we translate a clause of the form

¬A1 ∨ . . . ∨ ¬An ∨B1 ∨ . . . ∨Bm

for atoms A1, . . . , An, . . . , B1, . . . , Bm into

A1, . . . , An ⊢ B1, . . . , Bm

where ⊢ is a metasymbol not occurring in the syntax of predicate logic.
The set notation corresponds to a normal form under idempotency, com-

mutativity, and associativity of ∨. Sometimes (but not always) it may be
practical to work with such normal forms. In the sequent notation it be-
comes transparent that a clause is a “logic-free” form (“to be negated” can
be represented by standing in the antecedent of the sequent).

Definition 2.2.4 (Horn clause, Krom clause). A Horn clause is a
clause containing at most one positive literal. A Krom clause is a clause
with at most two literals.

Horn clauses can be represented as P ∨¬Q1 ∨ . . . ∨¬Qn or – as usual in the
theory of logic programming [Llo87] – P ← Q1, . . . , Qn.

From the point of view of computational complexity, the transformation of
A into α(A) and β(A) is “harmless”, i.e., performable in polynomial time. But
if M denotes the quantifier-free rest of β(A), the transformation to CNF(M)
may be exponential. But we do not need a conjunctive normal form that is
logically equivalent; any sat-equivalent CNF will do the job as well.

We just mention such a transformation, which is quite standard in the
theory of NP-complexity [SS76]. Suppose we have a formula of the form

F : (∀y1) . . . (∀ym)M

where M is in negation normal form. Iterate the following procedure: Select
a subformula of M having the form

A ∨ (B ∧C) or (B ∧ C) ∨A

20 2. The Basis of the Resolution Calculus

(if there is no such formula then M is already in CNF).
Replace A ∨ (B ∧ C) by
D : (A ∨ P (y1, . . . , ym)) ∧ (B ∨ ¬P (y1, . . . , ym)) ∧ (C ∨ ¬P (y1, . . . , ym)),

and (B ∧C) ∨A by
D : (B ∨ ¬P (y1, . . . , ym)) ∧ (C ∨ ¬P (y1, . . . , ym)) ∧ (A ∨ P (y1, . . . , ym)),

where P is a new m-place predicate symbol not occurring in M . Clearly the
cases symmetric; for the sake of simplicity, we henceforth focus on the form
A ∨ (B ∧ C).

Let T (M) be the formula obtained from M by substituting D for A∨(B∨
C) in M . Because the formula D → (A ∨ (B ∧ C)) is valid and α(M) = M
we obtain the validity of T (M)→M . It is straightforward to show that

(∀y1) . . . (∀ym)T (M)→ (∀y1) . . . (∀ym)M

is valid too. Let T (F) = (∀y1) . . . (∀ym)T (M). To obtain F ∼sat T (F) it
remains to show that the satisfiability of F implies the satisfiability of T (F).
By iterating the transformation T we eventually obtain a formula in CNF
that is sat-equivalent to F .

Below we give a proof sketch for F ∼sat T (F) (an exact proof is left as
an exercise).

Suppose that we have an interpretation Γ of F such that vΓ (F) = T and
Γ = (D, Φ, J); for every I : V → D we obtain interpretations ΓI = (D, Φ, I).
Because F is a closed formula, vΓ (F) = T iff for all I vΓI

(M) = T.
For every such ΓI we define an interpretation ∆I of T (M) such that

vΓI
(M) = v∆I

(T (M)).
Thus let I be an arbitrary environment. Then there are elements d1, . . . , dm ∈
D such that I(y1) = d1, . . . , I(ym) = dm. In defining∆I we distinguish several
cases:

case a) vΓI
((A ∨ (B ∧ C)) = F .

We extend Φ (of ΓI) to Φ′ by Φ′(P)(d1, . . . , dm) = F and define
∆I = (D, Φ′, I).
Then v∆I

(A ∨ P (y1, . . . yn)) = or(vΓI
(A), Φ′(P)(d1, . . . , dm)) =

or(F,F) = F.
By definition of D we conclude v∆I

(D) = F.
case b)

case b1) vΓI
(A) = T, vΓI

(B ∧ C)) = F.
In this case we define Φ′(P)(d1, . . . , dm) = F. Then

v∆I
(A ∨ P (y1, . . . , ym)) = or(vΓI

(A), Φ′(P)(d1, . . . dm)) = T.

Moreover

v∆I
(B ∨¬P (y1, . . . , ym)) = or((vΓI

(B), not(Φ′(P)(d1, . . . dm))) = T

and (for similar reasons) v∆I
(C ∨ ¬P (y1, . . . , ym)) = T.

2.2 Transformation to Clause Form 21

case b2) vΓI
(B ∧ C) = T.

Here we set Φ′(P)(d1, . . . , dm) = T.
As above it is easy to see that v∆I

(D) = T.

Note that the definition of Φ′(P) does not depend on I (I only defines
subcases for the definition of Φ′(P)). As the cases (a), (b1), and (b2) exclude
each other, Φ′ is consistently defined. Thus there exist interpretations ∆I =
(D, Φ′, I) such that

vΓI
(A ∨B ∧ C)) = v∆I

(D) (for all I : D → V).

All other subformulas of M remain unchanged under T and do not contain
the predicate symbol P .

Therefore vΓI
(M) = v∆I

(T (M)) for all I of type V → D. Because
vΓI

(M) = T for all I we conclude v∆I
(T (M)) = T for all I. Therefore

(D, Φ′, J) (for some arbitrary J : V → D) is a model of T (F) and we obtain

F ∼sat T (F).

While, by the law of distributivity, we get (A ∨ B) ∧ (A ∨ C) where the
occurrence of A is doubled, the increase of T (M) versus M is of constant
length only; this is the reason for the polynomial time complexity of the
transformation via T .

There exists another intuitively much more appealing tranformation into
CNF, namely the structural transformation [Ede92]. As its analysis is made
easier by resolution we delay its presentation and put it into the more general
context of extension methods in the final chapter of this book.

Frequently it is the case that conjunctive normal forms are there at once,
i.e., β(A) without quantifiers is already in CNF. The following example illus-
trates that this is a quite typical case.

Example 2.2.4. Let F be a mathematical theorem of the form

F1 ∧ . . . ∧ Fn → CON

where all Fi are of the form (Q1x1) . . . (Qmxm)(A1∧ . . .∧Ak → B1∨ . . .∨Bl)
where Ai, Bj are atomic formulas. Suppose that the conclusion CON is of the
same form. Transforming ¬F into clause form we obtain

α(¬F) = F ′
1 ∧ . . . ∧ F

′
i ∧ . . . ∧ F

′
n ∧ α(¬CON).

Here the F ′
i are of the form

(Q1x1) . . . (Qmxm)(¬A1 ∨ . . . ∨ ¬Ak ∨B1 ∨ . . . ∨Bl).

Moreover,

22 2. The Basis of the Resolution Calculus

α(¬CON) = (Qd
1x1) . . . (Q

d
mxm)(P1 ∧ . . . ∧ Pl ∧ ¬Q1 ∧ . . . ∧ ¬Qk)

(for CON = (Q1x1) . . . (Qmxm)(P1 ∧ . . . ∧ Pl → Q1 ∨ . . . ∨Qk)).
Here the Qd

i are the dual quantifiers defined as ∀d = ∃, ∃d = ∀.

β(¬F) = A′′
1 ∧ . . . A

′′
i ∧ . . . ∧A

′′
n ∧ P

′
1 ∧ . . . ∧ P

′
l ∧ ¬Q

′
1 ∧ . . . ∧ ¬Q

′
k

without quantifiers where A′′
i is of the form

¬A′
1 ∨ . . . ∨ ¬A

′
k ∨B

′
1 ∨ . . . ∨B

′
l .

Thus the axioms Ai are transformed into clauses A′′
i directly, while ¬CON is

transformed into a set of clauses. The final clause form is thus:

C = {A′′
1 , . . . , A

′′
n, P

′
1, . . . , P

′
l ,¬Q

′
1, . . . ,¬Q

′
k}.

We have seen that the CNF can be obtained directly from β(¬F).

Exercises

Background on Exercises 2.2.1, 2.2.2:

Let T2, . . . , T6 be the formula transformations defined in the first step of the
normal form transformation, i.e.,

T2 : ¬(F1 ∧ F2)⇒ (¬F1 ∨ ¬F2)
T3 : ¬(F1 ∨ F2)⇒ (¬F1 ∧ ¬F2)
T4 : ¬¬F ⇒ F
T5 : ¬(∀x)F ⇒ (∃x)¬F
T6 : ¬(∃x)F ⇒ (∀x)¬F

Let F be a PL-formula not containing “→”
We define the depth d of F recursively by:

d(F) = 0 if F is an atom,
d(¬F) = 1 + d(F),

d((∀x)F) = d((∃x)F) = 1 + d(F) and
d((F1 ◦ F2)) = 1 +max{d(F1), d(F2)} for ◦ ∈ {∧,∨}.

We say that F is irreducible with respect to {T2, . . . , T6} if there exists no G
such that F ⇒ G.

Exercise 2.2.1. Show that ⇒ is terminating (on PL-formulas without →),
i.e., there exists no infinite sequence (Fn) ∈ N such that F0 ⇒ . . . ⇒ Fn ⇒
Fn+1 . . . (Hint: use induction on the depth d).

Exercise 2.2.2. Show that ⇒ defines a unique normal form, i.e, let ⇒∗ be
the reflexive, transitive closure of⇒ and F ⇒∗ G, F ⇒∗ H such that G and
H are both irreducible and show that G = H .

Exercise 2.2.3. Show that skolemization cannot be “””parallelized”, i.e.,
define a formula A such that A = A1 ∧A2 and β(A) is not sat-equivalent to
β(A1) ∧ β(A2).

2.3 Term Models and Herbrand’s Theorem 23

2.3 Term Models and Herbrand’s Theorem

In this section we present the model theoretical framework necessary to prove
the completeness of the resolution calculus. In Section 2.2 we have shown that
the validity problem for a closed formula A (in standard form) can be reduced
first to the satisfiability problem for ¬A and, eventually, to the satisfiability
problem for a set of clauses C.

In contrast to propositional logic we cannot prove unsatisfiability of C by
checking all interpretations, because there are infinitely many (the set of all
interpretations over a fixed, infinite, countable domain is not even countable).
But we will show first that we can restrict the type of interpretations. Then
we will define an algorithmic method to show unsatisfiability, based on tree
structures for models. Finally, Herbrand’s theorem will give us a propositional
criterion for unsatisfiability of clause sets in first-order logic.

In clause forms quantifiers are omitted because their position does not
contain any semantical information. However, we can interpret clauses as
closed formulas. Formally we define PL-formulas corresponding to sets of
clauses and carry over the semantics.

Definition 2.3.1. Let C = L1 ∨ . . . ∨ Ln be a clause and V (C) =
{x1, . . . , xk}. We define the PL-formula F (C) = (∀x1) . . . (∀xk)C′ where
C′ = (. . . ((L1 ∨ L2) ∨ L3) . . . ∨ Ln); for the uniqueness of F (C) we may
assume that the variables x1, . . . , xk (first) occur in this order from left to
right in C.

If C = {C1, . . . , Cm} we extend the formula operator F to C via

F (C) =
∧m

i=1 F (Ci)

(for uniqueness we may order C lexicographically and then define the conjunc-
tion). That means a (finite) set of clauses C is interpreted as a conjunction
of closed disjunctions of literals.

The semantics for sets of clauses is defined via their PL-representative F () :
Γ is an interpretation of a set of clauses C iff Γ is an interpretation of F (C).
For the evaluation function vΓ on sets of clauses we define:

vΓ (C) = vΓ (F (C)).

By definition of vΓ and F (C) we get:

1. vΓ (C) = T iff for all C ∈ C : vΓ ({C}) = T
2. Let C = L1 ∨ . . . ∨ Lk be a clause. vΓ ({C}) = T iff for all Γ ′ such that
Γ ′ ∼ Γ mod V (C) or(v′Γ (L1), . . . , v

′
Γ (Lk)) = T

(or(a1, . . . , ak) is an abbreviation for or(. . . (or(a1, a2), . . . , ak))). Intuitively
1), 2) say: a set of clauses is true in Γ iff all clauses are true in Γ . A clause
is true in Γ iff for all V (C)-equivalent interpretations at least one literal in
C is true.

24 2. The Basis of the Resolution Calculus

To investigate satisfiability we may restrict our concept of model. Her-
brand models, also called term models, have the characteristic property
that their domains only consist of terms; functions are interpreted as “term
builders” over the term universe.

Definition 2.3.2 (Herbrand universe). Let C be a (finite) set of clauses.
We define

H0 =

{

CS(C) if CS(C) 6= ∅
{a} if CS(C) = ∅, where a is an arbitrary constant symbol.

For i ≥ 1 we define recursively

Hi = Hi−1 ∪ {f(t1, . . . , tn) | f ∈ FSn(C); t1, . . . , tn ∈ Hi−1; n ∈ IN}.

Let H(C) =
⋃∞

i=0Hi. H(C) is called the Herbrand universe of C.

In Definition 2.3.2, H(C) is the set of all ground terms definable over the
signature of C and Hi is the subset of terms having term depth ≤ i.

Example 2.3.1. C = {¬P (x) ∨ P (f(x)), P (h(x, x)), ¬P (h(u, v)) ∨ ¬Q(v)}

H0 = {a}, as CS(C) = ∅.
H1 = {a, f(a), h(a, a)}
...
Hi+1 = {f(t) | t ∈ Hi} ∪ {h(s, t) | s, t ∈ Hi} for all i

Obviously, H(C) is infinite iff there are function symbols in C. The set of all
ground atoms definable over H(C) is called the atom set of C. Formally:

Definition 2.3.3 (atom set). Let C be a set of clauses. The set

AS(C) = {P (t1, . . . , tn) | P ∈ PSn(C), ti ∈ H(C), n ∈ IN}

is called the atom set of C. The corresponding set of literals is

LS(C) = AS(C) ∪ {¬A|A ∈ AS(C)}.

In the last example we get AS(C) = {P (t) | t ∈ H(C)} ∪ {Q(t) | t ∈ H(C)}.
AS(C) is finite iff H(C) is finite.

Definition 2.3.4 (ground instance). Let C be a clause in C and λ be a
ground substitution with rg(λ) ⊆ H(C) and V (C) ⊆ dom(λ). Then Cλ is
called a ground instance of C (in C).

Ground instances are obtained by ground substitutions over the signature of
C which substitute all variables in a clause.

2.3 Term Models and Herbrand’s Theorem 25

Example 2.3.2. C = {P (x) ∨ P (f(x)), ¬P (a), ¬P (f(a))}.
P (a)∨P (f(a)) and P (f(a))∨P (f(f(a))) both are ground instances of P (x)∨
P (f(x)) in C. P (b) ∨ P (f(b)) is a variable-free instance, but not a ground
instance in C.

Definition 2.3.5 (Herbrand interpretation). Let C be a finite set of
clauses and Γ = (H(C), Φ, I) be an interpretation of C. Γ is called an H-
interpretation (or Herbrand interpretation) if the following conditions are
fulfilled:

1) Φ(a) = a for all a ∈ CS(C)
2) If f ∈ FSn(C) then

Φ(f)(h1, . . . , hn) = f(h1, . . . , hn) for all h1, . . . , hn ∈ H(C).

Note that an H-interpretation of C is not just an interpretation of C with do-
main H(C). It is of central importance that the constants and function sym-
bols get a fixed interpretation. Constant symbols are interpreted by them-
selves and function symbols as term builders over the universe H(C). The
interpretation of predicate symbols is not restricted, thus we still have a un-
countable set of different H-interpretations for infinite H(C).

Example 2.3.3.

C = {¬P (x) ∨ P (f(x)), P (a), ¬P (f(z)) ∨Q(u), ¬Q(g(y, y))}.
H(C) = {a, f(a), g(a, a), f(f(a)), . . .}.

Let Γ be an H-interpretation of C. Then Φ(a), Φ(f), and Φ(g) have the
following interpretations:

Φ(a) = a,

Φ(f) = {(t, f(t))|t ∈ H(C)},

Φ(g) = {(s, t, g(s, t))|s, t ∈ H(C)}.

We are only free to define Φ(P) and Φ(Q); to this purpose we let

Φ(P)(h) = T for all h ∈ H(C)
Φ(Q)(h1, h2)) = F for all h1, h2 ∈ H(C)

It is easy to realize that vΓ (¬P (x) ∨ P (f(x))) = T and vΓ (P (a)) = T, but
vΓ (¬P (f(z)) ∨ Q(u)) = F. Thus Γ falsifies C (as does any interpretation,
because C is unsatisfiable).

H-interpretations Γ are characterized by the interpretation of the predicate
symbols; thus we can represent Γ by the set

M = {P (t1, . . . , tar(P)) | Φ(P)(t1, . . . , tar(P)) = T, ti ∈ H(C)},

26 2. The Basis of the Resolution Calculus

where ar(P) denotes the arity of P .
In the example above we obtain M = {P (a), P (f(a)), P (g(a, a)), . . .}. Be-
cause

vΓ (P (t1, . . . , tn)) = Φ(P)(t1, . . . , tn)

for H-interpretations, M is the subset of AS(C) which is true in Γ . Be-
cause clauses are always interpreted as closed formulas, the environment I in
(H(C), Φ, I) is without importance.

The importance of H-interpretations is based on the fact that satisfiability
in H-interpretations coincides with the concept of unrestricted satisfiability;
otherwise expressed, if we can prove that a set of clauses does not have H-
models then we know it is unsatisfiable.

We show this result by a construction principle which assigns an H-
model ΓH to every model Γ . The first step consists in defining a mapping
ω : H(C) → D which defines a correspondence between the elements in the
domain D and H(C).

Definition 2.3.6 (mapping ω). Let Γ = (D,Φ, I) be an arbitrary inter-
pretation of C.

1. For all a ∈ CS(C) we define ω(a) = Φ(a).
If CS(C) = ∅ and H0(C) = {a} then we define ω(a) = α for some element
α ∈ D.

2. For f(t1, . . . , tn) ∈ H(C) we define

ω(f(t1, . . . , tn)) = Φ(f)(ω(t1), . . . , ω(tn)).

Note that ω coincides with uΓ on ground terms.

Example 2.3.4. C = {P (x, y) ∨ ¬Q(y, x), ¬P (u, v) ∨ P (f(u), f(v))}.

Let Γ = (D,Φ, I) be the following model:

D = IN,
Φ(f) = {(n, n2) | n ∈ IN}, Φ(P) =′<′, Φ(Q) =′>′ .
H(C) = {a, f(a), f(f(a)), . . .}.

Definition of ω:

As a /∈ CS(C) we set ω(a) = 2 (arbitrarily).

ω(f(a)) = Φ(f)(ω(a)) = ω(a)2 = 22

...

ω(f (n)(a)) = Φ(f)(ω(f (n−1)(a))) = ω(f (n−1)(a))2.

2.3 Term Models and Herbrand’s Theorem 27

By solving the recursion we obtain ω(f (n)(a)) = 22n

. By ω we can “translate”
the predicates Φ(P), Φ(Q) over D to predicates ΦH(P), ΦH(Q) over H(C):

ΦH(P)(a, a) = Φ(P)(ω(a), ω(a)) = Φ(P)(2, 2) = (2 < 2) = F
ΦH(Q)(a, a) = Φ(Q)(ω(a), ω(a)) = (2 > 2) = F

ΦH(P)(a, f(a)) = Φ(P)(ω(a), ω(f(a))) = (2 < 22) = T
etc.

By this definition of ΦH on PS(C) we obtain an H-interpretation ΓH on
C such that:

vΓH
(P (s, t)) = Φ(P)(ω(s), ω(t)),

vΓH
(Q(s, t)) = Φ(Q)(ω(s), ω(t)).

The definition of ΓH in the example above motivates the following definition:

Definition 2.3.7. Let Γ = (D,Φ, I) be an interpretation of a set of clauses
C; then ΓH = (H(C), ΦH , J) (for arbitrary J : V → H(C)) is called a corre-
sponding H-interpretation to Γ if:

a) ΓH is an H-interpretation
b) ΦH(P)(t1, . . . , tn(P)) = Φ(P)(ω(t1), . . . , ω(tn(P))) for all P ∈ PS(C) and

all t1, . . . tn(P) ∈ H(C).

We are now ready to state the central results about H-interpretations.

Theorem 2.3.1. A set of clauses is satisfiable iff it has an H-model.

Proof. Let C be a set of clauses.

⇐: trivial, as every H-model is a model.

⇒: We prove the contraposition: If C does not have an H-model then C is
unsatisfiable.

Thus we suppose that all H-interpretations falsify C. Then for each ΓH ,
such that ΓH is the corresponding H-interpretation to an interpretation Γ ,
vΓH

(C) = F. Therefore the proof of “⇒” can be reduced to a proof of the
following statement:

(*) If ΓH is the corresponding H-interpretation to Γ and vΓH
(C) = F then

also vΓ (C) = F.

As there is an interpretation ΓH for every interpretation Γ of C, statement
(*) implies that C is unsatisfiable. It remains to prove (*):

Suppose that vΓH
(C) = F for some interpretation Γ of C. By the semantics

of sets of clauses there exists a C ∈ C such that vΓH
({C}) = F.

But {C} is interpreted as closed universal disjunction; so for C = L1 ∨
. . . ∨ Lk we get:

28 2. The Basis of the Resolution Calculus

There is a Γ ′
H such that Γ ′

H ∼ ΓH mod V (C) such that for all
i = 1, . . . , k :
vΓ ′

H
(Li) = F.

Let L ∈ {L1, . . . , Lk}. Then there is a P ∈ PS(C) and terms t1, . . . , tn such
that L = P (t1, . . . , tn) or L = ¬P (t1, . . . , tn). In order to prove vΓ ′(C) = F
for a Γ ′ ∼ Γ mod V (C) – thus vΓ ({C}) = F – it is enough to show:
There is a Γ ′ such that Γ ′ ∼ Γ mod V (C) and

vΓ ′

H
(P (t1, . . . , tn)) = vΓ ′(P (t1, . . . , tn)).

By direct inspection of vΓ ′

H
(P (t1, . . . , tn)) we find:

vΓ ′

H
(P (t1, . . . , tn)) = ΦH(P)(uΓ ′

H
(t1), . . . , uΓ ′

H
(tn))

where u() is the semantic function for terms, which – in this case – is of the
type:

uΓ ′

H
: T (C)→ H(C).

Every term is interpreted as a ground instance of itself; consequently there
exists a ground substitution σ (σ = σ(I ′H)) such that uΓ ′

H
(ti) = tiσ for

i = 1, . . . , n. We obtain vΓ ′

H
(P (t1, . . . , tn)) = ΦH(P)(t1σ, . . . , tnσ).

From Definition 2.3.7 we get:

ΦH(P)(t1σ, . . . , tnσ) = Φ(P)(ω(t1σ), . . . , ω(tnσ)).

Note that Γ ′
H corresponds to Γ ′, because it corresponds to Γ , for every

Γ ′ such that Γ ′ ∼ Γ mod V (C): From Lemma 2.3.1 (to be proved below) we
conclude that there exists a Γ ′ such that Γ ′ ∼ Γ mod V (C) and

ω(tiσ) = uΓ ′(ti) for i = 1, . . . , n.

Therefore we obtain

ΦH(P)(t1σ, . . . , tnσ) = Φ(P)(u′Γ (t1), . . . , u
′
Γ (tn)).

and
v′ΓH

(P (t1, . . . , tn)) = v′Γ (P (t1, . . . tn)).

We conclude v′ΓH
(C) = v′Γ (C) = F and thus vΓ (C) = F. 3

Lemma 2.3.1. Let Γ = (D,Φ, I) be an interpretation of a set of clauses C
and ΓH = (H(C), ΦH , J) a corresponding H-interpretation. Furthermore let σ
be a ground substitution over the signature of C. Then there exists a Γ ′ such
that Γ ′ ∼ Γ mod V (C) and uΓ ′(t) = ω(tσ) for all t ∈ T (C) with tσ ∈ H(C).

Proof. Let σ = {y1 ← h1, . . . , ym ← hm}.
We define an environment I ′ by: I ′(y1) = ω(h1), . . . , I

′(ym) = ω(hm). Now
let t be a term over C such that V (t) ⊆ {y1, . . . , ym}. We show uΓ ′(t) = ω(tσ)
by induction on τ(t) (term depth). τ(t) = 0:

2.3 Term Models and Herbrand’s Theorem 29

a) t = a for a ∈ CS(C):
ω(aσ) = ω(a) = Φ(a) = uΓ ′(a) by definition of ω and uΓ ′ .

b) t ∈ {y1, . . . , ym}:
ω(yiσ) = ω(hi) = I ′(yi) = uΓ ′(yi) by definition of I ′.

(IH): Suppose that u′Γ (t) = ω(tσ) for t with τ(t) ≤ n.
Let t be a term over C such that V (t) ⊆ {y1, . . . , ym} and τ(t) = n + 1.
Then there exists a function symbol f and terms t1, . . . , tk such that t =
f(t1, . . . , tk) and τ(ti) ≤ n for all i = 1, . . . , k. By definition of ω and by (IH)
we get:
ω(f(t1, . . . , tk)σ) = ω(f(t1σ, . . . , tkσ)) = Φ′(f)(ω(t1σ), . . . , ω(tkσ)) =
Φ(f)(uΓ ′ (t1), . . . , uΓ ′(tn)) = uΓ ′(f(t1, . . . , tn)). 3

Theorem 2.3.1 simplifies proofs of unsatisfiablility of sets of clauses. Since,
in Herbrand interpretations, function symbols and constant symbols have a
fixed semantics, one may limit attention to the interpretation of predicate
symbols.

Example 2.3.5. Let C = {C1, C2, C3} for

C1 = P (x, f(a)), C2 = ¬P (u, v) ∨Q(f(v)) and C3 = ¬Q(z).

Let Γ be an H-interpretation of C. Γ is characterized by the interpreta-
tion of predicate symbols and vΓ (P (t1, . . . , tn)) = Φ(P)(t1, . . . , tn) for ground
atoms P (t1, . . . , tn). After Example 2.3.3 we mentioned that Γ can be repre-
sented by MΓ = {A | A ∈ AS(C), vΓ (A) = T}. We assume vΓ (C) = T and
derive a contradiction. By vΓ (C) = T and by definition of vΓ we obtain:

Q(t) /∈ MΓ for all t ∈ H(C) (otherwise vΓ ({C3}) = F).

But vΓ (C) = T and Q(t) /∈ MΓ for all t ∈ H(C) implies P (s, t) /∈ MΓ for all
s, t ∈ H(C). For suppose P (s, t) ∈MΓ for some terms s, t ∈ H(C);
then vΓ ({¬P (u, v) ∨Q(f(v))}) = F, as vΓ (¬P (s, t) ∨Q(f(t))) = F.
But vΓ ({C2}) = F implies vΓ (C) = F. But as P (s, t) /∈ MΓ for all s, t ∈
H(C), we get

vΓ ({P (x, f(a))}) = F (vΓ (P (a, f(a))) = F) and vΓ ({C1}) = F.

But vΓ ({C1}) = F implies vΓ (C) = F. We obtain a contradiction.

The above argument yields a semantical counterpart of a resolution-based
refutation. There the same problem reduction takes place in the object lan-
guage (by cutting out literals). The technique of excluding interpretations
from being models can be systematized and represented in the form of so-
called semantic trees. Before developing the semantic tree concept we make
some basic observations on H-interpretations:

Let Γ = (H(C), Φ, I) be an H-interpretation of C. We know that vΓ (A) for
atoms A ∈ AS(C) determines the value of vΓ (C). Because C represents a
conjunctive normal form Γ falsifies C iff there exists a C in C such that Γ

30 2. The Basis of the Resolution Calculus

falsifies C, i.e., vΓ ({C}) = F. Thus let C = L1 ∨ . . . ∨ Lk; in order that
vΓ ({C}) = F, there must exist a ground instance C′ = L′

1 ∨ . . . ∨ L
′
k such

that vΓ (L′
1 ∨ . . . ∨ L

′
k) = F. Because C′ is a disjunction we have:

L′
i is negative implies vΓ (L′d

i) = T, L′
i is positive implies vΓ (L′

i) = F.

Thus we obtain vΓ (Li) = F for Li ∈ AS(C), vΓ (Ld
i) = T for Ld

i ∈ AS(C).
We conclude that a set of clauses C is unsatisfiable iff for every H-

interpretation Γ there exists a ground instance C′ of a clause C in C having
the following property: If L is a positive literal in C′ then vΓ (L) = F. If L is
a negative literal in C′ then vΓ (Ld) = T.

Example 2.3.6.

C = {C1, C2, C3, C4},
C1 = P (x) ∨Q(f(a)), C2 = ¬P (y) ∨Q(y),
C3 = P (f(v)) ∨ ¬Q(w), C4 = ¬P (z) ∨ ¬Q(f(a)).

H(C) = {a, f(a), f(f(a)), . . .}.

We show that C is unsatisfiable in the following way: For every H-
interpretation Γ there exists a ground instance of a clause which is fal-
sified by Γ . Thus let Γ be an arbitrary H-interpretation. We must have
vΓ (P (f(a))) = T or vΓ (P (f(a))) = F.

case a) vΓ (P (f(a))) = T
a1) vΓ (Q(f(a))) = T. In this case Γ falsifies C4λ for λ = {z ← f(a)}.
a2) vΓ (Q(f(a))) = F. Γ falsifies C2λ = ¬P (f(a)) ∨Q(f(a))

for λ = {y ← f(a)}.
From case a) we conclude that every H-interpretation Γ with
vΓ (P (f(a))) = T falsifies C.

case b) vΓ (P (f(a))) = F
b1) vΓ (Q(f(a))) = T. Let C3λ = P (f(a)) ∨ ¬Q(f(a))

for λ = {v ← a,w← f(a)}. Then Γ falsifies C3λ.
b2) vΓ (Q(f(a))) = F. Γ falsifies C1λ = P (f(a)) ∨Q(f(a))

for λ = {x← f(a)}.

It follows from case b) that every interpretation Γ with vΓ (P (f(a))) = F
falsifies C. As either case a) or case b) must hold we conclude that every
H-interpretation falsifies C, and – by Theorem 2.3.2 – that C is unsatisfiable.

The various alternatives in the above argument can be efficiently accomo-
dated in a tree (see Figure 2.1).

In Figure 2.1 we use the notation “¬A” to indicate vΓ (A) = F for A ∈ AS(C).
A node crossed by “×” indicates the falsification of a clause in C; the falsified
clause is written below the node. Nodes of “×”-type will be called failure
nodes.

2.3 Term Models and Herbrand’s Theorem 31

�
�
�
��

@
@
@
@@

�
�
�
��

@
@
@
@@

��
��
��
��
�

HH
HH

HH
HH

H

C4 C2 C3 C1

× × × ×

P (f(a)) ¬P (f(a))

Q(f(a)) ¬Q(f(a)) Q(f(a)) ¬Q(f(a))

Fig. 2.1. A semantic tree

We first consider semantic trees representing (Herbrand) interpretations
and focus on the relations to the falsification of sets of clauses later.

For a formal definition of the trees, we introduce the following notation:
Let T be a tree; then NOD(T) denotes the set of nodes in T , E(T) the set
of edges in T and ξ(T) : E(T)→ X a labeling function for edges. ROOT(T)
denotes the root of T .

The triple (NOD(T), E(T), ξ(T)) is called a labeled tree.

Definition 2.3.8 (semantic tree). A labeled tree T is called a semantic
tree for a set of clauses C if the following conditions are fulfilled:

1. ξ(T) : E(T)→ LS(C).
2. T is a binary tree (all nodes have degree two or zero).
3. If e1, e2 are the edges starting from a common node then ξ(T)(e1) =

ξ(T)(ed
2).

4. Let N be a node in T and π be the (unique) path connecting N with
the root of T and let γN = {L|(∃e ∈ E(T)) (e is an edge on π and
ξ(T)(e) = L)}; then γN does not contain complementary literals (i.e.,
γN – the set of all literals appearing on π – is satisfiable).

Example 2.3.7. C = {P (x, y), ¬P ((z, f(z)) ∨Q(a), ¬Q(w)}.
The tree in Figure 2.2 is a semantic tree, the trees in Figures 2.3 and 2.4

are not (in Figure 2.3 condition 3 is violated, in Figure 2.4 condition 4).

Every path on a semantic tree represents a (partial) truth assignment for
AS(C). Particularly γN = {L1, . . . , Ln} represents all interpretations Γ with
vΓ (Li) = T for i = 1, . . . , n. The trees in Figures 2.2–2.4 are finite and thus
cannot represent full (single) interpretations of AS(C) (in these examples
AS(C) is infinite because H(C) is infinite). To represent specific interpreta-
tions we also need infinite paths.

Definition 2.3.9. A path in a tree T is called maximal if it starts in the
root ROOT(T) and ends in a leaf node (note that maximal paths are always
finite).

32 2. The Basis of the Resolution Calculus

b

b

b

b b

�
�
�
��

@
@
@
@@

�
�
�
��

@
@
@
@@

P (a, a) ¬P (a, a)

Q(a) ¬Q(a)

Fig. 2.2. A semantic tree

b

b

b

b b

�
�
�
��

@
@
@
@@

�
�
�
��

@
@
@
@@

P (a, a) ¬P (a, a)

Q(a) ¬Q(f(a))

Fig. 2.3. Not a semantic tree – condition 3 violated

b b b b

b

b

b

�
�
�
��

@
@
@
@@

�
�
�
��

@
@
@
@@

��
��
��
��
�

HH
HH

HH
HH

H

P (f(a)) ¬P (f(a))

Q(f(a)) ¬Q(f(a)) P (f(a)) ¬P (f(a))

Fig. 2.4. Not a semantic tree – condition 4 violated

Definition 2.3.10 (branch). A path π in a tree T is called a branch if the
following properties are fulfilled:

1. π starts in ROOT(T) and
2. π is infinite or maximal.

We extend the interpretations defined by nodes to interpretations defined by
branches:
If a branch π is finite then we define γ(π) = γN for the leaf node N of π; if

2.3 Term Models and Herbrand’s Theorem 33

π = (Ni)i∈IN then

γ(π) =
⋃

i∈IN

γNi
.

Definition 2.3.11. Let T (C) be a semantic tree for C. T (C) is called com-
plete if for every branch π in T (C) and

for every A ∈ AS(C) either A ∈ γ(π) or ¬A ∈ γ(π).

Complete trees have the following property: If H(C) is infinite then every
branch is infinite; if H(C) is finite then also AS(C) is finite and therefore
every semantic tree is finite. For H(C) finite and T (C) complete we thus get:
If N is a leaf node and A is an arbitrary atom in AS(C) then either A ∈ γN or
¬A ∈ γN . Thus (in both cases) every branch represents a full H-interpretation
of C.

A complete semantic tree can always be defined by the following construc-
tion: Let ψ : IN→ AS(C) be an enumeration of AS(C) (for ‖ AS(C) ‖= k we
define ψ : M → AS(C) for M = {0, . . . , k − 1}).
We start by defining a tree T0 by:

T0 = (NOD0, E0, ξ0), NOD0 = {ROOT(T0)}, E0 = ∅, ξ0 = ∅.

Inductively suppose that Tn = (NODn, En, ξn); if n =‖ AS(C) ‖ then the
construction is completed.

If n <‖ AS(C) ‖ we continue as follows:
Let FIN(Tn) be the set of all leaf nodes in NODn. For every N ∈ FIN(Tn)
we define two new nodes α1(N), α2(N) (which are different from each other)
and

NODn+1 = NODn ∪
⋃

N∈FIN(Tn){α1(N), α2(N)},

En+1 = En ∪
⋃

N∈FIN(Tn){(N,α1(N)), (N,α2(N))}

ξn+1 = ξn ∪ {(N,α1(N), ψ(n)), (N,α2(N),¬ψ(n)) | N ∈ FIN(Tn)}.

The new tree Tn+1 is then defined as

Tn+1 = (NODn+1, En+1, ξn+1).

Eventually we define the “limit” tree:

T̂ (C) = (ˆNOD, Ê, ξ̂) with
ˆNOD =

⋃α
i=0 NODi,

Ê =
⋃α

i=0 Ei,

ξ̂ =
⋃α

i=0 ξi,

for α = cardinality of AS(C).

If ψ is a computable function then T̂ (C) can be constructed effectively.
If ‖ AS(C) ‖= k then clearly T̂ (C) = Tk. Suppose now that C is unsatisfiable;

34 2. The Basis of the Resolution Calculus

the question is, how do we recognize unsatisfiability in T̂ (C)? The basic idea
in solving this problem is the following: In constructing the trees Tn stop
generation of further nodes and edges on nodes where a clause in C is falsified.
The following example illustrates this procedure.

Example 2.3.8. C = {C1, C2, C3}
C1 = P (x, f(x)), C2 = ¬P (a, f(y)) ∨R(y), C3 = ¬R(z),
ψ(0) = P (a, a), ψ(1) = R(a), ψ(2) = P (a, f(a)), etc.

In Figures 2.5 – 2.7, 3 subtrees of T̂ (C) are constructed in order to get a
final tree in which every leaf node falsifies a clause in C.

b

b

b�
�
�
��

@
@
@
@@

P (a, a) ¬P (a, a)

Fig. 2.5. T1

× b × b

b

b

b

�
�
�
��

@
@
@
@@

�
�
�
��

@
@
@
@@

��
��
��
��
�

HH
HH

HH
HH

H

C3 C3

P (a, a) ¬P (a, a)

R(a) ¬R(a) R(a) ¬R(a)

Fig. 2.6. T2

As every leaf node in T ′
3 falsifies a clause in C, we stop the construction

of subtrees of T̂ (C) completely. From T ′
3 we can extract the information that

C is unsatisfiable; the reason is that every H-interpretation of C must be an
extension of one of the partial interpretations appearing in the branches of
T ′

3 .

The example above motivates the following definitions:

Definition 2.3.12. Let T (C) be a semantic tree for C and N ∈ NOD(T (C)).
N falsifies a clause C in C if there exists a ground instance C′ of C such that
for all L in C′, Ld is contained in γN .

2.3 Term Models and Herbrand’s Theorem 35

× b × b

× × × ×

b

b

b

�
�
�
��

@
@
@
@@

�
�
�
��

@
@
@
@@

��
��

��
��
�

HH
HH

HH
HH

H

�
�
�
��

@
@
@
@@

�
�
�
��

@
@
@
@@C3 C3

C2 C1 C2 C1

P (a, a) ¬P (a, a)

R(a) ¬R(a) R(a) ¬R(a)

P (a, f(a)) ¬P (a, f(a)) P (a, f(a)) ¬P (a, f(a))

Fig. 2.7. T ′
3 (reduced T3)

Definition 2.3.13 (failure node). Let T (C) be a semantic tree for C and
N ∈ NOD(T (C)). N is called a failure node if N falsifies a clause in C, but
no ancestor node of N falsifies any clause in C.

In the construction indicated in the last example, every node that falsifies a
clause is also a failure node (as branches with failure nodes are not extended).

Definition 2.3.14. A semantic tree is called closed if on every branch there
is a failure node.

In the last example, T̂ (C), T3(C), and T ′
3 are all closed. T ′

3 is a minimal closed
tree in the sense that falsifying nodes are all leaf nodes. Closed semantic trees
represent unsatisfiable sets of clauses.

Theorem 2.3.2. A set of clauses C is unsatisfiable iff T̂ (C) is closed.

Proof. 1. C is unsatisfiable ⇒:
We have to show that on every branch there exists a failure node. Let
B = (Ni)i∈M be a branch in T̂ (C) (M being IN or an initial segment of
IN). As T̂ (C) is complete, we find for every A ∈ AS(C) an edge e on B
such that ξ(e) = A or ξ(e) = ¬A. We extend B to an H-interpretation
ΓB = (H(C), Φ, I), where I can be chosen arbitrarily. ΓB is determined
by the values of vΓB

on AS(C). We define

vΓB
(A) = T if there is an e on B such that ξ(e) = A,

= F otherwise

Because C is unsatisfiable vΓB
(C) = F. Thus there exists a ground in-

stance C′ of a clause C in C such that for C′ = L′
1 ∨ . . . ∨ L

′
m we obtain

vΓB
(L′

i) = F for positive L′
i

vΓB
(L′d

i) = T for negative L′
i.

36 2. The Basis of the Resolution Calculus

By definition of vΓB
there must exist edges e1, . . . , em on B such that

ξ(ei) = L′d
i for i = 1, . . . ,m.

Now let ek ∈ {e1, . . . , em} be the node among the e1, . . . , em having the
maximal depth (ek is determined uniquely). Let ek = (N1, N2), then
obviously

{L′d
1 , . . . , L

′d
m} ⊆ γN2

and N2 falsifies C. If N2 is not a failure node, there is an ancestor node
N of N2 which is a failure node and N is on B. We conclude that there
exists a failure node on B.

2. T̂ (C) is closed ⇒:
We show that C is unsatisfiable. For this purpose it is enough to show
that C does not possess an H-model. Let Γ = (H(C), Φ, I) be an H-
interpretation on C and let Ψ : IN→ AS(C) be the enumeration used for
the definition of T̂ (C). We define a mapping λ : M → LS(C) (M being
an initial segment of IN or IN itself) by

λ(i) = Ψ(i) for vΓ (Ψ(i)) = T
= ¬Ψ(i) for vΓ (Ψ(i)) = F

Because T̂ (C) is complete there exists a branch B = (ei)i∈M such that
ξ(ei) = λ(i) for all i ∈ M . For M = IN the existence of the required
branch B can be shown by induction. Because T̂ (C) is also closed there
exists a ground instance C′ = L′

1 ∨ . . . ∨ L
′
m of a clause C ∈ C such that

{L′d
1 , . . . , L

′d
m} ⊆ γN for a failure node N appearing on B. By definition

of λ there exist i1, . . . , im ∈ IN such that λ(ik) = L′d
k for k = 1, . . . ,m.

As a consequence we get

vΓ (Ψ(ik)) = T ⇒ Ψ(ik) = λ(ik) = L′d
k ⇒ ¬Ψ(ik) = L′

k,
vΓ (Ψ(ik)) = F ⇒ Ψ(ik) = λ(ik)d = L′

k ⇒ Ψ(ik) = L′
k.

Therefore Γ falsifies C and thus also C. 3

Let T be a semantic tree for C. Starting from T we define a semantic tree
Clos(T), which is constructed from T by omitting all paths which start from
failure nodes. If T is closed then all leaf nodes of Clos(T) are failure nodes.

Lemma 2.3.2. Let T be a closed semantic tree for a set of clauses C, then
Clos(T) is finite.

Proof. Clos(T) is (like T itself) a binary tree. Suppose now that Clos(T)
is infinite; then by König’s lemma [KD68] Clos(T) must possess an infinite
path, as the degree of all nodes in Clos(T) is ≤ 2 (and thus finite). But if
Clos(T) possesses an infinite path, there is a branch in T without failure
node; but then T is not closed, contrary to the assumption. 3

2.3 Term Models and Herbrand’s Theorem 37

The existence of a a closed finite tree is a property of central importance in
mathematical logic as it guarantees compactness. We only mention this con-
nection here, but refer to the excellent and deep presentation of this problem
area in [Rob79](chapters 3 and 4).

We are now in a position to define a complete refutation calculus for clause
logic. Given a set of clauses C, we start the construction of T̂ (C), where T̂ (C)
is defined via a recursive enumeration of the atom set AS(C); each time we
have found a failure node, we stop further node and edge construction below
this node. It is obvious that this construction must result in Clos(T̂ (C)); but
Clos(T̂ (C)) is finite if T̂ (C) is closed. By Theorem 2.3.2 we have a guarantee
that T̂ (C) is closed if C is unsatisfiable. Thus for every unsatisfiable set of
clauses C we can effectively generate a finite, closed semantic tree Clos(T̂ (C)).
The tree Clos(T̂ (C)) can be considered as refutation of C. More formally we
get the refutation procedure shown in Figure 2.8.

procedure REFUTE;
{input is a set of clauses C}

begin
if 2 ∈ C then

contr ← TRUE
elsebegin

n← 0;
contr ← FALSE;
T0 ← ({ROOT(T0)}, ∅, ∅);
while ¬ contr and n ≤ |AS(C)| do
Tn+1 ← Tn extended by the nodes

(N, Ψ (n), N1) and (N,¬Ψ(n), N2)
for all N ∈ FIN(Tn) which are not
failure nodes;

contr ← all nodes in FIN(Tn+1) are failure
nodes;

n← n + 1
end while

end if;
if contr then

“satisfiable”
else

“unsatisfiable”
end if

end refute.

Fig. 2.8. Refutation procedure REFUTE

The procedure REFUTE is only of theoretical interest (the algorithm is
highly inefficient). Note that the predicate “N is failure node” is decidable. If
AS(C) is finite then REFUTE halts and decides the satisfiability of C. If, on

38 2. The Basis of the Resolution Calculus

the other hand, AS(C) is infinite and C is satisfiable then REFUTE does not
halt. If C is unsatisfiable and AS(C) is infinite, REFUTE must halt because
Clos(T̂ (C)) is finite.

REFUTE is a quite crude method, as the construction of Clos(T̂ (C)) is
based on the Herbrand universe and on the atom set defined by C; it does
not take into account the actual structure of the atoms appearing in C. The
following example shows that with respect to computational efficiency, the
enumeration Ψ of AS(C) is crucial.

Example 2.3.9. C = {C1, C2} for C1 = P (h(y, h(a, b))), C2 = ¬P (h(z, z)).
C is unsatisfiable. If we choose the enumeration Ψ such that Ψ(0) =
P (h(h(a, b), h(a, b))) then the tree shown in Figure 2.9 is Clos(T̂ (C)), which
refutes C.

× ×
C2 C1

�
�
�
��

@
@
@
@@

Ψ(0) ¬Ψ(0)

Fig. 2.9. Ψ(0) = P (h(h(a, b), h(a, b)))

But choosing a straightforward enumeration Ψ (by ordering the atoms
according to their size) as:

Ψ(0) = P (a), Ψ(1) = P (b), Ψ(2) = P (h(a, a)), . . . ,

Ψ(5) = P (h(b, b)), Ψ(6) = P (h(a, h(a, a))), . . . , Ψ(21) = P (h(h(b, b), b)), . . .

the construction of Clos(T̂ (C)) becomes very expensive. Note that finding
Clos(T̂ (C)) for this Ψ requires (at least) the construction of T22, a tree with
222 leaf nodes.

The following theorem shows that unsatisfiability of sets of clauses C can be
characterized by finite sets of ground clauses C′ obtained from C by ground
instantiation. As ground instances of clauses have a structure similar to the
original this last characterization of unsatisfiablility is closer to common in-
ference concepts.

Theorem 2.3.3 (Herbrand’s theorem). A set of clauses C is unsatisfi-
able iff there exists a finite unsatisfiable set of clauses C′ such that C′ consists
of ground instances of clauses in C.

Proof. 1. Suppose that there exists a finite, unsatisfiable set of ground
clauses C′ defined by C.

2.3 Term Models and Herbrand’s Theorem 39

If C′ = {C′
1, . . . , C

′
k} then F (C′) =

∧k
i=1 C

′
i (note that for ground clauses

C′ F ({C′}) = C′). Because F (C)→ F ({C}) is valid for every C ∈ C and
F ({C}) → C′ is valid for every ground instance C′ of C, F (C) → C′

i is
valid for every C′

i above; but then, clearly, F (C)→ F (C′) is valid too. We
conclude that C must be unsatisfiable (as every model of C is a model of
C′).

2. Suppose that C is unsatisfiable. By Theorem 2.3.2 and Lemma 2.3.2 we
conclude that Clos(T̂ (C)) is finite. We define
C′ = the set of all ground instances of clauses in C which are
falsified by a leaf node in Clos(T̂ (C)).

As Clos(T̂ (C)) is finite and every failure node falsifies at most finitely
many ground instances, C′ must be finite. We have to show that C′ is
unsatisfiable.
Let Γ be an H-interpretation of C′. Because AS(C′) ⊆ AS(C) there is an
H-interpretation △ of C such that v△(A) = vΓ (A) for all A ∈ AS(C′).

Because C is unsatisfiable, △ falsifies C. Let I△ be a branch in T̂ (C)
corresponding to △; then there is a failure node N on I△ which is leaf

node in Clos(T̂ (C)). By definition of C′, there is a C′ which is falsified on
N and thus v△(C′) = F. By definition of △ we have vΓ (C′) = v△(C′) =
F and Γ falsifies C′. Therefore Γ also falsifies C′. We conclude that C′ is
unsatisfiable. 3

In its original form, Herbrand’s theorem [Her31] was not formulated for
sets of clauses but for existential prenex forms in predicate logic; it expressed
the fact that such an existential form is provable in PL iff there is a (finite)
disjunction, defined out of ground instances of the matrix, which is provable
in PL. Thus the essence of Herbrand’s theorem was the characterization of
predicate logic provability by provability in propositional logic. This is also
the essential aspect of Theorem 2.3.3, because the set of ground instances C′

is unsatisfiable if it is unsatisfiable propositionally. The essential point in the
reduction to C′ is the decidability of the satisfiability problem in propositional
logic (even the primitive truth-table method will do the job).

Example 2.3.10. We refute a clause set C by giving a finite set of ground
instances C′ and by proving that C′ is unsatisfiable.

C = {P (x), ¬P (y) ∨Q(y), ¬Q(f(z)) ∨ ¬Q(g(z))}

C′ = {P (f(a)), P (g(a)),¬P (f(a)) ∨Q(f(a)),¬P (g(a)) ∨Q(g(a)),

¬Q(f(a)) ∨ ¬Q(g(a))}.

The problem of proving unsatisfiability of C′ can be reduced to showing unsat-
isfiability of the following conjunctive normal form F in propositional logic:

F = X ∧ Y ∧ (¬X ∨ Z) ∧ (¬Y ∨ U) ∧ (¬Z ∨ ¬U).

F corresponds to a set of propositional clauses

40 2. The Basis of the Resolution Calculus

C∗ = {X, Y, ¬X ∨ Z, ¬Y ∨ U, ¬Z ∨ ¬U}.

We may refute F by truth-tables or C∗ by a (finite) semantic tree. Later we
will see that the Davis–Putnam method and resolution are superior to the
rather rough expansion method REFUTE presented in this section.

Exercises

Background on Exercise 2.3.1:

Definition 2.3.15 (prenex form). Let M be an open formula containing
the variables x1, . . . xn and Qi ∈ {∀, ∃} for i = 1, . . . n. Then the formula
F : (Q1x1) . . . (Qnxn)M is in prenex form; M is called the matrix of F
and (Q1x1) . . . (Qnxn) the prefix of F . If the quantifiers in the prefix are
all universal we call F a universal prenex form; if the quantifiers are all
existential we speak about an existential prenex form.

Every closed formula can be transformed into a logically equivalent prenex
normal form; this can easily be achieved by variable renamings and by quan-
tifier shifting rules. In particular every clause form is logically equivalent to
a universal prenex form. If F is such a form we can define the Herbrand
universe H(F) in the same way as for sets of clauses; also the concept of
H-interpretation can be carried over to universal prenex forms – even if the
matrix is not in CNF (it is in fact like in Definition 2.3.5).

Exercise 2.3.1. Let F be a universal prenex formula. Show that F is satis-
fiable iff there exists an H-model of F .

Exercise 2.3.2. Let T be a semantic tree for a (finite) set of clauses C and
N be failure node in T . Prove that N can falsify only finitely many ground
instances of clauses in C.

Background on Exercise 2.3.3:

Let A,B be two closed formulas of predicate logic. A is called taut-equivalent
to B (notation A ∼taut B) if the validity of A is equivalent to the validity of
B. Note that A ∼taut B does not imply A ∼ B. For ∼taut there are results
completely analogous (and dual) to those for ∼sat.

Exercise 2.3.3. Let A be a prenex formula of the form (Q1x1) . . . (Qnxn)M .
Prove that there exists a substitution instance M ′ of M and a set
{y1, . . . , ym} ⊆ {x1, . . . , xn} such that

A ∼taut (∃y1) . . . (∃ym)M ′

(the right hand side is called the existential form of A).

2.4 Decision Methods for Sets of Ground Clauses 41

Background on Exercise 2.3.4:

Herbrand’s theorem is not restricted to clausal form. One can characterize
the unsatisfiability of every universal prenex form A by a finite conjunction
of ground instances of the matrix of A.

Exercise 2.3.4 (Herbrand’s theorem for universal prenex forms).
Let F : (∀x1) . . . (∀xn)M be a universal prenex form. Show that F is unsat-
isfiable iff there exists a finite set of ground instances {M ′

1, . . . ,M
′
m} of M

such that M ′
1 ∧ . . . ∧M

′
m is unsatisfiable.

Background on Exercise 2.3.5:

Herbrand’s theorem can be formulated for existential prenex forms as well
(this is also the original formulation). We only have to replace satisfiability
by validity and conjunction by disjunction. Together with prenexing and
the transformation in Exercise 2.3.3 this gives a method to characterize the
validity of closed formulas by disjunctions of ground formulas.

Exercise 2.3.5 (Herbrand’s theorem for existential prenex forms).

Let F : (∃x1) . . . (∃xn)M be an existential prenex form. Show that F is valid
iff there exists a finite set of ground instances {M ′

1, . . . ,M
′
m} of M such that

M ′
1 ∨ . . . ∨M

′
m is valid.

2.4 Decision Methods for Sets of Ground Clauses

2.4.1 Gilmore’s Method

The first automated theorem prover for first-order logic was written by
Gilmore in 1960 [Gil60]; it was essentially based on Herbrand’s theorem and
reduced unsatisfiability to propositional unsatisfiability. In order to get a sim-
ple method to determine the unsatisfiability of the set of ground clauses C′

corresponding to C, he transformed C′ to disjunctive normal form. In get-
ting the “candidates” C′, Gilmore used saturation by ground instances from
Hn(C) for n = 0, 1, · · ·. More formally, let C be a set of clauses and

C′n = set of all ground instances Cλ for C ∈ C and rg(λ) ⊆ Hn(C).

Clearly, C′n is finite for all n. By Herbrand’s theorem we know that, in
case C is unsatisfiable, there must be an n such that C′ ⊆ C′n. Thus one gets a
refutational method by successively generating the sets C′n, testing them for
satisfiability, and stopping if an unsatisfiable C′n is found. If such a method
of level saturation is chosen, it is crucial to have an adequate algorithm for
deciding satisfiability of propositional sets of clauses.

Gilmore’s technique was the following:

42 2. The Basis of the Resolution Calculus

Transform C′n into disjunctive normal form DNF(C′n) and test
DNF(C′n) for satisfiability.

The reason for such a transformation can be found in the fact that sat-
isfiability of disjunctive normal forms can be decided in deterministic time
O(n log n), n being the length of the formula:

we only have to order the constituents by an atom ordering and then
look whether “A∧ ¬A” appears in constituents. If every constituent
contains such a complementary pair then DNF(C′n) (and thus C′n) is
unsatisfiable.

We give Gilmore’s method in pseudocode (Figure 2.10), considering the
case of an infinite Herbrand universe.

begin
contr ← FALSE;
n← 0;
while not contr do
D′ ← DNF(C′n);
contr ← all constituents in D′ contain complementary literals;
n← n + 1

end while
end

Fig. 2.10. Gilmore’s method

By the comments given above we realize that Gilmore’s method is indeed
a refutational method for clause logic. but there are two weak points:

1) The generation of the C′n and
2) the disjunctive normal form.

Point 1) is germane to all “direct” applications of Herbrand’s theorem,
while point 2) concerns propositional logic only.

Indeed, the transformation of a conjunctive into a disjunctive normal form
is (almost always) exponential.

If we start with a set of clauses {Li
1 ∨ L

i
2/i = 1, · · · , n} (containing 2n

literal occurrences only) the disjunctive normal form will contain n2n literal
occurrences.

Moreover, we cannot hope to get a fast (i.e., polynomial) transformation
of the C′n into sat-equivalent disjunctive normal forms Dn’; such a transfor-
mation would give no less than the result P = NP (for the NP-problem see
e.g. [GJ79], because (by such a transformation) the NP-complete satisfiabil-
ity problem for conjunctive normal forms would be solvable in deterministic
polynomial time.

Gilmore’s pioneering implementation did not yield actual proofs of even

2.4 Decision Methods for Sets of Ground Clauses 43

quite simple predicate logic formulas. One possible improvement of Gilmore’s
method consists in avoiding the transformation to DNF by developing deci-
sion methods for satisfiability directly on conjunctive normal forms. Such
an improvement was achieved by Davis and Putnam [DP60] shortly after
Gilmore’s implementation.

2.4.2 The Method of Davis and Putnam

Like Gilmore’s method, the method of Davis and Putnam is based on the
successive production of ground clause sets C′n and testing C′n for unsatis-
fiability. But the propositional decision procedure of Davis and Putnam is
much more efficient than Gilmore’s. Although it is no longer up to date for
predicate clause logic, it is still a very efficient method for testing satisfia-
bility of propositional conjunctive normal forms; moreover we will use the
method of Davis and Putnam as a proof technique (at the metalevel) in later
chapters. The method we describe in this section is in fact a variant defined
by M. Davis, G. Logemann, and D. Loveland in [DLL62]. We start with a
motivating example.

Example 2.4.1. Let C be the set of clauses

C = {P (f(x)) ∨R(y), ¬P (u) ∨R(u), ¬R(f(z)) ∨ ¬R(w)}.

We consider the following set of ground instances

C′ = {P (f(a))∨R(f(a)), ¬Pf(a))∨R(f(a)), ¬R(f(a))∨¬R(f(a))}.

C′ is a subset of C′1.
Our first reduction consists in omitting multiple literals within clauses.

By this step we reduce C′ to

C′′ = {P (f(a)) ∨R(f(a)), ¬Pf(a)) ∨R(f(a)), ¬R(f(a))}.

Suppose now that C′′ is satisfiable, i.e., vΓ (C′′) = T for some H-interpretation
Γ . But vΓ (C′′) = T only if all clauses in C′′ evaluate to T, thus vΓ (R(f(a)))
must be F.
If vΓ (R(f(a)) = F, then vΓ (C′′) = vΓ (C(3)) for C(3) = {P (f(a)),¬P (f(a))}.

But C(3) is clearly contradictory and we obtain vΓ (C(3)) = F. Thus we get
a contradiction and have to conclude that C′′ – and also C′ – is unsatisfiable.

For computational purposes it is practical to remove multiple occurrences of
literals in clauses.

Definition 2.4.1. A clause C is called reduced if every literal in C occurs
at most once. If C is an arbitrary clause we write Cr for the reduced clause
derived from C by keeping the leftmost occurrence of all multiple literals.

44 2. The Basis of the Resolution Calculus

Definition 2.4.2 (The rules of Davis and Putnam). Let C′ be a set of
reduced ground clauses. We define the following rules on C′:

1. Tautology rule:
Delete all clauses in C′ containing complementary literals.

2. One-Literal-Rule (C′ does not contain tautologies):
Let C ∈ C′ and C = L for a literal L.
a) Remove all clauses D from C′ which contain L.
b) Delete Ld in the remaining clauses.

3. Pure literal rule (C′ does not contain tautologies):
Let D′ be a subset of C′ with the following property: There exists a literal
L appearing in all clauses of D′, but Ld does not appear in C′.

Rule: Replace C′ by C′ −D′.

4. Splitting rule (C′ does not contain tautologies).
Let C′ = {A1, . . . , An, B1, . . . , Bm} ∪R such that
a) R neither contains L nor Ld.
b) All Ai contain L, but not Ld.
c) All Bj contain Ld, but not L.

Let

A′
i = Ai after deletion of L, B′

j = Bj after deletion of Ld.

Then the rule consists in splitting C′ into C′1, C
′
2 for

C′1 = {A′
1, . . . , A

′
n} ∪R,

C′2 = {B′
1, . . . , B

′
m} ∪R,

We now introduce some useful notation: If C = A∨L∨B is a reduced clause
then C \ L = A ∨B. If D is a set of ground clauses we write D∼ for D after
application of the tautology (one-literal, pure literal) rule and D1,D2 for the
clauses obtained from D by the splitting rule. If L is removed from L we
obtain 2 (note that L = L ∨ 2).

Theorem 2.4.1. The rules of Davis and Putnam are correct. That means
for every reduced set of ground clauses D we have:

1. D ∼sat D∼ if one of the rules 1–3 is applicable,
2. D is satisfiable iff D1 is satisfiable or D2 is satisfiable, if rule 4 is appli-

cable.

2.4 Decision Methods for Sets of Ground Clauses 45

Proof.

1. The tautology rule:
Let C be a tautological clause in a set of reduced ground clauses D. By
F (D) ∼ F (D−{C}) we get D ∼ D−{C} and thus D ∼sat D−{C}. By
iterating this argument we eventually obtain D ∼ D∼.

2. The one-literal rule:
Let D be a reduced set of clauses of the form
D = {L,A1, . . . , An, B1, . . . , Bm} ∪R

such that L occurs in the Ai, L
d occurs in the Bj and R neither contains

L nor Ld. Using merely commutativity and associativity of ∨ we get that
D is logically equivalent to

D′ = {L,L ∨A′
1, . . . , L ∨A

′
n, L

d ∨B′
1, . . . , L

d ∨B′
m} ∪R.

for A′
i = Ai \ L,B

′
j = Bj \ L.

2a) Suppose that D′ is satisfiable. Then there exists an H-interpretation
Γ such that vΓ (D′) = T. By definition of vΓ , vΓ ({L}) must be true.
By definition of “or” we obtain

vΓ (D′) = vΓ ({B′
1, . . . , B

′
m} ∪R) = vΓ (D′∼).

We conclude that D′∼ is satisfiable.

2b) Suppose that D′∼ is satisfiable and vΓ (D′∼) = T. Let Γ ′ be like Γ
with the exception v′Γ (L) = T. Because neither L nor Ld occurs in
D′∼ we get v′Γ (D′∼) = vΓ (D′), but also v′Γ ({L,L∨A′

1, . . . , L∨A
′
n}) =

T. We conclude v′Γ (D′) = T and thus that D is satisfiable.

3. Pure literal rule: Let D be a reduced set of ground clauses such that
D = {A1, . . . , An} ∪ R and L occurs in every Ai, but neither L nor Ld

occurs in R. By definition of the pure literal rule we have D∼ = R.

3a) Suppose that D is satisfiable. By the validity of F (D) → F (R) we
conclude that also R (and thus D∼) is satisfiable.

3b) Suppose that D∼ is satisfiable. Then there is an H-interpretation Γ
such that vΓ (D∼) = T. As in 2b) we define a Γ ′ such that v′Γ (L) = T
and vΓ (L′) = vΓ (L′) for all other ground literals L′. Then clearly
v′Γ (D) = v′Γ ({A1, . . . , An} ∪R) = T.

4. The splitting rule:
Let D be a set of reduced ground clauses such that D =

46 2. The Basis of the Resolution Calculus

{A1, . . . , An, B1, . . . , Bm} ∪ R, where the Ai contain a literal L, the Bj

contain Ld and R neither contains L nor Ld.

4a) Suppose that D is satisfiable. Then there exists an H-interpretation
Γ such that vΓ (D) = T. For Γ there are two possibilities, vΓ (L) = T
or vΓ (L) = F. If vΓ (L) = T then vΓ (Ai) = T for all i = 1, . . . , n and
vΓ (Bj) = vΓ (Bj \ Ld) for all j = 1, . . . ,m. Therefore

vΓ (D) = vΓ ({B1 \ L
d, . . . Bm \ L

d} ∪R) = vΓ (D2) = T.

Similarly if vΓ (L) = F we obtain

vΓ (D) = vΓ ({A1 \ L, . . .An \ L} ∪R) = vΓ (D1) = T.

Therefore we obtain the result that either D1 is satisfiable or D2 is
satisfiable.

4b) Suppose that either D1 is satisfiable or D2 is satisfiable. If D1 is
satisfiable via Γ then define Γ ′ = Γ , except v′Γ (L) = F. Then, clearly
v′Γ ({B1, . . . , Bm}) = T and thus v′Γ (D) = T. It follows that D is
satisfiable. If D2 is satisfiable via Γ then define Γ ′ = Γ , except
v′Γ (L) = T. Then we obtain v′Γ ({A1, . . . , An}) = T and v′Γ (D) = T;
again, D is satisfiable. By definition 2.4.2 it follows that the splitting
rule is correct. 3

By following the arguments in the proof of Theorem 2.4.1 we can observe
case splitting by truth values of literals; e.g., in the splitting rule one set of
clauses evaluates to true if a literal L is true in an interpretation Γ , another
set of clauses evaluates to true if L is false in Γ . In the formalism of semantic
trees we may describe Γ as a branch having two successors (at least) one
of them verifying the set of clauses. Thus in an abstract sense the rules of
Davis and Putnam may be interpreted as an efficient semantic tree procedure.
The Davis–Putnam method is essentially “reductive”, i.e., the satisfiability
problem of a set of ground clauses D containing n + 1 different atoms is
reduced to one (D∼) or two problems (D1,D2) containing at most n different
atoms. The reduction process can be represented most conveniently in the
form of trees, where unary nodes belong to the rules 1), 2), 3) and binary
nodes to the rule 4).

Definition 2.4.3. A DP-tree T for a (finite) reduced set of ground clauses
D is a tree with the following properties:

1. The nodes of T are (finite) sets of reduced ground clauses.
2. All nodes of T are of degree ≤ 2.
3. The root is D.
4. If D′ is a node of degree 1 and (D′,D′′) is an edge in T then D′′ = D′∼

(for some application of the rules 1), 2), 3)).

2.4 Decision Methods for Sets of Ground Clauses 47

5. If D′ is a node of degree 2 and (D′,M), (D′,N) are edges in T (from
left to right) then M = D′

1,N = D′
2 for some application of the splitting

rule.

A DP-tree for a set of ground clauses D is called a DP–decision tree for C if
either all leaf nodes are 2 or there exists a leaf node which is ∅.

Example 2.4.2.

D = {P ∨Q, R ∨ S, ¬R ∨ S, R ∨ ¬S, ¬R ∨ ¬S, P ∨ ¬Q ∨ ¬P}

P,Q,R, S represent some ground atoms different form each other. Applying
the tautology rule we obtain

D1 = D − {P ∨ ¬Q ∨ ¬P}.

Applying the pure literal rule to D1 we obtain

D2 = {R ∨ S, ¬R ∨ S, R ∨ ¬S, ¬R ∨ ¬S}.

On D2 the splitting rule yields D3 = {R, ¬R},D4 = {R, ¬R}. On D3,D4

the one literal rule gives {2}.

Figure 2.11 shows the reduction tree corresponding to the reduction steps
performed on D.

{2}

D3

{2}

D4

D2

�
�
�

@
@
@

D1

D

Fig. 2.11. A DP–decision tree for D

The DP-tree of the last example is in fact a DP–decision tree; it proves that
D is unsatisfiable.

48 2. The Basis of the Resolution Calculus

Definition 2.4.4. Let T be a DP–decision tree for a set of reduced ground
clauses D. We say that T proves the satisfiability of D if there is a leaf node
which is ∅ and T proves the unsatisfiability of D if all leaf nodes contain 2.

It is apparent from Definition 2.4.4 that finding a DP–decision tree for D
algorithmically decides satisfiability. To facilitate further analysis we may as-
sume that D does not contain tautologies. In fact, if D′ = D after tautology
elimination, in the DP-trees for D′ there can be no edges corresponding to
the tautology rule (note that the rules 2, 3, and 4 cannot introduce tautolo-
gies). Thus tautology elimination can be considered as a “preprocessing” step.
We call a set of reduced ground clauses taut-reduced if it does not contain
tautologies.

We are in the position now to formulate correctness and completness of
the Davis–Putnam method.

Theorem 2.4.2 (Correctness of the Davis–Putnam method). Let D
be a set of reduced and taut-reduced ground clauses and let T be a DP–decision
tree such that T proves the satisfiability (unsatisfiability) of D. Then D is in-
deed satisfiable (unsatisfiable).

Proof. By an easy induction on the number of nodes in T and by use of
Theorem 2.4.1. The details are left as an exercise. 3

In a usual completeness result it is sufficient to prove the existence of
the required deduction; in our case this corresponds to the proof that every
reduced, taut-reduced set of ground clauses possesses a DP–decision tree.
But such a result is not completely satisfying for getting a decision procedure.
Thus we will prove the stronger result that every DP-tree can be extended into
a decision tree. Saying that T ′ is an extension of T we mean that NOD(T) ⊆
NOD(T ′) and E(T) ⊆ E(T ′).

Theorem 2.4.3 (completeness of the Davis–Putnam method).
Let D be a (finite) set of reduced, taut-reduced set of ground clauses and
let T be a DP-tree for D. Then T can be extended to a DP–decision tree T ′.

Remark 2.4.1. Theorem 2.4.3 is in fact a strong completeness result. It shows
that, no matter how we start using the Davis–Putnam rule, we always get a
decision tree. That means, every DP-tree which cannot be extended properly
is in fact a DP–decision tree.

Proof. We proceed by induction on atn(D) = number of different ground
atoms occurring in D (we mean the cardinality of the set of ground atoms,
not the number of ocurrences).

atn(D) = 0: Then D = ∅ or D = {2}. The only DP-tree for D = ∅ is the
tree with root ∅; but this tree is also a DP–decision tree. For D = {2}
the only DP-tree is the tree with root {2}, which is a DP–decision tree
too.

2.4 Decision Methods for Sets of Ground Clauses 49

(IH) Suppose that for all reduced, taut-reduced sets of ground clauses D such
that
atn(D) ≤ n every DP-tree T can be extended to a DP–decision tree T ′.

Now let us assume that D is a reduced, taut-reduced set of ground clasuses
such that atn(D) = n+ 1; moreover let T be a DP-tree for D.

case a) T consists of the root D only.
As atn(D) = n+1 there must be a clause in D containing a literal L. We
select an arbitrary literal L occurring in D. If Ld does not occur in D then
the pure literal rule is applicable. If L occurs as unit clause in D then
the one literal rule is applicable. If L neither occurs as unit clause nor as
“pure” literal then the splitting rule is applicable. Thus we conclude two
facts

1. One of the rules 2, 3, 4 must be applicable,
2. If we reduce by an arbitrary rule to a set of clauses D∼ (or to two

sets D1,D2 via rule 4 then atn(D∼) ≤ n (atn(D1), atn(D2) ≤ n
respectively).

Property 2 directly follows from the definition of the rules 2, 3, 4.
Thus for every extension of T to T ′ such that either

NOD(T′) = {D,D∼}, E(T′) = {(D,D∼)} or
NOD(T′) = {D,D1,D2}, E(T′) = {(D,D1), (D,D2)},

we obtain atn(D∼) ≤ n or atn(D1), atn(D2) ≤ n respectively.
Clearly every extension of T is defined by an extension of some T ′. So
let T ′ be as above and let D∼ be the successor node of D or D1,D2 be
the successor nodes of D respectively.
By (IH) every DP-tree with root D∼(D1,D2 respectively) can be ex-
tended to a DP–decision tree. We conclude that every DP-tree T ′ above
can be extended to a DP–decision tree. In particular, T can be extended
to a DP–decision tree.

case b) T contains edges.
Let D1, . . . ,Dn be all leaf nodes of T . If all Di contain 2 or there exists a
Di such that Di = ∅ then T is a DP–decision tree and we have achieved
our goal.
Otherwise all Di are sets of clauses such that atn(Di) ≤ n; this can be
obtained by an easy induction argument based on arguments like in case
(a).
Let Ti be the trees ({Di}, ∅) for i = 1, . . . , k. By (IH) every Ti can be
extended to a DP–decision tree T ′

i . Let T ′ = T after replacement of the
nodes Di by the trees T ′

i . Then (by definition of DP–decision trees) T ′

is a DP–decision tree (note that in T ′ either all leaf nodes contain 2, or
there is one which is ∅). But T ′ is an extension of T . This concludes the
proof of case n + 1. 3

Theorem 2.4.3 suggests the following decision method for the satisfiability
problem of (finite) sets of ground clauses D:

50 2. The Basis of the Resolution Calculus

DP 1) D ← D after reduction of all clauses in D;
DP 2) D ← D after deletion of all tautologies;
DP 3) construct a DP–decision tree for D.

Because in a taut-reduced, reduced set of ground clauses D every application
of the rules 2, 3, 4 decreases the number of different atom symbols, the tree
constructed in point 3 above is of depth ≤ atn(D). However the method,
due to the splitting rule, may be exponential (i.e. the total number of atom
occurrences in nodes of the tree may be exponential in the number of atom
occurrences in D).

Combining the propositional decision method DP 1–DP 3 with the pro-
duction of the sets of Hn-instances we get the (Herbrand type) proof method
of Davis and Putnam displayed in Figure 2.12.

begin {C is a finite set of clauses}
if C does not contain function symbols
then apply DP1) - DP3) to C′0

else begin
n← 0; contr ← FALSE;
while ¬ contr do

begin
perform DP1) -DP3) on C′n;
if the DP-decision tree proves unsatisfiability
then contr ← TRUE
else contr ← FALSE:
n← n + 1

end
end

end.

Fig. 2.12. The Davis–Putnam method

The algorithm in Figure 2.12 is nondeterministic, because the construc-
tion of the DP–decision tree in DP 3) is nondeterministic. If C does not
contain function symbols then the method always terminates and yields a
decision procedure. If C is satisfiable and contains function symbols the while
loop in the algorithm is an endless loop. As clause logic is undecidable (it
is a reduction class of predicate logic), we cannot expect termination in all
cases. However we will define resolution methods in Chapter 5 which favor
termination in a stronger way.

We have seen that the algorithm in Figure 2.11 yields a decision procedure
for function-free sets of clauses. This is straightforward as for function-free
sets of clauses C, H(C) – and thus AT (C) – is finite. Using skolemization and
reduction to clause form, we thus can solve the following decision problem:

2.4 Decision Methods for Sets of Ground Clauses 51

Let A : (∀x1) . . . (∀xn)(∃y1) . . . (∃ym)M be an arbitrary formula in predicate
logic, where M neither contains quantifiers nor function symbols. Is A valid?

In 1928 [BS28] Bernays and Schönfinkel showed that this problem is
decidable. As Herbrand’s theorem was not available then (it was published
3 years later), the solution was not so easy as it is today. In deciding the
problem above we simply perform the following steps:

1. Transfom ¬A to clause form C.
2. Apply DP 1)–DP 3) to C′0

By subjecting ¬A to step 1) of our normal form reduction in Section 2.2 we
obtain a form

F1 : (∃x1) . . . (∃xn)(∀y1) . . . (∀ym)M ′.

By iterated skolemization of F we get

F2 : (∀y1) . . . (∀ym)M ′{x1 ← c1, . . . , xn ← cn}

for new constant symbols c1, . . . , cn. Clearly, the clause form of F2 is function
free. It is easily verified that also the validity problem for formulas of the type:

B : ((∃∗)(∀∗)M1 ∧ . . . ∧ (∃∗)(∀∗)Mn)→ (∀∗)(∃∗)M0

is transformed (by the normal form reduction in Section 2.2) to a function-
free clause set C, provided the Mi are all quantifier and function free. Note
that not all prefix forms of ¬B give function-free sets of clauses; but as
the reductions in Section 2.2 avoid prefixing completely, we don’t get such
problems here.

Exercises

Exercise 2.4.1. Give a proof of Theorem 2.4.2.

Exercise 2.4.2. Let

Cn = {P (a)} ∪
n−1
⋃

i=0

{¬P (f (i)(a)) ∨ P (f (i+1)(a))} ∪ {¬P (f (n)(b))}

be a sequence of sets of ground clauses (f0(t) = t, f i+1(t) = f(f i(t)) for t ∈
T). Prove (using the rules of Davis and Putnam) that all Cn are satisfiable.

Exercise 2.4.3. Show that the satisfiability of a set of ground Horn clauses
(see Definition 2.2.4) can be decided by the rules of Davis and Putnam with-
out the splitting rule.

Let T be a DP–decision tree for a set of ground clauses C and N be the
union of all nodes of T (note that the nodes are sets of ground clauses). Then
we call | N | (the number of clauses occurring in nodes of T) the size of T .

52 2. The Basis of the Resolution Calculus

Exercise 2.4.4. Prove that for every set of ground Horn clauses there exists
a DP–decision tree of polynomial size, i.e., there exists a polynomial p with
the following property: For every set of ground Horn clauses C there exists a
DP–decision tree T (C) such that size(T (C)) ≤ p(| C |).

2.5 The Propositional Resolution Principle

The Davis–Putnam method defined in Section 2.4, although defined nonde-
terministically, is a decision method for the satisfiability problem of sets of
ground clauses. Because the sets C′n, defined by ground substitutions over
Hn, are defined successively in the form of a level saturation method, a
semi-decision procedure for the satisfiability problem of ground clause logic
would not guarantee completeness. The reason is that we might fail to decide
whether the “candidate” C′n produced so far is indeed unsatisfiable. But let us
assume (for theoretical reasons first) that we already have an unsatisfiable set
of ground instances C′ and our problem is to prove that C′ is indeed unsatisfi-
able. To solve this problem we may resort to the common inference paradigm,
i.e., we search for a calculus which refutes unsatisfiable sets of ground clauses.
Such a calculus can be obtained by the propositional resolution principle.

To give a motivation we first consider two ground instances C′
1, C

′
2 of

clauses C1, C2. Suppose that C′
1, C

′
2 are of the form

C′
1 = A ∨ P ∨B, C′

2 = D ∨ ¬P ∨ E

where P is a ground atom and A,B,D,E are ground clauses. Let Γ be an
arbitrary interpretation of the set of clauses, containing C1 and C2, such that
vΓ (C′

1 ∧C
′
2) = T. Then either vΓ (P) = T or vΓ (P) = F. If vΓ (P) = T then

vΓ (C′
2) = vΓ (D ∨ E) = T (because vΓ (C′

2) must be T); if vΓ (P) = F we
conclude similarly that vΓ (C′

1) = vΓ (A ∨ B) = T. We conclude that either
vΓ (A ∨B) = T or vΓ (D ∨ E) = T. This proves the validity of

C′
1 ∧ C

′
2 → A ∨B ∨D ∨ E.

The above argument shows the correctness of the inference schema of
propositional resolution:

A ∨ L ∨B D ∨ Ld ∨ E

A ∨B ∨D ∨ E

where L is a metavariable for literals and A,B,D,E are metavariables for
clauses. Although this rule is a propositional one it is also valid on general
clause forms. Let

C1 = A ∨ P ∨B;
C2 = D ∨ ¬P ∨ E

be clauses. C1 and C2 are represented by the PL-formulas

2.5 The Propositional Resolution Principle 53

F ({C1}) = (∀x1) . . . (∀xn)(A ∨ P ∨B) and
F ({C2}) = (∀y1) . . . (∀ym)(D ∨ ¬P ∨ E).

But (by the substitution principle) F ({C1})→ C1, F ({C2})→ C2 are both
valid. The same argument as above shows that also

C1 ∧ C2 → A ∨B ∨D ∨ E

is valid.
It follows that F ({C1}) ∧ F ({C2}) → A ∨ B ∨ D ∨ E is valid. Because

the last formula is valid for all variable environments we conclude (applying
a simple quantifier shifting) that

F ({C1, C2})→ F (A ∨B ∨D ∨ E)

is valid. Thus we have shown that the propositional resolution rule is correct
in clause logic.

Definition 2.5.1 (propositional resolvent, p-resolvent). Let C1, C2 be
clauses such that C1 = A ∨ L ∨ B and C2 = D ∨ Ld ∨ E for some literal L
and clauses A,B,D,E. Then A ∨B ∨D ∨ E is called p-resolvent of C1 and
C2. (p-resolvents are the result of the propositional resolution rule).

Using p-resolution without additional rules cannot result in a refutationally
complete inference system on ground clause logic. Consider

C1 = P (a) ∨ P (a), C2 = ¬P (a) ∨ ¬P (a).

There is one p-resolvent of C1, C2 (although obtained in two ways), namely
C3 = P (a) ∨ ¬P (a). Resolving C3 with C1 we get C1 again and similarly for
C2. Although {C1, C2} is clearly unsatisfiable we cannot deduce the empty
clause. It is obvious that we also need a contraction rule. We define such a
rule for (general) clause logic.

Definition 2.5.2 (p-reduct). Let C be a clause. Then C′ is called p-reduct
of C if C′ is C after omission of some multiple literals. Formally, if

C = C1 ∨ L ∨ C2 ∨ L ∨ C3

then C,C1 ∨ C2 ∨ L ∨ C3 and C1 ∨ L ∨ C2 ∨ C3 are p-reducts of C; every
p-reduct of a p-reduct is also a p-reduct (of C).

Example 2.5.1. C = P (x) ∨R(x) ∨ P (x) ∨ P (x).
The p-reducts of C are

C, R(x)∨P (x)∨P (x), P (x)∨R(x)∨P (x), R(x)∨P (x) and P (x)∨R(x).

Using p-resolution together with p-reduction it is easy to refute the set

54 2. The Basis of the Resolution Calculus

{P (a)∨P (a),¬P (a)∨¬P (a)}: By p-reduction we obtain P (a),¬P (a) and by
p-resolution 2. We will see that in combining p-resolution and p-reduction
we get a refutationally complete inference principle for propositional clause
logic. But we will show more: By Herbrand’s theorem we know that unsatis-
fiable sets of clauses C possess finite, unsatisfiable sets C′ of ground instances.
Let C be an unsatisfiable set of clauses and R be a complete inference princi-
ple for propositional logic. If we first produce a finite, unsatisfiable set C′ of
ground instances by substitution and then apply R to C′ we obtain a princi-
ple of inference which is complete for (general) clause logic. This motivates
the following definitions:

Definition 2.5.3. Let C be a set of clauses and C be a clause. A sequence
C1, . . . , Cn is called PR-deduction of C from C if the following conditions are
fulfilled:

1. Cn = C
2. For all i = 1, . . . n:

a) either Ci is an instance of a clause in C or
b) Ci is a p-resolvent of clauses D,E, where D,E are p-reducts of some

clauses Cj , Ck for j, k < i.

A PR-deduction of 2 from C is called a PR-refutation of C.

Definition 2.5.4. A PR-deduction is called a GR-deduction (ground reso-
lution deduction) if, in the definition of PR-deductions, 2(a) is replaced by
“Ci is a ground instance of a clause in C”.

It is easy to verify that the calculi defined in Definitions 2.5.3 and 2.5.4 are
sound.

Proposition 2.5.1 (soundness of PR-deduction). Let C be a set of
clauses and Γ be a PR-deduction of a clause C from C. Then F (C)→ F ({C})
is valid.

Proof. By an easy induction on the length of the deduction Γ . Essentially
we have to prove that instantiation, p-reducts and p-resolution are correct
rules. For p-resolution this has been shown in the beginning of this section,
for instantiation and p-reduct it is trivial. 3

Corollary 2.5.1. Let C be a set of clauses and Γ be a GR-deduction of a
clause C from C. Then F (C)→ F ({C}) is valid.

Proof. Every GR-deduction is a PR-deduction. 3

An immediate consequence of Proposition 2.5.1 is the following: If C is a
satisfiable set of clauses then 2 is not derivable. The requirement that, in
case of satisfiability, 2 cannot be derived is in fact weaker than soundness
as expressed in Proposition 2.5.1 (we call this weaker principle refutational

2.5 The Propositional Resolution Principle 55

soundness). Skolemization (interpreted as a rule) is refutationally sound, but
not (strongly) sound.

The main result of this chapter will be the (refutational) completeness of
PR- and GR-deductions.

Theorem 2.5.1 (completeness of GR-deduction). If C is an unsatis-
fiable set of clauses then there exists a GR-refutation of C.

Proof. Suppose that C is an unsatisfiable set of clauses. By Lemma 2.3.2 there
exists a finite, closed semantic tree T for C.

We prove the existence of a GR-refutation by induction on |NOD(T)|, the
number of nodes of T .

|NOD(T)| = 1 : Because already the root falsifies a clause in C, 2 must be
in C. But then 2 is a GR-refutation of C.

(IH) Suppose that for all C, such that C possesses a finite, closed semantic
tree T with |NOD(T)| ≤ n, there exists a GR-refutation of C.

Now let C be an (unsatisfiable) set of clauses, such that T is a closed semantic
tree with | NOD(T) |= n + 1. Then there exists a node N in T that is not
a failure node, yet both sons N1, N2 are failure nodes (otherwise T would be
infinite). The situation is graphically represented in Figure 2.13.

b

(falsifies C1) N1

b

N2 (falsifies C2)

bN

�
�
�

A
@
@
@

¬A

@@
�
��
@@

ROOT

Fig. 2.13. An inference node in a semantic tree

Because N1 and N2 are failure nodes there are clauses C1, C2 ∈ C of whose
N1 falsifies C1 and N2 falsifies C2. That means there are ground instances
C′

1, C
′
2 of C1, C2 such that:

For all L in C′
1 : Ld ∈ γN1 ,

For all L in C′
2 : Ld ∈ γN2 .

56 2. The Basis of the Resolution Calculus

Moreover, ¬A must occur in C′
1 and A in C′

2 (otherwise N1, N2 have
ancestor nodes falsifying C′

1 or C′
2, which contradicts the property of being

a failure node).
Let C′′

1 be a reduced form of C′
1 and C′′

2 be a reduced form of C′
2. Then

C′′
1 , C

′′
2 are specific p-reducts of C′

1, C
′
2. Still ¬A is in C′′

1 , A in C′′
2 and we

have

C′′
1 = D1 ∨ ¬A ∨D2,

C′′
2 = E1 ∨A ∨ E2

for ground clauses D1, D2, E1, E2 which neither contain A nor ¬A (note that
C′′

1 cannot contain A, because in this case it would be a tautology and thus
cannot be falsified at all).

By the occurrence of A and ¬A in C′′
1 , C

′′
2 there exists a p-resolvent C′ :

D1 ∨D2 ∨ E1 ∨ E2 of C′′
1 and C′′

2 ;
C′ neither contains A nor ¬A, but LIT(C′) ⊆ LIT(C′

1) ∪ LIT(C′
2). It

follows that for all L in C′, Ld ∈ γN . Consequently N itself or an ancestor
node of N is a failure node for C ∪ {C′} (N falsifies C′, but there may be an
ancestor node of N which also falsifies C′).

Thus let T1 be a closed semantic tree for C ∪ {C′} obtained from T by
removing N1 and N2 and cutting the corresponding path at a failure node.
Then, clearly,

| NOD(T1) |<| NOD(T) | and therefore
| NOD(T1) |≤ n.

By the induction hypothesis (IH) there exists a GR-refutation Π of C ∪
{C′}. The sequence C′

1, C
′
2, C

′ is a GR-deduction of C′ from C; C′ is obtained
from C′′

1 and C′′
2 by p-resolution and C′′

1 , C
′′
2 are p-reducts of C′

1, C
′
2. By

definition of GR-deductions, the sequence

C′
1, C

′
2, C

′, Π

is a GR-refutation of C. 3

Corollary 2.5.2. Let C be an unsatisfiable set of clauses; then there exists
a PR-refutation of C.

Proof. Trivial, as every GR-refutation is a PR-refutation. 3

The concept of PR-deduction does not represent “the” resolution principle
(in the usual terminology) because it is not based on most general unification
(to be introduced in the next chapter). The weak point in the concepts of PR-
and GR-deductions is the unlimited substitution rule (Definition 2.5.3, item
2.a), making PR-(GR-) deductions inappropriate for modeling automated
deduction. However we will use both concepts in analyzing the complexity of
resolution refutations.

2.5 The Propositional Resolution Principle 57

On sets of ground clauses GR-deductions are reduced to the application
of p-reduction and p-resolution. It is easy to see that p-resolution alone suf-
fices, if all clauses are kept in reduced form (and all p-resolvents are reduced
immediately after computation). Thus Theorem 2.5.1 immediately gives the
completeness of the propositional resolution principle. Propositional resolu-
tion can also be applied as a decision procedure on sets of ground clauses
(like the Davis–Putnam method); but we do not go into detail here and refer
to Chapter 5, which is devoted to resolution decision procedures in general
(but see Exercise 2.5.1). Finally, we give an example of a GR-refutation.

Example 2.5.2. Let C = {C1, C2, C3, C4} such that

C1 = P (x, f(y)) ∨ P (x, f(x)),

C2 = ¬P (x, y) ∨ P (y, x),

C3 = ¬P (x, y) ∨ P (f(x), y),

C4 = ¬P (f(f(z)), z).

The deduction in Figure 2.14 is represented in form of a tree; the nodes in
the tree are labeled with the clauses actually appearing in the PR-refutation.
The edges labeled by “sub” represent the application of a substitution, those
labelled by “p-red” the application of a p-reduction; “res” represents the ap-
plication of propositional resolution. The corresponding sequence, according
to Definition 2.5.3, is

Π : P (x, f(x)) ∨ P (x, f(x)), ¬P (x, f(x)) ∨ P (f(x), x), P (f(x), x),

¬P (f(x), x) ∨ P (f(f(x)), x), P (f(f(x)), x),¬P (f(f(x)), x), 2.

A special feature of PR-deductions is their “robustness” under substitution:
Let t be an arbitrary term; then

Π [xt] : P (t, f(t)) ∨ P (t, f(t)), ¬P (t, f(t)) ∨ P (f(t), t), P (f(t), t),

¬P (f(t), t) ∨ P (f(f(t)), t), P (f(f(t)), t), ¬P (f(f(t)), t), 2

is also a PR-refutation of C. If t ∈ H(C) then Πx
t is a GR-refutation of C.

Exercises

Let GCL be the class of all finite sets of reduced ground clauses (we call GCL
ground clause logic).

Exercise 2.5.1. Let C ∈ GCL and Res(C) be the set of all p-resolvents from
C in reduced form. We define R(C) = C∪Res(C) and for all i ≥ 1 : Ri+1(C) =
R(Ri(C)) and R∗(C) =

⋃∞
i=1R

i(C). Prove that R defines a decision algorithm
for the satisfiability problem of GCL, i.e.:

58 2. The Basis of the Resolution Calculus

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
��

C1

sub

P (x, f(x)) ∨ P (x, f(x))

p-red

P (x, f(x))

res

P (f(x), x)

res

P (f(f(x)), x)

res

2

C2

sub

¬P (x, f(x)) ∨ P (f(x), x)

C3

sub

¬P (f(x), x) ∨ P (f(f(x)), x)

C4

sub

¬P (f(f(x)), x)

Fig. 2.14. A deduction tree

a) for all C ∈ GCL : R∗(C) ∈ GCL (and thus R∗(C) is finite).
b) 2 ∈ R∗(C) iff C is unsatisfiable.

We denote the set of all finite sets of Krom clauses (see Definition 2.2.4)
by KL; the subclass of all set of reduced ground clauses in KL is written as
GKL.

If C is a set of clauses we write occl(C) for the number of all occurrences
of literals in C.

2.6 Substitution and Unification 59

Exercise 2.5.2. Let R be defined as in Exercise 2.5.1. Prove that the sat-
isfiability problem for GKL is polynomially decidable; that means prove the
existence of a polynomial p such that

a) for all C ∈ GCL : occl(R∗(C)) ≤ p(occl(C)) and
b) 2 ∈ R∗(C) iff C is unsatisfiable.

(Hint: A p-resolvent of two Krom clauses is also a Krom clause).

Exercise 2.5.3. Let C be a (finite) unsatisfiable set of Horn clauses. Show
that there exists a GR-refutation of C without p-reduction, i.e., we use a
concept of GR-deduction based on p-resolution only. (Hint: use a restriction
of resolution where one of two clauses to be resolved must be a positive unit
clause and show that this restriction is complete).

2.6 Substitution and Unification

In Example 2.5.2 it is clearly visible that the substitution rule always serves
the purpose of making literals complementary and of preparing clauses for p-
resolution. If two literals are made complementary, their atoms are made
equal and we speak about unification. We have seen that, for the PR-
refutation Π in Example 2.5.2, there are infinitely many “versions” Πx

t .

Figure 2.15 shows a segment (a deduction appearing in Πx
t) of Πx

t . Let us

P
P

P
P

P
P

PP

�
�

�
�

�
�

��

P (x, f(y)) ∨ P (x, f(x)) (C1)

P (t, f(t)) ∨ P (t, f(t))

P (t, f(t)) ¬P (t, f(t)) ∨ P (f(t), t)

¬P (x′, y′) ∨ P (y′, x′) (C2)

P (f(t), t)
Fig. 2.15. Resolution and unification

consider the literals in C1 and the literal ¬P (x′, y′) in C2 in Figure 2.15. The

60 2. The Basis of the Resolution Calculus

set of their atoms is {P (x, f(y)), P (x, f(x)), P (x′, y′)}. Replacing x by t, y
by t, x′ by t and y′ by f(t) we get the atom P (t, f(t)), which is cut out by
p-resolution. Thus the substitution serves as a unifier. There are infinitely
many terms t over C and infinitely many deductions corresponding to t. We
will see that one unifying substitution will always do the job and that, even
under this restriction, resolution remains complete. Precisely this fact makes
resolution much more powerful than any ground deduction method.

Before starting the study of unification in more detail, we prepare the neces-
sary machinery concerning substitutions.

For the formal definition of a substitution see Definition 2.1.10 (substitu-
tion) in Section 2.1.

Definition 2.6.1 (ground substitution). We call a substitution σ based
on a set of clauses C if all terms in rg(σ) are contained in T (C). A substitution
is called a ground substitution (based on C) if all terms in rg(σ) are contained
in H(C).

By Definition 2.1.10 the action of a substitution canonically extends to all
terms; there they represent specific endomorphisms of the term algebra. As,
by this extension, σ is of the type T → T , it is possible to concatenate sub-
stitutions. If σ, τ are two substitutions, σ ◦ τ simply denotes the composition
of the mappings σ and τ . For t ∈ T we get (σ ◦ τ)(t) = σ(τ(t)) – writing the
application of the mappings in prefix notation. As it is usual in automated
theorem proving to use the postfix notation for substitutions, we henceforth
write tτσ instead of (σ ◦ τ)(t). Algebraically, substitutions define a monoid,
where ǫ denotes the empty substitution:

σ(τµ) = (στ)µ,
σǫ = ǫσ = σ

for all substitutions σ, τ, µ.
We denote the set of substitutions by SUBST.

SUBSTΣ is the subset of all σ ∈ SUBST such that rg(σ) ⊆ TΣ ; similarly
we define SUBST(C).

In clause logic not only terms, but also atoms and literals are subjected to
substitutions. The extension of substitutions to atoms and literals is defined
in Definition 2.1.10. To make the mathematical analysis smoother we define
the concept of expression.

Definition 2.6.2 (expression). An expression is a term, an atom or a lit-
eral.

Let W = {E1, . . . , En} be a set of expressions. By Wσ we denote the set
{E1σ, . . . , Enσ}.

2.6 Substitution and Unification 61

Definition 2.6.3 (instance). An expression E1 is an instance of an ex-
pression E2 if there exists a substitution σ such that E1 = E2σ. In this case
we call σ a match and use the term “E1 matches E2”.

Substitutions and expressions may be compared with regard to their “general-
ity”, i.e., whether they can be obtained from other substitutions (expressions)
by instantiation. We obtain a relation ≤s:

Definition 2.6.4 (generality). Let E1 and E2 be expressions, then we de-
fine that E1 is more (or equally) general than E2 (notation E1 ≤s E2) if there
exists a substitution σ such that E1σ = E2. Let σ, τ be two substitutions. We
define σ ≤s τ (σ is more general than τ) if there exist a substitution ϑ such
that σϑ = τ .

The relation ≤s defines a quasiordering on the set of all substitutions. There
exists a (unique) minimal element with regard to ≤s, namely ǫ. We write
E1 =s E2 for E1 ≤s E2 and E2 ≤s E1; clearly =s is an equivalence relation.
Note that there are alternative definitions of substitution orderings appearing
in the literature (for an alternative definition see Exercise 2.6.1).

Definition 2.6.5 (permutation). A substitution σ is called a permutation
if σ is one-one and rg(σ) ⊆ V . A permutation σ is called a renaming of a
set of expressions E if V (E) ∩ rg(σ) = ∅.

We can go back now to the problem of unifying atoms, literals,
and terms (i.e., expressions) by substitutions. Recall the set of atoms
{P (x, f(y)), P (x, f(x)), P (x′, y′)} appearing as a unification problem in Fig-
ure 2.15. Let t be an arbitrary term different from x. Then the substitution
σt = {x← t, y ← t, x′ ← t, y′ ← f(t)} fulfils

P (x, f(y))σt = P (x, f(x))σt = P (x′, y′)σt = P (t, f(t)).

The same property holds for the substitution

σ = {y ← x, x′ ← x, y′ ← f(x)}.

This motivates the following definition.

Definition 2.6.6 (unifier). Let W be a nonempty set of expressions. A sub-
stitution σ is called unifier of W if |Wσ |= 1.
If W consists of only one element (where there is actually nothing to unify)
then, according to our definition, every substitution is a unifier of W .

Example 2.6.1. W = {P (x, f(y)), P (x, f(x)), P (x′, y′)}.
All substitutions σ, σt are unifiers of W (as T is infinite there are infinitely
many unifiers with domain ⊆ V (W)). Moreover, we see that the unifier σ
plays an exceptional role:
For

62 2. The Basis of the Resolution Calculus

σ = {y ← x, x′ ← x, y′ ← f(x)} and
σt = {x← t, y ← t, x′ ← t, y′ ← f(t)} we have

σ{x← t} = σt, i.e., σ ≤s σt.

It is easy to verify that for all unifying substitutions ϑ (including those with
dom(ϑ) − V (W) 6= ∅) we obtain σ ≤s ϑ. σ is more general than all other
unifiers of W , it is indeed “most” general. However, σ is not the only most
general unifier; for the unifier λ : {y ← x′, x← x′, y′ ← f(x′)} we get

λ ≤s σ, σ ≤s λ, and λ ≤s ϑ for all unifiers ϑ of W .

More generally, if λ is a most general unifier of a set of expressions and µ
is a permutation (see Definition 2.6.5) then λµ is a most general unifier too.

Definition 2.6.7 (most general unifier). A unifier σ of a set of expres-
sions W is called most general unifier (henceforth abbreviated by m.g.u.) of
W if for every unifier τ of W : σ ≤s τ .

If W is a set of expressions, we write UN(W) for the set of all unifiers ϑ of W
fulfilling dom(ϑ) ⊆ V (W) and rg(ϑ) ⊆ T (W) (T (W) is the set of all terms
over the signature of W). UN(W) essentially describes the set of unifiers over
the “syntax” of W . It is easy to verify that W is unifiable iff W is unifiable
by a substitution in UN(W) (Exercise 2.6.3).

While the set of all unifiers of a finite set of expressions W is always
infinite (by replacing dummy variables outside W), UN(W) may be finite.
As an example consider W = {P (x), P (a)}, where UN(W) = {{x← a}}.

Let W = {P (x, f(y)), P (x, f(x)), P (u, v)} as in Example 2.6.1. Then
UN(W) = {σ, σ1, σ2} ∪ {σt | t ∈ T

′}, where

σ = {y ← x, u← x, v ← f(x)},
σ1 = {x← u, y ← u, v ← f(u)},
σ2 = {x← y, u← y, v ← f(y)},
σt = {x← t, y ← t, u← t, v ← f(t)}, and
T ′ = T (W)− {x, y, u}.

The ≤s relations among the ϑ ∈ UN(W) are the following:

σ ≤s σ1 and σ1 ≤s σ (we write σ =s σ1)
σ =s σ2 and (because =s is an equivalence relation)
σ1 =s σ2.

For all ϑ ∈ UN(W)−{σ, σ1, σ2} we get σ ≤s ϑ but not ϑ ≤s σ (and therefore
also σ 6=s ϑ).

σ, σ1, σ2 are all most general unifiers ofW , but they only differ with regard
to variable permutations within V (W):

σ{x← u} = σ1, σ1{u← x} = σ,
σ{x← y} = σ2, σ2{y ← x} = σ,
σ1{u← y} = σ2, σ2{y ← u} = σ1,

2.6 Substitution and Unification 63

It is easy to see that a finite set W of expressions can have only a finite
number of m.g.u.’s. First of all, if there is an m.g.u. of a set of expressions W
it must be contained in UN(W). But if σ ∈ UN(W) there are only finitely
many ϑ ∈ UN(W) such that σ =s ϑ (see Exercise 2.6.4).

The question remains, whether there is always an m.g.u. of W in case
UN(W) 6= ∅. We will give a positive answer and design an algorithm which
always computes an m.g.u. if UN(W) 6= ∅ and stops if UN(W) = ∅. Before
we define such a unification algorithm we show that the problem of unifying
an arbitrary finite set of two or more expressions can be reduced to unifying
a set {E1, E2} consisting of two expressions only.

Let W = {E1, . . . , En} be a set of expressions and n ≥ 2. If W is a set
of terms we define W ′ = W . If W contains atoms or literals we proceed in
the following manner: Let {P1, . . . , Pm} be the set of all predicate symbols
appearing in W . For every Pi we introduce a new function symbol fi (which
is not contained in W) of the same arity. We reserve a one-place function
symbol g to describe negation of atoms (g is different from f1, . . . , fm). Then
we translate

Pi(S
i
1, . . . , S

i
ki

) into fi(S
i
1, . . . , S

i
ki

)

and
¬Pi(S

i
1, . . . , S

i
ki

) into g(fi(S
i
1, . . . , S

i
ki

)).

Let W ′ be the set of all translated expressions.
Clearly ϑ is a unifier of W iff ϑ is a unifier of W ′. Thus let W ′ =

{E′
1, . . . , E

′
n} be the set of terms corresponding to W and let f be an ar-

bitrary n-ary function symbol.
Then E′

1σ = . . . = E′
nσ iff f(E′

1, . . . , E
′
n)σ = f(E′

1, . . . , E
′
1)σ, and W ′ is

unifiable by unifier ϑ iff {f(E′
1, . . . , E

′
n), f(E′

1, . . . , E
′
1)} is unifiable by unifier

ϑ.
This completes the reduction of the unification problem for W to a uni-

fication problem of {t1, t2}, t1 and t2 being terms.

Example 2.6.2. W = {P (x, f(y)), P (x, f(x)), P (u, v)}.
We transfer the unification problem to a unification problem for two

terms.

W ′ = {h(x, f(y)), h(x, f(x)), h(u, v)} for h ∈ FS2.

Now let i ∈ FS3. We define

W ′′ = {i(h(x, f(y)), h(x, f(x)), h(u, v)), i(h(x, f(y)), h(x, f(y), h(x, f(y))}.
Then

σ = {y ← x, u← x, v ← f(x)} (an m.g.u. of W)
is also an m.g.u. of W ′′.

Indeed
W ′′σ = {i(h(x, f(x)), h(x, f(x)), h(x, f(x)))}.

64 2. The Basis of the Resolution Calculus

By the transformation described above it is justified to reduce unification
to “binary” unification. We now investigate the syntactical structures within
{E1, E2} which characterize unifiability. Let

E = {P (t1, . . . , tn), P (s1, . . . , sn)}.

By elementary properties of substitutions we obtain

P (t1, . . . , tn)σ = P (t1σ, . . . , tnσ),
P (s1, . . . , sn)σ = P (s1σ, . . . , snσ).

Then E is unifiable iff there exists a substitution σ such that

s1σ = t1σ, . . . , snσ = tnσ.

We observe that the unifiability of E is equivalent to the simultaneous unifi-
ability of (s1, t1), . . . , (sn, tn). The si or the ti may be again of the form
f(u1, . . . , um) and the property of decomposition holds recursively. This leads
to the following definition:

Definition 2.6.8 (corresponding pairs). Let E1, E2 be two expressions.
The set of corresponding pairs CORR(E1, E2) is defined as follows:

1. (E1, E2) ∈ CORR(E1, E2)
2. If (¬A,¬B) ∈ CORR(E1, E2) then (A,B) ∈ CORR(E1, E2)
3. If (F1, F2) ∈ CORR(E1, E2) such that F1 = F (s1, . . . , sn) and F2 =

F (t1, . . . , tn), where F ∈ FS ∪ PS, then (si, ti) ∈ CORR(E1, E2) for all
i = 1, . . . , n.

4. Nothing else is in CORR(E1, E2).

A pair (F1, F2) is called irreducible if the leading symbols of F1, F2 are dif-
ferent.

There are two different types of irreducible pairs. Take for example the
pairs (x, f(y)), (x, f(x)) and (f(x), g(a)). All these pairs are irreducible. But
for σ = {x ← f(y)} the pair (x, f(y))σ = (f(y), f(y)) is reducible and
even identical; thus there exists a substitution which removes the irreducibil-
ity of (x, f(y)). We show now that no such substitutions exist for the pairs
(f(x), g(a)): For arbitrary substitutions λ we have the property

(f(x), g(a))λ = (f(xλ), g(a))

and thus (f(x), g(a))λ is irreducible for all λ.

Let us consider the pair (x, f(x)) and the substitution λ = {x ← f(y)}
then (x, f(x))λ = (f(y), f(f(y))); (f(y), f(f(y))) is reducible but reduction
yields (y, f(y)). Because, for all substitutions λ, xλ is properly contained in

2.6 Substitution and Unification 65

f(x)λ the set {x, f(x)} is not unifiable.

We call a pair of expressions (E1, E2) unifiable if the set {E1, E2} is unifi-
able. In this terminology, (x, f(y)) is irreducible but unifiable, but (x, f(x))
and (f(x), g(a)) are irreducible and nonunifiable. It is easy to realize that
(E1, E2) is only unifiable if all irreducible elements in CORR(E1, E2) are
(separately) unifiable; note that this property is necessary but not sufficient.

Example 2.6.3.

E1 = P (x, f(x, y)),
E2 = P (f(u, u), v),

CORR(E1, E2) = {(E1, E2), (x, f(u, u)), (f(x, y), v)}.

We eliminate the irreducible pair (x, f(u, u)) by applying the substitution

σ1 = {x← f(u, u)}.

Applying σ1 we obtain (E1σ1, E2σ1) and

CORR(E1σ1, E2σ1) = {(P (f(u, u), f(f(u, u), y)), P (f(u, u), v)),
(f(u, u), f(u, u)), (f(f(u, u), y), v), (u, u)}.

In CORR(E1σ1, E2σ1) the only irreducible pair is (f(f(u, u), y), v) which
can be eliminated by the substitution σ2 = {v ← f(f(u, u), y)}.

Now it is easy to see that E1σ1σ2 = E2σ1σ2 and that
CORR(E1σ1, σ2, E2σ1σ2) consists of identical pairs only. σ1σ2 is clearly a
unifier of {E1, E2} (it is even the m.g.u.). For the unification above it was
essential that all irreducible pairs were unifiable.

For an algorithmic treatment of unification the reducible and identical corre-
sponding pairs are irrelevant; it suffices to focus on irreducible pairs. We are
led to the following definition:

Definition 2.6.9 (difference set). The set of all irreducible pairs in
CORR(E1, E2) is called the difference set of (E1, E2) and is denoted by
DIFF(E1, E2).

Example 2.6.4. Let (E1, E2) = (P (x, f(x, y)), P (f(u, u), v)) as in Exam-
ple 2.6.3. Then

DIFF(E1, E2) = {(x, f(u, u)), (f(x, y), v)}.

By application of σ1 = {x← f(u, u)}we first obtain the pair (f(u, u), f(u, u))
which is in CORR(E1σ1, E2σ1), but not in DIFF(E1σ1, E2σ1). Thus we ob-
tain DIFF(E1σ1, E2σ1) = {(f(f(u, u), y), v)}.

We have already mentioned that {E1, E2} is unifiable only if all correspond-
ing pairs are unifiable. By definition of DIFF(E1, E2) we get the following

66 2. The Basis of the Resolution Calculus

necessary condition for unifiability: For all pairs (s, t) ∈ DIFF(E1, E2), (s, t)
is unifiable. The following proposition shows that the unification problem for
(single) pairs in DIFF(E1, E2) is very simple.

Proposition 2.6.1. Let E1, E2 be expressions and (s, t) be a pair in
DIFF(E1, E2). Then (s, t) is unifiable iff the following two conditions hold:

a) s ∈ V or t ∈ V ,
b) If s ∈ V (t ∈ V) then s does not occur in t (t does not occur in s).

Proof. (s, t) is unifiable ⇒:
By definition of DIFF(E1, E2) the pair (s, t) is irreducible; because it is unifi-
able, s or t must be a variable (otherwise s and t are terms with different head
symbols and thus are not unifiable). Suppose now without loss of generality
that s ∈ V . If s occurs in t then sλ (properly) occurs in tλ for all λ ∈ SUBST;
in this case (s, t) is not unifiable. We have shown that a) and b) both hold.

a), b) ⇒
Suppose without loss of generality that s ∈ V . Define λ = {s ← t}; then
sλ = t and, because s does not occur in t, tλ = t. It follows that λ is a unifier
of (s, t). 3

The idea of the unification algorithm shown in Figure 2.16 is the following:
construct the difference set D. If there are nonunifiable pairs in D then stop
with failure; otherwise eliminate a pair (x, t) in D by the substitution {x← t}
and construct the next difference set.

algorithm UAL {input is a pair of expressions (E1, E2)};
begin

ϑ← ǫ;
while DIFF(E1ϑ, E2ϑ) 6= ∅ do

if DIFF(E1ϑ,E2ϑ) contains a nonunifiable pair
then failure
else

select a unifiable pair (s, t) ∈ DIFF(E1ϑ, E2ϑ)
if s ∈ V
then α := s; β := t
else α := t; β := s
end if
ϑ := ϑ{α← β}

end if
end while
{ϑ is m.g.u.}

end.

Fig. 2.16. Unification algorithm

Note that UAL is a nondeterministic algorithm, because the selection of
a unifiable pair (s, t) is nondeterministic. UAL can be transformed into dif-
ferent deterministic (implementable) versions by choosing appropriate search

2.6 Substitution and Unification 67

strategies. But even if the pairs (s, t) are selected from left to right (accord-
ing to their positions in (E1, E2)), both s and t may be variables and thus
{s← t} and {t← s} can both be used in extending the substitution ϑ. UAL
is more than a decision algorithm in the usual sense, because in case of a
positive answer (termination without failure) it also provides an m.g.u. for
{E1, E2}.

Theorem 2.6.1 (unification theorem). UAL is a decision algorithm for
the unifiability of two expressions. Particularly the following two properties
hold:

a) If {E1, E2} is not unifiable then UAL stops with failure.
b) If {E1, E2} is unifiable then UAL stops and ϑ (the final substitution con-

structed by UAL) is a most general unifier of {E1, E2}.

Proof.

a) If (E1, E2) is not unifiable then for all substitutions λ E1λ 6= E2λ. Thus
for every ϑ defined in UAL we get DIFF(E1ϑ,E2ϑ) 6= ∅. In order to prove
termination we have to show that the while-loop is not an endless loop:
In every execution of the while loop a new substitution ϑ is defined as
ϑ = ϑ′{x← t}, where ϑ′ is the substitution defined during the execution
before and (x, t) (or (t, x)) is a pair in DIFF(E1ϑ

′, E2ϑ
′) with x ∈ V .

Because x /∈ V (t) (otherwise UAL terminates with failure before), the
pair (E1ϑ,E2ϑ) does not contain x anymore; we conclude

| V ({(E1ϑ
′, E2ϑ

′)}) |>| V ({(E1ϑ,E2ϑ)}) | .

It follows that the number of executions of the while-loop must be ≤ k
for k =| V ({E1, E2}) |. We see that, whatever result is obtained, UAL
must terminate. Because UAL terminates and (by nonunifiability)
DIFF(E1ϑ,E2ϑ) 6= ∅ for all ϑ, it must stop with failure.

b) In the k-th execution of the while loop (provided termination with failure
does not take place) the k-th definition of ϑ via ϑ := ϑ{α ← β} is
performed. We write ϑk for the value of ϑ defined in the k-th execution.

Suppose now that η is an arbitrary unifier of {E1, E2}. We will show
by induction on k, that for all ϑk there exist substitutions λk such that
ϑkλk = η. We are now in a position to conclude our proof as follows:

Because UAL terminates (see part a of the proof), there exists a number
m such that the m-th execution of the while-loop is the last one.
From ϑmλm = η we get ϑm ≤s η. Moreover ϑm must be a unifier: Because
them-th execution is the last one, either DIFF(E1ϑm, E2ϑm) = ∅ or there
is a nonunifiable pair (s, t) ∈ DIFF(E1ϑm, E2ϑm);

68 2. The Basis of the Resolution Calculus

but the second alternative is impossible, as η = ϑmλm and λm is a unifier
of (E1ϑm, E2ϑm). Because ϑm is a unifier, η is an arbitrary unifier and
ϑm ≤s η, ϑm is a m.g.u. of {E1, E2} (note that m and ϑm depend on
(E1, E2) only, but λm depends on η).

Therefore it remains to show that the following statement A(k) holds for
all k ∈ N :
A(k): Let ϑk be the substitution defined in the k-th execution of the

while-loop. Then there exists a substitution λk such that ϑkλk = η.
We proceed by induction on k:
A(0): ϑ0 = ǫ.

We choose ϑ0 = η and obtain ϑ0λ0 = η.

(IH) Suppose that A(k) holds.

If ϑk+1 is not defined by UAL (because it stops before) the antecedent of
A(k+ 1) is false and thus A(k + 1) is true. So we may assume that ϑk+1

is defined by UAL.
Then ϑk+1 = ϑk{x ← t} where x ∈ V , t ∈ T and (x, t) ∈
DIFF(E1ϑk, E2ϑk) or (t, x) ∈ DIFF(E1ϑk, E2ϑk).
By the induction hypothesis (IH) we know that there exists a λk such
that ϑkλk = η. Our aim is to find an appropriate substitution λk+1

such that ϑk+1λk+1 = η.

Because λk is a unifier of (E1ϑk, E2ϑk) it must unify the pair (x, t), i.e.,
xλk = tλk. Therefore λk must contain the element x← tλk. We define

λk+1 = λk − {x← tλk}.

The substitution λk+1 fulfils the property

(∗) {x← t}λk+1 = λk+1 ∪ {x← tλk}.

To prove (*) it is sufficient to show that

v{x← t}λk+1 = v(λk+1 ∪ {x← tλk})

holds for all v ∈ dom(λk) (note that dom(λk+1) ⊆ dom(λk)). If v 6= x
then v{x← t} = v and v{x← t}λk+1 = vλk+1. If v = x then

x{x← t}λk+1 = tλk+1 and
x(λk+1 ∪ {x← tλk}) = tλk.

By definition of UAL, ϑk+1 is only defined it x /∈ V (t). But x /∈ V (t)
implies tλk+1 = tλk and

x{x← t}λk+1 = x(λk+1 ∪ {x← tλk}).

We see that (*) holds.

It follows

2.6 Substitution and Unification 69

ϑkλk = ϑk(λk+1 ∪ {x← tλk}) = ϑk{x← t}λk+1 = ϑk+1λk+1.

This concludes the proof of A(k + 1). 3

Example 2.6.5. Let E1 = P (x, h(x, y), z) and E2 = P (u, v, g(v)). We com-
pute an m.g.u. of {E1, E2} by using UAL.

ϑo = ǫ; DIFF(E1, E2) = {(x, u), (h(x, y), v), (z, g(v))}.

All pairs in DIFF(E1, E2) are unifiable. ϑ1 = ϑ0{z ← g(v)} = {z ← g(v)}.
DIFF(E1ϑ1, E2ϑ1) = {(x, u), (h(x, y), v)}. Again all pairs in the difference
set are unifiable.

ϑ2 = ϑ1{x← u} = {z ← g(v), x← u}
DIFF(E1ϑ2, E2ϑ2) = {(h(u, y), v)}.

As v does not occur in h(u, y) we continue and obtain

ϑ3 = ϑ2{v ← h(u, y)} = {z ← g(h(u, y)), x← u, v ← h(u, y)}

Now DIFF(E1ϑ3, E2ϑ3) = ∅ and (due to Theorem 2.6.1) ϑ3 is an m.g.u.
of {E1, E2}. The expression E1ϑ3(= E2ϑ3) obtained by unification is
P (u, h(u, y), g(h(u, y))). If we replaceE2 by E′

2 = P (v, v, g(v)) then we obtain

DIFF(E1, E
′
2) = {(x, v), (h(x, y), v), (z, g(v))}.

By defining ϑ′1 = {x← v} we get

DIFF(E1ϑ
′
1, E2ϑ

′
1) = {(h(v, y), v), (z, g(v))}.

Because the pair (h(v, y), v) is not unifiable we stop with failure.

Example 2.6.5 shows that in computing DIFF(E1ϑ,E2ϑ) we do not need the
expressions E1, E2 themselves, but merely DIFF(E1, E2). Our formulation is
close to that of Martelli and Montanari [MM82] where the pairs are replaced
by equations. UAL is an exponential algorithm because it computes the m.g.u.
ϑ in an “explicit” form, i.e., ϑ is represented as a list x1 ← t1, . . . , xn ← tn.

Example 2.6.6.

En
1 = P (x1, g(x1, x1), x2, g(x2, x2), . . . , xn, g(xn, xn)),

En
2 = P (g(y1, y1), y2, g(y2, y2), . . . , yn, g(yn, yn), yn+1).

We define the length of an expression as the number of occurrences of symbols
(belonging to V ∪CS ∪ FS ∪ PS). Then length (En

1) =length(En
2) ≤ αn for

all n and some constant α.
(En

1 , E
n
2) is unifiable by m.g.u. σn =

{yn+1 ← g(xn, xn)}{xn ← g(yn, yn)} . . . {y2 ← g(x1, x1)}{x1 ← g(y1, y1)}

If we represent σn as a sequence

(x1 ← s1), . . . , (xn ← sn), (y2 ← t2), . . . , (yn+1 ← tn+1)

then the term tn+1 is already of exponential size. By defining

70 2. The Basis of the Resolution Calculus

w1 = g(y1, y1)
wn+1 = g(wn, wn) for n ≥ 1

we obtain tn+1 = w2n. By

length (wk+1) > 2 length (wk) and length (w1) = 3

we get length(tn+1) > 22n. It follows that length(tn+1) is exponential in n
and length(σn) (in explicit representation) is too. Particularly the unified
atom En

1 σn is of exponential length with regard to length(En
1)+length(En

2).

Martelli and Montanari [MM82] developed a unification algorithm which
avoids the representation of substitutions in explicit form. Instead the substi-
tutions are represented in a compositional form (note that the substitutions
σn – represented as composition of “atomic” substitutions in Example 2.6.6
– are of linear length). The algorithm of Martelli and Montanari has an
O(n log n)-time worst case, which proves that unification is a polynomial-
time decision problem. The problem was even shown linear-time decidable
by Paterson and Wegman in [PW78]. However it should be noted that the
computation of the unified expression itself is necessarily exponential unless
we adopt a compositional notation: whatever algorithm is chosen to compute
and represent an m.g.u. σn in Example 2.6.6, En

1 σn is of size exponential in
the size of En

1 . Because our approach is more logical and less directed to com-
plexity theory, we may be content with UAL. Despite its exponential worst
case UAL can be turned into a (practically) efficient decision algorithm by
using clever selection methods for corresponding pairs.

Even without combination with the resolution principle, unification can be
shown superior to deduction methods directly based on Herbrand’s theorem.

Example 2.6.7. C = {P (x, f(x, b), u),¬P (g(a), z, h(z))}

We show that C is unsatisfiable. Let A1 = P (x, f(x, b), u) and A2 =
P (g(a), z, h(z)). By Herbrand’s theorem C is unsatisfiable iff there exists a
finite unsatisfiable set of ground instances. By the rules of Davis and Putnam
we conclude that this is only possible if A1 and A2 are unifiable, i.e., there
exists a ground instance η such that A1η = A2η. On the other hand, C is
unsatisfiable if A1 and A2 are unifiable (apply the unifier and then proposi-
tional resolution). It follows that C is unsatisfiable iff {A1, A2} is unifiable.
By applying UAL we find out that {A1, A2} is indeed unifiable by m.g.u.

σ = {x← g(a), z ← f(g(a), b), u← h(f(g(a), b))}.

Thus we can show unsatisfiability by proving that A1 and ¬A2 are made
complementary by σ. Indeed the unified atom is

P (g(a), f(g(a), b), h(f(g(a), b))).

σ is not only an m.g.u., it is also the only unifier of {A1, A2} in UN({A1, A2}).

2.6 Substitution and Unification 71

While proving C unsatisfiable via unification is an easy task, it becomes
unfeasible by the method of Davis and Putnam. The failure of the Davis–
Putnam method mainly depends on the rapid growth of the Herbrand sets
Hi and of the corresponding set of ground instances C′i. However as a propo-
sitional proof procedure the Davis–Putnam method is quite efficient. In fact
the true barrier is the principle of ground saturation.

Let us abbreviate | Hi(C) | by hi; then in our example h0 = 2, h1 =
10, h2 = 122, h3 = 15130 and in general

hi+1 = hi + (hi−1 + hi + 2)(hi − hi−1) for i ≥ 1.

Because σ is the only unifier (if no dummy variables are substituted) and
u← h(f(g(a), b)) ∈ σ, τ(h(f(g(a), b))) = 3, C′0, C

′
1 and C′2 are all satisfiable.

Thus C′3 is computed in the Davis–Putnam method. But | C′3 |= h2
3 + h3 >

2 · 108. Thus only one substitution is needed to refute C by using UAL, while
in the Davis–Putnam method more than 200 million ground instances are
produced.

There is a further advantage in using UAL instead of DP. Let us generalize the
set of clauses in Example 2.6.7 to C = {L1, L2}. C is unsatisfiable iff {L1, L

d
2η}

is unifiable (for a variable-renaming sustitution η such that V (L1)∩V (L2η) =
∅). In order to decide satisfiability we only apply UAL to (L1, L

d
2η); note that

UAL always terminates. On the other hand, the Davis–Putnam method never
terminates if C is satisfiable. We conclude that UAL is not only faster but can
actually do “much more” – at least on examples of that type. However, there
are improved ground instance enumeration procedures using the unification
principle (they generate ground instances of m.g.u.’s only); we just mention
Plaisted’s linking and hyperlinking method [LP92].

Exercises

Let ≤s0 be the following relation on the set of all substitutions SUBST:
σ ≤s0 τ iff there exists a ϑ ∈ SUBST such that for all x ∈ dom(σ) : xσϑ = xτ .

Exercise 2.6.1.

a) Show that σ ≤s τ (see Definition 2.6.4) always implies σ ≤s0 τ .
b) Define two substitutions σ, τ such that σ ≤s0 τ holds but σ ≤s τ does not

hold.

Exercise 2.6.2. Let E be an expression, σ be a substitution with dom(σ) =
V (E) and Eσ ≤s Eτ for some substitution τ . Show that σ ≤s0 τ holds, but
σ ≤s τ need not be true.

Comments on Exercises 2.6.1, 2.6.2:

Exercises 2.6.1 and 2.6.2 show that, in some sense, the relation ≤s0 is more

72 2. The Basis of the Resolution Calculus

natural than ≤s (in defining the concept “more general”). However, ≤s is
more adequate for the analysis of most general unification. Note that the
existence of a most general unifier (defined via ≤s) is a stronger result than
it would be for ≤s0, indeed, if µ is m.g.u., we know that for all unifiers λ we
have µ ≤s λ (µ ≤s0 λ is an immediate consequence by Exercise 2.6.1).

Exercise 2.6.3. Show that a set of expressionsW is unifiable iff UN(W) 6= ∅
(recall that ϑ ∈ UN(W) iff ϑ is a unifier, dom(ϑ) ⊆ V (W) and rg(ϑ) ⊆
T (W)).

Exercise 2.6.4. Let W be a set of expressions and σ ∈ UN(W). Show that
there are only finitely many substitutions ϑ ∈ UN(W) such that V (rg(ϑ)) ⊆
V (W) and σ =s ϑ.

Exercise 2.6.5. Show that the most general unifiers defined by the algo-
rithm UAL are always idempotent (i.e., if σ is an m.g.u. of a set of expres-
sions then σσ = σ). Does this property hold for all most general unifiers in
UN(W)?

2.7 The General Resolution Principle

In Section 2.5 we have shown that propositional resolution is complete. A
characteristic of PR-deductions is the use of unrestricted substitution in in-
stantiating input clauses. On the other hand only unifying substitutions are
relevant to PR-deductions. It would be an easy task to show the complete-
ness of PR-deductions under the restriction that all instances are also unifiers
(either for resolution or for unifying literals within a clause). Although such
a restriction would be an obvious improvement, there may still be infinitely
many unifiers of two literals. The real strength of the general resolution prin-
ciple is based on the rigorous use of most general unification. That means
unification (in every required form) appears as most general unification only
and can be performed algorithmically (e.g., by UAL). Some additional tech-
niques are necessary if substitution (which is a unary rule) is replaced by
unification (which is binary).

Example 2.7.1. Let C be {C1, C2, C3} for

C1 = ¬P (x) ∨R(f(x)), C2 = P (f(x)) ∨R(x) and C3 = ¬R(x).

Π : ¬P (f(a)) ∨R(f(f(a))), P (f(a)) ∨R(a), R(f(f(a))) ∨R(a),¬R(a),
R(f(f(a))),¬R(f(f(a))),2

is a GR-refutation of C.
Although the substitutions ϑ1 = {x ← f(a)} in C1 and ϑ2 =

{x ← a} in C2 lead to the complementary literals ¬P (f(a)) and
P (f(a)), {P (x), P (f(x))} was not unified in the sense of Section 2.6. The
reason is that {P (x), P (f(x))} is not unifiable by a substitution applied to

2.7 The General Resolution Principle 73

both atoms simultaneously. But, as clauses represent closed, universal dis-
junctions, the names of variables are clearly irrelevant. By renaming C2 to
C′

2 : P (f(y))∨R(y) we can unify {P (x), P (f(y))} by m.g.u. σ = {x← f(y)}.

Π1 : ¬P (f(y)) ∨R(f(f(y))), P (f(y)) ∨R(y), R(f(f(y))) ∨R(y)

is a PR-deduction from {C1, C2, C3} based on σ.
We see that some kind of renaming is necessary in order to combine

unification and resolution. By extending Π1 to Π , but under most general
unification, we obtain

Π1,¬R(x), R(f(f(x))).

Again we are in the situation that {R(x), R(f(f(x)))} is not unifiable.
This problem can easily be solved by replacing every clause by an ap-

propriate renamed version. Thus we may resolve ¬P (x) ∨ R(f(x)) and
P (f(x)) ∨ R(x) by replacing them (internally) by variants ¬P (y) ∨ R(f(y))
and P (f(z)) ∨ R(z) which are variable-disjoint, and apply most general
unifiers and propositional resolution afterwards. Using this method we get
R(f(f(z))) ∨ R(z) and all its variants as resolvents of ¬P (x) ∨ R(f(x)) and
P (f(x)) ∨ R(x). In the sense of this new renaming method we obtain a de-
duction:

¬P (x)∨R(f(x)), P (f(x))∨R(x), R(f(f(z)))∨R(z),¬R(x), R(f(f(y))), 2.

Note that we can use ¬R(x) twice, first in the resolution with R(f(f(z))) ∨
R(z) and then in resolving with (its resolvent) R(f(f(y))).

Example 2.7.1 gives a motivation for the following definitions:

Definition 2.7.1 (variant). A clause C is called a variant of a clause D if
there exists a variable permutation (see Definition 2.6.5) η such that Cη = D;
we write C ∼v D.

It is easy to verify that ∼v is an equivalence relation on the set of all clauses.
By C/∼v

we denote the equivalence classes under ∼v defined by the set of
clauses C.

Definition 2.7.2 (binary resolvent). Let C and D be two clauses and
C1, D1 be variants of C,D such that V (C1) ∩ V (D1) = ∅. Suppose that C1

and D1 are of the form C1 : A ∨ L ∨B, D1 : E ∨M ∨ F such that {Ld,M}
is unifiable by m.g.u. σ. Then the clause (A ∨ B ∨ E ∨ F)σ is called binary
resolvent of C and D. The atom formula of L is the atom “resolved upon”.

Because there are infinitely many variants C1, D1 of C,D, two clauses may
have infinitely many binary resolvents. The following simple proposition
shows that this infinity is “inessential”:

74 2. The Basis of the Resolution Calculus

Proposition 2.7.1. Let C,D be two clauses and Res({C,D}) be the set of
all binary resolvents of C and D. Then Res({C,D})/∼v

is finite.

Proof. Let C1, D1 be two variants of C,D such that V (C1) ∩ V (D1) = ∅.
Because there are maximally | C1 | · | D1 | pairs of complementary literals,
there are only finitely many “direct” binary resovents of C1, D1 (i.e., resol-
vents obtained without renaming C1, D1 again). Suppose now that C1 = Cη1
and D1 = Dλ1 for renaming substitutions η1, λ1 and C = A ∨ L ∨ B, D =
E ∨M ∨ F. The binary resolvent, obtained resolving upon Lη1 and Mλ1, is

R1 = (Aη1 ∨Bη1 ∨ Eλ1 ∨ Fλ1)σ1

where σ1 is an m.g.u. of {Ldη1,Mλ1}.
Taking another pair of variants C2 = Cη2 and D2 = Dλ2 and resolving

upon Lη2 and Mλ2 we get

R2 = (Aη2 ∨Bη2 ∨ Eλ2 ∨ Fλ2)σ2

where σ2 is an m.g.u. of {Ldη2,Mλ2}.
Let W1 = {Ldη1,Mλ1} and W2 = {Ldη2,Mλ2} then W1 ∼v W2 and

there exists an η such that W1η = W2.

Let us denote Aη1 ∨Bη1 ∨Eλ1 ∨Fλ1 by G1, Aη2 ∨Bη2 ∨Eλ2 ∨Fλ2 by G2.

Then G1 ∼v G2 because V (Aη1 ∨Bη1) ∩ V (Eλ1 ∨ Fλ1) = ∅, and
V (Aη2 ∨Bη2)∩ (Eλ2 ∨Fλ2) = ∅ and η1, λ1, η2, λ2 are all permutations (and
thus are invertible).

Let ϑ be the renaming substitution with G1ϑ = G2. Because ϑ is a renaming
and σ1, σ2 are m.g.u.’s of expressions which are variants of each other there
exists a renaming ρ such that ϑσ2 = σ1ρ. But then we obtain

R1ρ = G1σ1ρ = G1ϑσ2 = G2σ2 = R2.

Similarly we can construct a renaming τ such that R2τ = R1. It follows
that two binary resovents defined by resolving different variants, but upon
variants of the same literals, are ∼v equivalent. Particularly R1 and R2 are
in the same ∼v equivalence class. 3

The resolution rule defined in Definition 2.7.2 is called “binary” resolu-
tion, because only a pair of literals is made complementary by most general
unification. This binary unification principle, however, is too weak to result
in a complete inference principle.

Example 2.7.2. Let C be the unsatisfiable set of clauses

{P (x) ∨ P (y), ¬P (x) ∨ ¬P (y)}.

With regard to ∼v the only resolvent of C1 and C2 is C3 : ¬P (x) ∨ P (y).
Note that P (y) ∨ ¬P (y) is a P-resolvent, but not a binary resolvent of C1

2.7 The General Resolution Principle 75

and C2. But (again under ∼v) C3 with C1 reproduces C1 and C3 with C2

reproduces C2 again. We conclude that a deduction principle based only on
the binary resolution rule (in Definition 2.7.2) is not complete. There is of
course the following PR-refutation of C:

P (x) ∨ P (x), ¬P (x) ∨ ¬P (x), 2.

Note that P (x)∨P (x) defines the p-reduct P (x). The substitution λ : {y ← x}
applied to C1 works as an internal m.g.u. to unify literals within C1. We
recognize the necessity to unify inside clauses in order to make p-reduction
possible.

Note that renaming substitutions (being permutations) cannot lead to uni-
fication within clauses. Moreover C ∼v D implies F ({C}) ∼ F ({D}). This
property does not hold for unifying substitutions, e.g., F ({P (x, y)∨P (y, x)})
is not logically equivalent to F ({P (x, x) ∨ P (x, x)}) (we performed the in-
ternal m.g.u. σ = {y ← x}). However, F ({P (x) ∨ P (y)}) and F ({P (x)})
are equivalent due to the property of condensing, which will be discussed in
Section 3.2.

Definition 2.7.3 (G-instance). Let C be a clause and A be a nonempty
set of literals occurring in C. If A is unifiable by m.g.u. µ then Cµ is called a
G-instance (general instance) of C. Every G-instance of a G-instance is also
a G-instance (of C).

Note that, under ∼v, there are only finitely many G-instances of a clause C,
while C may possess infinitely many instances which are not variants of each
other. If A consists of only one element then Cµ is a G-instance for every
permutation µ; but, in this case, Cµ ∼v C and, under renaming, C itself
is the only G-instance with respect to A. The following concept combines
G-instantiation and p-reduction:

Definition 2.7.4 (factor). A p-reduct of a G-instance of a clause C is
called a factor of C. A factor C′ of C is called nontrivial if the number
of literals in C′ is strictly smaller than the number of literals in C.

Note that the concepts of factor and p-reduct coincide in case of ground
clauses.

Example 2.7.3. C = P (x) ∨R(x) ∨ P (z) ∨R(y).

C1 : P (x) ∨R(x) ∨ P (x) ∨R(y) is a G-instance of C by setting A in Defini-
tion 2.7.3 to {P (x), P (z)}.

C2 : P (x) ∨R(x) ∨ P (x) ∨R(x) is G-instance of C1 (via A = {R(x), R(y)})
and therefore G-instance of C. P (x) ∨R(x) ∨R(y) and P (x) ∨R(x) are
factors of C.

76 2. The Basis of the Resolution Calculus

We are now in possession of all technical concepts to define the general prin-
ciple of R-deduction.

Definition 2.7.5 (resolvent). Let C,D be clauses and C′, D′ be factors of
C and D. If E is a binary resolvent of C′ and D′ then E is called a resolvent
of C and D.

Note that the definition of resolvent in Definition 2.7.5 differs from the con-
cepts introduced in [Rob65], [CL73] and [Lov78]. A detailed analysis of the
differences is given in Section 2.8.

Definition 2.7.6 (R-deduction). Let C be a set of clauses and let C be a
clause. A sequence C1, . . . , Cn is called an R-deduction (resolution deduction)
of C from C if it fulfils the following conditions:

1. Cn = C,
2. For all i = 1, . . . , n :

a) Ci is a variant of a clause in C or
b) Ci is a resolvent of clauses Cj , Ck for j, k < i.

An R-deduction of 2 from C is called an R-refutation of C.

If Γ = C1, . . . , Cn is an R-(PR-, GR-) deduction we define l(Γ) = n as the
length of Γ .

Note that we did not list factors explicitly in the definition of an R-
deduction. The reason can be found in the fact that a clause, being a closed
∀-quantified form semantically, describes all of its (finitely many) factors im-
plicitly.

Unlike the concepts of PR- and GR- deductions, R-deductions are locally fi-
nite. Every clause defines only a finite number of factors and resolvents (mod-
ulo renaming). Therefore there are only finitely many R-deductions of length
≤ n under ∼v for every n ∈ IN. This is a very important feature and one of
the reasons for the efficiency of resolution. In particular, the branching rate
of the search space is finite, whereas in classical systems it is infinite. More-
over, R-deduction is not only locally finite (as also a depth-bounded ground
term saturation would be) but only produces “relevant” instances by using
substitution as a binary principle. In all traditional calculi for predicate logic
(Hilbert-type, natural deduction, sequent calculus, etc.) the substitution rule
is unary and unrestricted; in the sequent calculus we have the ∀-introduction
left (see [Tak75]):

A(t), Γ ⊢ ∆

(∀x)A(x), Γ ⊢ ∆

for any term t which does not contain variables bound in A(x). In the calculus
of natural deduction [Pra71] there exists the rule ∀-elimination:

2.7 The General Resolution Principle 77

(∀x)A(x)

A(t)

Again t may not contain variables which are bound in A(x). This restriction
(required for soundness) is very weak, e.g., tmay be an arbitrary ground term.
Although the method of Davis and Putnam essentially differs from classical
logical calculi, it also (potentially) produces all ground instances of clauses.
It is the thoroughgoing use of most general unification (as the only substi-
tution concept) that separates classical logical calculi from “computational”
calculi. Inference systems based on the unification principle are commonly
subsumed under the name of computational logic. It is this principle (rather
than just the rule of p-resolution) which represents the real power of the reso-
lution calculus. We will see in Chapter 5 that the local finiteness of resolution
combined with some proof-theoretic refinements yields a powerful basis for
decision procedures in clausal predicate logic.

In Section 2.5 we have shown refutational completeness of GR- and of
PR-deduction. The proof of completeness of R-deduction is essentially based
on the technique of “lifting”. Lifting is the replacement of an R-deduction by
a more general one. That means every kind of instantiation can somehow be
replaced by most general unification.

Example 2.7.4. C = {P (x), ¬P (y) ∨R(f(y)), ¬R(z)}.

Let t be an arbitrary ground term. Then the set of clauses
Ct = {P (t),¬P (t)∨R(f(t)),¬R(f(t))} is unsatisfiable. The following deduc-
tion Γt is a R-refutation of Ct

Γt = P (t), ¬P (t) ∨R(f(t)), R(f(t)), ¬R(f(t)), 2.

Γt can be lifted to an R-refutation Γ of C for:

Γ = P (x), ¬P (y) ∨R(f(y)), R(f(y)), ¬R(z), 2.

Γ is more general than Γt in the sense:

Γλt = Γt for λt = {x← t, y ← t, z ← f(t)}.

All refutations Γt of Ct are instances of Γ . Γ is obtained from Γt by “lifting”.

Definition 2.7.7. Let Γ : C1, . . . , Cn and ∆ : D1, . . . , Dn be R-deductions.
Γ is called more general than ∆ if there are substitutions ϑ1, . . . , ϑn such that
(C1ϑ1, . . . , Cnϑn) = ∆; we write Γ ≤s ∆. In particular we define C ≤s D
for clauses C,D if there exists a substitution λ such that Cλ = D.

Note that C ≤s D implies the validity of F ({C}) → F ({D}) but not vice
versa. Moreover C ≤s D is not identical with the (stronger) subsumption

78 2. The Basis of the Resolution Calculus

relation to be defined in Section 4.2. The following two lemmas show that
the lifting property holds for factoring and for resolution.

Lemma 2.7.1. Let C,D be clauses such that C ≤s D holds. If F is a factor
of D then there exists a factor E of C with E ≤s F (factors of instances are
instances of factors).

Proof. By induction on the degree of the factor F of D. If X ′ is a factor of
a clause X we define the degree of X ′ as the number |X | − |X ′| (or we say
that X ′ is a k-factor for |X | − |X ′| = k). 0-factors are the trivial factors. We
start with factors of degree 0:

By Definition 2.7.4 F = Dσ for a G-instance Dσ of D. Moreover D = Cλ
for a substitution λ. We simply set E = C, then E is a trivial factor of C
and Eλσ = F .

(IH) suppose that the theorem holds for all factors F of D of degree k.

Let F be a factor of degree k + 1 of D. By Definition 2.7.4 there exists a k-
factor F ′ of D such that F is a 1-factor and even a p-reduct of F ′. Therefore
F ′ must be of the form

F ′ = F1 ∨ L ∨ F2 ∨ L ∨ F3 and
F = F1 ∨ L ∨ F2 ∨ F3, or
F = F1 ∨ F2 ∨ L ∨ F3 respectively.

By (IH) there exists a factor E′ of C such that E′ ≤s F
′. Therefore

E′ = E1 ∨M1 ∨ E2 ∨M2 ∨ E3 and
E1λ = F1, M1λ = M2λ = L, E2λ = F2 and
E3λ = F3

for an appropriate substitution λ. Note that M1 and M2 may be different
literals. But, by M1λ = M2λ, λ is a unifier of {M1,M2}. E′ is a p-reduct of
a G-instance Cτ of C.
If M1 = M2 then we define E = E1 ∨M1 ∨E2 ∨E3. Then E is a p-reduct of
E′ and thus a factor of C fulfilling Eλ = F ; so we have E ≤s F .

If M1 6= M2 then there are literals K1,K2 in C such that K1τ = M1

and K2τ = M2. Clearly {K1,K2} is not unified by τ . Because λ is a unifier
of {M1,M2} there exists an m.g.u. σ such that σ ≤s λ. By Definition 2.7.3
Cτσ is a G-instance of C. Moreover there exists a literal L0 such that M1σ =
M2σ = L0 and L0ϑ = L for some substitution ϑ.

By defining a p-reduct E′′ from Cτσ – contracting analogous literals as
for E′ – we obtain

E′′ = E′
1 ∨ L0 ∨ E

′
2 ∨ L0 ∨ E

′
3.

By Definition 2.7.4 E′′ is a factor of C. Because E′ ≤s F
′ and σ is m.g.u. of

{M1,M2} (while λ is an arbitrary unifier {M1,M2}) we also obtain E′′ ≤s F
′.

Then

E = E′
1 ∨ L0 ∨E′

2 ∨ E
′
3

2.7 The General Resolution Principle 79

is a p-reduct of E′′ and E ≤s F . But E is also a factor of C. This concludes
the proof of case k + 1. 3

Lemma 2.7.2 (Lifting Lemma). Let C,D,C′, D′ be clauses such that
C ≤s C

′ and D ≤s D
′. If E′ is a binary resolvent of C′ and D′ then there

exists a binary resolvent E of C and D with E ≤s E
′.

Proof. Let C′ = C′
1 ∨ L

′ ∨ C′
2 and D′ = D′

1 ∨M
′ ∨D′

2. By Definition 2.7.2
we may assume without loss of generality that V (C′)∩V (D′) = ∅ (otherwise
we consider variants of C′, D′). Then the binary resolvent is of the form:

E′ = (C′
1 ∨ C

′
2 ∨D

′
1 ∨D

′
2)σ

where σ is m.g.u. of {L′d,M ′}.
To simplify the proof we may assume V (C) ∩ V (D) = ∅. By C ≤s C

′ and
D ≤s D

′ there are substitutions λ, µ such that

C = C1 ∨ L ∨C2, D = D1 ∨M ∨D2 and C1λ = C′
1, Lλ = L′,

C2λ = C′
2, D1µ = D′

1, Mµ = M ′, D2µ = D′
2.

Because V (C) ∩ V (D) = ∅ there exists a substitution η such that

dom(η) ⊆ dom(λ) ∪ dom(µ), Cλ = Cη and

Dµ = Dη, Cη = C′ and Dη = D′.

Because σ is an m.g.u. of {L′d,M ′} and L′ = Lη, M ′ = Mη, σ is m.g.u.
of {L,M}η. Consequently ησ is a unifier of {Ld,M}. By the Unification
Theorem 2.6.1 there exists an m.g.u. τ of {L,M}. As ησ is an arbitrary
unifier of {L,M} there exists a ϕ such that τϕ = ησ. But

E = (C1 ∨ C2 ∨D1 ∨D2)τ

is a binary resolvent of C and D and we obtain:

Eϕ = (C1∨C2∨D1∨D2)τϕ = (C1∨C2∨D1∨D2)ησ = (C′
1∨C

′
2∨D

′
1∨D

′
2)σ = E′.

It follows that E ≤s E
′. 3

Theorem 2.7.1 (Lifting Theorem). Let C be a set of clauses and C′ be a
set of instances of clauses in C. Let ∆ be an R-deduction from C′. Then there
exists an R-deduction Γ from C such that Γ ≤s ∆.

Proof. By induction on l(∆), the length of the deduction ∆.
Induction basis l(∆) = 1 :
∆must be of the formD′ for some variantD′ of a clauseD in C′. By definition
of C′ there must be a C ∈ C and a substitution λ such that Cλ = D. But
then there exists a λ′ such that Cλ′ = D′.
Therefore Γ : C is an R-deduction from C and Γ ≤s ∆.

80 2. The Basis of the Resolution Calculus

(IH) Suppose that for every set of instances C′ of C and for every
R-deduction ∆ from C′ with l(∆) ≤ n there exists an R-deduction Γ
from C such that Γ ≤s ∆.

Let ∆ be an R-deduction of length n+ 1 from C′. Then ∆ = ∆′, C for some
R-deduction of length n from C′. For C there are two possibilities:

a) C is a variant of a clause in C′ or
b) C is binary resolvent of clauses D′, E′ such that D′, E′ are factors of

clauses D,E in ∆′.

case a) Let C = Dη for a renaming η and a D ∈ C′. As C′ is a set of instances
from C there exists a clause E ∈ C such that E ≤s D. Because η is a
renaming (and thus admits an inverse) we also obtain E ≤s C. By (IH)
there exists an R-deduction Γ ′ from C such that Γ ′ ≤s ∆

′. By definition
of ≤s, Γ

′ ≤s ∆
′ and E ≤s C implies

Γ ′, E ≤s ∆
′, C.

Defining Γ = Γ ′, E we obtain Γ ≤s ∆. Because Γ ′ is an R-deduction
from C and E ∈ C, Γ is an R-deduction from C.

case b) ∆′ = ∆1, D,∆2, E,∆3 for appropriate clause sequences ∆1, ∆2, and
∆3.
By (IH) there exists an R-deduction Γ ′ such that Γ ′ ≤s ∆

′. Then Γ ′

must be of the form Γ1, F, Γ2, G, Γ3 such that F ≤s D and G ≤s E. By
assumption, D′ and E′ are factors of D and E. Thus by Lemma 2.7.1 we
obtain factors F ′ of F and G′ of G such that F ′ ≤s D

′ and G′ ≤s E
′.

By the assumption b) C is binary resovent of D′ and E′. By Lemma 2.7.2
there exists a binary resolvent H of F ′ and G′ such that H ≤s C. By
definition of resolution, H is a resolvent of F and G.
Thus we define Γ : Γ ′, H .
Then Γ is an R-deduction from C and Γ ≤s ∆.

This concludes the proof of case n+ 1. 3

The lifting theorem easily yields the completeness of R-deduction.

Theorem 2.7.2 (completeness of R-deduction). If C is an unsatisfiable
set of clauses then there exists an R-refutation of C.

Proof. From Theorem 2.5.1 we know that GR-deduction is complete. Thus
let Π be a GR-refutation of C and let C′ be the set of all ground instances
from C appearing in Π . Because, on ground clauses, p-reduction coincides
with factoring, Π is also an R-refutation of C′. By Theorem 2.7.1 there exists
an R-deduction Γ from C such that Γ ≤s Π . But a refutation can only
be an instance of a deduction, which is a refutation too. Therefore Γ is an
R-refutation of C. 3

2.8 A Comparison of Different Resolution Concepts 81

In most of the literature on automated theorem proving the lifting theo-
rem is called “lifting lemma”. We call it a theorem because the ≤s-ordering
of deductions according to the ≤s-ordering of clauses is interesting from a
proof-theoretic point of view as a result on its own. Note that in the proof
of Theorem 2.7.2 no semantical concepts are involved (semantical concepts
are only contained in the completeness proof of GR-deductions); instead we
proved the (relative) completeness of R-deductions relative to that of GR-
deductions. The lifting theorem is the key not only to the proof of complete-
ness of R-deductions, but to all completeness proofs of resolution refinements
and of deletion methods.

Exercises

Exercise 2.7.1. Let Γ : C1, . . . , Cn and ∆ : D1, . . . , Dn be R-deductions
such that Γ ≤s ∆ (see definition 2.7.7). Then there exists an R-deduction
Γ ′ and a (single) substitution λ such that Γ ′ = C′

1, . . . , C
′
n (for some clauses

C′
i) and

(C′
1, . . . , C

′
n)λ = C′

1λ, . . . , C
′
nλ = ∆ (i.e. Γλ = ∆).

Exercise 2.7.2.
Let

Γn = P1(x), ¬P1(x) ∨ P2(f(x)), P2(f(x)), . . . ,

Pi(f
i−1(x)), ¬Pi(x) ∨ Pi+1(f(x)), Pi+1(f

i(x)), . . . ,

Pn(fn−1(x)), ¬Pn(x) ∨ Pn+1(f(x)), Pn+1(f
n(x)),

¬Pn+1(x),2

be an R-refutation of

Cn = {P1(x)} ∪ {¬Pi(x) ∨ Pi+1(f(x))|1 ≤ i ≤ n} ∪ {¬Pn+1(x)}

for n 6= 1.
Define a sequence of GR-refutations ∆n (for n 6= 1) such that Γn ≤s ∆n

(investigate the substitutions that have to be applied to Γn).

Exercise 2.7.3. Show that there exists a set of clauses C and an R-refutation
Γ of C such that for no GR-refutation ∆ of C Γ ≤s ∆ (i.e., the inverse
operation to lifting is generally impossible).

2.8 A Comparison of Different Resolution Concepts

In the numerous publications on automated theorem proving several differ-
ent basic concepts of resolution appear. Sometimes it is important to know
which concept is actually used, particularly in theoretical investigations. The

82 2. The Basis of the Resolution Calculus

purpose of this section is to give a comparison of some widely used resolution
concepts.

The first (and somehow trivial) difference can be found in the data struc-
tures for the representation of clauses. While we defined clauses as disjunc-
tions, there are also the sequent notation (particularly in logic programming
[Llo87] and the representation as sets of literals [Rob65], [CL73], [Lov78]. If
the differences would be only notational a comparison were pointless and bor-
ing; but this is not the case. Indeed Chang & Lee’s and Loveland’s concept
differ from Robinson’s, and our concept, defined in Section 2.7, . does not
completely coincide with any of those.

First of all we choose the disjunction notation as basic and interpret the
other concepts in this formalism. We only have to take care that the logical
content of the rules is preserved. So we may consider the set notation as a nor-
mal form under the equivalence relation of commutativity, associativity, and
idempotence for the connective “∨”. In Section 3.2 we will present a flexible
method to handle clause normalization which provides a general framework
for all clausal data structures used in automated deduction. To facilitate the
description of Robinson’s and Chang & Lee’s concepts we introduce some
additional notations and definitions.

Let C be a clause. We write C \L for C after omission of all occurrences
of the literal L (if L does not appear in C then C \ L = C).

Definition 2.8.1 (S-factor). Let A be a subset of LIT(C) for a clause C
and σ be an m.g.u. of A such that Aσ = {L}. Then (Cσ \ L) ∨ L is called
an S-factor of C (“S” stands for “simple”). An S-factor is called trivial if
σ = ǫ.

Example 2.8.1. Let C be the clause P (x)∨P (y)∨R(u)∨R(v). Then R(u)∨
R(v)∨P (x) and P (x)∨P (y)∨R(u) are both S-factors; P (y)∨R(u)∨R(v)∨
P (x) is a trivial S-factor. Note that R(u)∨R(v)∨P (x) is not a factor in the
sense of Definition 2.7.4.

P (x)∨R(u) is a factor (obtained by p-reduction of the G-instance P (x)∨
P (x) ∨R(u) ∨R(u)), but it is not an S-factor.

In a simple factor the literal resulting from unification and p-reduction is
always the last one. If we resolve only on the rightmost literals of simple
factors we can be sure that these are the literals that result from factoring.
We thus obtain a closer connection between factoring and the resolution cut
rule.

Definition 2.8.2 (Robinson resolvent). Let C,D be clauses, C′, D′ vari-
able disjoint variants of C,D and C1, D1 be S-factors of C′, D′ such that
C1 = A ∨ L and D1 = B ∨M . Suppose that {L,Md} is unifiable by m.g.u.
σ. Then the clause E: (A ∨B)σ is called a Robinson resolvent of C and D.

If C1, D1 are trivial S-factors then E is called a binary Robinson resol-
vent.

2.8 A Comparison of Different Resolution Concepts 83

If C1 and D1 are reduced clauses then (A ∨ B)σ in Definition 2.8.2 is also
binary resovent of C1 and D1. According to Robinson’s original definition,
clauses are thought of as sets, and variables are renamed in some standard
way. Up to renaming, Robinson’s concept is the following:

Let C1, D1 be variable-disjoint variants of C and D and A ⊆ C1, B ⊆
D1. If there exists a most general unifier σ of A∪Bd then the clause
(C1 −A)σ ∪ (D1 −B)σ is called a resolvent of C and D.

It is easy to see that the set of literals in a Robinson resolvent (definition 2.8.2)
forms a resolvent in the set notation as defined above.

Example 2.8.2. Let

C = P (x) ∨ P (y) ∨R(u) ∨R(v) and

D = ¬Q(x1) ∨ ¬P (x1) ∨ ¬R(x1) ∨ ¬P (x2).

Then
C1 : R(u) ∨R(v) ∨ P (x),

D1 : ¬Q(x1) ∨ ¬R(x1) ∨ ¬P (x1).

are S-factors of C,D. σ = {x1 ← x} is an m.g.u. of {P (x), P (x1)}. Conse-
quently

E : R(u)∨R(v)∨¬Q(x) ∨¬R(x) is Robinson-resolvent of C and D.

In the set notation we obtain the clause {R(u), R(v),¬Q(x),¬R(x)}.
Note that C2 : P (x) ∨ R(u) ∨ R(v) and D2 : ¬Q(x1) ∨ ¬P (x1) ∨ ¬R(x1)

are factors of C and D and E is also a resolvent of C and D. The clause
C3 : P (x) ∨R(u) is a factor of C and F : R(u) ∨ ¬Q(x) ∨ ¬R(x) is a binary
resolvent of C3 and D2 and thus a resolvent of C and D. But F is not a
Robinson resolvent of C and D.

We show now that Robinson resolution yields a refinement of R-deduction
(in the sense of Section 3.1).

Definition 2.8.3 (Robinson deduction). Let C be a set of clauses and C
be a clause. A sequence C1, . . . , Cn is called Robinson deduction of C from
C if it fulfills the following conditions:

(1) Cn = C and
(2) For all i = 1, . . . , n:

(2a) Ci is a variant of a clause in C or
(2b) Ci is a Robinson resolvent of Cj , Ck for j, k < i.

Proposition 2.8.1. Every Robinson deduction is an R-deduction.

84 2. The Basis of the Resolution Calculus

Proof. By Definitions 2.7.6 and 2.8.3 it suffices to prove that every Robinson
resolvent is a resolvent (in the sense of Definition 2.7.5). Let C,D be variable-
disjoint clauses and C1σ ∨ L, D1µ ∨M be S-factors of C and D. Suppose
that {L,Md} is unifiable by m.g.u. ϑ. Then

E : (C1σ ∨D1µ)ϑ

is a Robinson-resolvent of C and D.
We have to show that E is also a resolvent of C and D. The S-factor

C1σ ∨L is a permutation variant of a “real” factor A1σ ∨L∨A2σ of C with
A1σ ∨A2σ = C1σ.

Similarly D1µ ∨M is a permutation variant of a factor B1µ ∨M ∨ B2µ
of D with B1µ ∨B2µ = D1µ.

F : A1σϑ ∨A2σϑ ∨B1µϑ ∨B2µϑ

is binary resolvent of A1σ ∨L ∨A2σ and B1µ ∨M ∨B2µ and thus resolvent
of C and D. But F = (A1σ ∨A2σ ∨B1µ ∨B2µ)ϑ = (C1σ ∨D1µ)ϑ = E. 3

Now we give some definitions as a preparation for the definition of Chang &
Lee’s resolution concept.

Definition 2.8.4 (standard factor). Let C be a clause and A ⊆ LIT (C)
such that A is unifiable by an m.g.u. σ and Aσ = {L}. Every reduced p-reduct
of Cσ is called standard factor of C.

Standard factors are factors in the sense of Definition 2.7.4, while S-factors
are not. But every S-factor is a permutation variant of some standard factor.

Example 2.8.3. C = P (x) ∨ P (y) ∨R(u) ∨R(v).

P (x) ∨ R(u) ∨ R(v) and P (x) ∨ P (y) ∨ R(u) are standard factors of C; the
corresponding S-factors are R(u)∨R(v)∨P (x) and P (x)∨P (y)∨R(u). The
factor P (x) ∨R(u) is not a standard factor.

As in the case of S-factors, we define a standard factor as trivial if the fac-
toring substitution is ǫ.

Definition 2.8.5 (Chang–Lee resolvent). Let C1 and C2 be clauses, C′
1

and C′
2 be variable-disjoint variants of C1, C2 and D1 : A1 ∨ L1 ∨ B1, D2 :

A2 ∨L2 ∨B2 be standard factors of C′
1 and C′

2. If σ is an m.g.u. of {L1, L
d
2}

then the clause

E : (D1σ \ L1σ) ∨ (D2σ \ L2σ)

is called a Chang–Lee resolvent of C1 and C2. If D1, D2 are trivial (standard)
factors then E is called a binary Chang–Lee resolvent of C1 and C2.

2.8 A Comparison of Different Resolution Concepts 85

Example 2.8.4. Let C = P (x) ∨ P (y) ∨R(u) ∨R(v) and D = ¬R(a).
Then P (x) ∨R(u) ∨R(v) is a standard factor of C.

E = P (x) ∨R(v) is a Chang–Lee resolvent of C and D.

E is not a Robinson resolvent, because the corresponding S-factor is R(u) ∨
R(v) ∨ P (x), which does not define a Robinson resolvent with D.

P (x) ∨ R(u) is a factor of C, which is neither an S-factor nor a standard
factor.

Therefore P (x) is a resolvent, but neither a Robinson nor a Chang–Lee re-
solvent of C and D.

In comparing Definitions 2.8.5 and 2.7.5, we see that in a Chang–Lee resolvent
the m.g.u. corresponding to the binary resolvent is applied before cutting out
the literal. Combined with the reduction rule (removal of multiple literals)
this can give some side-effects in binary resolution.

Proposition 2.8.2. There are binary Chang–Lee resolvents which are not
binary resolvents (in the sense of Definition 2.7.2).

Proof. Let C = P (a) ∨ P (y) and D = ¬P (a). Selecting P (y) from C and
¬P (a) from D we obtain an m.g.u. σ = {y ← a} and the following binary
Chang–Lee resolvent of C and D:

((P (a) ∨ P (y))σ \ P (y)σ) ∨ (¬P (a)σ \ ¬P (a)σ) =

((P (a) ∨ P (a)) \ P (a)) ∨ 2 = 2 ∨ 2 = 2.

2 is neither a binary resolvent nor a binary Robinson resolvent of C and D.
2 is resolvent of C and D, but it is only definable by the factor P (a) of C.

3

The proof of Proposition 2.8.2 shows that binary Chang–Lee resolution “au-
tomatically” performs some factoring tests; we might speak about uninten-
tional factoring. This kind of factoring can create side effects in the lifting of
deductions [Lei89].

Example 2.8.5. We define instances Cλ,Dµ of C,D such that λ and µ do
not unify literals in C and D and there exists a binary Chang–Lee resolvent
E of Cλ,Dµ with the following property: There exists no binary Chang–Lee
resolvent F of C and D with F ≤s E.

In some sense the lifting property does not hold for binary Chang–Lee
resolvents. Let C = P (x) ∨ P (y) and D = ¬P (a), λ = {x← a} and µ = ǫ.
Then λ and µ fulfill the condition stated above. The instance Cλ : P (a)∨P (y)
is not a G-instance of C. In the proof of Proposition 2.8.2 we have shown
that 2 is a binary Chang–Lee resolvent of Cλ and Dµ. On the other hand,
P (x) is the only binary Chang–Lee resolvent of C and D (under renaming).
Clearly 2 is not an instance of P (x) and (∀x)P (x) does not even imply 2.

86 2. The Basis of the Resolution Calculus

In [Lei89] it is shown that Robinson resolution (in contrast to Chang–Lee
resolution) fulfills the “binary lifting” property.

If we do not care about factoring and focus on the “full” resolution con-
cepts, Chang–Lee-resolution yields a refinement of R-deduction. This gives
us the means to describe both Robinson and Chang–Lee resolution within
the formalism developed in Section 2.7.

Definition 2.8.6 (Chang–Lee deduction). Let C be a set of clauses and
C be a clause. A sequence C1, . . . , Cn is called a Chang–Lee deduction of C
from C if it fulfills the following conditions:

(1) Cn = C and
(2) For all i = 1, . . . , n :

(2a) Ci is a variant of a clause in C or
(2b) Ci is a Chang–Lee resolvent of clauses Cj , Ck for j, k < i.

Proposition 2.8.3. Every Chang–Lee deduction is an R-deduction.

Proof. According to Definitions 2.7.6 and 2.8.6 it is enough to show that
every Chang–Lee resolvent is a resolvent in the sense of Definition 2.7.5. The
proof of this property is not completely trivial as, by Proposition 2.8.2, binary
Chang–Lee resolvents need not be binary resolvents.

Let C1, C2 be clauses and C′
1, C

′
2 variable-disjoint variants of C1 and C2.

Furthermore let D1, D2 be standard factors of C′
1, C

′
2 and

D1 = A1 ∨ L1 ∨B1, D2 = A2 ∨ L2 ∨B2.

We assume that {L1, L
d
2} is unifiable by m.g.u. σ. Then

G : (D1σ \ L1σ) ∨ (D2σ \ L2σ)

is a Chang–Lee resolvent of C1 and C2. We have to show that G is also
resolvent of C1 and C2.

If D1σ \ L1σ = (A1 ∨ B1)σ and D2σ \ L2σ = (A2 ∨ B2)σ, then G is
binary resolvent of D1 and D2 and thus Robinson resolvent of C1 and C2. If
LIT (D1σ \ L1σ) ⊆ LIT (A1 ∨ B1)σ or LIT (D2σ \ L2σ) ⊆ LIT (A2 ∨ B2)σ
then more literals are cut out by binary Chang–Lee resolution than by binary
resolution. In this case we proceed as follows:
Let

A1 = {K | K ∈ LIT (C′
1) Kη1 = L1} and

A2 = {K | K ∈ LIT (C′
2) Kη2 = L2},

where η1, η2 are the factoring substitutions applied to C′
1, C

′
2 in order to get

D1, D2.
Moreover we define

B1 = {K | K ∈ LIT (C′
1) Kη1σ = L1σ}

B2 = {K | K ∈ LIT (C′
2) Kη2σ = L2σ}.

2.8 A Comparison of Different Resolution Concepts 87

Clearly A1 ⊆ B1 and A2 ⊆ B2.
The sets B1,B2 are unifiable by substitutions η1σ and η2σ respectively,

but η1σ and η2σ need not be m.g.u.’s of B1,B2.
Let λ1 be m.g.u. of B1, λ2 be m.g.u. of B2. Then λ1 ≤s η1σ and λ2 ≤s η2σ.

Moreover there exist literals M1,M2 such that

B1λ1 = {M1},B2λ2 = {M2} and M1 ≤s L1σ,M2 ≤s L2σ.

The substitution (η1∪η2)σ is m.g.u. of B1∪Bd
2 . AsM1 ≤s L1σ,M2 ≤s L2σ and

V (M1)∩V (M2) = ∅ (note that λ1, λ2 are substitutions defining G-instances),
the m.g.u. τ of {M1,M

d
2 } fulfills τ ≤s σ.

By definition of λ1, λ2 and τ , (λ1 ∪ λ2)τ is m.g.u. of B1 ∪ Bd
2 . As also

(η1 ∪ η2)σ is an m.g.u. of B1 ∪B
d
2 we must have (λ1 ∪ λ2)τ =s (η1 ∪ η2)σ and

C′
1λ1 and C′

2λ2 are G-instances of C′
1, C

′
2.

Let E1 = F1 ∨M1 ∨ G1, E2 = F2 ∨M2 ∨ G2 p-reducts of C′
1λ1 and C′

2λ2

such that M1 /∈ LIT (F1 ∨G1), M2 /∈ LIT (F2 ∨G2).
By definition of B1,B2 we must have

(F1 ∨G1)τ ≤s (D1σ \ L1σ) ∨ (D2σ \ L2σ)

and by (λ1 ∪ λ2)τ =s (η1 ∪ η2)σ even

(F1 ∨G1)τ =s (D1σ \ L1σ) ∨ (D2σ \ L2σ).

But (F1 ∨ G1)τ is a resolvent of C1, C2. As every variant of a resolvent is a
resolvent too, G is resolvent of C1 and C2. 3

It remains to mention Loveland’s concept of resolution. In his definition
[Lov78] binary resolution is called just resolution and factoring is treated as
a separate rule (i.e., factors appear explicitly in resolution deductions). Be-
cause Loveland’s definition of resolution coincides with Chang–Lee’s binary
resolution there are Loveland resolvents which are not binary resolvents (see
Proposition 2.8.2). As factors, in the sense of Definition 2.7.4, are derivable in
Loveland’s resolution concept, every clause derivable in an R-deduction is also
derivable by Loveland’s resolution. Our decision, not to add factors explicitly,
was motivated by the subsumption principle to be defined in Section 4.2.

In Robinson’s book [Rob79] resolution is defined as a method of extending
clausal sequents (representing sets of clauses) by resolvents; in this version
of resolution elimination of tautologies (see Section 4.4) and (forward) sub-
sumption (see Section 4.2) are built in a priori.

Clearly the differences between the concepts are less important than their
common features, like the use of most general unification. However, the dif-
ferences are worth mentioning and discussing, as they can be of some impor-
tance in the “proof technology” of completeness and lifting proofs. Moreover
Robinson’s concept defines a valuable refinement a priori (which is relevant
to implementations of resolution) by concentrating factoring and cut onto
the same group of literals.

88 2. The Basis of the Resolution Calculus

3. Refinements of Resolution

3.1 A Formal Concept of Refinement

In Chapter 2 we have proved the correctness and completeness of the reso-
lution principle. It might seem that these are already the key results of reso-
lution theory. Although the (general) resolution principle is clearly superior
to the PR-deduction principle and to methods based on Herbrand’s theorem,
there are several reasons for further refining the deduction principle. First of
all the high number of resolvents derivable from a set of clauses is a serious ob-
stacle to practical applications. Thus it is significant that Robinson presented
a paper on hyperresolution [Rob65a], a refinement to be described later, in
the same year as his landmark paper on resolution [Rob65] was published.
So one motivation for restricting the R-deduction principle is efficiency.

Another important appplication of refinements is the construction of res-
olution decision methods for decidable clause classes, a problem area which
will be presented in Chapter 5. In defining resolution decision procedures,
the key idea is to find complete refinements, which – on the class of clauses
under consideration – produce finitely many clauses only. In both applica-
tions we have to take care that the completeness of the deduction principle
is preserved. However, we do not need completeness on whole clause logic in
general; there are relevant refinements (e.g., unit-resolution on Horn logic)
which are complete on subclasses of clause logic only.

Formally a refinement is a subset of the set of all R-deductions. But this
property (being a subset) is far too general and includes many pathologi-
cal cases. In the following we will develop an abstract concept of refinement
which covers all refinements defined in this book and – at the same time –
fulfils some reasonable properties of effectiveness.

Let C be a finite set of clauses and Ω(C) be the set of all R-deductions from
C; Ω =

⋃

C∈CL
Ω(C) is the set of all R-deductions (CL denotes the set of all

finite sets of clauses). Based on this notation, a refinement is some subset Ψ of
Ω. Some refinements can be extracted from the basic concepts in a straight-
forward manner. Let Γ1, Γ2 be two deductions in Ω; if Γ1 =s Γ2 (for =s see
Definition 2.7.7) we can safely omit Γ1 (or Γ2 respectively) without losing the
completeness of the deduction principle. In defining Ψ as a maximal subset of
Ω such that Γ1, Γ2 ∈ Ψ implies Γ1 6=s Γ2, we get a restriction that preserves

90 3. Refinements of Resolution

completeness. Another restriction is to consider deductions C1, . . . , Cn only,
where Ci, Cj are variable-disjoint for i 6= j. Combining both restrictions we
get a complete refinement Ψ , which can be specified recursively.

The following example shows that the “subset definition” of refinements
is too general.

Example 3.1.1.

Let Ψ(C) = {Γ} for some R-refutation Γ of C if C is unsatisfiable,
= {C} if C is satisfiable, for some C ∈ C,

and Ψ =
⋃

C∈CL
Ψ(C).

Clearly Ψ is a refinement (by Ψ ⊆ Ω) and Ψ(C) contains a refutation for every
unsatisfiable C. We can make Ψ a function in the strict sense in specifying
that Γ must be the first refutation of C in Ω and C be the first clause in
C, where “first” refers to some fixed ordering of clauses and deductions. A
pathological property of Ψ is the absence of a decision procedure for the
predicate π defined by : π(C) = T iff Ψ(C) ⊆ C.

Note that a decision procedure for π would directly yield another for the
satisfiability of clause logic. But clause logic is a reduction class of predicate
logic [Lew79] and thus its satisfiability problem is undecidable. Although Ψ(C)
is finite for all C ∈ CL, the function λC[Ψ(C)] is not computable; because we
can decide whether a given deduction is a refutation, an algorithm computing
Ψ would yield a decision procedure for satisfiability immediately.

Definition 3.1.1 (refinement). Let Ψ be a mapping from the set of all
finite sets of clauses CL to the set Ω of all R-deductions. Ψ is called a reso-
lution refinement if the following conditions are fulfilled:

1. For all C ∈ CL : Ψ(C) ⊆ Ω(C).
2. {Π | Π ∈ Ψ(C)} is decidable for every C ∈ CL.
3. There exists an algorithm α constructing Ψ(C) for every C ∈ CL (note

that Ψ(C) may be infinite).
4. Ψ(C) ⊆ Ψ(D) for C ⊆ D.

Although Definition 3.1.1 is still very abstract, “refinements” of the type in-
dicated in Example 3.1.1 are excluded now. Definition 3.1.1(2) indicates that
refinements must be specified by “syntactic” properties. Definition 3.1.1(3)
expresses the fact that there exists a (globally defined) recursive enumeration
of Ψ(C) for all C ∈ CL. Definition 3.1.1(4) excludes the case that the mere
presence of more clauses makes some deductions impossible.

Definition 3.1.2. A resolution refinement is called complete if, for every
unsatisfiable set of clauses C, Ψ(C) contains an R-refutation of C.

Example 3.1.2. Let Ψ(C) = {(C,D,E) | C,D ∈ C, E is resolvent of C and
D}. Clearly Ψ fulfils 1–4 of Definition 3.1.1 and thus is a resolution refinement.

3.1 A Formal Concept of Refinement 91

However Ψ is not complete, as there exist unsatisfiable sets of clauses C such
that Ψ(C) does not contain a refutation of C.

However, Ψ is complete on the class of all C ∈ CL with | LIT(C) |= 1 for
all C ∈ C (Ψ is complete on unit clause logic).

The refinement Ψ of Example 3.1.2 may be further restricted to Ψ ′ such
that for Γ1, Γ2 ∈ Ψ ′ : Γ1 6=s Γ2. Then Ψ ′(C) is finite for every C ∈ CL.
The following proposition, which is easily proved, shows that such a property
cannot hold for complete refinements.

Proposition 3.1.1. Let Ψ be a complete refinement. Then there must exist
(finite) sets of clauses C such that Ψ(C) is infinite.

Proof. Assume that Ψ is complete and that Ψ(C) is finite for every C ∈
CL. By Definition 3.1.1(3) there exists an algorithm α with α(C) = Ψ(C)
(where α(C) denotes the result of the computation of α on C). If Ψ(C) is
finite for all C ∈ CL then α always terminates. Because Ψ is complete, Ψ(C)
contains a refutation iff C is unsatisfiable. Thus producing Ψ(C) first and then
testing whether Ψ(C) contains a refutation gives a decision procedure for the
satisfiablility problem of clause logic; but clause logic is undecidable (in fact
it is a reduction class of predicate logic). We conclude that there must exist
C ∈ CL such that Ψ(C) is infinite. 3

Proposition 3.1.1 shows that the halting problem for complete refine-
ments is always undecidable. However, we will specify clause classes CL′ and
complete refinements Ψ in Chapter 5, where Ψ always terminates on CL′.
Following the arguments in the proof of Proposition 3.1.1, we see that such a
termination property yields a decision procedure for CL′; consequently such
an effect can appear only on decidable classes CL′.

In general an application of a complete resolution theorem prover Ψ on a
set of clauses C yields one of the following three outcomes:

a) Derivation of 2.
b) Ψ(C) is finite (Ψ terminates on C) and Ψ(C) does not contain a refutation:

Because Ψ is complete we know that C is satisfiable.
c) Ψ(C) is infinite and does not contain a refutation of C: Ψ does not terminate

on C and (by completeness) C is satisfiable. This case corresponds to
entering an endless-loop in programming.

Many refinements such as ordering resolution (Section 3.3), semantic res-
olution (Section 3.6), and lock resolution (Section 3.4) can be specified by
means of set operators. In these cases the set of all deductions, specified by
a refinement Ψ , can be described by the set of all derivable clauses.

Let Res(C,D) be the set of all resolvents of the clauses C and D. We
have seen in Section 2.7 that, althoughRes(C,D) is infinite,Res(C,D) |∼v is
finite. In using resolution operators it is convenient to avoid different variants
of clauses in the set of derived resolvents. Because it is inconvenient to work
with equivalence classes C |∼v, we select one clause from every equivalence

92 3. Refinements of Resolution

class. By ϕ(C) we denote the clauses which are the representatives of the
classes C |∼v. For example we can take P (x1) ∨Q(x2) as a representative of
{P (x) ∨Q(y) | x, y ∈ V, x 6= y}. Generally we can use a standard method to
rename variables in clauses: replace the first variable (from the left) by x1,
the second by x2 etc Such a method of standardization is similar to that
of Robinson [Rob65].

The standard renaming operator ϕ on clauses can be extended to sets
of clauses by ϕ(C) = {ϕ(C) | C ∈ C}. It is easy to see that ϕ fulfils the
properties: ϕ(C) ⊆ ϕ(D) for C ⊆ D, ϕ(ϕ(C)) = ϕ(C).

Definition 3.1.3. Let C be a set of clauses. We define

Res(C) =
⋃

{Res(C,D)|C,D ∈ C} and

S0
∅(C) = ϕ(C),

Si+1
∅ (C) = Si

∅(C) ∪ ϕ(Res(Si
∅(C))) for i ∈ IN,

R∅(C) =
⋃∞

i=0 S
i
∅(C).

R∅ is called the operator of unrestricted resolution.

R∅(C) is the set of all clauses (in variable standard form) derivable via
R-deductions from C. By using the operator ϕ we can guarantee, for each i,
the finiteness of the sets Si(C), i.e., of the set of all clauses derivable within
deduction depth ≤ i. The finiteness of R∅(C) itself (like that of Ψ(C) for some
refinement Ψ) implies “termination of resolution” on C. The term termination
is justified, as R∅ can be considered as an algorithm defined on CL; the
computation can be performed according to the recursive Definition 3.1.2. If
R∅(C) is finite then this computation terminates, otherwise it does not.

Definition 3.1.4 (refinement operator). A resolution refinement opera-
tor Rx is a mapping from CL to the set of all sets of clauses fulfilling the
following conditions:
There exists a mapping ρx : CL→ CL such that

a) ρx(C) is a finite subset of R∅(C) for all C ∈ CL,
b) there exists an algorithm α computing ρx(C) on CL,

and Rx is defined (via ρx) in the following way:

S0
x(C) = ϕ(C),

Si+1
x (C) = Si

x(C) ∪ ρx(Si
x(C)) for i ∈ IN,

Rx(C) =
⋃∞

i=0 S
i
x(C).

In Definition 3.1.4(a) we stated the condition ρx(C) ⊆ R∅(C) instead of
ρx(C) ⊆ ϕ(Res(C)) only. This more general definition is motivated by the

3.1 A Formal Concept of Refinement 93

refinement of hyperresolution, where R-deductions of some specific type are
contracted into single inference steps. By Definition 3.1.4(b) and by the defi-
nition of Rx as Kleene closure, the operator Rx is computable on CL. Clearly
Rx(C) ⊆ R∅(C) holds for every refinement operator Rx. In Section 3.2 we will
extend the concept of refinement to arbitrary normal forms for clauses (i.e.,
the sets R∅(C) are replaced by the sets of all normalized clauses derivable by
resolution). Definition 3.1.4 only covers refinements without (backward) dele-
tion methods, which means produced clauses cannot be removed afterwards.
In Section 4.2 we will define resolution operators and describe subsumption
and other deletion methods, which are not refinements (in the formal sense).

Definition 3.1.5. A resolution refinement operator Rx is called complete if
for all unsatisfiable sets of clauses C in CL we have 2 ∈ Rx(C).

It is quite easy to prove a result analogous to Proposition 3.1.1, namely
that for every complete resolution refinement operator Rx there must exist a
set of clauses C ∈ CL such that Rx(C) is infinite.

Let Ψ be a set of R-deductions. By Der(Ψ) we denote the set of all clauses
in variable standard form derived by deductions in Ψ . Clearly Der(Ω(C)) =
R∅(C) for all C ∈ CL.

In case of so-called linear refinements (see Section 2.5) the deduction sets
Ψ cannot simply be described by refinement operators on sets of clauses.
But, on the other hand, refinement operators always define refinements in
the sense of Definition 3.1.1.

Proposition 3.1.2. Let Rx be a resolution refinement operator; then there
exists a refinement Ψ with Der(Ψ(C)) = Rx(C) for all C ∈ CL.

Proof. Let C be a finite set of clauses. Then everyC ∈ C is also an R-deduction
of length 1 and C can be considered as a set of deductions too.

We define Ψ via level saturation (like refinement operators).

(I) Let Ψ0(C) = φ(C) for C ∈ CL.
By Definition 3.1.4(b) for the operator ρx, ρx is computable; by Def-
inition 3.1.4(a) ρx(C) is finite and ρx(C) ⊆ R∅(C). Thus there exists
an algorithm α (independent of C) which produces a set of deductions
Π(C) =

⋃n
i=1∆i (from C) such that Der(Π(C)) = ρx(C) and Π is com-

putable. We continue in defining Ψ :
Suppose that Ψ i(C) has already been constructed and let

Ψ i(C) = {ψ1, . . . , ψk(i)}.
By concatenating all deductions in Ψ i(C) we obtain a deduction

χ(Ψ i(C)) = ψ1, . . . , ψk(i).
We then define:

(II) Ψ i+1(C) = Ψ i(C) ∪ {χ(Ψ i(C))ψ|ψ ∈ Π(Der(Ψ i(C)))},
(III) Ψ(C) =

⋃∞
i=0 Ψ

i(C).
By definition Ψ(C) is a set of deductions from C. In (II) χ(Ψ i(C)) is

94 3. Refinements of Resolution

a deduction from C and ψ are deductions from Der(Ψ i(C)). Because
all clauses in Der(Ψ i(C)) possess a deduction based on the clauses in
χ(Ψ i(C)), χ(Ψ i(C))ψ is a deduction from C for all deductions ψ from
Der(Ψ i(C)).
In order to show Der(Ψ(C)) = Rx(C) it is enough to prove Der(Ψ i(C)) =
Si

x(C) for i ∈ IN, C ∈ CL (note that Rx(C) =
⋃∞

i=0 S
i
x(C)).

We proceed by induction on i:
i = 0: Der(Ψ0(C)) = Der(φ(C)) = S0

x(C).

(IH) Suppose that the assertion holds for i.

Case i+ 1:

We first prove Si+1
x (C) ⊆ Der(Ψ i+1(C)), which can be reduced to:

Si
x(C) ⊆ Der(Ψ i+1(C)) and ρx(Si

x(C)) ⊆ Der(Ψ i+1(C)).

By (IH) Si
x(C) = Der(Ψ i(C)).

Because Der(Ψ i(C)) ⊆ Der(Ψ i+1(C)) holds trivially, we obtain

Si
x(C) ⊆ Der(Ψ i+1(C)).

By definition of Π we have Der(Π(Si
x(C))) = ρx(Si

x(C)). But for every
ψ ∈ Π(Si

x(C)), χ(Ψ i(C))ψ is a deduction from C and

Der(χ(Ψ i(C))ψ) = Der(ψ).

Therefore ρx(Si
x(C)) ⊆ Der(Ψ i+1(C)).

Now we show the other direction, Der(Ψ i+1(C)) ⊆ Si+1
x (C).

By (IH) we have Der(Ψ i(C)) = Si
x(C) and by definition of Si+1

x , Si
x(C) ⊆

Si+1
x (C). Thus we get Der(Ψ i(C)) ⊆ Si+1

x (C).
If ψ ∈ Π(Der(Ψ i(C))) then

Der(χ(Ψ i(C))ψ) = Der(ψ).

By (IH) Si
x(C) = Der(Ψ i(C)) and thus Der(ψ) ∈ Der(Π(Si

x(C))).
By definition of Π we obtain Der(ψ) ∈ Si+1

x (C). Finally we get

{χ(Ψ i(C))ψ | ψ ∈ Π(Der(Ψ i(C)))} ⊆ Si+1
x (C).

3

In many practical cases it is easier to define a refinement Ψ , corresponding
to an operator Rx, than in the proof of Proposition 3.1.2. In most cases we
have

ρx(C) =
⋃

{ρx({C1, C2})/C1, C2 ∈ C}.

Let ψ1, ψ2 be deductions in Ψ such that

Der(ψ1) = C1, Der(ψ2) = C2.

If C ∈ ρx({C1, C2}) then we add the deduction ψ1, ψ2, C to Ψ . Clearly we
obtain a Ψ such that Der(Ψ) = Rx.

3.2 Normalization of Clauses 95

3.2 Normalization of Clauses

In Robinson’s famous paper on resolution [Rob65] a clause is defined as a set
of literals subjected to some standard renaming of variables. Formally such
a representation can be obtained by factoring under the equivalence relation
defined by associativity, commutativity, and idempotence of ∨ and ∼v equiv-
alence. Chang & Lee [CL73] and Loveland [Lov78] define clauses as sets of
literals but do not keep clauses in variable standard form. In Section 3.1 we
have seen that, without variable standard form, the set of resolvents Res(C)
from a finite set of clauses C is infinite. The reader might now ask why we did
not define clauses as sets of literals in advance. There are two main reasons
for treating normalization explicitly:

1) There are resolution methods (particularly in Horn logic) based on clauses
as lists or sequences rather than as sets.

2) Sometimes one would like to have stronger normalization principles than
usually afforded by “set”-normalization and renaming.

In resolution decision theory (to be presented in Chapter 5) we need
strongly nonredundant clause representations. Such representations can be
obtained by the principle of condensing.

Example 3.2.1. C = P (x) ∨ P (a).
The variable standard form (i.e. naming the first variable x1, the second x2,
etc.) of C is: P (x1) ∨ P (a).
Clearly we have for all variables w ∈ V : P (w)∨P (a) ∼v P (x1)∨P (a). If we
denote by Nv the operator of variable normalization then Nv(P (w)∨P (a)) =
P (x1) ∨ P (a) for all w ∈ V . But still we have Nv(P (x) ∨ P (a)) 6= Nv(P (a) ∨
P (x)).

Let No be the operator of lexicographic ordering of atoms, where positive
literals are ordered before negative ones. ThenNo(P (x)∨P (a)) = P (a)∨P (x).
Moreover

Nv ◦No(P (x) ∨ P (a)) = Nv ◦No(P (a) ∨ P (y)) = P (a) ∨ P (x1) and

No ◦Nv(P (x) ∨ P (a)) = P (a) ∨ P (x1).

Let us define N as Nv ◦No.
N does not remove multiple occurrences of literals and N(P (a) ∨ P (a)) =
P (a) ∨ P (a).

By adding the operator Nr, i.e. the operator producing reduced clause
forms (see Section 2.5), we obtain Nr ◦Nv ◦No which essentially corresponds
to Robinson’s clause notation.

Let N ′ = Nr ◦Nv ◦No. It is easy to verify that LIT(C) = LIT(D) implies
N(C) = N(D).

Even under the (relatively strong) normalization operator N ′ of Exam-
ple 3.2.1 we get N ′(P (x) ∨ P (a)) 6= N ′(P (a)). But F ({P (x) ∨ P (a)}) ∼

96 3. Refinements of Resolution

F ({P (a)}) and P (a) is a factor of P (x) ∨ P (a) which implies P (x) ∨ P (a).
Indeed the factor P (a) is also a subclause of P (x)∨P (a). Thus in some sense
P (x) is redundant in C and we may normalize P (x) ∨ P (a) to P (a). This is
the principle of condensing. Note that

N ′(P (x1) ∨ . . . ∨ P (xn)) = P (x1) ∨ . . . ∨ P (xn)

for all n ∈ IN, while condensing gives P (x1) always (P (x1) is a factor which
is a subclause).

Definition 3.2.1. Let Nv be the operator of variable standardization.
Nv is defined as Nv(C) = Cη{v1 ← x1, . . . , vm ← xm}, where Cη is a variant
of C with V (Cη) ∩

⋃∞
i=1{xi} = ∅ and vi is the i-th variable appearing in Cη

(from the left). Let No be an ordering for literals (positive before negative
literals and lexicographic ordering among the groups) and Nr be the reduction
operator (delete multiple occurrences of literals).
The operator Ns, defined as Ns = Nr ◦ Nv ◦ No is called the operator of
standard normalization.

Definition 3.2.2 (condensation). A clause C is called condensed if there
is no literal L in C such that C\L is a factor of C.
We define

γ(C) =







C if C is condensed
γ(C \ L) if L is the first literal in C

such that C \ L is a factor of C.

Nc(C), defined as Ns ◦ γ(C), is called condensed normalization (for short
Nc-normalization) of C.
Note that γ is well defined, as a clause contains finitely many literals only.
The original concept of condensation was introduced by W.H. Joyner [Joy76];
in his (slightly different) concept there may be different condensed forms
of a clause. However, the different “condensations” are all variants of each
other. Thus the clause in condensed normalization (Definition 3.2.2) can be
considered as a representative of this ∼v equivalence class.

Example 3.2.2. C = P (x) ∨R(b) ∨ P (a) ∨R(z).
Because R(b) ∨ P (a) ∨R(z) is a factor of C we obtain

γ(C) = γ(R(b) ∨ P (a) ∨R(z)).

Note that P (a) ∨ R(z) and R(b) ∨ R(z) are not factors, but R(b) ∨ P (a)
is a factor of R(b) ∨ P (a) ∨R(z).

Consequently γ(R(b) ∨ P (a) ∨R(z)) = γ(R(b) ∨ P (a)).

R(b)∨P (a) does not contain factors at all, thus γ(R(b)∨P (a)) = R(b)∨P (a).

We conclude γ(C) = R(b) ∨ P (a) and Nc(C) = P (a) ∨R(b).

3.2 Normalization of Clauses 97

Condensation is powerful, particularly if clauses contain variants of groups
of literals within themselves. For example let C = C1 ∨ C2 such that there
exists a variable renaming η with η(C1) = C2 and η(C2) = C2. Then η(C1 ∨
C2) = C2 ∨C2 and C2 is a factor of C. Consequently Nc(C1 ∨C2) = Nc(C2).
Nc is a strong normalization operator which removes “redundancy” within
clauses and keeps clauses short. As already mentioned there are sequences
of clauses Cn such that Ns(Cn) are all Cn, but Nc(Cn) = C for all n. This
property is of particular importance to termination theory. Note that we did
not remove all kinds of redundancy in sets of clauses by Nc, as Nc works on
representation of single clauses only. Redundancy relative to other clauses
will be removed by subsumption, a principle to be introduced in Chapter 4.

Proposition 3.2.1. Condensing normalization is correct; i.e., for every
clause C: F ({Nc(C)}) ∼ F ({C}).

Proof. It is enough to show that F ({γ(C)}) ∼ F ({C}), because
F ({Ns(C)}) ∼ F ({C}) is trivial.

By definition of γ it suffices to show F ({C \L}) ∼ F ({(C)}) if C \L is a
factor of C. F ({C \ L}) → F ({C}) is valid for all clauses C and literals L.
Because for every factor D of C F ({C}) → F ({D}) holds and C \ L is a
factor of C we obtain F ({C})→ F ({C \ L}). 3

Condensing is a principle which allows the replacement of clauses by fac-
tors without semantical change. It remains to show that condensed normal-
ization can be built into resolution without loss of completeness.

Let N be a normalization operator which transforms clauses into some
logically equivalent clauses in an algorithmic way. We can define a resolution
principle according toN , where only clauses inN -normal form can be derived.

Definition 3.2.3 (N-resolvent). Let N be a normalization operator for
clauses and C1, C2 be clauses in N-normal form. Let C be a resolvent of
C1, C2, then N(C) is called N-resolvent of C1 and C2.

Example 3.2.3.
N = Nc.
C1 = P (f(x1)) ∨R(x1), C2 = P (x1) ∨ ¬R(x2).

C1 and C2 are in condensed normal form. After renaming C2 by η =
{x1 ← x, x2 ← y} resolve (m.g.u.= {y ← x1}) and obtain a resolvent
C : P (f(x1))∨P (x). Nc(C) = P (f(x1)) and thus P (f(x1)) is N -resolvent of
C1 and C2. The principle of Ns-resolution essentially coincides with Chang
& Lee’s resolution principle and thus is complete [CL73]. We do not show
the completeness of Nc-resolution here, but delay this result. Indeed the com-
pleteness of resolution under Nc-normalization will follow from the complete-
ness of A-ordering refinements, a result which will be proved in Section 3.3.

By replacing ϕ in Definition 3.1.2 by a normalization operator N we
obtain the concept of N -resolution operators.

98 3. Refinements of Resolution

Definition 3.2.4. Let N be a normalization operator for clauses.
We define ρN (C) = N(Res(C)) and

S0
N (C) = N(C),

Si+1
N (C) = Si

N (C) ∪ ρN (Si
N (C)),

RN (C) =
⋃∞

i=0 S
i
N (C).

RN is called the operator of N -resolution.

Definition 3.2.5 (NR-deduction). Let C be a set of N -clauses. An NR-
deduction (N -resolution deduction) of C from C is a sequence of clauses
C1, . . . , Cn with the following properties:

a) All Ci are in N -normal form;
b) Cn = C
c) For every i either Ci ∈ C or Ci ∈ ρN ({Cj , Ck}) for some j, k < i.

An NR-deduction of 2 is also called an NR-refutation of C.
The concept of refinement defined in Section 3.1 can be generalized to N -
resolution in an obvious way. In particular, stronger normalizations decrease
the number of possible deductions.

Example 3.2.4. We present a resolution refutation in different normal forms.

C = {P (x) ∨R(x, y), ¬P (x) ∨R(x, f(y)), ¬R(a, f(z))}.

Γ = P (x) ∨R(x, y), ¬P (x) ∨R(x, f(y)),

R(u, v) ∨R(u, f(w)), ¬R(a, f(z)), R(a, x), 2.

Γ is an R-refutation of C.

Γ ′ = P (x1) ∨R(x1, x2), R(x1, f(x2)) ∨ ¬P (x1), R(x1, f(x2)) ∨R(x1, x3),

¬R(a, f(x1)), R(a, x1), 2.

Γ ′ is an NsR-refutation of C.

Γ ′ cannot be transformed into an NcR-refutation “directly”. The reason
is that the clause R(x1, f(x2)) ∨ R(x1, x3) must be factored (!) in order to
obtain an Nc-nomal form. Therefore we obtain the shorter NcR-refutation

Γ ′′ = P (x1)∨R(x1, x2), R(x1, f(x2))∨¬P (x1), R(x1, f(x2)), ¬R(a, x1), 2.

Normalization of clauses is not only of theoretical, but also of practical
importance. In every implementation of a resolution theorem prover the pro-
grammer will take care of storage and keep clauses in a compact form. More-
over in stronger normal forms more clauses are equal and thus can be deleted.
Nv-normalization is even necessary to keep the set of resolvents of a finite set
of clauses finite. The gain of efficiency is represented mathematically by the

3.3 Refinements Based on Atom Orderings 99

fact that | Si
N1

(C) |≤| Si
N2

(C) | (in Definition 3.2.4) if N1 is a stronger nor-
malization principle than N2. It may even be the case that RN1(C) is finite,
but RN2(C) is infinite. Just take

C = {P (x1) ∨ P (x2) ∨R(x3), ¬P (x1) ∨ ¬P (x2) ∨R(x3)},

for N1 = Nc and N2 = Ns.

Exercises

Exercise 3.2.1. a) Show that F ({C}) ∼ F ({D}) does not imply Nc(C) =
Nc(D) for all clauses C,D.

b) Find sufficiently strong syntactical criteria for clauses such that the im-
plication in a) is valid (is it valid for ground clauses C,D?).

3.3 Refinements Based on Atom Orderings

Atom ordering refinements (or shortly A-ordering refinements) restrict the
set of resolvents of two clauses, but do not express conditions on the form of
deductions. The basic idea is to avoid resolvents which are too large with re-
spect to an ordering defined on atom formulas. The use of ordering principles
for refinements of resolution dates back to the very beginning of resolution
theory. In 1967 [Sla67] Slagle defined the refinement of semantic clash res-
olution containing a principle of atom ordering. A more general concept of
ordering has been developed by Kowalski and Hayes [KH69] and incorporated
into a semantic-tree based resolution principle. In such a principle, resolution
is restricted by the condition that some semantic tree must be reduced by
addition of new resolvents. The definition given below is closely related to
Joyner’s [Joy76], but it is slightly more general.

Definition 3.3.1 (A-ordering). An A-ordering (atom ordering) <A is a
binary relation on the set of all atom formulas such that the following prop-
erties hold:

(A1) <A is irreflexive,
(A2) <A is transitive,
(A3) for all A,B ∈ AT and ϑ ∈ SUBST: A <A B implies Aϑ <A Bϑ.

(A1) and (A2) are fulfilled by every strict (partial) ordering principle. Prop-
erty (A3) is important to ground lifting and will play a role in the complete-
ness proof.

A <A B always implies the nonunifiability of A and B: Suppose to the
contrary that A <A B and Aϑ = Bϑ hold simultaneously; then by (A3)
we obtain Aϑ <A Bϑ and <A cannot be irreflexive, which contradicts (A1).

100 3. Refinements of Resolution

According to this property, <A-orderings cannot be total on the set of all
atoms (e.g. the atoms P (x) and P (y) cannot be in an <A-ordering relation).
Nevertheless the partial ordering <A can be made total on the set of all
ground atoms.

<A-orderings are essentially based on the term complexity of atoms. One
such complexity measure is the term depth τ , which has already been de-
fined in Section 2.1. But mere term depth is a very rough measure of atom
complexity. As an example consider A1 : P (x) and A2 : P (f(a)); clearly
τ(A1) < τ(A2), but τ(A1ϑ) > τ(A2ϑ) for infinitely many instances A1ϑ.
Because we always deal with substitution instances in computational logic
we have to take into account the term depth of the instances too. A finer
complexity measure results when also the depths of variable occurrences are
considered as well.

Definition 3.3.2. The maximal depth of a variable x within an expression
E (denoted by τmax(x,E)) is defined as follows:
For t ∈ T we set

τmax(x, t) =







0 if x /∈ V (t) or x = t,
1 + max{τmax(x, ti)|i = 1, . . . , n} if x ∈ V (t) and

t = f(t1, . . . , tn), f ∈ FS.

We extend τmax to atoms, literals, and clauses:

τmax(x, P (t1, . . . , tn)) = max{(x, ti) | i = 1, . . . , n}
for atom formulas P (t1, . . . , tn)

τmax(x, L) = τmax(x, at(L)) for literals L,

τmax(x, L1 ∨ . . . ∨ Ln) = max{τmax(x, Li) | i = 1, . . . , n} for clauses.

Example 3.3.1. Let A,B be arbitrary atoms. We define A <d B iff

1) τ(A) < τ(B) and
2) for all x ∈ V (A) : τmax(x,A) < τmax(x,B)

(including the property V (A) ⊆ V (B)).

Irreflexivity and transitivity of <d easily follow from 1) and 2).

If τmax(x,A) < τmax(x,B) for all x ∈ V (A) and τ(A) < τ(B) then for all
substitutions ϑ and y ∈ V (Aϑ):

τmax(y,Aϑ) < τmax(y,Bϑ)

and
τ(Aϑ) < τ(Bϑ).

Note that condition 1 would not suffice to define an <A-ordering. As an
example take the atoms P (x), P (f(a)) fulfilling τ(P (x)) < τ(P (f(a))); but

3.3 Refinements Based on Atom Orderings 101

P (x) and P (f(a)) are unifiable and thus cannot be in an<A-ordering relation.
Condition 2 does not suffice either, because, e.g.,

τmax(x,Q(f(a), a)) < τmax(x,Q(f(x), b))

but
τmax(x,Q(f(a), a))ϑ = τmax(x,Q(f(x), b))ϑ = 0.

for ϑ = {x← a}. For <d we have

P (x, x) <d Q(f(x), y) and
P (x, y) <d R(g(x, y)),

but not

P (x, f(a)) <d Q(x, f(x)) (1) is violated)
P (x, a) <d P (f(a), x) (2) is violated)

The ordering <A is an ordering for atoms, not for literals (i.e., the sign
does not influence the ordering relation). We thus extend <A-orderings by

L <A M iff at(L) <A at(M)

for any atom ordering <A and literals L,M .

Definition 3.3.3 (resolved atom). Let C : C1 ∨ L ∨ C2 and D = D1 ∨
M ∨ D2 be variable disjoint clauses and (C1 ∨ C2 ∨ D1 ∨ D2)σ be a binary
resolvent of C and D (under m.g.u. σ). Then at(L)σ is called the resolved
atom of the resolution. If E is a binary resolvent of renamed factors C′, D′

of two clauses C and D then the resolved atom of the binary resolvent is also
called the resolved atom of the (this) resolution of C and D.
Note that the resolved atom generally does not coincide with the atom as it
is contained in the clause. The relevance of resolved atoms is based on the
fact that a clause is a universal form, whose only relevant instances are those
obtained by most general unifications.

For the concept of <A-resolution we choose the strong Nc-normal form
for clauses (we could in fact define it relatively to arbitrary clause normaliza-
tions). The reason for this choice can be found in resolution decision theory
to be presented in Chapter 5.

Definition 3.3.4 (<A-resolvent). Let C be a set of Nc-clauses and <A be
an atom ordering. Let C be an (ordinary) resolvent of two clauses C1, C2 ∈
C. Then (the condensation of) C is an <A-resolvent of C1 and C2 (i.e.,
Nc(C) ∈ ρ<A

(C)) iff there is no literal L in C such that B <A L, where B is
the resolved atom of the resolution of C1 and C2.

Example 3.3.2. Let C = {C1, C2} for

102 3. Refinements of Resolution

C1 = Q(f(x1), x1) ∨ ¬R(f(x1)) and

C2 = R(f(x1)) ∨ ¬Q(x1, x2).

C1 and C2 are Nc-clauses.
For resolution we choose the variants

C′
1 = Q(f(x), x) ∨ ¬R(f(x)) and

C′
2 = R(f(y)) ∨ ¬Q(y, z).

C : Q(f(x), x) ∨ ¬Q(x, z) is a resolvent obtained via m.g.u. {y ← x} and
resolved atom R(f(x)).

R(f(x)) 6<d L for L = Q(f(x), x) or L = ¬Q(x, z). Thus C is “admissible”
and the normalized resolvent Q(f(x1), x1) ∨ ¬Q(x1, x2) is in ρ<d

(C).

D : ¬R(f(x)) ∨R(f(f(x))) is another resolvent obtained via m.g.u.
{y ← f(x), z ← x} and resolved atom Q(f(x), x).

ButQ(f(x), x) <d R(f(f(x))) and thereforeD is not admissible. We conclude
that the Nc-resolvent R(f(f(x1))) ∨ ¬R(f(x1)) is not in ρ<d

(C).
Example 3.3.2 also shows that <A-ordering resolution is an a posteriori

ordering refinement. In the original clause forms C1, C2 (before application
of the m.g.u.’s) there exists no <d-ordering relation among the literals. Par-
ticularly ¬Q(x1, x2) 6<d R(f(x1)), but Q(f(x), x) <d R(f(f(x))) by most
general unification. We thus realize that an a priori <d-ordering of literals in
clauses (a literal L in C cannot be resolved if there is an M in C such that
L <d M) would not have blocked the second resolution in Example 3.3.2.
On the other hand, a resolvent defined via the a priori ordering principle
(in case of the existence of a maximal literal) is also admissible via the a-
posteriori one: Suppose that C1 = E1 ∨ L1 and C2 = E2 ∨ L2 such that
L <A Li for all L in Ei, i = 1, 2. Then by (A3) Lϑ <A Liϑ for all L in Ei,
ϑ ∈ SUBST; thus if σ is m.g.u. of {L1, L

d
2} and (E1 ∨ E2)σ is the resolvent

then Nc((E1 ∨E2)σ) ∈ ρ<A
({C1, C2}).

Definition 3.3.5 (R<A
-deduction). Let C be a set of Nc-clauses and <A

be an atom ordering. An R<A
-deduction of an Nc-clause C from C is a se-

quence C1, . . . , Cn such that

a) Cn = C and
b) For all i = 1, . . . , n : Either Ci ∈ C or Ci ∈ ρ<A

({Cj , Ck}) for some
j, k < i.

Clearly every R<A
-deduction is also an NcR-deduction. The set of all R<A

-
deducible clauses can be described by a resolution refinement operator of the
type described in Section 3.1.

3.3 Refinements Based on Atom Orderings 103

Definition 3.3.6. Let C be an arbitrary set of Nc-clauses. We define

S0
<A

(C) = C,

Si+1
<A

(C) = Si
<A

(C) ∪ ρ<A
(Si

<A
(C)),

R<A
(C) =

⋃∞
i=0 S

i
<A

(C).

It is easy to verify that the set of all clauses derivable via R<A
-deduction

from a set of Nc-clauses C coincides with R<A
(C).

The principle of R<A
-deduction is complete for arbitrary atom orderings

<A. The proof of completeness itself proceeds in two steps as usual: First
show the completeness of R<A

-ground deductions and lift to general R<A
-

deductions afterwards.

Lemma 3.3.1. Let D be a finite, unsatisfiable set of ground Nc-clauses and
<A be an atom ordering. Then there exists an R<A

-refutation of D.

Proof. LetA be the set of all atom formulas occurring inD. First we order the
atoms in A according to <A. Because <A need not be total on ground atoms
(on all atoms it cannot be total) we complete it to a total, strict ordering <
in an arbitrary manner. Thus A <A B implies A < B for all A,B ∈ A.

Let A = {A1, . . . , An} such that Ai < Aj for i < j ≤ n. On the basis of <
we define a semantic tree T of the form outlined in Figure 3.1. We say that
T fulfills the order condition with respect to <A.

b�
�
�An

b

@
@
@ ¬An

b

b�
�
�A2

b

@
@
@ ¬A2

b

��
��
��

A1

b

HH
HH

HH
¬A1

b

Fig. 3.1. An ordered semantic tree defined by Ai < Aj for i < j

The tree T coincides with T̂ (D) defined in Section 2.3, the atom ordering
being based on <. By Theorem 2.3.2, T is closed because D is unsatisfiable.
We conclude that on every branch there is a failure node. As T is closed
there must exist a node N in T having two sons N1, N2 such that both N1

and N2 are failure nodes; we call N an inference node. Let Ai,¬Ai be the
literals corresponding to the edges (N,N1) and (N,N2). Because N1 and N2

are failure nodes they falsify some clauses in D; so let D1 be a clause falsified

104 3. Refinements of Resolution

by N1 and D2 falsified by N2. Because N itself is not a failure node, ¬Ai

must occur in D1 and Ai in D2. Therefore E : (D1 \ ¬Ai) ∨ (D2 \ Ai) is a
resolvent ofD1, D2. Note that D1, D2 are in Nc-normal form and thus contain
every literal at most once. Consequently E neither contains Ai nor ¬Ai and
N falsifies E.

We show that E is an R<A
-resolvent of D1 and D2. E is obtained from

D1, D2 by a resolution based on the resolved atom Ai. Because E is falsified
by N , every literal L in E appears in the dualized form Ld on the branch
ending in N . By construction of T every L must be an Aj or ¬Aj for some
j < i. According to the ordering of the atoms we obtainAj < Ai and therefore
L < Ai. We conclude that Nc(E) ∈ ρ<A

({D1, D2}).
It is an easy task now to prove the existence of an R<A

-refutation of D.
For this purpose we proceed by induction on the number of nodes K in a
minimal closed semantic tree T ′(D) for D (i.e., every leaf is a failure node),
which fulfills the ordering condition.

k = 1: 2 must be contained in D; 2 is an R<A
-refutation of D.

(IH): Suppose that the assertion holds for all sets of clauses D such that the
number of nodes k in T ′(D) is ≤ n.

k = n + 1: T ′(D) must possess the properties indicated above, i.e., there
exists an inference node N such that N falsifies an R<A

-resolvent E of
clauses D1, D2 ∈ D. Let D′ = D∪{E}; because N falsifies E, N itself or
an ancestor of N is a failure node.

Therefore a minimal closed semantic tree T ′(D′) for D′ must be smaller than
T ′(D); moreover T ′(D′) fulfills the ordering condition. By (IH) there exists
an R<A

-refutation Γ of D′. By definition of R<A
-deductions, D1, D2, Γ is an

R<A
-refutation of D. 3

Because of the normalization operator Nc, lifting of R<A
-ground deduc-

tions is impossible using ≤s only. As an example take

C = P (f(y)) ∨ P (x) ∨R(x) ∨R(y).

Then Nc(C) = P (f(x1)) ∨ P (x2) ∨ R(x1) ∨ R(x2) (note that C is already
condensed).

The clause

D : P (f(a)) ∨ P (f(a)) ∨R(a) ∨R(f(a))

is a ground instance ofNc(C); its normalized form is P (f(a))∨R(a)∨R(f(a)).
Therefore Nc(C) ≤s Nc(D) is not valid, but there exists a substitution ϑ such
that Nc(Cϑ) ≤s Nc(D). This gives a motivation for the following technical
notion:

3.3 Refinements Based on Atom Orderings 105

Definition 3.3.7. Let C,D be clauses in Nc-normal form. Then C ≤sc D if
there exists a substitution ϑ such that Nc(Cϑ) = D.
It is easy to see that C ≤sc D implies the validity of F ({C}) → F ({D}).
Thus C ≤sc 2 is only possible for C = 2. Note that F ({C})→ F ({D}) does
not imply C ≤sc D (Exercise 3.3.1).

The ≤sc relation can be extended to NcR-deductions, where it serves as
a tool to describe properties of lifting.

Definition 3.3.8. Let Γ = C1, . . . , Cn and ∆ = D1, . . . , Dn be two NcR-
deductions. Then Γ ≤sc ∆ if for all i = 1, . . . , n : Ci ≤sc Di.
If Γ and ∆ are NcR-deductions, Γ ≤sc ∆, and ∆ is a refutation then Γ is a
refutation too. The proof of the following completeness theorem is based on
≤sc lifting.

Theorem 3.3.1 (Completeness of R<A
-deduction). Let C be an unsat-

isfiable set of Nc-clauses and <A be an atom ordering. Then there exists an
R<A

-refutation of C.

Proof. Because C is unsatisfiable there exists, by Herbrand’s theorem, a finite
unsatisfiable set of ground clauses C′ of C. Let D = Nc(C′); then D is a finite,
unsatisfiable set of Nc-ground clauses. By Lemma 3.3.1 there exists an R<A

-
refutation ∆ of D. We will show the existence of an R<A

-refutation Γ of C
such that Γ ≤sc ∆. In fact we show the more general result:

(*) Let ∆ be an R<A
-deduction from D. Then there exists an R<A

-
deduction Γ from C with Γ ≤sc ∆.

If ∆ is an R<A
-refutation and Γ is an R<A

-deduction fulfilling Γ ≤sc ∆ then
Γ is an R<A

-refutation too. Thus it remains to prove (*). For this purpose
we use induction on l(∆), the length of the ground deduction ∆.

l(∆) = 1:

In this case ∆ = D for a clause D ∈ D. By definition of D there exists a
C′ ∈ C′ such that Nc(C

′) = D. Moreover C′ = Cϑ for some C ∈ C and
ϑ ∈ SUBST. Therefore Nc(Cϑ) = D, i.e., C ≤sc D and Γ : C is the required
deduction.

(IH): Suppose that (*) holds for all R<A
-deductions ∆ from D such that

l(∆) ≤ n.

l(∆) = n + 1: Let ∆ = D1, . . . , Dn+1 be an R<A
-deduction from D. Then

either

a) Dn+1 ∈ D or
b) Dn+1 ∈ ρ<A

({Di, Dj}) for i, j ≤ n.

Let us denote D1, . . . , Dn by ∆n; then ∆n is an R<A
-deduction from D

and – by (IH) – there exists an R<A
-deduction Γn from C such that Γn ≤sc

∆n.

106 3. Refinements of Resolution

case a) : Let C be a clause in C such that Nc(Cϑ) = Dn+1 for a ground
substitution ϑ. Then C ≤sc Dn+1 and Γn, C is the required deduction Γ .

case b) : By i, j ≤ n and Γn ≤sc ∆n there are (by (IH)) clauses Ci, Cj in
Γn such that Ci ≤sc Di and Cj ≤sc Dj . Our aim is the construction of
an R<A

-resolvent C of Ci, Cj such that C ≤sc Dn+1. If there is such a
resolvent then, clearly, Γn, C is the required R<A

-deduction.

Let Di = A1 ∨ L1 ∨ B1 and Dj = A2 ∨ L2 ∨ B2 such that Ld
1 = L2.

Then Dn+1, being the Nc-normal form of the resolvent, is a permutation
variant of the clause A1∨B1∨A2∨B2. By Ci ≤sc Di and Cj ≤sc Di there
are substitutions ϑi, ϑj such that Nc(Ciϑj) = Di and Nc(Cjϑj) = Dj.

Let Ei, Ej be the reduced forms of Ciϑi and of Cjϑ, respectively. Then
Di, Dj are merely permutation variants of Ei, Ej . Moreover there are
(renamed) factors Ciσi, Cjσj of Ci and Cj respectively such that Ciσi ≤s

Ei, Cjσj ≤s Ej .
Such factors always exist, no matter whether Ci and Cj are in condensed
form or not (note that condensations are obtained by factoring). Note
that condensed forms of instances Cη cannot contain more literals than
the (condensed) clause C itself.

The clause E : (Ei \ L1) ∨ (Ej \ L2) is a resolvent of Ei, Ej fulfilling
Nc(E) = Dn+1. By definition of Ciσi and Cjσj there must exist literals
M1 in Ciσi and M2 in Cjσj such that M1 ≤s L1, M2 ≤2 L2 and

C = (Ciσi \M1)σ ∨ (Cjσj \M2)σ ≤s E

for an m.g.u. σ of {M1,M
d
2 } (note that L1 = Ld

2). Clearly C is a resolvent
of Ci, Cj such that C ≤sc Dn+1. It remains to show that Nc(C) is in
ρ<A

({Ci, Cj}). Suppose (without loss of generality) that M1 is a positive
literal. Then M1σ is the resolved atom of the resolution.
We have to show that there is no literal L in C fulfilling M1σ <A L.
For this purpose we assume the contrary and derive a contradiction:
Let L be in C such that M1σ <A L. As <A is irreflexive we obtain
L 6= M1σ and there exists a literal K in (Ciσi \M1) ∨ (Cjσj \M2) such
that L = Kσ; thus also

M1σ <A Kσ.

By M1σ ≤s L1 there exists a substitution ϑ such that M1σϑ =
L1, Nc(Cϑ) = Dn+1 and Kσϑ is a literal in Di or in Dj .
By the property (A3) of A-orderings

M1σ <A Kσ implies M1σϑ <A Kσϑ.

Thus there exists a literal K ′ in Dn+1 such that L1 <A K ′. On the other
hand, Dn+1 is an R<A

-resolvent of Di and Dj based on the resolved
atom L1; consequently such a literal K ′ cannot exist and we obtain a
contradiction. We conclude that C cannot contain a literal L such that
M1σ <A L and therefore C ∈ ρ<A

({Ci, Cj}). 3

3.3 Refinements Based on Atom Orderings 107

Corollary 3.3.1. If C is an unsatisfiable set of Nc-clauses and <A is an
atom ordering then 2 ∈ R<A

(C).

Proof. Trivial consequence of Theorem 3.3.1.

In the proof of Theorem 3.3.1 we used Lemma 3.3.1, a result which is based
on finite semantic trees. Although we used infinite semantic trees to prove
Herbrand’s theorem itself, we don’t need them any longer (once we can refer
to Herbrand’s theorem). For this reason our result is somewhat more general
than Joyner’s [Joy76], who demands that the extension of the atom orderings
to ground atoms must be of order type less than or equal to ω (i.e., the
ordering is linear and there exists no element which is larger than infinitely
many other elements). In our terminology the ordering P (t) < Q(t) (for all
terms t and two one-place predicate symbols P and Q) is an atom ordering,
although there are infinitely many atoms A such that A < Q(a). Such limit
points in the ordering are harmless, because in a finite set of atoms we easily
obtain the restriction of < to this finite set and can construct an appropriate
finite semantic tree.

The ordering property (A3) is of central importance to lifting and has
been used in the proof of Theorem 3.3.1. We show now that (A3) cannot
be replaced by the following, somewhat weaker condition: A <A B implies
“Aϑ ≤A Bϑ” for ϑ ∈ SUBST, where “Aϑ ≤A Bϑ” is shorthand for not
(Bϑ <A Aϑ).

Example 3.3.3. Let <v be a binary relation on the set of atoms defined by
A <v B iff V (A) ⊂ V (B).

Clearly<v is irreflexive and transitive and V (A) ⊂ V (B) implies V (Aϑ) ⊆
V (Bϑ) for all substitutions ϑ. Thus A <v B implies not (Bϑ <v Aϑ). How-
ever, <v is incompatible with ground lifting. Consider the following R<v

-
ground deduction

Γ ′ : P (a, a) ∨Q(a),¬Q(a), P (a, a).

Note that, as <v is always false on the ground level (for two ground atoms
A,B we always have V (A) = V (B) = ∅), every ground NcR-deduction is a
ground R<v

-deduction too. Suppose that P (x1, x2) ∨Q(x1) and ¬Q(x1) are
the Nc-clauses having P (a, a) ∨Q(a) and ¬Q(a) as instances.

The deduction

Γ : P (x1, x2) ∨Q(x1),¬Q(x1), P (x1, x2)

is the (only possible) lifted NcR-deduction corresponding to Γ ′.

However, Γ is not an R<v
-deduction: Take the renamed versions P (x, y) ∨

Q(x) and ¬Q(z) and resolve via m.g.u. σ = {z ← x}. Then Q(x) is the
resolved atom and P (x, y) is the resolvent. But Q(x) <v P (x, y) and, ac-
cording to the definition of A-ordering resolvents, P (x, y) (or its normal form

108 3. Refinements of Resolution

P (x1, x2)) is not admissible. We see that Γ is not an R<v
-deduction.

It is not only the lifting property which does not hold for R<v
-deduction,

but the R<v
refinement is incomplete too. Simply take C = {P (x1) ∨

Q(x2),¬P (a),¬Q(a)}. There are two resolvents, Q(x2) and P (x1). But
P (a) <v Q(x2) and Q(a) <v P (x1) and R<v

(C) = C. As C is obviously
unsatisfiable, R<v

-deduction is incomplete. However, we obtain a refutation
if we use <v as an a priori ordering principle (clearly neither P (x1) <v Q(x2)
nor Q(x2) <v P (x1)). A careful analysis of the use of A-ordering proper-
ties in the completeness proof (Theorem 3.3.1) shows that the transitivity of
<A is not really needed. In fact it suffices to guarantee that the relation <A

is cycle-free. A general analysis of ordering refinements (including the more
general concept of Π-ordering) can be found in [FLTZ93], Chapter 4.

Exercises

Exercise 3.3.1.
Let C,D be two arbitrary clauses such that |C| = |D| and D is not a tautol-
ogy. Show that the validity of F ({C})→ F ({D}) does not (in general) imply
C ≤sc D.

3.4 Lock Resolution

While A-orderings are based on syntactical (term) properties of atom for-
mulas, locking (or indexing) is a quite different order type. In locking every
(occurrence of a) literal gets a number in advance and inherits this number
in resolution deductions, independent of the term structure of the literals.
Two syntactically identical literals may be labeled by different numbers and
thus can be distinguished.

Example 3.4.1.
Let C = {C1, C2, C3} be a set of clauses with

C1 = ¬P (x, y) ∨ P (y, x), C2 = P (u, a) and C3 = ¬P (v, b).

The set of all resolvents, normalized under Nc, is

Nc(Res(C)) = {P (a, x1), ¬P (b, x1), P (x1, x2) ∨ ¬P (x1, x2)}.

Note that by resolving C1 with itself we obtain the tautology P (x1, x2) ∨
¬P (x1, x2).

None of the resolvents in Nc(Res(C)) can be excluded by an A-ordering
refinement (although the third resolvent, being a tautology, can be deleted – a
principle which will be discussed in Chapter 4). In fact R<A

(C) = Nc(Res(C))
for every A-ordering <A (note that the resolved atoms are always unifiable
with all atoms occurring in the resolvent). Indexing of literals changes this

3.4 Lock Resolution 109

situation:

Let C′ = {¬
1

P (x, y) ∨
2

P (y, x),
3

P (u, a),¬
4

P (v, b)} be an indexed version of C.

Under the restriction that only literals with lowest index may be resolved
(the others are “locked”), the only resolvent we can obtain is P (a, u) (indices
are inherited). Figure 3.2 shows a complete lock refutation of C (with respect
to the indexed version C′).

!!
!!
!!
!

1
¬P (x, y) ∨

2
P (y, x)

3
P (u, a)

!!
!!
!!
!

3
P (u, a)

4
¬P (v, b)

Fig. 3.2. A lock refutation

As numbers are inherited, the order type of a literal within a clause de-
pends on its history, i.e., it is dependent on the deduction of the clause. The
A-ordering relation, on the other hand, depends on the syntactical structure
of atoms only, no matter where they come from. Because literals with differ-
ent indices must be considered as different objects, we need new concepts of
literals and clauses.

Definition 3.4.1. A pair (L, i) where L is a literal and i is a natural number,
is called an indexed literal. Indexed clauses are defined by:
Indexed literals and 2 are indexed clauses; if A,B are indexed clauses then
also A ∨B.
Although identical literals having different indices are different (as indexed
literals) we can perform some weak normalization within clauses, by which
different indices must belong to different literals. Moreover we can delete
multiple occurrences of indexed literals within clauses. The following principle
of “merging low” yields such a normalization:

1) Order all literals in a clause according to their indices (i.e., (L, i) left of
(M, j) for i < j).

2) Delete multiple occurrences of indexed literals (keep the leftmost occur-
rence only).

3) Delete every (L, i) from C for which there exists an (L, j) in C with j < i.

A clause obtained after all possible transformations of type 1–3 is said to
be in lock normal form. If l is the locking and C is an indexed clause (with
respect to l) then the normal form of C is denoted by Nl(C). Instead of

110 3. Refinements of Resolution

Nv ◦ Nl we write Nvl (the operator Nv can be extended to indexed clauses
in a straightforward manner).

Example 3.4.2. C : (P (x), 1) ∨ (P (x), 4) ∨ (Q(x), 3) ∨ (Q(x), 2) is an indexed
clause.

Its lock normal form is Nl(C) = (P (x), 1) ∨ (Q(x), 2).

Additional variable normalization yields Nvl(C) = (P (x1), 1) ∨ (Q(x1), 2).
Although, formally, indexed literals are tuples of the form (L, i) we will

denote them (on the object level) by Li.
Substitutions can be extended to indexed clauses simply by defining:

(L, i)ϑ = (Lϑ, i) and (as always)
(A ∨B)ϑ = Aϑ ∨Bϑ, 2ϑ = 2.

The following definition restricts the factoring principle (originally defined
in Section 2.7) according to the principle of index minimality.

Definition 3.4.2. Let C be an indexed Nl-clause and (L, i) be a literal of
lowest index in C. Let (L1, i1), . . . , (Ln, in) be arbitrary indexed literals in C
such that the set of (ordinary) literals {L,L1, . . . , Ln} is unifiable by m.g.u.
σ. Then Nl(Cσ) is called a lock factor of C.

Example 3.4.3. C =
1

P (x) ∨
2

P (y) ∨
2

Q(x) ∨
3

Q(a).
1

P (x) ∨
2

Q(x) ∨
3

Q(a) is a lock factor of C, but
1

P (a) ∨
2

P (y) ∨
2

Q(a) is not.
The principle of lock resolution results from the combination of binary

resolution on minimal literals and lock factoring.

Definition 3.4.3. Let C1, C2 be two indexed clauses in lock- and variable
normal form C (i.e. Nvl(Ci) = Ci for i = 1, 2). Let C′

1, C
′
2 be two variable-

disjoint variants of C1, C2 and D1, D2 be lock factors of C′
1, C

′
2. Suppose that

(L1, i) is a literal having minimal index in D1 and similarly (L2, j) in D2

such that {L1, L
d
2} is unifiable by an m.g.u. σ. Then the clause Nvl((D1 \

(L1, i))σ ∨ (D2 \ (L2, j))σ) is called lock resolvent of C1, C2. If C is a (finite)
set of indexed clauses then the set of all lock resolvents definable by clauses
C1, C2 ∈ C is denoted by ρl(C) (where l denotes the specific locking of C).
There are in fact different concepts of lock resolution in the literature on
automated theorem proving. Our concept of lock factoring is related to order
factoring and can be found in [CL73]. In Loveland’s book [Lov78] a very
restricted form of lock factoring is defined, where it is sufficient to factor
literals having the same index. Lock resolution, even under this restricted
concept of factoring, is complete.

Note that lock resolution is related to a priori ordering refinements, as the
order type of literals in a clause can be derived from its uninstantiated form.

As an example consider L1 =
1

P (x, y), L2 =
2

P (x, z). For all substitutions

3.4 Lock Resolution 111

ϑ1, ϑ2

1
P (x, y)ϑ1 is of smaller index than

2
P (x, z)ϑ2. Consider, on the other

hand, the A-ordering <d defined in Section 3.3. With regard to <d P (x, y)
and P (x, z) are incomparable, but we obtain

P (x, y)ϑ1 <d P (x, z)ϑ1 for ϑ1 = {y ← x, z ← f(x)} and
P (x, z)ϑ2 <d P (x, y)ϑ2 for ϑ2 = {y ← f(x), z ← x}.

We see that A-ordering relations within a clause, unlike locking relations, are
highly substitution-dependent.

Definition 3.4.4 (lock deduction). Let C be a set of indexed Nvl-clauses
for some locking l. A sequence C1, . . . , Cn of indexed Nvl-clauses is called an
Rl-deduction of C from C if the following conditions are fulfilled:

1) Cn = C and
2) For every i ∈ {1, . . . , n}:

2a) Ci ∈ C or
2b) There exist j, k such that j, k < i and Ci is lock-resolvent of Cj , Ck.

A lock deduction of 2 from C is called a lock refutation of C.
Note that, by the definition above, the indices of lock-deduced clauses are
always the same as in the original set of clauses (indices are inherited). Thus
only a fixed set of indices appear in all lock deductions from C.

The set of all lock-derivable clauses can be expressed by a set operator
Rl; we only have to take into account that Rl works on indexed clauses. For
every locking l and every set of indexed Nvl-clauses C we define ρl(C) = The
set of all l-lock resolvents definable by (indexed) clauses in C.

Definition 3.4.5. Let C be a set of indexed Nv-clauses and l be a locking for
C. We define

S0
l (C) = C,

Si+1
l (C) = Si

l (C) ∪ ρl(S
i
l (C)),

Rl(C) =
⋃∞

i=0 S
i
l (C).

The proof of completeness of lock deduction is of the same structure as the
proof for the completeness of R<A

-deduction. We first show the completeness
of the ground deduction principle, define an appropriate substitution ordering
and then perform lifting.

Lemma 3.4.1. Let D be a finite, unsatisfiable set of indexed ground Nvl-
clauses and l be a locking for D. Then there exists an Rl-refutation of C.

Proof. We apply a proof technique different from the one in Lemma 3.3.1.
Instead of semantic trees, we use the excess literal parameter introduced by
Anderson and Bledsoe [AB70].

112 3. Refinements of Resolution

Let e(D) = (ΣD∈D | D |)− | D |, i.e., the total number of literals occurring
in clauses of D minus the number of clauses in D. We proceed by induction
on e(D).

e(D) = 0: In this case D is a set of unit (indexed) clauses. A refutation of
D necessarily consists in resolving two complementary literals to 2. But such
a refutation is also a lock refutation (independent of the specific locking).

(IH) Suppose that for all finite, unsatisfiable sets of ground Nvl-clauses D
fulfilling e(D) ≤ n, D is lock refutable.

e(D) = n + 1: By e(D) > 0 there exists an indexed clause D ∈ D such
that | D |≥ 2. Let r be the highest index occurring in D and (L, r) be a
corresponding literal. Then D is of the form

D1 ∨ (L, r) ∨D2.

Because of the validity of (D1 ∨ D2) → D and of (L, r) → D, the sets of
clauses

D1 : (D − {D}) ∪ {D1 ∨D2}

and
D2 : (D − {D}) ∪ {(L, r)}

are both unsatisfiable. Both D1 and D2 contain the same number of clauses
as D; moreover e(D1), e(D2) are strictly smaller than e(D). Therefore (IH)
applies and there are lock refutations Γ1 of D1 and Γ2 of D2.

Let Γ ′
1 be the sequence of clauses obtained from Γ1 after replacement of

D1 ∨D2 by D everywhere in Γ1 and by appending (L, r) (at the rightmost
position) to all resolvents defined via D1 ∨ D2 in Γ1. By Nvl-normalization
multiple occurrences of (L, r) are removed; if E is Nvl-normal form then ei-
ther E = Nvl(E) = Nvl(E∨(L, r)) (if (L, j) ∈ E for some j < r) or E∨(L, r)
is in Nvl-normal form because (L, r) is of maximal index. Thus Γ ′

1 is an Rl-
deduction.

Because r is the highest index no lock resolution can be blocked by intro-
ducing (L, r) into the clauses in Γ1. Consequently Γ ′

1 is a lock deduction too.
There are two possibilities:

a) Γ ′
1 is a lock refutation; as Γ ′

1 is also a lock deduction from D we are
finished.

b) Γ ′
1 is not a refutation.

Because Γ ′
1 differs from Γ1 merely by the surplus literal (L, r) in some clauses,

and because the clauses are in Nvl-normal form (merging low) Γ ′
1 must be a

lock deduction of (L, r). In this case Γ ′
1,Γ

′
2 is a lock refutation of D. 3

In order to lift ground lock deductions to general lock deductions we need a
stronger version of ≤s (like ≤sc in the case of A-ordering).

3.4 Lock Resolution 113

Definition 3.4.6. Let C,D be clauses in Nvl-normal form. We define C ≤sl

D if there exists a substitution ϑ such that Nvl(Cϑ) = D.

Definition 3.4.7. Let Γ : C1, . . . , Cn and ∆ : D1, . . . , Dn be two Rl-
deductions. Then Γ ≤sl ∆ iff for all i = 1, . . . , n : Ci ≤sl Di.
Like for the relations ≤s,≤sc, the property Γ ≤sl ∆ for an Rl-refutation ∆
implies that Γ is an Rl-refutation too.

In the completeness proof for lock deduction we use the technique of
unlocking a clause. For this purpose we formally define a mapping “unlock”
translating indexed clauses into ordinary ones:

unlock((L, r)) = L for literals L,
unlock(A ∨B) = unlock(A) ∨ unlock(B) for indexed clauses A,B,

unlock(2) = 2.

Theorem 3.4.1 (completeness of lock deduction). Let C be an unsat-
isfiable set of indexed Nvl-clauses for some locking l. Then there exists an
Rl-refutation of C.

Proof. Because unlock(C) is unsatisfiable there exists a finite, unsatisfiable
set of ground instancesD′ from clauses in unlock(C) (by Herbrand’s theorem).
Let C′ be the finite, unsatisfiable set of indexed ground clauses corresponding
to D′. Let D = Nl(C′) (Nl(C′) coincides with Nvl(C′) on the ground level);
then D is a finite, unsatisfiable set of ground Nvl-clauses. By Lemma 3.4.1
there exists an Rl-refutation ∆ of D. We have to show the existence of an Rl-
refutation Γ of C such that Γ ≤sl ∆. The outer structure of the lifting proof
is exactly the same as in Theorem 3.3.1. We thus can reduce our argument
to the “kernel” which is specific to lock deductions:

(*) Let C1, C2 be two variable-disjoint indexed clauses and D1, D2 be two
indexed ground clauses in lock normal form such that C1 ≤sl D1

and C2 ≤sl D2. Let D ∈ ρl({D1, D2}); then there exists a clause
C ∈ ρl({C1, C2}) fulfilling C ≤sl D.

It remains to prove (*).
By C1 ≤sl D1 and C2 ≤sl D2 there are substitutions ϑ1, ϑ2 such that

Nl(C1ϑ1) = D1 and Nl(C2ϑ2) = D2.
Because D is a lock resolvent of D1 and D2, D1 and D2 must be of the

form

D1 = A1 ∨ (L1, r1) ∨B1, D2 = A2 ∨ (L2, r2) ∨B2

where r1 is a minimal index in D1, r2 in D2 and

D = A′
1 ∨B

′
1 ∨A

′
2 ∨B

′
2.

The clauses A′
i, B

′
i are defined from Ai, Bi via lock ordering and merging

low (note that D must be in Nvl-normal form).

114 3. Refinements of Resolution

By definition of instantiation in indexed clauses there must exist a literal
(M1, r1) in Ci and similarly (M2, r2) in C2 with (M1, r1) ≤s (L1, r1) and
(M2, r2) ≤s (L2, r2). Note that indices minimal in the instantiated clause
must appear as minimal indices in the uninstantiated clause too (here we
need the principle of merging low). Let

L1 = {L | L in C1, unlock(L)ϑ1 = L1} and
L2 = {L | L in C2, unlock(L)ϑ2 = L2}.

As ϑ1 and ϑ2 are unifiers of unlock(L1) and of unlock(L2) respectively, they
can be replaced by m.g.u.’s σ1 of unlock(L1) and σ2 of unlock(L2).

Let unlock(L1)σ1 = {K1} and unlock(L2)σ2 = {K2}.

By definition of lock instantiation on indexed clauses (K1, r1) is in C1σ1 and
(K2, r2) is in C2σ2. Because r1 is minimal in C1 and r2 in C2, Nl(C1σ1) and
Nl(C2σ2) are lock factors of C1 and C2 (according to Definition 3.4.2). By
the normalization operatorNl, all literals in L1 are merged to (K1, r1) and all
literals in L2 to (K2, r2). Moreover only the leftmost occurrences of multiple
literals are kept in Nl(C1σ1) and Nl(C2σ2).

Suppose now that

Nl(C1σ1) = E1 ∨ (K1, r1) ∨ F1, Nl(C2σ2) = E2 ∨ (K2, r2) ∨ F2.

Because K1 ≤s L1, K2 ≤s L2 and Ld
1 = L2 there exists an m.g.u. τ

of {K1,K
d
2}. By Definition 3.4.3 the clause C : (E′

1 ∨ F
′
1 ∨ E

′
2 ∨ F

′
2)τ is a

lock resolvent of C1, C2. Like for the resolvent D, E′
i, F

′
i are defined from the

Ei, Fi by lock ordering and merging low.
We may assume dom(ϑ1) ∩ dom(ϑ2) = ∅ as V (C1) ∪ V (C2) = ∅. So we

obtain
(σ1 ∪ σ2)τ ≤s ϑ1 ∪ ϑ2

by the principle of most general unification. The relations

E′
1τ ≤s A

′
1, F ′

1τ ≤s B
′
1

etc., do not necessarily hold as ϑ1 ∪ ϑ2 may unify more literals than those
contained in L1 and L2. Nevertheless we obtain

(E′
1 ∨ F

′
1 ∨E

′
2 ∨ F

′
2)τ ≤sl (A′

1 ∨B
′
1 ∨A

′
2 ∨B

′
2)

i.e., C ≤sl D and C ∈ ρl({C1, C2}).
3

It is essential for the completeness of lock resolution that clauses with the
same literals but different indices are not identified (resulting in the deletion
of one of these clauses).

3.5 Linear Refinements 115

Example 3.4.4.

C = {
1

P (a) ∨
2

R(a),
3

¬R(a) ∨
4

P (a),
5

R(a) ∨
6

¬P (a),
7

¬P (a) ∨
8

¬R(a)}.

S1
l (C) = C ∪ {

2
R(a) ∨

8
¬R(a),

4
P (a) ∨

6
¬P (a)},

S2
l (C) = S1

l (C) ∪ {
4

P (a) ∨
8

¬R(a),
6

¬P (a) ∨
8

¬R(a)}.

If we forget the indices in
4

P (a) ∨
8

¬R(a),
6

¬P (a) ∨
8

¬R(a) and represent
the clauses in ordered form then we obtain

P (a) ∨ ¬R(a), ¬P (a) ∨ ¬R(a).

But these clauses are the same as the ordered, unlocked forms of the second
and fourth clause in C. By deleting the clauses in S2

l (C)−S1
l (C) according to

the property above we obtain S2
l (C) = S1

l (C) and therefore Rl(C) = S1
l (C).

As C is unsatisfiable and 2 6∈ Rl(C) (according to the deletion rule above)
completeness is destroyed. We see that we may not identify different indexed
clauses even if they are semantically identical. Note that in the clauses

4
P (a) ∨

8
¬R(a) and

3
¬R(a) ∨

4
P (a)

the index “status” of the literals P (a) and ¬R(a) is different (P (a) is minimal
in the first, but not in the second indexed clause).
By continuing correctly we obtain:

S3
l (C) = S2

l (C) ∪ {
8

¬R(a)},
6

¬P (a) ∈ S4
l (C),

2
R(a) ∈ S5

l (C) and 2 ∈ S6
l (C).

So we obtain 2 ∈ Rl(C).
Lock resolution is very restrictive and may prune the search space in ATP-

programs considerably. A disadvantage is its incompatibility with standard
deletion methods; in particular we will show in Chapter 4 that tautology
deletion and subsumption destroy the completeness of lock resolution (in
fact Example 3.4.4 may serve for this purpose too).

3.5 Linear Refinements

The most natural way to refute a sentence is to start with the negated con-
clusion of a theorem and to continue the derivation in a top-down manner.

Let us consider, for illustration, a theorem of the form A1∧ . . .∧An → C,
where the Ai are generalized disjunctions of literals and C is of the form

(∃x)(L1 ∧ . . . ∧ Lm)

(x being a vector of variables in L1, . . . , Lm). For a proof by contradiction
we consider the formula

116 3. Refinements of Resolution

A1 ∧ . . . ∧An ∧ ¬C

which corresponds to a set of clauses C : {C1, . . . , Cn, D} forD = Ld
1∨. . .∨L

d
m.

In order to refute C it is quite reasonable to start with the clause D; note that
deductions based on A1, . . . , An only may produce theorems which are of no
relevance to a proof of C (i.e., to a refutation of D). The form of deduction
shown in Figure 3.3 guarantees that the negated conclusion D is “present”
in every newly derived clause. In general the single axioms and the negated
conclusion of a theorem are transformed into several different clauses. Even
in this more general case we may prevent resolution among clauses obtained
from the axioms; the resulting refinement is called set of support resolution
[WRC65].

!!
!!
!!
!

D E1

!!
!!
!!
!

D1 E2

...

!!
!!
!!
!

Dn−1 En

Dn

Fig. 3.3. A linear deduction

The clauses Ei in Figure 3.3 are either variants of clauses in C or are some
Dj for j < i. We see that every derived clause, that is not a variant of a clause
in C, has D as an ancestor clause. This very natural form of deduction is also
important in other computational calculi, particularly in those based on the
enumeration of proofs rather than on the enumeration of clauses. The linear
structure of derivations plays a major role in the connection calculus [Bib82]
and in the tableau method [Fit90].

There are several possibilities to define linear resolution refinements. Orig-
inally this type of refinement was invented by Loveland [Lov70] and Luck-
ham [Luc70]. Besides the restriction on the linear form of the deduction tree,
ordering restrictions can be imposed additionally [Lov78] [CL73]. In using
different normal form principles for clauses we can obtain even more types
of linear refinements. In Section 3.3 on A-ordering we have used the strong
principle of Nc-normalization. In this section we show that, in case of linear
refinements, we may treat clauses as sequences of literals (i.e., we do not

3.5 Linear Refinements 117

normalize); in one of the two clauses subjected to resolution, namely in the
“center clause”, only the rightmost literal may be cut out. The deduction
principle introduced in this chapter is asymmetric, i.e., it might be the case
that C,D is resolvable but D,C is not. Formally we define resolvents for pairs
of clauses (C,D) instead for sets {C,D}. The factoring rule to be defined
here is “asymmetric” to the resolution cut rule. While we allow resolution on
rightmost literals only, we merge to the left in factoring.

Definition 3.5.1 (l-factor). Let C be a clause of the form C0 ∨ L1 ∨ C1 ∨
. . .∨Ln∨Cn such that the Li are literals, the Ci are clauses and {L1, . . . , Ln}
is unifiable by an m.g.u. σ. Then (C0 ∨ L1 ∨ C1 ∨ . . . ∨ Cn)σ is called an l-
factor of C. If n = 1 then the l-factor coincides with C and is called a trivial
l-factor. l-factors of l-factors are also l-factors.
In the l-factoring rule the unified literal always takes the leftmost position.
This is a real restriction as we do not normalize the clauses (i.e., different
sequences of literals define different clauses). In contrast to lock factoring
(where the indices are global), the form of l-factors depends on the position of
literals in a clause. These positions, in turn, may change the set of deductions
due to the definition of resolution below.

Definition 3.5.2 (LRM-resolvent). Let (C,D) be a pair of clauses of the
form C : C1 ∨ L, D : D1 ∨ M ∨ D2 such that L,M are literals and
C1, D1, D2 are clauses; furthermore let η1, η2 be variable renamings such that
V (Cη1)∩V (Dη2) = ∅. Suppose that {Lη1,Mdη2} is unifiable by an m.g.u. σ.
Then the clause (C1η1 ∨D1η2 ∨D2η2)σ is called a binary LRM-resolvent of
the pair (C,D) (LRM stands for left-rightmost). A (general) LRM-resolvent
of (C,D) is a binary LRM-resolvent of (C′, D) where C′ is an l-factor of C.

Example 3.5.1. C = P (x) ∨Q(x), D = ¬Q(y) ∨R(y) ∨R(a).
The clause P (x) ∨ R(x) ∨ R(a) is an LRM-resolvent of (C,D). P (a) ∨ R(a)
is a resolvent of C and D, but it is not an LRM-resolvent (factoring in D
is not allowed). There exists no binary LRM-resolvent of (D,C) because the
literal R(a) cannot be resolved away. D′ : ¬Q(a) ∨ R(a) is an l-factor of D
(and the only one). Again the literal R(a) stands at the rightmost position
and thus (D′, C) does not define a binary LRM-resolvent. Therefore there
exists no LRM-resolvent of (C,D) at all. We see that the principle of LRM-
resolution is not “symmetric”. The principle of linear deduction is based
on LRM-resolutions of pairs of clauses (C,D), where C is a clause having
the top clause of the deduction as ancestor clause. It should be emphasized
that the restriction to LRM-resolvents and the linear form of deductions are
two different things. Many forms of linear deduction are not based on the
LRM-restriction. (see [CL73], [Lov78]).

Definition 3.5.3 (LR-deduction). Let C be a set of clauses and D be a
clause in C. An R-deduction Γ : D0, E1, D1, . . . , En, Dn (for n ≥ 0) from C
is called a linear R-deduction (LR-deduction) of Dn with top clause D from
C if Γ is an R-deduction of Dn from C such that

118 3. Refinements of Resolution

a)D0 = D and
b) for i ∈ {1, . . . , n} : Di is LRM-resolvent of (Di−1, Ei).

D is called the top clause, the Ei are called side clauses and the Di are called
center clauses of Γ .

Example 3.5.2.

C = {P (x) ∨Q(x), ¬P (x) ∨Q(f(y)), P (x) ∨ ¬Q(f(x)),¬P (x) ∨ ¬Q(x)}.

We select ¬P (x) ∨Q(f(y)) as the top clause. Then the sequence:

Γ : ¬P (x) ∨Q(f(y)), ¬P (x) ∨ ¬Q(x), ¬P (u) ∨ ¬P (f(y)),

P (x) ∨Q(x), Q(f(y)), P (x) ∨ ¬Q(f(x)),

P (x), ¬P (x) ∨ ¬Q(x), ¬Q(u), Q(f(y)), 2

is an LR-refutation of C. The more illustrative tree representation of Γ is
shown in Figure 3.4; literals cut out by resolution are underlined (if more
than one literal is underlined we have a nontrivial l-factor). Note that the
clause Q(f(y)) occurs twice, first as center clause and then as side clause of
an LRM-resolution.

!!
!!
!!
!

¬P (x) ∨Q(f(y)) ¬P (x) ∨ ¬Q(x)

!!
!!
!!
!

¬P (u) ∨ ¬P (f(y)) P (x) ∨Q(x)

!!
!!
!!
!

Q(f(y)) P (x) ∨ ¬Q(f(x))

!!
!!
!!
!

P (x) ¬P (x) ∨ ¬Q(x)

!!
!!
!!
!

¬Q(u) Q(f(y)

Fig. 3.4. A linear refutation

Using Example 3.5.2 it is easy to realize that a further restriction of the
resolution rule – namely resolving only the rightmost literals in both clauses

3.5 Linear Refinements 119

– must lead to incompleteness (Exercise 3.5.2). But even without further
restrictions, the wrong choice of a top clause can cause incompleteness.

Example 3.5.3. Let C = {C1, C2, C3, C4} with C1 = P (x), C2 = ¬P (y) ∨
R(y), C3 = ¬R(u) and C4 = Q(a).
C is unsatisfiable. But by selecting C4 as top clause, the only linear deduction
from C is C4 itself; as C4 is not a refutation there exists no LR-refutation of
C with top clause C4. However we obtain a refutation by choosing

¬R(u), ¬P (y) ∨R(y), ¬P (y), P (x), 2.

In Example 3.5.3 the subset {C1, C2, C3} is already unsatisfiable, but
{C1, C2} is satisfiable. So we may consider {C1, C2} as a consistent set of
axioms and C3 as negated conclusion to be refuted on the basis of {C1, C2}.
Considered as a set of axioms, {C1, C2, C3} represents an inconsistent theory.
In the standard deduction systems for classical logic (Hilbert-type systems,
natural deduction etc.) the principle ex falso quodlibet holds; i.e., once we have
derived a contradiction we may also derive anything. Thus in such inference
systems we can derive ¬Q(a) from {C1, C2, C3} while by using resolution
¬Q(a) cannot be derived. As the literal ¬Q(. . .) does not occur in {C1, C2, C3}
there is no inference with top clause Q(a); that {C1, C2, C3} is unsatisfiable
does not change anything. Thus linear deduction shows the behavior of a
weak, paraconsistent calculus.

A similar phenomenon appears in the set of support refinement [WRC65];
its “positive” use in paraconsistent logics was investigated by M.Baaz [Ba87].

Thus, contrary to A-ordering and lock refinement, we need some semantic
information about the set of clauses in order to establish a complete deduc-
tion principle. Although the satisfiability problem is not even semidecidable
[BJ74], the existence of models for common mathematical structures usually
is apparent. Therefore it is realistic to postulate satisfiability of clause sets
in many relevant problems.

Definition 3.5.4. Let C be a set of clauses. A clause D ∈ C is called relevant
(as top clause of an LR-deduction) if there exists a subset D ⊆ C such that
D is satisfiable, but D ∪ {D} is unsatisfiable.
In Example 3.5.3 the clauses C1, C2, C3 are relevant, but C4 is not. It is easy
to verify that in every unsatisfiable set of clauses (not containing 2) there
exists at least one relevant clause (Exercise 3.5.3). We will show now that
LR-deduction with relevant top clauses is complete. The first step consists in
the proof of ground completeness.

Lemma 3.5.1 (ground completeness of LR-deduction). Let C be an
unsatisfiable set of ground clauses (not containing 2) and C be a relevant
clause in C. Then there exists an LR-refutation of C with top clause C.

120 3. Refinements of Resolution

Proof. We first describe the basic idea of the proof:

Take a clause E : L∨C in C and split C into two parts C1 and C2; C1 contains
L (in place of E) and C2 contains C. As C1 and C2 are both unsatisfiable
and smaller than C we may (inductively) construct LR-refutations Γ1 of C1
with top clause L and Γ2 of C2 with top clause C. Afterwards we replace
every occurrence of C in Γ2 by the original clause E, thus obtaining an LR-
deduction Γ ′

2 of L ∨ . . . ∨ L from C. Then we contract L ∨ . . . ∨ L to L and
append the deduction Γ1; Γ

′
2 and Γ1 together define a refutation of C.

Formally we proceed by induction on occl(C), the number of occurrences of
literals in a set of (ground) clauses C. The cases occl(C) = 0, occl(C) = 1 are
marginal as occl(C) = 0 implies C = {2} and occl(C) = 1 implies C = {L}
for a unit clause L; in both cases there are no relevant clauses in C.

Thus we start with occl(C) = 2 :
In this case C must be of the form {L,M}. The unsatisfiability of C enforces
M = Ld. Both clauses L,M are relevant and L,M,2 (M,L,2) are the
corresponding LR-refutations. Note that for C = {L ∨M}, C is satisfiable
(thus this case can be excluded too).

(IH) Suppose that the lemma holds for all unsatisfiable sets of ground
clauses C such that occl(C) ≤ n (for some n ≥ 2).

Now let C be an unsatisfiable set of ground clauses with occl(C) = n+ 1 (for
n ≥ 2) and C be an relevant clause in C. We distinguish two cases:

a) C consists of unit clauses only.
As R-deduction is complete, there must be two complementary clauses
L,Ld in C. Because C is relevant there exists a subset D ⊆ C such that
D contains no complementary unit clauses, but there exists an M ∈ D
such that M = Ld for C = L. Clearly L,Ld,2 is an LR-refutation of C
with top clause C.

b) C contains nonunit clauses.

b1) The admissible clause C is a unit clause.
Then C = L for some literal L. If C − {L} is unsatisfiable then
there must be a proper subset D ⊆ C − L such that D ∪ {L} is
unsatisfiable, but D is satisfiable. In this case occl(D ∪ {L}) ≤ n
(note that 2 /∈ C) and, by induction hypothesis, there exists an LR-
refutation Γ of D ∪ {L} with top clause C.
So we may asssume that C = {L,C1, . . . , Cn} such that {C1, . . . Cn}
is satisfiable. Let D : {D1, . . . , Dk} be the subset of all clauses in C
that do not contain the literal L. D cannot be empty (otherwise C
would be satisfiable). By the one-literal rule of Davis and Putnam
(see Section 2.4) C is sat-equivalent to D ∪ {L}. If there exists a
proper subset D′ ⊂ D such that D′ ∪ {L} is unsatisfiable then we
may apply (IH) and obtain an LR-refutation Γ of D′ ∪ {L} with top
clause L, which is also an LR-refutation of C.

3.5 Linear Refinements 121

We are left with the case that D′ ∪ {L} is satisfiable for all proper
subsets D′ ⊂ D:
D must contain a clause D such that Ld occurs in D (otherwise
the pure literal rule gives C ∼sat C − {L}). Thus let D be a clause
in D having the form D1 ∨ Ld ∨ D2. For such a D the sequence
Γ : L,D,D1 ∨D2 is an LR-deduction from C with top clause L. If
D1 ∨D2 = 2 then Γ is the required refutation.
If D1 ∨D2 6= 2 then consider the set of clauses

D′ : (D − {D}) ∪ {D1 ∨D2}.

Because D1 ∨D2 → D is valid, D′ ∪ {L} is unsatisfiable. Moreover
D1 ∨ D2 is relevant in D′ ∪ {L}; this follows immediately from the
fact that (D − {D}) ∪ {L} must be satisfiable.
But occl(D′ ∪ {L}) ≤ occl(C)− 1 = n and, by the induction hypoth-
esis, there exists an LR-refutation ∆ of D′ ∪ {L} with top clause
D1 ∨D2. We see that the deduction L,D,∆ is an LR-refutation of C
with top clause L.

b2) The relevant clause C is a nonunit clause.
Then C is of the form L ∨ C1 for a clause C1 with C1 6= 2. Again
we may suppose that C − {C} is satisfiable. Otherwise we can find a
proper subset D ⊆ C−{C} such that D is satisfiable and D ⊆ {C} is
unsatisfiable; in this case an LR-refutation can be found by applying
the induction hypothesis.
As C is unsatisfiable the following sets of clauses are unsatisfiable by
the splitting rule of Davis and Putnam:

C1 : {L} ∪ (C − {C}) and C2 : {C1} ∪ (C − {C}).

L and C1 are both strictly smaller than C and we obtain
occl(C1) ≤ n, occl(C2) ≤ n.
Therefore, by induction hypothesis, there exists an LR-refutation of
C1 with top clause L and an LR-refutation Γ2 of C2 with top clause
C1 (L and C1 are both relevant).
We will show the existence of an LR-deduction Γ2, of a clause L ∨
. . . ∨ L (k times) for some k ≥ 1 from C with top clause C. For this
purpose we consider the refutation Γ2 : C1, D1, . . . , Cn, Dn,2 and
transform Γ2 into an LR-deduction

Γ ′
2 : L ∨ C1, D

′
1, . . . , C

′
n, D

′
n, L ∨ . . . ∨ L (k times)

with top clause L ∨ C1.In Γ
′
2 the C′

i are of the form

L ∨ Ci1 ∨ . . . L ∨Cik
for Ci1 ∨ . . . ∨ Cik

= Ci;

the D′
i are Di or are of the form

122 3. Refinements of Resolution

L ∨Di1 ∨ . . . ∨ L ∨Dik
for Di1 ∨ . . . ∨Dik

= Di.

To verify this form of the C′
i, D

′
i and that Γ ′

2 is an LR-deduction a
simple induction argument does the job.

L ∨ C1 clearly is an LR-deduction and the clause (C′
0) is of the re-

quired form.
For the induction step consider the pair (C′

i, D
′
i) for some i ≤ n, such

that

C′
i = L ∨ Ci1 ∨ . . . ∨ L ∨ Cik

for Ci1 ∨ . . . ∨Cik
= Ci

and
D′

i = Di or D′
i = L ∨Di1 ∨ . . . ∨ L ∨Dik

for Di1 ∨ . . . ∨Dik
= Di.

By definition of Γ2 there exists a clause Ci+1 such that Ci+1 is LRM-
resolvent of (Ci, Di). Let M be the rightmost literal in C; and Ci =
C′ ∨M .
First we consider the case D′

i = Di:

By definition of l-factoring, the clause L ∨ C′ ∨M is an l-factor of
C′

i. Because Ci+1 is an LRM-resolvent of (Ci, Di), Di must be of the
form
Di1 ∨M

d ∨Di2 and Ci+1 = C′ ∨Di1 ∨Di2 .

But L∨C′∨Di1∨Di2 is a (binary) LRM-resolvent of (L∨C′∨M,Di).
So we obtain C′

i+1 = L∨Ci+1 and C′
i+1 is of the required form. Now

we have to investigate the case

D′
i = L ∨Di1 ∨ . . . ∨ L ∨Dik

such that Di1 ∨ . . . ∨Dik
= Di.

Again we consider the l-factor L∨C′ ∨M of C′
i. Then there exists a

binary LRM-resolvent of (L ∨ C′ ∨M,D′
i) of the form

C′
i+1 : L ∨ C′ ∨ L ∨Di1 ∨ . . . ∨D

′
ir
∨ . . . ∨ L ∨Dik

for D′
ir

= Dir
\Md (Dir

is the segment containing the literal Md).

But Ci+1 (the LRM-resolvent defined by (Ci, Di) by cutting out Md

from Di) must be of the form

C′ ∨Dir
∨ . . . ∨D′

ir
∨ . . . ∨Dik

.

Again C′
i+1 is of the required form.

By definition of Γ2 we have Cn+1 ≡ 2 and therefore C′
n+1 = L∨. . .∨L

(k times) for some k ≥ 1. Thus Γ ′
2 is an LR-deduction of L ∨ . . . ∨ L

(k times) from C with top clause C.

Note that, by the principle of l-factoring, a center clause of the form

3.5 Linear Refinements 123

L ∨ Ci1 ∨ . . . ∨ L ∨Cik

never blocks the required resolution (even in the case Cik
= 2); by

factoring L is shifted to the left and makes the rightmost literal in
Ci free for resolution. All l-factors used for LRM-resolvents in Γ2

can be simulated in Γ ′
2 (note that an l-factor of an l-factor is again

an l-factor). Moreover all center clauses C′
i contain L as leftmost

occurrence (due to the LRM-resolution principle).

124 3. Refinements of Resolution

Let
Γ1 = L, Γ ′

1 and Γ ′
2 = Γ ′′

2 , L ∨ . . . ∨ L (k times).
The deduction

Γ ′′
1 = L ∨ . . . ∨ L (k times), Γ ′

1

is an LR-refutation of (C − {C}) ∪ {L ∨ . . . ∨ L (k times)} with
top clause L ∨ . . . ∨ L (k times). Γ1 differs from Γ ′′

1 only in the
first resolution (l-factoring is used in the top clause of Γ ′′

1). Then,
obviously, Γ ′′

2 Γ
′′
1 is an LR-refutation of C with top clause C.

Therefore we have shown that for all C with C unsatisfiable, occl(C) =
n+1 and arbitrary admissible top clauses C in C there exists an LR-
refutation of C with top clause C. 3

The case 2 ∈ C has been omitted for purely technical reasons. Note that
in case 2 ∈ C, 2 is an LR-refutation of C with top clause 2 (only 2 is
relevant in C). It remains to show that LRM-ground deductions can be lifted
to (general) LRM-deductions.

Theorem 3.5.1 (completeness of LR-deduction). Let C be an unsatis-
fiable set of clauses and let C be a relevant clause in C. Then there exists an
LR-refutation of C with top clause C.

Proof. If 2 ∈ C then only 2 is relevant in C and 2 is the required LR-
refutation. Thus, from now on, we may assume 2 /∈ C. So let C be unsatisfiable
and C be relevant in C. By definition of relevance there exists a (proper)
subset D ⊆ C such that D is satisfiable and D ∪ {C} is unsatisfiable.

By Herbrand’s theorem there exists a finite, unsatisfiable set of ground
instances D′ ∪F ′ such that D′ is a set of ground instances from clauses in D
and F ′ is a set of ground instances from {C} (note that, in general, more than
one ground instance may be necessary to achieve unsatisfiability). Because
D is satisfiable, D′ must be satisfiable too. Thus we may select an relevant
clause C′ from the set F ′. By Lemma 3.5.1 there exists an LR-refutation Γ ′

of D′ ∪ F ′ with top clause C′.

Let Γ ′ = C′, D′
1, C

′
1, D

′
2, . . . , C

′
n, D

′
n,2. We have to find an LR-refutation

Γ of C with top clause C such that Γ ≤s Γ
′.

We first define the segments Γ ′
k of Γ ′ by:

Γ ′
0 = C′

Γ ′
k+1 = Γ ′

k, D
′
k+1, Ck+1 for k < n (C′

n+1 = 2).

Now we show by induction on k that there is an LR-deduction Γk of a clause
Ck from C with top clause C such that Γk ≤s Γ

′
k. As direct consequence we

obtain an LR-refutation Γ (= Γn+1) of C with top clause C.
k = 0:

3.5 Linear Refinements 125

Γ ′
0 = C′. By definition of C′, C′ is a ground instance of C. We define Γ0 = C;

then Γ0 is an LR-deduction of C0(= C) from C with top clause C and Γ0 ≤s

Γ ′
0.

(IH) Suppose that Γk has been constructed successfully.

If k = n+ 1 then all is shown. So we may suppose that k < n+ 1.

By definition of Γ ′
k+1 we obtain Γ ′

k+1 = Γ ′
k, D

′
k+1, C

′
k+1 = Γ ′′

k , C
′
k, D

′
k+1, C

′
k+1

(for some deduction Γ ′′
k). Because Γ ′

k+1 is an LR-deduction, C′
k+1 is an LRM-

resolvent of (C′
k, D

′
k+1).

By (IH) we have Ck ≤s C′
k, i.e., C′

k is a ground instance of Ck. We
will show that there exists a clause Dk+1 such that Dk+1 ≤s D

′
k+1 and either

Dk+1 is a variant of a clause in C or there exists a j ≤ k such that Dk+1 = Cj

(for a center clause Cj in Γk).

If D′
k+1 is in D′ ∪ F ′ we define Dk+1 as a clause in C having D′

k+1 as a
ground instance. If D′

k+1 = C′
j for some j ≤ k we define Dk+1 = Cj (for

the clause Cj in Γk with Cj ≤s C
′
j). Thus we obtain clauses Ck, Dk+1 such

that Ck ≤s C
′
k and Dk+1 ≤s D

′
k+1. What remains is the construction of an

LRM-resolvent Ck+1 of (Ck, Dk+1) such that Ck+1 ≤s C
′
k+1. We distinguish

two cases:

a) C′
k+1 is a binary LRM-resolvent of (C′

k, D
′
k+1). Then

C′
k = E′

1 ∨ L
′, D′

k+1 = F ′
1 ∨ L

′d ∨ F ′
2

(for a ground literal L′ and appropriate ground clauses E′
1, F

′
1, F

′
2)

and C′
k+1 = E′

1 ∨ F
′
1 ∨ F

′
2.

By Ck ≤s C
′
k, Dk+1 ≤s D

′
k+1 there exist ground substitutions ϑ and η

such that C′
k = (E1∨L)ϑ,D′

k+1 = (F1∨M ∨F2)η for appropriate clauses
E1, F1, F2 and literals L,M such that

E1ϑ = E′
1, Lϑ = L′, F1η = F ′

1, Mη = L′d, F2η = F ′
2.

In particular we have Lϑ = Mdη. By renaming

Ck, Dk+1 to Ckτ1, Dk+1τ2 such that V (Ckτ1) ∩ V (Dk+1τ2) = ∅

we can construct a single substitution λ such that

C′
k = Ckτ1λ and D′

k1
= Dk+1τ2λ.

For this λ we obtain Lτ1λ = Mdτ2λ and λ is a unifier of {Lτ1,Mdτ2}.
Let σ be the m.g.u. of {Lτ1,Mdτ2}. Then σ ≤s λ and

E1τ1σ ∨ F1τ2σ ∨ F2τ2σ ≤s E
′
1 ∨ F

′
1 ∨ F

′
2.

But (E1τ1 ∨ F1τ2 ∨ F2τ2)σ is an binary LRM-resolvent of (Ck, Dk+1).

126 3. Refinements of Resolution

b) C′
k+1 is obtained as an LRM-resolvent of (C′

k, D
′
k+1) via nontrivial l-

factoring in C′
k (note that factoring on the ground level is necessary,

as we don’t work with normal forms here). Because l-factors may be
iterated (l-factors of l-factors are also l-factors) there may be several
literals L1, . . . , Lm in C′

k each of them appearing more than once which
are contracted to their leftmost position. We only consider the case of one-
step factoring in this proof; the general case follows by an easy induction
on the number of factoring steps. So C′

k must be of the form

E′
0 ∨ L ∨E

′
1 ∨ · · · ∨ L ∨ E

′
r

for some clauses E0,
′ , . . . , E′

r (possibly containing L) and the factor C′′
k

is of the form E′
0 ∨ L ∨ E

′
1 ∨ · · · ∨ E

′
r. Ck must be of the form

E0 ∨ L1 ∨ E1 ∨ · · · ∨ Lr ∨ Er

such that Liη = L and Eiη = E′
i for some ground substitution η. Then

η is a unifier of {L1, . . . , Lr}. Let σ be an m.g.u. of {L1, . . . Lr}. Then,
by Definition 3.5.1, the clause

E : (E0 ∨ L1 ∨ E1 ∨ · · · ∨ Er)σ

is an l-factor of Ck. Thus E ≤s C
′′
k , Dk+1 ≤s D

′
k+1 and C′

k+1 is a binary
LRM-resolvent of (C′′

k , D
′
k+1).

By (a) we obtain a binary LRM-resolvent Ck+1 of (E,Dk+1) such
thatCk+1 ≤s C′

k+1. By Definition 3.5.2 Ck+1 is an LRM-resolvent of
(Ck, Dk+1).

In both cases a) and b) we define

Γk+1 = Γk, Dk+1, Ck+1

and obtain Γk+1 ≤s Γ
′
k+1. This concludes the proof of the induction case

k + 1. 3

Note that the lifting in the proof of Theorem 3.5.1 is much easier to per-
form than that in the completeness proofs for the A-ordering and lock refine-
ment. The reason is that there are no side effects (caused by normalization) in
instantiations. Let us consider an LR-refutation Γ : Co, D1, . . . , Cn−1, Dn,2.
As Γ is an R-deduction and Ci+1 is a resolvent of Ci and Di+1, either the
side clauses Di are variants of input clauses or they are center clauses Cj (for
j ≤ i) derived before. It is a natural question, whether LR-deductions can be
refined further by stipulating that (all of the) Di must be variants of input
clauses. We will see that this further restriction leads to incompleteness, but
completeness can be preserved by restricting the clause syntax to Horn form.

Definition 3.5.5 (linear input deduction). An LR-deduction

Γ : C0, E1, . . . , Cn−1, En, Cn

3.5 Linear Refinements 127

from a set of clauses C is called linear input deduction (LI-deduction) from
C if all clauses Ei (for i = 1, . . . , n) are variants of clauses in C.
The following example shows that LI-deduction is incomplete.

Example 3.5.4. Let C be the set of clauses

{P (x) ∨Q(x), ¬P (x) ∨Q(f(y)), P (x) ∨ ¬Q(f(x)),¬P (x) ∨ ¬Q(x)}

as in Example 3.5.2.

Let Γ = C0, E1, . . . , Cn−1, En, Cn be an arbitrary LI-deduction from C,
where C0 is a variant of some clause in C. Then En must be a variant of an
input clause (i.e., of a clause in C) and Cn is LRM-resolvent of (Cn−1, En).
Because En is not a unit clause and does not contain a unit factor, the
resolvent Cn cannot be 2. We conclude that Γ cannot be a refutation of C.
Even if we allow unrestricted factoring for all clauses Ci, Ei it is impossible
to obtain a refutation (none of the input clauses possesses a unit factor).

The set of clauses C in Example 3.5.4 contains a clause with two posi-
tive literals; even under arbitrary renaming of signs (e.g., replace P (. . .) by
¬P (. . .) and vice versa) this property of C remains invariant. By restricting
the syntax to clauses containing at most one positive literal we obtain Horn
clauses (see Definition 2.2.4); on sets of clauses of this type LI-deduction is
complete.

Definition 3.5.6 (Horn logic). Let C be a clause of the form

a) P or
b) P ∨ ¬Q1 ∨ . . . ∨ ¬Qn or
c) ¬Q1 ∨ . . . ∨ ¬Qn

such that P,Q1, . . . , Qn are atom formulas. Then C is called a Horn clause.
Clauses of the form a) (positive unit clauses) are called facts, of the form b)
rules and of the form c) goals (2 is considered as goal). Horn logic is the
class of all finite sets of Horn clauses. The set of all facts (rules, goals) in a
set of Horn clauses C is denoted by facts(C), (rules(C), goals(C)).
The terms ‘facts’, ‘rules’, and ‘goals’ come from the area of logic program-
ming [Llo87]. There facts P are commonly written as P ←,
rules P ∨ ¬Q1 ∨ · · · ∨ ¬Qn as P ← Q1, . . . , Qn,
and goals ¬Q1 ∨ . . . ∨ ¬Qn as ← Q1, . . . , Qn.

In logic programming a set of positive Horn clauses is interpreted as a
program (logic program); goals serve as input to the program. The opera-
tional semantics of this programming language essentially coincides with LI-
deductions from which total substitutions are extracted; these substitutions
serve as program output.

Theorem 3.5.2 (completeness of LI-deduction on Horn logic). Let
C be a finite, unsatisfiable set of Horn clauses. Then for every relevant goal

128 3. Refinements of Resolution

G in C there exists an LI-refutation of C with top clause G. Moreover there
exists at least one relevant goal in C.

Proof. First we show that there must be an relevant goal in C. Let D be the
set of all rules and facts of C. Then every clause in D contains (exactly) one
positive literal. D possesses an H-model in which all ground atoms are set to
TRUE. As a consequence every unsatisfiable subset F of C must contain at
least one goal. Therefore there must be a relevant goal.

So let G be a relevant goal in C. By Theorem 3.5.1 there exists an LR-
refutation Γ of C with top clause G. Let Γ be C0, E1, C1, . . . , Cn−1, En,2 for
C0 = G. A goal (being purely negative) cannot be resolved with another goal,
thus E1 must be a fact or a rule. Because E1 is a Horn clause the resolvent
C1 must again be a goal. By an easy induction argument we conclude that
all center clauses in Γ must be goals. For all i < n, the pair (Ci, Ei+1) must
possess an LRM-resolvent Ci+1. Because Ci is a goal, Ei+1 must be a fact or
a rule and therefore Ei+1 6= Cj for all j ≤ i. Because Γ is an R-deduction,
Ei+1 must be a variant of an input clause. Thus Γ is an LI-refutation of C
with top clause G. 3

It is easy to see (Exercise 3.5.6) that only one goal clause is needed to
refute a set of Horn clauses.

Example 3.5.5.

C = {P (f(x)) ∨ ¬P (x), P (a), ¬P (f(f(a)))}.

C is a set of Horn clauses with facts(C) = {P (a)}, rules(C) = {P (f(x)) ∨
¬P (x)} and goals(C) = {¬P (f(f(a)))}. ¬P (f(f(a))) can serve as top
clause of an LI-deduction (it is admissible). An LI-refutation with top goal
¬P (f(f(a))) is shown in Figure 3.5.

!!
!!
!!
!

¬P (f(f(a)) P (f(x)) ∨ ¬P (x)

!!
!!
!!
!

¬P (f(a)) P (f(x)) ∨ ¬P (x)

!!
!!
!!
!

¬P (a) P (a)

Fig. 3.5. LI-refutation (I)

3.5 Linear Refinements 129

In C also the rule P (f(x)) ∨ ¬P (x) is relevant. The LR-deduction shown
in Figure 3.6 is also an LI-deduction (having a rule as top clause).

!!
!!
!!
!

P (f(x)) ∨ ¬P (x) P (f(y)) ∨ ¬P (y)

!!
!!
!!
!

P (f(f(y))) ∨ ¬P (y) P (a)

!!
!!
!!
!

P (f(f(a))) ¬P (f(f(a)))

Fig. 3.6. LI-refutation (II)

The concept of LR-deduction is based on specific (linear) restrictions im-
posed on deduction trees. A-ordering and lock refinements are characterized
by restrictions on the set of resolvents of two clauses; but they are local in the
sense that the overall structure of deduction trees is not subjected to further
restrictions. On the other hand, the property of being a center clause in a
linear deduction is global, i.e., it depends on the whole derivation producing
that clause. For this reason it is impossible to define linear refinements via
resolution operators (according to Definition 3.1.3) unless we encode deriva-
tions into the clause syntax. Note that, for a refinement operator Rx, the
(i+ 1)-th generation of clauses is defined by

Si+1
x (C) = Si

x(C) ∪ ρx(Si
x(C)),

where ρx is an operator on sets of clauses without the “ability to recognize”
the derivations leading to the clauses in the set. We see that linear deductions
define a refinement in the sense of Definition 3.1.1, but not in the sense of
Definition 3.1.3. Still (to be precise) we have to define an algorithmic method
to select the top clause; as the satisfiability problem is undecidable there is
no “direct” way to do this. However, any unsatisfiable set of clauses must
contain at least one negative and one positive clause; therefore – in any case
– there are positive and negative clauses which are relevant. Still the problem
remains to select the right negative (positive) clauses (some of them might
be irrelevant). Frequently (e.g., in Horn logic and in logic programming) only
one negative clause is present and the choice becomes obvious. In general

130 3. Refinements of Resolution

it is possible to turn linear resolution into an (algorithmic) theorem prover
which is always complete: Select every clause in the set of clauses C as top
clause and run the different linear deductions in parallel. If C is unsatisfiable
there exists always a clause which is relevant and therefore a refutation is
eventually found.

In this section we defined just one specific form of a linear refinement; it
should be mentioned that a large variety of efficient and highly sophisticated
forms of linear refinements exist (and are implemented). In some of them the
history of a resolvent is stored by keeping the resolved literal and marking it
as a so-called A-literal, which enables new types of global reductions. This
method is called model elimination and is presented in depth in D. Love-
land’s book [Lov78]. Another important variant is SLD-resolution which is
the proof-theoretic basis to logic programming; here we refer to J.W. Lloyd’s
book [Llo87].

Exercises

Exercise 3.5.1. Construct an LR-refutation of the set of clauses C in Ex-
ample 3.5.2 with top clause P (x) ∨ ¬Q(f(x)).

Exercise 3.5.2. Let BRM (both-rightmost) be a resolution principle in
which only the rightmost literals (of both clauses) may be cut out by resolu-
tion. Show that LR-deduction based on BRM-resolution is incomplete.

Exercise 3.5.3. Show that in every unsatisfiable set of clauses there exists
at least one relevant clause (remark: the empty set of clauses ∅ is satisfiable).

Exercise 3.5.4. A maximal l-factor C′ of a clause C is an l-factor having
only trivial l-factors itself. Show that LR-deduction based on maximal l-
factoring is complete.

Exercise 3.5.5. Let f0(a) = a, f (n+1)(a) = f(f (n)(a)) for an f ∈ FS1 and
an a ∈ CS. We define a sequence of Horn sets Cn by

Cn = {P (a), P (f(x)) ∨ ¬P (x),¬P (f (n)(a))}.

Show that for all n ≥ 4 there exists an LR-refutation of Cn which is not an
LI-refutation.

Exercise 3.5.6. Show that a set of Horn clauses C is unsatisfiable iff there
exists a G ∈ goals(C) such that facts(C) ∪ rules(C) ∪ {G} is unsatisfiable.

3.6 Hyperresolution 131

3.6 Hyperresolution

Hyperresolution is based on the idea of macro-inference, i.e., the principle of
contracting a sequence of resolution steps into a single inference step. The
advantage of a macro-inference over ordinary (binary) resolution lies in the
fact that many (intermediary) resolvents do not appear in the search space;
thus neither interactions among them nor interactions between them and
other clauses have to be considered. In hyperresolution the internal resolu-
tions within the macro-inferences define a linear deduction. Hyperresolution
can be described as a special case of semantic clash resolution defined by J.
Slagle [Sla67] and discussed at the end of this section. Our definition is close
to Robinson’s [Rob65a], but we lay special emphasis on normalization and
factoring. The specific form of our definition of hyperresolution will be rele-
vant to the resolution decision procedures in Chapter 5. The basic idea is to
partition clauses into positive (i.e., all literals are positive) and nonpositive
ones, to derive only positive clauses (or 2) and to concentrate factoring and
normalization on positive clauses. To make the analysis more transparent we
introduce a weak form of normalization, where positive literals occur left of
the negative ones.

Definition 3.6.1 (PN-form). Let C be a clause of the form C1 ∨ C2 such
that C1 contains only positive and C2 contains only negative literals (C1 or
C2, or both of them, may be 2). Then C is in PN-form. C1 is called the
positive part of C and is denoted by CP ; similarly we call C2 the negative
part of C and denote it by CN .
Note that every clause in N0-normal form (see Section 3.2) is in PN-form, but
not vice versa. All clauses which are purely positive or purely negative are
in PN-form; Horn clauses (according to Definition 3.5.6 are in PN-form too).
First we define a restricted resolution principle, where one of the clauses to be
resolved must be positive (we call clauses positive (negative) if they contain
positive (negative) literals only).

Definition 3.6.2 (PRF-resolvent). Let C,D be two PN-clauses such that
D is positive and C is of the form C′ ∨¬Q for some atom formula Q. Let D′

be a variant of a factor of D such that V (D′)∩V (C) = ∅ and D′ = D1∨P∨D2

for an atom formula P and clauses D1, D2. Suppose that {P,Q} is unifiable
by an m.g.u. σ. Then (D1 ∨ D2 ∨ C′)σ is called a PRF-resolvent (positive-
restricted factoring) of C and D.
Note that every PRF-resolvent is also an ordinary resolvent (resolve D from
the left) in PN-form. Factoring is limited to the positive clause and the reso-
lution cut rule may only be applied to the rightmost literal of the nonpositive
clause.

Example 3.6.1.
C = {C1, C2, C3, C4} for the clauses C1 : P (x) ∨ P (y), C2 : P (x) ∨ ¬R(x),
C3 : ¬R(x) ∨ ¬R(y) ∨ ¬P (x), C4 : R(b). The resolvents

132 3. Refinements of Resolution

¬R(x) ∨ ¬R(y) and P (v) ∨ ¬R(x) ∨ ¬R(y)

are PRF-resolvents of C1 and C3.

¬R(x) ∨ ¬R(u) ∨ ¬R(v) is a resolvent of C2 and C3 but (neither C2 nor C3

is positive) it is not a PRF-resolvent.

¬R(x) is a resolvent of C1 and C3, but it is not a PRF-resolvent (factoring
has been applied to a non-positive clause).

¬P (b) is a resolvent of C3 and C4, but it is not a PRF-resolvent (the same
holds for ¬R(y)∨¬P (b) and ¬R(x)∨¬P (x)) – the cut literal in the nonpositive
clause was not the rightmost one. In fact there is no PRF-resolvent of C3 and
C4.

The idea of hyperresolution is to define a sequence of PRF-resolutions
leading to a positive clause. The macro-inference step is based on a tuple of
clauses containing one nonpositive and (several) positive clauses.

Definition 3.6.3 (clash sequence). Let C be a nonpositive PN-clause and
D1, . . . , Dn be positive clauses. The tuple ̺ : (C;D1, . . . , Dn) is called a clash
sequence. If {C,D1, . . . , Dn} ⊆ C then we say that ̺ is a clash sequence from
C.

Definition 3.6.4 (hyperresolvent). Let ̺ : (C;D1, . . .Dn) be a clash se-
quence. Let R0 be C and Ri+1 a PRF-resolvent of Ri and Di+1 (if such a
resolvent exists) for i < n. If Rn exists and if it is positive then Nc(Rn) (the
condensed normal of form of Rn) is called hyperresolvent of ̺.
By definition of PRF-resolution a clash sequence ̺ : (C;D1, . . . , Dn) can
only define a hyperresolvent if C contains exactly n negative literals. Clash
sequences may define one, several, or no hyperresolvent. We choose the con-
densed form of the hyperresolvents in order to guarantee that there are only
finitely many ones (defined by one clash sequence); this finiteness condition
will be relevant to the use of hyperresolution as a decision procedure in Chap-
ter 5.

Example 3.6.2. C = {C1, C2, C3} for C1 : Q(x, y)∨¬P (f(x))∨¬P (g(y)), C2 :
P (x) ∨R(x) and C3 : P (y) ∨ P (f(y)).

Let ̺ = (C1;C2, C3). Then, clearly, ̺ is a clash sequence. We define R0 = C1

and R1 = R(g(y))∨Q(x, y)∨¬P (f(x)). There are two possibilities to define
R2, namely

R1
2 = P (x) ∨ R(g(y)) ∨ Q(x, y) and R2

2 = P (f(f(x))) ∨ R(g(y)) ∨
Q(x, y).

Both clauses R1
2, R

2
2 define hyperresolvents; these are

P (x1)∨Q(x1, x2)∨R(g(x2)) and P (f(f(x1)))∨Q(x1 , x2)∨R(g(x2)).

Note that the ordering of the positive clauses in a clash influences (the exis-
tence of) the hyperresolvent, e.g., the clash sequence ̺ : (C1, C3, C2) defines
only one hyperresolvent, namely

3.6 Hyperresolution 133

P (f(g(x1))) ∨Q(x2, x1) ∨R(f(x2)).

The refinement of hyperresolution simply consists in the production of all
hyperresolvents definable by clash sequences from the set of clauses derived
so far. Although a hyperresolvent of a clash sequence (C;D1, . . . , Dn) is a
result of a linear input deduction from {C,D1, . . . , Dn} with top clause C,
the “outer” structure of the deductions is not subjected to further restric-
tions. Thus in contrast to the case of linear refinements, we may define the
refinement of hyperdeduction by a resolution operator RH .

Definition 3.6.5 (the operator of hyperresolution).
Let C be a set of PN-clauses. We define ρH(C) = the set of all hyperresolvents
definable by clash sequences from C. The operator of hyperresolution (RH) is
defined in the usual manner of level saturation. Let C+ be the set of all positive
clauses in C, then:

S0
H(C) = Nc(C+) ∪ (C − C+),

Si+1
H (C) = Si

H(C) ∪ ρH(Si
H(C)),

RH(C) =
⋃∞

i=0 S
i
H(C).

The normalization of C+ in the definition guarantees that all positive clauses
in RH(C) are in Nc-normal form. A characteristic feature of RH is the in-
variance of all nonpositive clauses, i.e., RH(C)−RH(C)+ = C −C+. Thus the
clauses in C−C+ may be interpreted as a fixed rule base that produces the set
RH(C)+ out of C+. The set of all newly derived clauses is RH(C)+ − C+. By
R+

H(C) we denote all clauses in RH(C) which do not contain negative literals
(note that R+

H(C) ⊆ RH(C)+ ∪ {2}).
It is a natural question, why we have chosen the criterion of positivity

in the definition of hyperresolution. Clearly, by simply changing all signs
of the literals, we can define a similar principle where only negative clauses
are produced; this principle is well known and called negative hyperresolution
(the principle in Definition 3.6.5 is then called positive hyperresolution). More
generally we can define hyperresolution with respect to every sign-renaming
operator on C. We give a formal definition of sign-renaming now:

Definition 3.6.6 (sign-renaming). Let P : {P1, . . . , Pn} be a set of pred-
icate symbols and γ be a function with domain P such that for all i =
1, . . . , n γ(Pi) = Pi or γ(Pi) = ¬Pi. Then γ is called a sign-renaming. We
denote γ by the set {γ(P1), . . . , γ(Pn)}. γ can be extended to atoms, literals,
clauses, and sets of clauses in the following way:

γ(P (t1, . . . , tn)) = γ(P)(t1, . . . , tn)

for atom formulas,

134 3. Refinements of Resolution

γ(¬P (t1, . . . , tn)) = γ(P (t1, . . . , tn))d

for negative literals,

γ(C1 ∨ . . . ∨ Cn) = γ(C1) ∨ . . . ∨ γ(Cn)

for clauses and

γ(C) =
⋃

C∈C

{γ(C)}

for sets of clauses.

It is easy to verify that, for every sign-renaming γ, C ∼sat γ(C). If C is
a set of clauses containing n different predicate symbols then there are 2n

sign-renamings on C. We define LS(C) = PS(C)∪{¬P |P ∈ PS(C)} as the set
of all literal symbols in C; for clauses C we write LS(C) instead of LS({C}).
Hyperresolution as defined in Definition 3.6.5 is a principle of generating only
clauses C such that LS(C) ⊆ PS(C). Instead of the set PS(C) : {P1, . . . , Pn}
we may take {γ(P1), . . . , γ(Pn)} for any sign-renaming γ. Instead of positive
clauses we may take “γ-positive” clauses.

Definition 3.6.7. Let γ be a sign-renaming on a set of clauses C and
M(γ) = {γ(P1), . . . γ(Pn)} (for PS(C) = {P1, . . . Pn}). A clause C is called
γ-positive if LS(C) ⊆M(γ).

Example 3.6.3. C = {P (x) ∨ R(x), ¬P (x) ∨ R(x), P (x) ∨ ¬R(x), ¬P (x) ∨
¬R(x)}, γ = {P,¬R}.

Then P (x)∨¬R(x) is γ-positive; P (x)∨R(x) is positive, but not γ-positive.
It is easy to see that for all four sign-renamings on C there exists exactly one
γ-positive clause in C. If γ = {¬P1, . . . ,¬Pn} then the γ-positive clauses are
exactly the negative ones. In all Definitions 3.6.1–3.6.5 we may replace the
term “positive” by “γ-positive” for a sign-renaming γ. If γ = {P1, . . . , Pn} =
PS(C) we obtain (positive) hyperresolution, if γ = {¬P1, . . . ,¬Pn} negative
hyperresolution; in place of the operator RH we have to consider operators
RHγ . In propositional logic sign-renamings can be interpreted as a nota-
tion for interpretations. So we may define I(P) = FALSE if γ(P) = P and
I(P) = TRUE if γ(P) = ¬P . Then the set of γ-positive clauses (in a set of
propositional clauses) is exactly the set of clauses false in I. In predicate logic
sign renamings represent specific Herbrand interpretations, so-called settings:

Definition 3.6.8 (setting). Let C be a finite set of clauses, PS(C) =
{P1, . . . , Pn} and γ be a sign renaming on C. Let P = {P |P ∈ PS(C), γ(P) 6=
P} and atoms(P) = {P (x1, . . . , xn)|P is n-place, P ∈ P , n ∈ IN}.
Then the Herbrand interpretation represented by {A′|A′ is ground instance
from atoms(P)} is called a setting (induced by γ).

Let C be a set of clauses, PS(C) = {P1, . . . Pn} and γ be the identity. Then
the corresponding setting isM : ∅, i.e., all atoms are interpreted as FALSE.

3.6 Hyperresolution 135

The clauses false inM are exactly the positive clauses. If γ = {¬P1, . . . ,¬Pn}
then the setting M = AT (C), i.e., all atoms are set to TRUE. The clauses
false in M are exactly the negative ones. Thus γ-hyperresolution (as a prin-
ciple for producing γ-positive clauses) can be interpreted as a method for
producing only false clauses with respect to a settingM (induced by γ). This
semantic interpretation of hyperresolution leads to the term “semantic clash
resolution”. But it should be noted that Slagle’s concept of semantic clash
resolution is substantially more general than γ-hyperresolution, as it can be
defined over arbitrary interpretations and is not limited to settings [Sla67].
We will focus on the more general concepts of semantic resolution and se-
mantic clash resolution at the end of this section. The reasons for presenting
the less general concept of γ-resolution in advance are the following ones:

1. Settings are a class of interpretations definable by simple syntactic means,
2. we use sign-renamings in the proof of ground completeness of semantic

clash resolution, and
3. some syntax forms like PN-clauses and corresponding restrictions of infer-

ence are only possible for such syntactic interpretations.

Example 3.6.4. C = {P (x) ∨ P (f(x)), ¬P (x) ∨ ¬P (f(x))}.

There are two sign-renamings over C, γ1 : {P} and γ2 : {¬P}. γ1 in-
duces the setting ∅, γ2 induces AT (C) = {P (t) | t ∈ H}. Both γ1

and γ2 falsify C (γ1 falsifies P (x) ∨ P (f(x)) and γ2 falsifies ¬P (x) ∨
¬P (f(x)). But C is satisfiable via the Herbrand model represented by
M = {P (a), P (f(f(a))), . . . , P (f2n(a)), . . .}. However, M is not a setting.
γ-hyperresolution is not substantially more general than hyperresolution
defined in Definition 3.6.5; instead of producing γ-positive clauses in γ-
hyperresolution for a sign-renaming γ we may apply the inverse mapping
γ−1 to the set of clauses and then apply positive hyperresolution. We are
showing now the completeness of (positive) hyperresolution:

Lemma 3.6.1 (ground completeness of hyperresolution). Let C be an
unsatisfiable set of ground PN-clauses, then 2 ∈ RH(C).

Proof. As in the case of linear deduction we proceed by induction on the
number of literal occurrences occl in a set of ground clauses C.

Induction base occl(C) = 0.

Here C = {2} and 2 ∈ RH(C).

(IH) Suppose that 2 ∈ RH(C) for all unsatisfiable sets of PN-clauses C with
occl(C) ≤ n.

Case n+1:
Let C be an unsatisfiable set of PN-clauses with occl(C) = n+ 1. We distin-
guish two cases:

136 3. Refinements of Resolution

a) All clauses in C are either (purely) positive or (purely) negative and all
positive clauses are unit clauses.
Because C is unsatisfiable there must be a negative clause D in C such
that D = ¬P1∨. . .∨¬Pn and the unit clauses P1, . . . , Pn are all contained
in C. Without the existence of such a clause D all negative clauses could
be removed by the pure literal rule; the remaining clauses would all be
positive and C would be satisfiable. Therefore such a clause D must exist
and
(¬P1 ∨ . . . ∨ ¬Pn;Pn, . . . , P1)

is a clash sequence possessing the hyperresolvent 2. By definition of RH

we get 2 ∈ RH(C).
b) There are mixed clauses (clauses which are neither positive nor negative)

in C or there is a nonunit positive clause in C.

b1) There is a mixed clause C in C.
Because C is a PN-clause it must be of the form P ∨ E. By the
splitting rule of Davis and Putnam the sets of clauses C1 : (C −
{C}) ∪ {P} and C2 : (C − {C}) ∪ {E} are both unsatisfiable and
occl(C1), occl(C2) ≤ n.

b2) There exists a positive, nonunit clause D in C. Then D is of the form
P ∨ E for a positive clause E. As in case b1) we split C into
C1 : (C − {C}) ∪ {P} and C2 : (C − {C}) ∪ {E}.
C1, C2 are both unsatisfiable and occl(C1), occl(C2) ≤ n. In both cases
b1) and b2) the induction hypothesis can be applied and we obtain
2 ∈ RH(C1) and 2 ∈ RH(C2).
We will show now that RH(C) differs from RH(C2) at most with
respect to occurrences of the atom P in some clauses. For a formal
treatment we define the relation ≤L on clauses (L being an arbitrary
literal):

C ≤L D if Nc(C) = Nc(D) or Nc(D) = Nc(C ∨ L).

Clearly ≤L is reflexive and transitive.
If C,D are sets of clauses we define C ≤L D if for every clause
C ∈ C there exists a clause D ∈ D such that C ≤L D. Using this
quasiordering ≤L we will show that (in both cases b1) and b2))
RH(C2) ≤P RH(C) holds.
We use induction on the levels in the definition of RH , i.e., we show:

Si
H(C2) ≤P Si

H(C) for all i ∈ N.

The induction base i = 0:

Nc((C2)+) ≤P Nc(C+) and (C2 − (C2)+) ≤P (C − C+)

is trivial because E ≤P P ∨E.

3.6 Hyperresolution 137

It is easy to see that the remaining part of the induction proof re-
duces to:
Let γ1 = (E;D1, . . . , Dn) and γ2 = (E′;D′

1, . . . , D
′
n) be clash se-

quences such that E ≤P E′ and Di ≤P D′
i for i = 1, . . . , n and the

Di, D
′
i are in Nc-normal form. Let F be a hyperresolvent of γ1 then

there exists a hyperresolvent F ′ of γ2 such that F ≤P F ′.
The last assertion can be further reduced to the preservation of the
≤P -relation in the internal steps of the clash resolution. An internal
resolvent is a resolvent of E1 ∨ ¬Q and a positive clause Di of the
form F1 ∨Q ∨ F2.
Thus suppose that E1 ∨ ¬Q ≤P G and F1 ∨Q ∨ F2 ≤P H . because
P is positive and G is in PN-form we have G = E′

1 ∨ ¬Q for some
clause E′

1 such that E1 ≤P E′
1. The clause H must contain Q and

is of the form F ′
1 ∨Q ∨ F

′
2 such that F1 ∨ F2 ≤P F ′

1 ∨ F
′
2 (all these

relations hold, no matter whether P = Q or P 6= Q).
The PRF-resolvent of E1 ∨ ¬Q and F1 ∨ Q ∨ F2 is F1 ∨ F2 ∨ E1

(because the positive clauses are inNc-form we don’t need reduction).
Similarly F ′

1 ∨F
′
2 ∨E

′
1 is PRF-resolvent of E′

1 ∨¬Q and F ′
1 ∨Q∨F

′
2.

Because, in general, C1 ≤P C2 and D1 ≤P D2 implies C1 ∨D1 ≤P

C2 ∨D2, we obtain F1 ∨ F2 ∨E1 ≤P F ′
1 ∨ F

′
2 ∨ E

′
1.

It follows that, for the hyperresolvents of the clashes, F ≤P F ′ holds.
Completing the induction argument we eventually obtain

RH(C2) ≤P RH(C).

For the above argument it is important that adding further pos-
itive atoms to a clause can never block possibilities of resolution
steps existing before (there are no ordering constraints in the pos-
itive clauses). By (IH) we know that 2 ∈ RH(C2). By definition
of ≤P there must be a clause C in RH(C) such that 2 ≤P C.
Thus either C = 2 or (by the Nc-normal form of positive clauses
in RH(C)) C = P .
In the first case we obtain 2 ∈ RH(C) and all is shown. In the second
case, C = P , we observe the following:

C1 = (C − {C}) ∪ {P} and C − {C} ⊆ C ⊆ RH(C);

by P ∈ RH(C) we obtain C1 ⊆ RH(C). By monotonicity and idempo-
tence of RH we get RH(C1) ⊆ RH(C) and therefore 2 ∈ RH(C) (2 ∈
RH(C1) by (IH)).
This concludes the proof of the case occl(C) = n+ 1. 3

Theorem 3.6.1 (completeness of hyperresolution). Let C be an unsat-
isfiable set of PN-clauses, then 2 ∈ RH(C).

Proof. By Herbrand’s theorem there exists a finite, unsatisfiable set C′ of
ground instances from C. By Lemma 3.6.1 we know that RH(C′) contains

138 3. Refinements of Resolution

2. Thus it is enough to show that for every C′ ∈ RH(C′) there exists a
C ∈ RH(C) such that C ≤sc C′ (we write RH(C) ≤sc RH(C′)). Because
RH(C) =

⋃∞
i=0 S

i
H(C) we may proceed by level induction.

i = 0:
C′ consists of instances of clauses in C and for every C ∈ C and every
substitution σ we have Nc(C) ≤sc Nc(Cσ); thus also S0

H(C′) ≤sc S
0
H(C′)

holds.

(IH) Suppose that Si
H(C) ≤sc S

i
H(C′).

Case i+ 1: The proof of this case can be reduced to the proof of:

(I) Let γ1 = (C;D1, . . . , Dn) and γ2 = (C′;D′
1, . . . , D

′
n) be two clashes such

that C ≤s C
′ and Di ≤sc D

′
i for i = 1, . . . , n and E′ is a clash resolvent

of γ2. Then there exists a clash resolvent E of γ1 such that E ≤sc E
′.

Note that we face the delicate situation that the positive clauses are in Nc-
normal form, but the other clauses are not. In resolving through a clash we
append positive clauses to the left (these are parts of clauses in Nc-normal
form) and the negative part is gradually reduced (this part is not normalized).
To describe the corresponding substitution ordering of related internal clash
resolvents we introduce some auxiliary notion:

Let C,C′ be PN-clauses. We write C ≤scs C
′ if there exists a substi-

tution ϑ such that Nc(CPϑ) = Nc(C
′
P) and CNϑ = C′

N .

It is easy to see that (I) can be reduced to

(II) Let C′ = C′
1 ∨ ¬Q

′, D′ = D′
1 ∨Q

′ ∨D′
2 be two PN-ground clauses (D′

being in Nc-normal form) and E′ be the PRF-resolvent D′
1 ∨ D

′
2 ∨ C

′
1.

Let C,D be two variable-disjoint PN-clauses such that C ≤scs C
′ and

D ≤sc D
′. Then there exists a PRF-resolvent E of C and D with E ≤scs

E′.

Note that D′ is in normal form, thus we do not need to consider factoring
(factoring coincides with clause reduction on the ground level). If the resol-
vent E is already the clash resolvent then EN = 2 and we obtain E ≤sc E

′.

By C ≤scs C
′ we conclude that C is of the form C1∨¬Q such that C1 ≤scs C

′
1

and Q ≤s Q
′.

By D ≤sc D
′ there exists a substitution η with Nc(Dη) = D′ (note that

Nc(D
′) = D′). By V (C) ∩ V (D) = ∅ we can construct a common substitu-

tion ϑ such that

Nc(CPϑ) = Nc(C
′
P), CNϑ = C′

N and Nc(Dϑ) = D′.

As Nc(Dϑ) = D′ and D′ = D′
1 ∨Q

′ ∨D′
2 there exist literals L1, . . . , Lm in D

such that D = D1∨L1∨. . .∨Dn∨Ln∨Dn+1 such that {L1, . . . , Ln}ϑ = {Q′}
and

3.6 Hyperresolution 139

Nc((D1 ∨ . . . ∨Dn+1)ϑ) = D′
1 ∨D

′
2.

Then ϑ is a unifier of {L1, . . . , Ln} and there exists an m.g.u. σ of
{L1, . . . , Ln}. σ defines the factor D1σ ∨ L1σ ∨ . . . ∨ Dnσ ∨ Dn+1σ of D.
Because Qϑ = Q′, ϑ is also unifier of {L1, . . . , Ln, Q}. By definition of PRF-
resolution, the clause

E : (D1 ∨ . . . ∨Dn+1)σµ ∨ C1µ

is PRF-resolvent of C and D (µ being an m.g.u. of {L1σ,Q}). As {L1σ,Q} is
unifiable, the substitution µ must exist and σµ is m.g.u. of {L1, . . . , Ln, Q}.
We thus obtain σµ ≤s ϑ. Because σ is a factoring substitution of D (defining
a G-instance) we have dom(σ) ∩ V (C) = ∅ and therefore

E = (D1 ∨ . . . ∨Dn+1 ∨C1)σµ.

But (D1 ∨ . . . ∨ C1)N = (C1)N and E′
N = (C′

1)N . By CNϑ = C′
N and by

definition of C1 we also obtain

((C1)N)ϑ = (C′
1)N .

Moreover Nc(CPϑ) = Nc(C
′
P) and Nc((D1 ∨ . . . Dn+1)ϑ) = D′

1 ∨D
′
2 implies

Nc((D1 ∨ . . . ∨Dn+1 ∨ (C1)P)ϑ) = Nc((C
′
1)P ∨D

′
1 ∨D

′
2).

By definition of ≤scs we eventually obtain

EP ≤sc E
′
P and EN ≤s E

′
N , i.e., E ≤scs E

′.

3

Restricting the RH -refinement to Horn logic we obtain a resolution re-
finement without any factoring. Note that in PRF-resolution only positive
clauses are subjected to factoring. Because in Horn logic all positive clauses
are unit clauses only trivial factors can be produced. The condensing nor-
malization of positive clauses reduces to renaming normalization. Thus RH

for Horn logic can also be defined as

S0
H(C) = Nv(facts(C)) ∪ rules(C) ∪ goals(C),

Si+1
H (C) = Si

H(C) ∪ ρ′H(Si
H(C)),

RH(C) =
⋃∞

i=0 S
i
H(C),

where ρ′H differs from ρH in the substitution of Nv for Nc.
Let ̺ = (P ∨¬Q1 ∨ . . .¬Qn;P1, . . . , Pn) be a clash sequence in a set of Horn
clauses. Then, clearly, ̺ defines at most one hyperresolvent R; if R exists
it must be of the form Pϑ for some substitution ϑ. Thus for every derived
fact Q ∈ RH(C) there exists a fact P ∈ facts(C) or a head P of a rule in

140 3. Refinements of Resolution

rules(C) such that P ≤s Q. That means every clause in RH(C)+ − {2} is a
substitution instance of an atom in a fixed, finite set of atoms P such that

P = facts(C) ∪ ruleh(C) where ruleh(C) = {P |(∃C ∈ C)P ∨C ∈ rules(C)}.

Moreover RH possesses an important semantic interpretation: If C is a satis-
fiable set of Horn clauses then facts(RH(C)) denotes a Herbrand model of C.
Herbrand models, that can be specified in this manner possess some property
of minimality (see Exercise 3.6.4) which is important to the semantics of logic
programs [Llo87].

In Section 2.3 (remark after Example 2.3.3) we have introduced a repre-
sentation of Herbrand models Γ of the form M = {P1, . . . , Pn, . . .}, where
the set M consists of exactly those ground atoms of the atom set that are
true in Γ . So we obtain a characterization of Γ by a set of ground atoms.
The following definition introduces a more general notion of H-model repre-
sentations.

Definition 3.6.9 (atom representations of H-interpretations). Let Γ
be an H-interpretation of a set of clauses C andM = {A|A ∈ AT (C), vΓ (A) =
T}. Then M is called a ground representation (GR) of Γ .
Let P be a set of atoms over the signature of C and let N be the set of
all ground instances of elements in P (over C). Then P is called an atom
representation (AR) of the model represented by (the ground representation)
N .
The following theorem states that RH can be interpreted as a model building
procedure in Horn logic.

Theorem 3.6.2. Let C be a satisfiable set of Horn clauses. Then R+
H(C) is

an atom representation of a Herbrand model of C.

Proof. Let P = R+
H(C). Then P is a (possibly infinite) set of atoms (R+

H(C)
does not contain 2 by the satisfiability of C). Let Γ be an arbitrary Herbrand
model of C. Then vΓ ({P}) = T for all P ∈ facts(C) (all unit clauses must be
true in Γ). As resolution is strongly correct (i.e., it is model preserving) every
clash produces hyperresolvents true in Γ . Thus we obtain vΓ ({P}) = T for
all P ∈ P .
LetM0 = {P ′|(∃P ∈ P)P ≤s P

′, P ′ ground }. Because vΓ ({P}) = T for all
P ∈ P we obtain vΓ (Pϑ) = T for P ∈ P and arbitrary ground substitutions
ϑ and therefore

M0 ⊆ {A|A ∈ AT (C), vΓ (A) = T}.

That means P is an atom representation of an H-interpretation Γ0 of C, which
verifies at most the ground atoms verified by Γ . It remains to show that Γ0

is a Herbrand model (!) of C. We assume that Γ0 falsifies C and derive a
contradiction.

Γ0 falsifies C iff the (possibly infinite) set C ∪M0∪{¬P/P ∈ AT (C)−M0} is
unsatisfiable. By the compactness theorem [BJ74] in Chapter 12 there exists

3.6 Hyperresolution 141

a finite subset D ⊆M0 ∪ {¬P/P ∈ AT (C)−M0} such that C ∪ D is unsat-
isfiable. D must be a set of ground unit clauses {P ′

1, . . . , P
′
n,¬Q

′
1, . . . ,¬Q

′
m}.

It follows by the definition ofM0 that the Q′
i are not ground instances of

atoms in P , i.e., for all Q′ ∈ {Q′
1, . . . , Q

′
m}, for all P ∈ P : P 6≤s Q

′. Thus no
positive clause P – derivable from C via hyperresolution – can be unified with
such a Q′. Because C∪{P ′

1, . . . , P
′
n} is satisfiable (because C∪P is satisfiable)

we have 2 6∈ RH(C ∪ {P ′
1, . . . , P

′
n}).

Because negative clauses can only serve as central clauses in clashes we
obtain:

R+
H(C ∪ D) ⊆ R+

H(C ∪ {P ′
1, . . . , P

′
n}) ∪ {2}.

We show now that R+
H(C ∪ D) cannot contain 2. Because 2 /∈ RH(C ∪

{P ′
1, . . . , P

′
n), the assumption 2 ∈ RH(C ∪ D) implies the existence of a P ∈

R+
H(C ∪ {P ′

1, . . . , P
′
n}) such that ̺ = (¬Q′, P) is a clash resolving to 2 for

some ¬Q′ ∈ {¬Q′
1, . . . ,¬Q

′
m}. Because Q′ is ground there must exist a P ∈ P

such that P ≤s Q
′ ({P,Q′} must be unifiable). By definition of of M0 we

get Q′ ∈M0.
On the other hand we have assumed Q′ ∈ AT (C) −M0. So we obtain a

contradiction and C ∪M0 ∪ {¬P |P ∈ AT (C)−M0} must be satisfiable. But
this implies that Γ0 is an H-model of C. 3

The model construction via RH is of particular interest if RH(C) is finite. Be-
cause Horn logic is undecidable (the halting problem for Turing machines and
unsolvable word problems in equational theories are recursively equivalent to
the satisfiability problem of Horn logic), we cannot expect to obtain always
finite sets RH(C) for finite sets of Horn clauses C. As in Proposition 3.1.1 we
infer the existence of a finite set of Horn clauses C such that RH(C) is infinite.
In Section 5.4 we will investigate subclasses Ω of Horn logic such that for all
C ∈ Ω RH(C) is finite; for such classes we can obtain finite model repre-
sentations, i.e., representations of Herbrand models in the form of predicate
logic formulas.

Suppose that C is a finite, satisfiable set of Horn clauses and RH(C) is
finite too. Then

RH(C) = rules(C) ∪ goals(C) ∪ {P1, . . . , Pn}

for a finite set of atom formulas P : {P1, . . . , Pn}. The set P is an atom
representation of a Herbrand model Γ and corresponds to a PL-formula of
the form

(∀x̄1)P1 ∧ . . . ∧ (∀x̄n)Pn.

Now there exists an easy algorithm for deciding whether an atom A ∈ AT (C)
is true in Γ :

vΓ (A) = T iff there exists a P ∈ P such that P ≤s A.

In order to test vΓ (A) = T we simply have to try all matchings Pi ≤s A for
i = 1, . . . , n.

142 3. Refinements of Resolution

We have seen that hyperresolution under sign-renamings can be inter-
preted as a kind of semantic inference with respect to specific Herbrand in-
terpretations, called settings (see Definition 3.6.8). Example 3.6.4, however,
demonstrated that there are very simple Herbrand interpretations which are
not settings. Moreover it makes sense to define model-based refinements over
interpretations which are not of Herbrand type (such as finite models). The
idea to define semantic refinements over arbitrary interpretations was first
expressed by Slagle [Sla67]. These refinements represent inference principles
restricting deduction by use of countermodels.

Example 3.6.5.
Let C = {C1, C2, C3, C4} for

C1 = P (f(x)), C2 = P (g(x)), C3 = ¬P (x)∨R(x), C4 = ¬R(f(x))∨¬P (g(x))

and M : (D,Φ, I) be an interpretation with

D = {0, 1}, Φ(f) = φ, Φ(g) = γ, Φ(P) = π and Φ(R) = ρ

such that

φ(0) = φ(1) = 0; γ(0) = γ(1) = 1;
π(0) = F, π(1) = T; ρ(0) = ρ(1) = F.

We now evaluate the clauses of C underM:

C1 is false inM, C2 is true inM. C3 is false inM because of the “instance”
or(not(π(1)), ρ(1)) = F; but note that or(not(π(0)), ρ(0)) = T. C4 is true in
M by ρ(α) = F for all α ∈ D.

Therefore C can be decomposed into the set of true clauses C1 : {C2, C4}
and the set of false clauses C0 : {C1, C3}. As in the case of setting-based
hyperresolution our aim is to derive only clauses which are false in M. As
resolution is (strongly) correct we may not resolve clauses which are both
true in M; this immediately excludes resolutions within C1.

C3 and C4 are not both true and we construct the resolvent C5 : ¬P (f(x))∨
¬P (g(x)). C5, however, is true in M and thus is not “admissible”; but by
further resolving C5 with C1 we obtain the clause C6 : ¬P (g(x)) which is
false inM. The resolvent of C6 and C2 is 2 which is false in M.

Note that C1 and C3 are both false inM but, nevertheless, are resolvable (in
the case of settings this is impossible because (here) two false clauses cannot
define complementary pairs of literals!). Resolution of a true and a false clause
can result in a true clause (like C5) or in a false clause (the resolvent of C2

and C3 is C7 : R(g(x)) which is false in M).
Example 3.6.5 shows that the truth status of resolvents with respect to

arbitrary interpretations is not so easily predictable as in the case of settings.
What we need in general is a computational procedure to evaluate clauses

3.6 Hyperresolution 143

over given interpretationsM. Such an evaluation is straightforward for inter-
pretations with finite domains; a method to evaluate clauses over arbitrary
atom representations of Herbrand models is given in [FL96]. In Example 3.6.5
we resolved the true clause C2 with the false clause C3 and obtained the true
clause C5. According to to the principle that true clauses cannot be resolved
with other true clauses we need a “false” partner for C5. Such a clause is C1

which, together with C5, produces the false resolvent C6. If we arrange the
clauses in a tuple S : (C2;C3, C1) and proceed as in the case of hyperresolu-
tion then we obtain C5 as intermediary resolvent and C6 as clash resolvent
of S. The PN-normal form for hyperresolution was specific to the rigid type
of settings (in a setting the truth value of a clause is equal to the truth value
of all its instances). In case of arbitrary interpretations we work without
normalization (although condensing normalization is admissible) in order to
make the problem more transparent).

Definition 3.6.10 (semantic resolution). Let C be a set of clauses and
M be an interpretation of C. Let C and D be clauses over the signature of C
such that at least one of C,D is false in M. Then every resolvent of C and
D is called semanticM-resolvent or simply M-resolvent.

For every set of clauses D with the same signature as C we define

ρM(D) = ϕ{E|E is semantic resolvent from D}

where ϕ is the variable normalizer defined in Section 3.1. The resolution
operator RM can be defined in the usual way:

S0
M(C) = C,

Si+1
M (C) = Si

M(C) ∪ ρM(Si
M(C)),

RM(C) =
⋃

i∈IN S
i
M(C).

Definition 3.6.11 (semantic clash resolution).
LetM be an interpretation of a set of clauses C and C,D1, . . . , Dk be clauses

over the signature of C such that the Di are false in M for i = 1, . . . , k. Let

R0 = C and
Ri+1 be a resolvent of Ri and Di+1 if i < k and such a resolvent
exists.

If Rk exists and is false in M then we call S : (C;D1, . . . , Dk) a semantic
clash and Rk a semantic clash resolvent of S (with respect toM). C is called
the nucleus of S.
As in Definition 3.6.10 we set

ρcM(D) = ϕ{E|E is semantic clash resolvent from D}

The operators Si
cM and RcM are defined like Si

M and RM.

144 3. Refinements of Resolution

Example 3.6.6. Let M be the interpretation defined in Example 3.6.5 and

C = ¬R(f(x)) ∨ ¬P (g(x)), D1 = ¬P (x) ∨R(x), D2 = P (f(x)).

Then ¬P (g(x))∨¬P (f(x)) is a semantic resolvent of C and D1, but (C;D1)
is not a semantic clash.

(C;D1, D2) is a semantic clash and gives the clash resolvent ¬P (g(x)). Note
that (D1, D2) is also a semantic clash, because the resolvent is R(f(x)) which
is false in M. We see that the nucleus of a clash may itself be false in M,
but it must contain true “instances”, i.e., it sometimes evaluates to true.

It remains to show that semantic clash resolution is complete over arbitrary
interpretations.

Lemma 3.6.2 (ground completeness of semantic clash resolution).
Let C be a set of clauses, M be an interpretation of C and D be an unsatis-
fiable set of ground instances from C. Then 2 ∈ RcM(D).

Proof. We reduce the problem to the ground completeness of hyperresolution
which was shown in Lemma 3.6.1.

Let A : {A1, . . . , An} be the set of atoms occurring in D. Let

B0 = {A|A ∈ A, vM(A) = F} and B1 = {A|A ∈ A, vM(A) = T}.

Define a sign renaming γ onA such that γ(A) = A for A ∈ B0 and γ(A) = ¬A
for A ∈ B1 (note that we may consider D as a set of propositional clauses
and thus may assign different symbols to different atoms). Then the set γ(D)
is unsatisfiable. By definition of γ a clause D ∈ D is false in M iff γ(D) is
positive. By Lemma 3.6.1 2 ∈ RH(γ(D)). To be precise we have to mention
that Lemma 3.6.1 holds for PN-forms and here we do not normalize clauses.
We only have to extend RH to sets of clauses which are not in PN-form
(we give up the fixed order for the resolution of positive literals in order to
maintain completeness).

It suffices to prove that γ(Si
cM(D)) = Si

H(γ(D)) for all i ∈ IN. Then 2 ∈
Si

H(γ(D) and γ−1(2) = 2 imply 2 ∈ Si
cM(D) and therefore 2 ∈ RcM(D).

We proceed by induction on i.

i = 0 : trivial.

(IH) Assume that γ(Si
cM(D)) = Si

H(γ(D))

Let ̺ : (C;D1, . . . , Dm) be a clash sequence over Si
H(γ(D)) and R be a

resolvent of ̺. Then, by (IH), there are clauses E1, . . . , Em ∈ Si
cM(D) such

that γ(Ei) = Di for i = 1, . . . ,m. By definition of γ vM(Ei) = F iff γ(Ei) is
positive. But the Di must be positive (by definition of a clash sequence) and
we infer that vM(Ei) = F for all i = 1, . . . ,m. An easy induction argument
shows that for all intermediary resolvents Rl of ̺ there are intermediary
resolvents R′

l of S : (γ−1(C), E1, . . . , Em) such that γ(R′
l) = Rl. Eventually

3.6 Hyperresolution 145

we obtain a resolvent R′ such that γ(R′) = R. Because R is positive γ(R′)
must be false in M. Therefore S is a semantic clash and R′ is a semantic
clash resolvent of S with γ(R′) = R.

The other direction (i.e., the proof of γ(Si
cM(D)) ⊆ Si

H(γ(D))) is completely
symmetric. 3

Theorem 3.6.3 (completeness of semantic clash resolution).
Let C be an unsatisfiable set of clauses and M be an interpretation of C.
Then 2 ∈ RcM(C).

Proof. By Herbrand’s theorem there exists an unsatisfiable set of ground
instances D from C. By Lemma 3.6.2 we know that 2 ∈ RcM(D). Therefore
it suffices to prove the following lifting property:

(*) If D is a set of ground clauses from C then RcM(C) ≤s RcM(D).

The proof of (*) can be reduced to that of the lifting property of single steps,
i.e.,

(+) If D1, D2 are ground instances of clauses C1, C2 and F is a semantic
M-resolvent of D1, D2 than there exists a semantic M-resolvent E of
C1, C2 such that E ≤s F .

Because F is a semantic resolvent, at least one of D1, D2 must be false in
M. So let us assume without loss of generality that vM(D1) = F. D1 is an
instance of C1 and so F ({C1}) → F ({D1}) is valid; consequently C1 is also
false in M. By Definition every resolvent of C1, C2 is a semantic resolvent.
By the lifting theorem (Theorem 2.7.1) there exists a resolvent E of C1 and
C2 such that E ≤s F ; but E is also semanticM-resolvent of C1 and C2. 3

Exercises

Exercise 3.6.1.

a) Define a refinement ΨH (according to Definition 3.1.1) such that
Der(ΨH(C)) = RH(C) for all C ∈ CL.

b) Find a refutation Γ of

C : {P (x) ∨Q(x), ¬P (x) ∨Q(f(y)), P (x) ∨ ¬Q(f(x)),¬P (x) ∨ ¬Q(x)}

such that Γ ∈ ΨH .

Exercise 3.6.2. Let RU be the operator of unit resolution, i.e., RU is defined
via ρU such that ρU (C) = set of all resolvents from clauses C,D ∈ C such
that at least one of C,D is a unit clause.

a) Show that RU is complete on Horn logic.
b) What is the relation among RU and RH on Horn logic?

146 3. Refinements of Resolution

Exercise 3.6.3. Let Ω be the class of all finite sets of clauses C such that
all positive clauses in C are unit clauses (Ω contains Horn clause logic). Show
that unit resolution is incomplete on Ω.

Exercise 3.6.4. LetM be a ground representation of a Herbrand model Γ
of a set of clauses C. Γ is called the least Herbrand model of C if the following
property holds: IfM′ is a ground representation of an arbitrary H-model Γ ′

of C then M⊆M′.
Let C be a finite, satisfiable set of Horn clauses. Show that R+

H(C) is an
atom representation of a least H-model of C.
(Hint: Trace the proof of Theorem 3.6.2).

Exercise 3.6.5. Give an example of a (non-Horn) set of clauses that does
not possess a least Herbrand model.

Exercise 3.6.6. Let P = {P1, . . . , Pn} be a finite atom representation of
a H-interpretation Γ over a signature Σ. Let C be an arbitrary, finite set of
clauses over Σ such that RH(C) is finite. Construct an algorithm that decides
whether Γ is a model of C.
(Hint: Use the fact that R+

H(C) represents a least H-model).

Exercise 3.6.7. In the proof of Theorem 3.6.2 we used the property

R+
H(C) ≤s R

+
H(C ∪ {P ′

1, . . . , P
′
n})

for ground atoms P ′
i which are ground instances from elements in R+

H(C),
where C is a set of Horn clauses.

Prove the following (somewhat more general) property: Let C be a set
of Horn clauses and {C1, . . . , Cn} be a set of clauses such that RH(C) ≤s

{C1, . . . , Cn} (i.e., for every Ci there exists a D ∈ RH(C) such that D ≤s Ci).
Then RH(C) ≤s RH(C ∪ {C1, . . . , Cn}).

Exercise 3.6.8. Define an interpretationM and two clauses C and D such
that C and D are both false in M, but there exists a resolvent of C and D
that is true in M.

3.7 Refinements: A Short Overview

In the preceeding sections we have presented refinements based on orderings,
linear deduction, semantic inference, hyperdeduction etc. There are much
more refinements (even types of refinements) which are of theoretical and
of practical interest. Our specific selection was motivated mainly by the ap-
plications to decision theory (Chapter 5) and by the complexity analysis in
Chapter 6. Moreover even the refinements described so far can be combined
in many different ways (e.g. ordering with semantic resolution and ordering
with linear deduction). Many quite sophisticated combinations of different

3.7 Refinements: A Short Overview 147

refinement techniques can be found in D. Loveland’s book [Lov78].

Roughly we may distinguish refinements generating sets of clauses from re-
finements generating deductions. Remember that linear deduction cannot
simply be defined as an operator on sets of clauses; instead the history of a
derived clause strongly influences its potential resolution partners. In model
elimination, which is a variant of linear deduction, the history of a clause is
even stored within the clause; for this purpose resolved literals are kept in the
clause, but they are typed (A-type) to distinghish them from the ordinary
literals (B-type) [Lov78]. Strictly speaking model eliminiation is not a refine-
ment in the sense of Definition 3.1.1 but rather a variant of a refinement.
Linear input deductions on Horn logic even yield a new quality of informa-
tion, namely so-called answer substitutions; these substitutions on variables
of the top clause (computed by a simultaneous m.g.u. of a deduction) define
the output of logic programs [Llo87].

On the other hand, ordering refinements can conveniently be described
by set operators: the ordering restriction only applies to pairs of clauses and
their resolvents, otherwise the form of deductions does not matter. From
an abstract point of view we may classify this kind of theorem proving (we
are interested in sets of derivable clauses rather than in their derivations)
as saturation-based. The advantage of this type of inference lies in a higher
potential to apply deletion methods. Moreover saturation-based methods are
superior in decision procedures and automated model building (see Chap-
ter 5). An abstract and elegant analysis of saturation-based deduction can
be found in [BG94]. More recent developments in the area of ordering re-
finements were strongly stimulated by investigations of resolution decision
procedures. Besides further variants of so-called π-orderings [FLTZ93] (dat-
ing back to S.Y. Maslov) completely new types of orderings emerged. We just
mention orderings defined by resolution games introduced in [Niv96]; these
orderings need not fulfil the lifting property (A3) in Definition 3.3.1 and can
be used as decision procedures for clause classes.

There are variants of resolution imposing global structures on the set of de-
rived clauses by links connecting complementary literals. Such a combination
of link construction and resolution is the characteristic feature of connection
graph resolution [Kow75]. This method defines a natural “link” to nonresolu-
tion theorem proving, e.g., to the connection method [Bib82]. Several refine-
ments, in particular linear ones, can be formulated and applied within the
connection method. In fact the concept of refinement plays an important rôle
also in nonclausal theorem proving and is crucial to any kind of calculus de-
signed for proof search. We just mention the use of A-ordering restrictions in
the tableau calculus for the construction of counter examples (see [KH94]).

Finally we would like to emphasize that refinements, a specific invention
within the field of automated deduction, are not only important in the prac-
tice of theorem proving but also shed some more light on the very nature of

148 3. Refinements of Resolution

deduction itself. Answer substitutions extracted from linear input deduction
and (counter-)models generated by hyperresolution are examples of a new
quality of information produced by inference systems.

4. Redundancy and Deletion

4.1 The Problem of Proof Search

The problems of showing the existence of proofs and finding proofs of given
theorems mark the borderline between mathematical logic and computer sci-
ence. So far we merely proved results about the existence of refutations for
unsatisfiable sets of clauses under various types of refinements; we have not
spoken about how to (really) obtain refutations. In our formalism the situa-
tion can be described in the following way: Let Ψ be an arbitrary complete
refinement and C be an unsatisfiable set of clauses. By the completeness of
Ψ there exists a refutation Γ ∈ Ψ(C); finding such a Γ (within reasonable
computing time) is the main problem of automated deduction. At this point
we face the problem of search which is of central importance to all fields of
Artificial Intelligence. With regard to a resolution refinement, search is an
algorithmic method for producing the elements of Ψ(C) until a refutation is
found (in principle we can try to find all Ψ -refutations of C, but such a pro-
cedure usually is nonterminating). The computational cost of proof search
is, in practice, the main obstruction to automated theorem proving. For this
reason, several techniques have been invented to reduce search. We list three
of them:

1. Refinements of resolution:
Let Ψ1, Ψ2 be two refinements such that Ψ1(C) ⊆ Ψ2(C) for all C ∈ CL.
Then Ψ1 is “more refined” than Ψ2 in the sense that it contains fewer
derivations. Thus, for Ψ1, we have fewer derivations to search through,
which may be an advantage in reducing search. It has to be noted, how-
ever, that by the (possible) increase of the minimal length of a refutation
in Ψ1 versus Ψ2, an opposite effect may take place as well. We will explain
this phenomenon in more detail using the concept of search complexity.

2. Redundancy test:
Refinements, such as defined in Chapter 3, reduce the set of all deriva-
tions, but still contain redundancies. Redundancy can appear in the form
of circular derivations or in that of tautological clauses. Removing redun-
dant derivations results in a further reduction of the set of derivations
defined by a refinement. Furthermore (in all relevant cases) the minimal
length of a refutation is not increased by techniques eliminating redun-

150 4. Redundancy and Deletion

dancy. Nevertheless there are some problems in applying redundancy
tests in practice created by the costs for testing redundancy itself.

3. Heuristics:
In producing the set of derivations Ψ(C) during the search for a refuta-
tion, the order according to which derivations are produced has a strong
influence on the cost of the search. A rough, but generally useful, heuris-
tic consists in priorizing deductions containing “small” clauses only. In
selecting clauses according to their size, priority may be given to clauses
containing fewer literals or to clauses of smaller term depth. Different
types of clause complexity may be combined in a weight function, result-
ing in a preference for clauses having smaller weight. Although heuristics
are of high practical value, it is hard to give mathematical criteria for
selecting the “right” ones.

Efficient theorem proving programs use 1, 2 and 3 simultaneously. But 1
and 2 may “clash” in the sense that the completeness of specific refinements
(such as lock resolution) may be destroyed by redundancy methods (such
as subsumption). As 3 merely is concerned with ordering the derivations in
Ψ(C), it does not affect the set Ψ(C) itself; consequently heuristics are of a
“nonlogical” nature and thus cannot destroy completeness. Note that the re-
striction of producing only clauses of low complexity (e.g., clauses containing
≤ 3 literals) defines an (incomplete) refinement rather than a heuristic.

Example 4.1.1. Let C be the following set of Nc-clauses:

{P (x1), P (f(x1)) ∨ ¬P (x1), R(x1) ∨ ¬P (x1), ¬R(f(x1))}.

C is unsatisfiable and thus 2 ∈ Rx(C) for every complete refinement Rx.
Let R∅ be the operator of unrestricted resolution on Nc-clauses. Then

R∅(C) is infinite (P (f (n)(x1)) ∈ R∅(C) for all n ≥ 0). For every n ≥ 0 the
deduction

Γn : P (x1), P (f(x1))∨¬P (x1), P (f(x1)), . . . , P (f (n)(x1)), R(x1)∨¬P (x1),
R(f (n)(x1)), ¬R(f(x1)),2

is an NcR-refutation of C. As a measure for the size of clauses we take comp,
defined by

comp(C) = |C|+ τ(C).

By the normalization of variables there are only finitely many clauses C (over
the signature of C) such that comp(C) ≤ k for k ∈ IN.

We now use comp as a basis of our heuristics. Let us try first to find a
refutation containing only clauses with comp ≤ 1. It is easy to verify that
such a refutation cannot exist (only the first clause in C could be used). By
increasing comp to ≤ 2 we obtain the following derivations:

Γ : P (x1), R(x1) ∨ ¬P (x1), R(x1), ¬R(f(x1)),2 and

Γ ′ : P (x1), ¬R(f(x1)), R(x1) ∨ ¬P (x1), ¬P (f(x1)),2.

4.1 The Problem of Proof Search 151

(there are other NcR-refutations of clause complexity comp ≤ 2).
According to a preference ordering in the set of clauses C we first find Γ

or Γ ′ (or another refutation of complexity ≤ 2).
In any case we find a refutation not containing the clause P (f(f(x1)))

(note that comp(P (f(f(x1)))) = 3).
Now let us consider the A-ordering refinement R<d

defined in Section 3.3.
Then

R<d
(C) = C ∪ {R(x1), ¬P (f(x1)), R(f(x1)) ∨ ¬P (x1), ¬P (x1), 2}.

Whatever kind of search will be applied to find a R<d
-refutation, it will be

efficient (R<d
(C) is finite, while R∅(C) is infinite).

Finally we consider the aspect of redundancy.
The clauses P (x1) and P (f(x1)) ∨ ¬P (x1) together produce the (infinite)
sequence of resolvents Cn : P (f (n)(x1)). All clauses Cn are instances of
P (x1) (P (x1)λn = Cn for λn = {x1 ← f (n)(x1)}) and thus are less gen-
eral than P (x1) itself. By the validity of the formula

F ({P (x1)})→ F ({P (f(x1)) ∨ ¬P (x1)})

the clause P (f(x1)) ∨ ¬P (x1) can be deleted (in the presence of P (x1)). By
removing the second clause we thus obtain

C′ = {P (x1), R(x1) ∨ ¬P (x1), ¬R(f(x1))}.

After this deletion even R∅(C
′) is finite and search may be reduced consider-

ably.

In Example 4.1.1 we have illustrated how heuristics, refinement and deletion
can influence the search for a refutation. So far, however, we have not spoken
about standard search methods. We will present two basic types, namely
breadth-first search and depth-first search. There are much more (and more
refined) search methods used in AI and defined in contexts independent of
automated theorem proving; for more information we refer to [GH93], [BF81],
and [Pea84]. For the sake of simplicity we concentrate our investigations on
operator-based refinements Rx.

(I) Breadth-first search (BFS):

Let Rx(C) =
⋃∞

i=0 S
i
x(C) such that all clauses are normalized under Nv

(Ns or Nc respectively). Then Si
x(C) is finite for every i ∈ IN. In order

to find 2 we successively generate all sets Si
x(C) until we find a level j

such that 2 ∈ Sj
x(C). Obviously breadth-first search is complete, i.e., if

2 ∈ Rx(C) then 2 is eventually found by the search method.

(II) Depth-first search (DFS):

This is characterized by preferring depth, which means going to deeper

152 4. Redundancy and Deletion

levels before exhausting the former ones. In depth-first search the set of
all resolvents between a single clause C and a set of clauses C is impor-
tant.Thus we have to modify the operator ρx (see Section 3.1) to ρ̂x:

ρ̂x(C, C) = the subset of ρx({C} ∪ C) obtained by “using” C.
This rather informal definition can easily be made precise for refinements

of binary type, i.e., if

ρx(C) = {E|E ∈ ρx({C,D}), C,D ∈ C} then
ρ̂x(C, C) = {D|D ∈ ρx({C,E}), E ∈ C}.

In case of hyperresolution “using” C can be defined as C being an element
in a clash sequence from C (for positive C).
The algorithm for depth-first search is illustrated in Figure 4.1.

Depth-first search (DFS):
{C is a nonempty set of clauses }
begin

Order C and construct a list L out of C;
For all C in L do used(C) ← false;
exhaust(L) ← false;
while 2 is not in L and exhaust(L)=false

do begin
search for the first clause C in L such that used(C)=false;
if C does not exist then exhaust(L) ← true
else begin
D ← ρ̂x(C, clauses(L));
used(C) ← true;
order D into a list L′;
L← L′L

end
end {while}

if 2 is in L then refutation ← true
else refutation ← false

end {DFS}

Fig. 4.1. Depth-first search

If in DFS (in Figure 4.1) D = ∅, i.e., C does not define resolvents with
the clauses in the list L, then L′ is empty and the list L is not extended. As
C is already marked as used we have to go “back” in order to select another
(unused) clause from L; this phenomenon is called backtracking. Even in case
2 ∈ Rx(C) it might happen that depth-first search does not terminate and
does not find 2; in this case the search generates a proper subset of Rx(C)
only. Indeed it may be the case that the statement producing L′ is executed
“too often” and we never return to the clauses in some former level (Sk

x(C))
that are required for a contradiction. There is an alternative definition of

4.1 The Problem of Proof Search 153

DFS: Instead of stopping under the condition 2 in L we require 2 to appear
at the beginning of the list L; this definition leads to a different (in fact worse)
termination behavior.

Example 4.1.2. Let C: {P (a), P (f(x1))∨¬P (x1), ¬P (f(f(a)))} be a set of
Ns- clauses and R∅ be the operator of unrefined resolution (on Ns-clauses).

Breadth-first search successively produces the sets Si
∅(C):

S0
∅(C) = C,
S1
∅(C) = C ∪ {P (f(a)),¬P (f(a))}.

So 2 ∈ S2
∅(C) and BFS stops at level 2. For DFS we turn C into the list

L : P (a), P (f(x1)) ∨ ¬P (x1),¬P (f(f(a))). Then DFS proceeds as follows

D1 = ρ̂∅(P (a), C) = {P (f(a))}, used(P (a)) = true,
L1 = P (f(a)), L1.
D2 = ρ̂∅(P (f(a)), clauses(L1)) = {P (f(f(a))))}, used(P (f(a))) = true,
L2 = P (f(f(a))), L1.
D3 = ρ̂∅(P (f(f(a))), clauses(L2)) = {P (f (3)(a)), 2}, used(P (f(f(a))))
= true,
L3 = P (f (3)(a)),2, L2.

As 2 is contained in L3 DFS stops, the while loop terminates and we obtain
refutation = true.

The clauses produced by BFS are different from those of DFS. While BFS
finds 2 on level 2, the refutation found by DFS corresponds to level 3. It is
obvious that BFS always finds 2 on the minimal level, while DFS in general
does not. Moreover we were lucky to find a refutation by DFS at all. To
illustrate the problem of nontermination we modify C to

C1 : {P (a), P (f(x1)) ∨ ¬P (x1), R(a) ∨ ¬P (f(a)), ¬R(a)}.

Clearly C1 is unsatisfiable and (again) 2 ∈ S2
∅(C1). For DFS we transform C1

into the list

L : P (a), P (f(x1)) ∨ ¬P (x1), R(a) ∨ ¬P (f(a)), ¬R(a).

It is easy to verify that DFS produces the following sequence of lists Li (in
resolving from left to right):

L1 = P (f(a)), L

L2 = P (f (2)(a)), R(a), P (f(a)), L
...

Ln = P (f (n)(a)), . . . , P (f(2)(a)), R(a), P (f(a)), L
...

154 4. Redundancy and Deletion

Thus the list is properly extended infinitely many times (the sets D in DFS
are always nonempty) and we never come to the point of resolving R(a) and
¬R(a) (although both clauses are in Li for i ≥ 2). If, on the other hand, we
turn C1 into the list

L′ : ¬R(a), R(a) ∨ ¬P (f(a)), P (f(x1)) ∨ ¬P (x1), ¬R(a)

then DFS stops and yields 2.
So, unlike BFS, DFS is an incomplete search method and its success depends
on the ordering of clauses in the lists.

Although the order-dependence of (termination of) depth-first search might
make it appear pathological, it can be practically useful if subjected to ad-
ditional restrictions. So we may restrict depth first search to levels ≤ k or
apply iterative deepening [BF81]; using the first restriction we either find 2

or we produce Sk
x(C) as a whole (but in a order different from that defined

by BFS). We then can obtain a complete search procedure by successively
increasing k.

A measure characterizing the efficiency of a theorem proving program is
the number of clauses generated before 2 is found. This number can be very
high (even if relatively short refutations exist) and its reduction is one of the
central problems in automated theorem proving. Obviously such a measure
must depend on the search method, the refinement, and the deletion methods.
We give a formal definition of search complexity on the basis of breadth-first
search:

Definition 4.1.1 (search complexity). Let Rx be a complete resolution
operator and C be an unsatisfiable set of clauses. We define dx(C) =
min{i|2 ∈ Si

x(C)} (the minimal refutation level). Then the search complexity

of Rx with respect to C is defined as CSx(C) = |S
dx(C)
x (C)|.

CSx is the number of clauses produced by breadth-first search by exhaust-
ing the set of all clauses appearing on or below the minimal refutation level.
CSx is not the exact number of clauses generated during (a reasonably im-
plemented) BFS because we might stop before the whole level dx(C) is ex-
hausted. In our definition, however, we added all clauses appearing on the
minimal refutation level to avoid order dependence. Thus CSx is in fact an
upper bound to the search expense created by BFS.

If Rx is more refined than Ry (i.e., Si
x(C) ⊆ Si

y(C) for all C ∈ CL and i ∈
IN) then, clearly, fewer clauses are generated by Rx than by Ry. However, as
a kind of counterbalance, we may obtain dx(C) > dy(C) for some unsatisfiable
set of clauses C. In such a case the beneficial effect of the stronger refinement
may be destroyed by the increase of the minimal refutation level. This means
that strengthening refinements does not always reduce search complexity.

Example 4.1.3. Let C be the following set of Ns-clauses

4.1 The Problem of Proof Search 155

{P (x1) ∨R(x1), R(x1) ∨ ¬P (x1), P (x1) ∨ ¬R(x1), ¬P (x1) ∨ ¬R(x1)}.

We first compute CS∅, the search complexity under unrefined resolution. For
this purpose we have to compute the sets Si

∅.

S1
∅(C) = C∪{R(x1), P (x1), ¬R(x1), ¬P (x1), P (x1)∨¬P (x1), R(x1)∨¬R(x1)}.

Moreover
S2
∅ = S1

∅(C) ∪ {2} and thus
CS∅(C) = |S2

∅(C)| = 11.

We now apply a locking l to C and compute the sets Si
l . Clearly

unlock(Si
l (C)) ⊆ Si

∅(C) for all i ∈ IN (note that by the different forms of
clause representation we need the operator unlock in order to compare R∅

and Rl). The locked input set C is represented by C1.

C1 = {
1

R(x1)∨
5

P (x1),
3

¬P (x1)∨
6

R(x1),
4

P (x1)∨
7

¬R(x1),
2

¬R(x1)∨
8

¬P (x1)}.

S1
l (C1) = C1 ∪ {

5
P (x1) ∨

8
¬P (x1),

6
R(x1) ∨

7
¬R(x1)}.

S2
l (C1) = S1

l (C1) ∪ {
6

R(x1) ∨
8

¬P (x1),
7

¬R(x1) ∨
8

¬P (x1)}.

S3
l (C1) = S2

l (C1) ∪ {
8

¬P (x1)}.

S4
l (C1) = S3

l (C1) ∪ {
7

¬R(x1)}.

S5
l (C1) = S4

l (C1) ∪ {
5

P (x1)} and, eventually,

S6
l (C1) = S5

l (C1) ∪ {
6

R(x1),2}.

Hence we obtain CSl(C1) = |S6
l (C1)| = 13.

While, by unrestricted resolution, 2 is found on level 2, level 6 is required
by lock resolution. Thus although unlock(Si

l (C)) ⊆ Si
∅(C) for i ≤ 5, lock res-

olution (in this example!) causes higher search expenses than unrestricted
resolution. That does not mean that refinements are altogether useless, but
only that we face the problem of choosing the “right one”. For C, hyperreso-
lution is a “good” refinement; we show this by computing CSH(C):

S1
H(C) = C ∪ {R(x1), P (x1)}.

As the clash (¬P (x1) ∨ ¬R(x1), R(x1), P (x1)) gives 2 we obtain

S2
H(C) = S1

H(C) ∪ {2} and therefore

156 4. Redundancy and Deletion

CSH(C) = |S2
H(C)| = 7.

While refinements may increase the minimal refutation level, typical redun-
dancy methods (like subsumption and elimination of tautologies) do not. We
will see that some of these redundancy methods even define refinements (in
the formal sense such as defined in Section 3.1). Indeed methods like sub-
sumption always lead to a decrease of search complexity, but the problem
of expensive redundancy tests may be a serious one. We illustrate the phe-
nomenon of redundancy elimination by presenting tautology-elimination. The
principle is very simple: If a tautological clause is produced during deduction
then it is deleted immediately. We will see later that this deletion technique
preserves completeness for most of the relevant refinements.

Again let us denote the operator of unrestricted resolution on Nc-clauses
by R∅. By TAUT(C) we denote the set of all tautological clauses in C (a
clause is a tautology iff it contains a pair of complementary literals L,Ld).
Elimination of tautologies is described by the operator

TAUTEL(C) = C − TAUT(C).

Then R∅ may be refined to R∅t
by including the elimination of tautologies:

S0
∅t

(C) = TAUTEL(C), Si+1
∅t

(C) = Si
∅t

(C) ∪ TAUTEL(Ns(ρ∅(S
i
t(C)))),

R∅t
(C) =

⋃∞
i=0 S

i
∅t

(C).

If C is reduced under elimination of tautologies, i.e., TAUTEL(C) = C then
R∅t

is a refinement operator such as defined in Section 3.1 and Si
∅t

(C) ⊆ Si
∅(C)

for all i ∈ IN. Note that we have to ensure the completeness of R∅t
(this

property will be shown in Section 4.4). We will use the former Example 4.1.3
to illustrate the reduction of search space by elimination of tautologies.

Example 4.1.4.
C = {P (x1) ∨R(x1), R(x1) ∨ ¬P (x1), P (x1) ∨ ¬R(x1), ¬P (x1) ∨ ¬R(x1)}.

In Example 4.1.3 we computed CS∅ and found CS∅(C) = |S2
∅(C)| = 11.

Among these 11 clauses are the tautologies P (x1) ∨ ¬P (x1) and R(x1) ∨
¬R(x1). These clauses are not contained in R∅t

(C). In particular we obtain

S1
∅t

(C) = {R(x1), P (x1), ¬R(x1), ¬P (x1)} ∪ C

by TAUTEL(S1
∅(C)) = S1

∅(C)− {P (x1) ∨ ¬P (x1), R(x1) ∨ ¬R(x1)}.

Moreover S2
∅t

(C) = S1
∅t

(C) ∪ {2}. We thus obtain CS∅t
(C) = 9.

4.2 The Subsumption Principle 157

In Example 4.1.4 the practical value of tautology-elimination is questionable
(even in determining R∅t

we have to compute the tautologies before elimi-
nating them). In general, however, tautologies may produce further redun-
dant (not necessarily tautological) clauses, which may lead to a substantial
increase of search space. In automated theorem proving programs the elimi-
nation of tautologies is always profitable, provided it preserves completeness;
the reason is twofold:

Testing the TAUT-property is fast and
CSxt(C) ⊆ CSx(C) for most relevant refinements (including hyperresolution

and A-ordering).

We will see later that lock resolution does not admit the elimination of
tautologies (without loss of completeness). Thus we cannot reduce the search
complexity of lock resolution in Example 4.1.3 by eliminating the tautologies.
Thus an improvement, as in Example 4.1.4 for R∅, is impossible for lock
resolution.

4.2 The Subsumption Principle

Unlike tautologies that are “absolutely redundant”, subsumed clauses are
redundant with respect to other clauses. During deduction it may happen
that clauses are derived which are instances of previously derived clauses (or
contain instances of such clauses). Because the philosophy of resolution is
to work on the most general level only, less general clauses can be regarded
as redundant; as a consequence such clauses can be deleted without loss of
completeness. Moreover we will see that removing subsumed clauses increases
neither proof- nor search complexity.

Example 4.2.1. Let C be the set of clause {C1, . . . , C5} with

C1 = P (x, f(x)) ∨R(x), C2 = Q(x) ∨ P (x, y), C3 = ¬R(f(x)) ∨Q(f(x)),

C4 = ¬Q(y) ∨ ¬R(y) and C5 = ¬P (x, f(x)).

Consider the R-refutation Γ of C in Figure 4.2 and the clause C6 appearing in
Γ . It is easy to verify that F ({C2})→ F ({C6}) is valid. In fact C6 can be ob-
tained from C2 by first applying the substitution ϑ : {x← f(y), y ← f(f(y))}
to C2 and then commuting the literals. In this sense C6 is an instance of C2

and we obtain a shorter refutation Γ1 in replacing C6 by C2 (see Figure 4.3).
The refutation Γ1 is not only shorter than Γ , it is also more general; note

that every clause in Γ (from C6 downwards) is an instance of a clause in Γ1,
where C7, C8 are proper instances of C′

7, C
′
8.

By the subsumption principle (to be defined formally below) we recognize the
redundancy of C6 (with respect to C2) and we do not continue a derivation

158 4. Redundancy and Deletion

 C1 : P (x, f(x)) ∨R(x) ¬R(f(x)) ∨Q(f(x)) (C3)

 C6 : P (f(y), f(f(y))) ∨Q(f(y)) ¬Q(y) ∨ ¬R(y) (C4)

 C7 : P (f(y), f(f(y))) ∨ ¬R(f(y)) P (x, f(x)) ∨R(x) (C1)

 C8 : P (f(y), f(f(y))) ∨ P (f(y), f(f(y))) ¬P (x, f(x)) (C5)

Fig. 4.2. The refutation Γ

 C2 : Q(x) ∨ P (x, y) ¬Q(y) ∨ ¬R(y) (C4)

 C′
7 : P (x, y) ∨ ¬R(x) P (x, f(x)) ∨R(x) (C1)

 C′
8 : P (x, y) ∨ P (x, f(x)) ¬P (x, f(x)) (C5)

Fig. 4.3. The refutation Γ1

containing C6. There are different ways to modify derivations: Either we try
to derive a new resolvent using the clause C1 or we replace C6 by C2 and
then start a new derivation.

In general we consider clauses as redundant not only if they are instances
of other clauses, but also if they contain instances of other clauses.

Definition 4.2.1 (subsumption). A clause C subsumes a clause D if
there exists a substitution ϑ such that LIT(C)ϑ ⊆ LIT(D) (we write C ≤ss

D).

Example 4.2.2. Let C1 = P (x)∨P (f(x)), C2 = P (f(y))∨P (f(f(y)))∨R(y),

C3 = P (a) ∨ P (f(f(a))) and C4 = P (f(y)) ∨ P (y) ∨ P (f(z)).

C1 ≤ss C2 because

4.2 The Subsumption Principle 159

{P (x), P (f(x))}ϑ ⊆ {P (f(y)), P (f(f(y))), R(y)}

by ϑ = {x← f(y)}.

C1 6≤ss C3: Indeed there is no ϑ such that {P (x), P (f(x))}ϑ ⊆
{P (a), P (f(f(a)))}.

For suppose {P (x), P (f(x))}ϑ ⊆ LIT(C3). Then P (x)ϑ ∈ LIT(C3). There
are two possibilities:

a) P (x)ϑ = P (a) : Then P (f(x))ϑ = P (f(a)) /∈ LIT(C3),
b) P (x)ϑ = P (f(f(a))): Then P (f(x))ϑ = P (f (3)(a)) /∈ LIT(C3).

Thus we conclude that C1 does not subsume C3. This last example shows
that the subsumption test cannot be “parallelized” (note that P (x) ≤ss C3

and P (f(x)) ≤ss C3, but P (x) ∨ P (f(x)) 6≤ss C3).
It is easy to see that neither C2 nor C3 subsumes C1. For C1, C4 we even

get C1 =ss C4 (i.e., C1 ≤ss C4 and C4 ≤ss C1). C1 ≤ss C4 is trivial via
ϑ = {x← y}. Now let ϑ = {y ← x, z ← x}. We then obtain

LIT(C4)ϑ = {P (f(y)), P (y), P (f(z))}ϑ = {P (x), P (f(x))} = LIT(C1)

and thus C4 ≤ss C1.
Here we see that bigger clauses may subsume smaller ones by internal

unification of literals. In fact ϑ is a unifier of {P (f(y)), P (f(z))} giving
{P (f(x))}.

We now discuss some mathematical properties of ≤ss (e.g. its decidability)
and show some relations among ≤ss,≤s, and ≤sc.

Proposition 4.2.1. ≤ss fulfills the following properties:

a) reflexivity
b) transitivity,
c) If C ≤ss D then C ≤ss Dϑ for all substitutions ϑ,
d) If C ≤ss D then F ({C})→ F ({D}) is valid.

Proof. a) Choose the empty substitution.
b) If LIT(C)ϑ ⊆ LIT(D) and LIT(D)η ⊆ LIT(E) then also LIT(C)ϑη ⊆

LIT(E).
c) If LIT(C)η ⊆ LIT(D) then LIT(C)ηϑ ⊆ LIT(Dϑ).
d) Clearly F ({C}) → F ({Cϑ}) is valid for every ϑ. Moreover F ({Cϑ}) →

F ({D}) is valid for Cϑ ⊆ D (note that clauses represent universally
quantified disjunctions). 3

Proposition 4.2.2. Let C,D be clauses and V (D) = {x1, . . . , xm}. Choose
new constant symbols c1, . . . , cm which are not contained in {C,D} and define
ϑ = {x1 ← c1, xm ← cm}. Then C ≤ss D iff C ≤ss Dϑ.

Proof. a) Suppose that C ≤ss D holds. From Proposition 4.2.1(c) we obtain
C ≤ss Dϑ.

160 4. Redundancy and Deletion

b) Let us assume C ≤ss Dϑ.
Then there exists a substitution γ fulfilling LIT(C)γ ⊆ Dϑ. Let V (C) =
{y1, . . . , yn} and γ = {y1 ← t1, . . . , yn ← tn} (there is no loss of generality
in restricting dom(γ) to V (C)). Note that γ must replace all variables
in C because Dϑ is ground. Let si = ti[c1/x1, . . . , cn/xn] (where s/t
denotes the replacement of all occurrences of the term s by the term t)
for i = 1, . . . , n and

µ = {y1 ← s1, . . . , yn ← sn}.

Clearly
LIT(C)µ ⊆ LIT(Dϑ[c1/x1, . . . , cn/xn]).

But (Dϑ[c1/x1, . . . , cn/xn]) = D (here it is important that the ci are
indeed new symbols). So we obtain LIT(C)µ ⊆ LIT(D), i.e., C ≤ss D.

3

Proposition 4.2.2 tells us that, in testing C ≤ss D, we may assume D to
be ground without loss of generality. This assumption makes formulation and
analysis of subsumption algorithms easier. Another application can be found
in the proof of the following proposition.

Proposition 4.2.3. Subsumption is decidable.

Proof. In order to test C ≤ss D we may replace D by some “ground version”
D′ according to Proposition 4.2.2. For technical reasons we assume that D is
already ground.

Let d = τ(D) (= the maximal depth of a term occurring in D) and let H
be the Herbrand universe of D. Let

Θ = {ϑ|ϑ ∈ SUBST, dom(ϑ) = V (C), rg(ϑ) ⊆ H}.

Trivially, C ≤ss D iff there exists a ϑ ∈ Θ such that LIT(C)ϑ ⊆ LIT(D). If
ϑ ∈ Θ and τ(rg(ϑ)) > d then clearly τ(Cϑ) > d and LIT(Cϑ) 6⊆ LIT(D).

Let us define Θd = {ϑ|ϑ ∈ Θ; τ(rg(ϑ)) ≤ d}. Then C ≤ss D iff there exists a
ϑ ∈ Θd such that LIT(C)ϑ ⊆ LIT(D). But the set Θd is finite. We thus obtain
a decision procedure for ≤ss by testing LIT(C)ϑ ⊆ LIT(D) for ϑ ∈ Θd. 3

The decision procedure for ≤ss which can be extracted from the proof
of Proposition 4.2.3 is very inefficient and not suited for practical use. In
Section 4.3 we will present more efficient subsumption algorithms which can
actually be applied within theorem proving programs.

We now compare the subsumption relation ≤ss with the relations ≤s

(Definition 2.7.7) and ≤sc (Definition 3.3.7).

Definition 4.2.2. Let ≤1 and ≤2 be reflexive and transitive relations on the
set of all clauses. We call ≤1 stronger than ≤2 if for all clauses C,D C ≤2 D

4.2 The Subsumption Principle 161

implies C ≤1 D. ≤1 is called strictly stronger than ≤2 if ≤1 is stronger than
≤2, but not vice versa.

Let ≤r be an arbitrary binary relation which is reflexive and transitive. We
write C =r D iff C ≤r D and D ≤r C.

Proposition 4.2.4. ≤ss is strictly stronger than ≤s and ≤sc.

Proof. As ≤sc is strictly stronger than ≤s it suffices to prove that ≤ss is
strictly stronger than ≤sc.

Recall that C ≤sc D iff there exists a substitution ϑ such that Nc(Cϑ) =
Nc(D), where Nc is the normalization operator defined as Ns ◦ γ where γ is
the condensation function from Definition 3.2.2.

We first prove that ≤ss is stronger than ≤sc, i.e., that C ≤sc D implies
C ≤ss D.
So let us assume C ≤ss D: By definition of the condensation function γ,

LIT(γ(Cϑ)) ⊆ LIT(Cϑ) and γ(Cϑ) is a factor of Cϑ.

Thus there exists a factoring substitution σ such that LIT(Cϑσ) =
LIT(γ(Cϑ)). By definition of the operator Ns (recall Ns = Nr ◦Nv ◦N0),

Ns(C) = Ns(D) iff LIT(C) = LIT(D).

Thus
Ns(γ(Cϑ)) = Ns(γ(D))

implies
LIT(γ(Cϑ)) = LIT(γ(D)).

But
LIT(γ(Cϑ)) = LIT(Cϑσ)

and therefore
LIT(Cϑσ) = LIT(γ(D)).

By definition of γ we have LIT(γ(D)) ⊆ LIT(D). Combining all the argu-
ments above we get LIT(Cϑσ) ⊆ LIT(D), i.e., C ≤ss D.

It remains to show that ≤ss is strictly stronger:

P (x) ≤ss P (a) ∨Q(a) but not P (x) ≤sc P (a) ∨Q(a).

3

The simplest use of subsumption is that of preprocessing, that means to re-
duce a set of clauses under subsumption before resolution deduction actually
takes place. The following proposition shows that such a reduction is seman-
tically justified. For technical reasons we extend ≤ss from clauses to sets of
clauses.

162 4. Redundancy and Deletion

Definition 4.2.3. Let C,D be sets of clauses. We say that C subsumes D
(and write C ≤ss D) iff for all D ∈ D there exists a C ∈ C such that C ≤ss D.

Proposition 4.2.5. Let C be a set of clauses and C ∈ C such that C −
{C} ≤ss {C}. Then F (C − {C}) is logically equivalent to F (C).

Proof. By definition of the operator F, F (C)→ F (C − {C}) is trivially valid.
By Definition 4.2.3 C−{C} ≤ss {C} implies the existence of aD ∈ C−{C}

with D ≤ss C. By Proposition 4.2.1(d) we know that F ({D}) → F ({C}) is
valid.

The sentence F (C −{C})→ F (C −{C}) is trivially valid and the validity
of F (C −{C})→ F ({C}) follows from the argument above. Therefore F (C −
{C})→ F (C) is valid too. 3

By Proposition 4.2.5 we may delete subsumed clauses from the (input) set of
clauses C until we obtain a set of clauses C′ which is subsumption-reduced,
i.e., for every C1, C2 ∈ C′, C1 ≤ss C2 implies C1 = C2. Besides the advan-
tage that C′ is in general smaller than C (and therefore Rx(C′) ⊆ Rx(C) for
every refinement operator Rx), removing subsumed clauses does not increase
the minimal proof-length. Therefore, replacing C by C′ always reduces proof
search. Moreover, we never have problems concerning completeness (note that
2 ∈ Rx(C′) iff 2 ∈ Rx(C)).

More important (and more delicate) than subsumption as preprocessing
is its use during deduction. In combining subsumption and resolution we
(roughly) have the following alternatives:

1. Forward subsumption,
2. backward subsumption, and
3. (total) replacement.

Forward subsumption means removing newly derived clauses which are sub-
sumed by clauses derived before.

In backward subsumption a clause C which was derived before, but is
subsumed by a clause C′ obtained afterwards, is rendered inactive. If the
output of the search procedure should be a deduction (or a deduction tree)
then we cannot simply delete C without destroying the structure of the (newly
produced) deduction. Instead C is reactivated if C′ is no longer an ancestor
of the actual clause in the search process.

In case of replacement the set of derived clauses – as a whole – is (period-
ically) reduced under subsumption. If used in this way, subsumption essen-
tially depends on dynamical features of deductions (the terms “before” and
“afterwards” point to this phenomenon); thus the effect of subsumption es-
sentially depends on the method of search. In this chapter we use breadth-first
search as basis, a method which is naturally compatible with the operator
formalism for resolution. Only forward subsumption and replacement will be
treated in detail. It will turn out that forward subsumption always defines a

4.2 The Subsumption Principle 163

refinement (in the sense of Section 3.1), while replacement does not (instead
it is an iterated reduction method).

We first analyze forward subsumption and investigate its impact on the
completeness of refinements and on search complexity.

Definition 4.2.4 (forward subsumption). Let C,D be sets of clauses.
We first define the subset of clauses in D which are not subsumed by C:

sf(C,D) = {D|D ∈ D, C 6≤ss {D}}.

Let Rx be a resolution refinement operator on N -clauses for some normal-
ization principle N . We define

S0
xs(C) = C,

Si+1
xs (C) = Si

xs(C) ∪ sf(Si
xs(C), ρx(Si

xs(C))),

Rxs(C) =
⋃∞

i=0 S
i
xs(C).

Rxs is called the refinement Rx “under forward subsumption”.

By definition of Rxs and of sf we always obtain

Rxs(C) ⊆ Rx(C) for C ∈ CL.

Therefore Rxs is always more refined than Rx. The question remains whether
Rxs still is complete (provided Rx is) and whether forward subsumption
improves search complexity. We will see that, in most relevant cases, we can
guarantee these beneficial properties.

For the completeness results to be proved in this chapter it is of central
importance that subsumption is “preserved” under resolution.

Lemma 4.2.1. Let C1, D1, C2, and D2 be clauses such that C1 ≤ss D1 and
C2 ≤ss D2. Let D be a resolvent of D1 and D2. Then one of the following
properties holds:

(a) C1 ≤ss D, or
(b) C2 ≤ss D, or
(c) there exists a resolvent C of C1 and C2 such that C ≤ss D.

Proof. Because D is resolvent of D1, D2 there exist (variable-disjoint variants
of) factors E1 ∨M ∨ F1 of D1 and E2 ∨N ∨ F2 of D2 such that {M,Nd} is
unifiable by an m.g.u. σ. So D is of the form:

D : (E1 ∨ F1 ∨ E2 ∨ F2)σ.

Now we have C1 ≤ss D1, C2 ≤ss D2 and E1 ∨M ∨ F1, E2 ∨ N ∨ F2 are
factors of D1 and D2 respectively. By Exercise 4.2.6 we obtain

164 4. Redundancy and Deletion

C1 ≤ss E1 ∨M ∨ F1 and C2 ≤ss E2 ∨N ∨ F2.

By C1 ≤ss E1 ∨M ∨ F1 and by definition of ≤ss there exists a substitution
ϑ1 such that

LIT(C1)ϑ1 ⊆ LIT(E1 ∨M ∨ F1).

Similarly there exists a substitution ϑ2 with

LIT(C2)ϑ2 ⊆ LIT(E2 ∨N ∨ F2).

case a) : M 6∈ LIT(C1)ϑ1 or N 6∈ LIT(C2)ϑ2.
Let us suppose M 6∈ LIT(C1)ϑ1. Then LIT(C1)ϑ1 ⊆ LIT(E1 ∨ F1) and
thus C1 ≤ss E1 ∨ F1. Moreover we have

E1 ∨ F1 ≤ss (E1 ∨ F1)σ ≤ss (E1 ∨ F1 ∨ E2 ∨ F2)σ = D.

By transitivity of ≤ss we get C1 ≤ss D and Lemma 4.2.1(a) holds.
IfN 6∈ LIT(C2)ϑ2 a completely analogous argument yields C2 ≤ss E2∨F2

and C2 ≤ss D (Lemma 4.2.1(b)).

case b) : M ∈ LIT(C1)ϑ1 and N ∈ LIT(C2)ϑ2. Let L1 = {L1, . . . , Lm} be
the set of all literals in LIT(C1) with Lϑ1 = M .
In the same way we define L2 for C2 and ϑ2. Then ϑ1 is a unifier of L1 and
ϑ2 is a unifier of L2. By the unification theorem there exist m.g.u.’s λ1 of
L1 and λ2 of L2. Therefore the clauses C1λ1 and C2λ2 are G-instances
of C1 and of C2, respectively. Moreover there are corresponding factors
(i.e., p-reducts of G-instances)

G1 ∨R ∨H1 of C1 and G2 ∨ S ∨H2 of C2

fulfilling the following properties:
R ≤s M, S ≤s N and

G1 ∨H1 ≤ss E1 ∨ F1, G2 ∨H2 ≤ss E2 ∨ F2.

We even know that R ≤s M and G1 ∨ H1 ≤ss E1 ∨ F1 via a common
substitution (the same holds for S ≤s N,G2 ∨H2 ≤ss E2 ∨ F2).
So let η1, η2 be defined by

λ1η1 = ϑ1 and λ2η2 = ϑ2.

By definition of the resolvent D, σ is m.g.u. of {M,Nd}. Let η = η1 ∪ η2
(note that such a definition is possible as E1∨M ∨F1 and E2∨N ∨F2 are
variable-disjoint). By Rη = M and Sη = N the set {R,Sd} is unifiable
by the substitution ησ.
By the unification theorem there exists an m.g.u. τ of {R,Sd}. Because
τ is m.g.u. there must be a substitution ρ such that

τρ = ησ.

4.2 The Subsumption Principle 165

We thus obtain the following relations:

Rτρ = Mσ, Sτρ = Nσ and

LIT(G1 ∨H1)τρ ⊆ LIT(E1 ∨ F1)σ, LIT(G2 ∨H2)τρ ⊆ LIT(E2 ∨ F2)σ.

But the clause
C : (G1 ∨H1 ∨G2 ∨H2)τ

is a resolvent of C1 and C2 and

LIT(G1 ∨H1 ∨G2 ∨H2)τρ ⊆ LIT(E1 ∨ F1 ∨ E2 ∨ F2)σ.

But that means C ≤ss D (Lemma 4.2.1(c)). 3

A refinement type compatible with forward subsumption is R<A
for arbitrary

A-orderings <A.

Theorem 4.2.1. Any A-ordering refinement is complete under forward sub-
sumption, or more formally: Let C be an unsatisfiable set of Nc-clauses and
<A be an arbitrary A-ordering. Then 2 ∈ R<s

A
(C).

Proof. It suffices to show that, for all i, the i-th level of clauses generated by
R<s

A
subsumes that generated by R<A

:

(*) For all i ∈ IN : Si
<s

A
(C) ≤ss S

i
<A

(C).

Suppose that (*) has already been proved. By Theorem 3.3.1 we know
that R<A

is complete and thus 2 ∈ R<A
(C). By definition of R<A

there
exists a k ∈ IN such that 2 ∈ Sk

<A
(C). From (*) we get Sk

<s
A
(C) ≤ss S

k
<A

(C).

But 2 can only be subsumed by 2 itself and therefore 2 ∈ Sk
<s

A
(C). So we

obtain 2 ∈ Sk
<s

A
(C) and it remains to prove (*). We do so by induction on i.

i = 0 :
S0

<s
A
(C) = S0

<A
(C) = C and S0

<s
A
(C) ≤ss S

0
<A

(C) trivially holds.

(IH): Suppose that Si
<s

A
(C) ≤ss S

i
<A

(C).

Let D ∈ Si+1
<A

(C).

We have to find a C ∈ Si+1
<s

A
(C) such that C ≤ss D. By definition of the Si

we have:
Si+1

<A
(C) = Si

<A
(C) ∪ ρ<A

(Si
<A

(C)).

If D ∈ Si
<A

(C) then the required C exists by (IH). So we may assume D ∈
ρ<A

(Si
<A

(C)).
By definition of ρ<A

, D ∈ ρ<A
(Si

<A
(C)) iff there are clauses D1, D2 ∈

Si
<A

(C) such that D ∈ ρ<A
({D1, D2}). Then D = Nc(D0) such that D0 is a

resolvent of D1 and D2 with the following property:
There exists no literal L in D0 such that A >A L, where A is the resolved

166 4. Redundancy and Deletion

atom of the (corresponding) resolution of D1 and D2.

By (IH) we have Si
<s

A
(C) ≤ss Si

<A
(C). Consequently there exist clauses

C1, C2 ∈ Si
<s

A
(C) such that

C1 ≤ss D1 and C2 ≤ss D2.

AsD0 is resolvent ofD1, D2 we know by Lemma 4.2.1 that one of the following
properties must hold:

a) C1 ≤ss D0 or
b) C2 ≤ss D0 or
c) There exists a resolvent C of C1, C2 such that C ≤ss D0

If a) or b) holds then clearly Si
<s

A
(C) ≤ss {D0} and we are done (as D was an

arbitrary A-resolvent from Si
<A

(S) we conclude Si
<s

A
(C) ≤ss S

i+1
<A (C) under

restriction a) or b)).
So it remains to analyze case c). In fact we need more than just c); we

must ensure that (in case a and b both fail) there exists a resolvent C0 of
C1, C2 such that C0 ≤ss D0 and Nc(C0) ∈ ρ<A

({C1, C2}). Only if the last
property is guaranteed we have that

Si+1
<s

A
(C) ≤ss {D0} (and thus Si+1

<s
A

(C) ≤ss {D}).

So it remains to show that (provided a and b do not hold) there exists a
resolvent C0 of C1, C2 such that

Nc(C0) ∈ ρ<A
({C1, C2}).

Let C0 be like C in the proof of Lemma 4.2.1, i.e.,

C0 = (G1 ∨H1 ∨G2 ∨H2)τ

D0 = (E1 ∨ F1 ∨E2 ∨ F2)σ

such that R,S are the cut-literals of C1, C2 and M,N of D1, D2.

We have to show that the resolvent C0 constructed in Lemma 4.2.1 must be
an A-resolvent (assuming that D0 is an A-resolvent). As Rτ is the resolved
literal in the resolution of C1 and C2 we have to show:

There is no literal L in (G1 ∨H1 ∨G2 ∨H2)τ such that Rτ <A L.

So let us assume that L ∈ LIT((G1 ∨H1 ∨ G2 ∨H2)τ) such that Rτ <A L
and derive a contradiction. By property (A3) in Definition 3.3.1 we obtain
Rτµ <A Lµ for all substitutions µ.

Let ρ be the substitution defined in the proof of Lemma 4.2.1, i.e.,
τρ = ησ, Rτρ = Mσ, Sτρ = Nσ. Then we get Rτρ <A Lρ.

By LIT(G1 ∨H1 ∨G2 ∨H2)τρ ⊆ LIT(D0) we also have Lρ ∈ LIT(D0).

4.2 The Subsumption Principle 167

at(Mσ) is the resolved atom in the resolution of D1 and D2. Moreover from
Rτρ = Mσ we obtain Mσ <A Lρ and Lρ is a literal in D0. But this contra-
dicts the assumption that D0 ∈ ρ<A

({D1, D2)}).

If C0 is the R-resolvent of C1, C2 corresponding to D0 (and constructed ac-
cording to the proof of Lemma 4.2.1) then there exists no L in C0 such
that Rτ < L. Therefore Nc(C0) ∈ ρ<A

({C1, C2}) ⊆ ρ<A
(Si

<s
A
(C)). Thus, for

C = Nc(C0), we obtain

C ∈ Si+1
<s

A
(C) and C ≤ss D

Note that C0 ≤ss D0 implies C ≤ss D (by Exercise 4.2.7). Putting a), b), c)
together we have

Si+1
<s

A
(C) ≤ss S

i+1
<A

(C).

3

The argument in the proof of Theorem 4.2.1 can also be used to prove the
completeness of unrestricted resolution under forward subsumption (Exer-
cise 4.2.8). Note that this result cannot be derived directly from the fact
that R<A

is a refinement of R∅ (C1 ⊆ D1 and C2 ⊆ D2 does not imply
sf(C1, C2)) ⊆ sf(D1,D2)).

In Section 4.1 we have seen that search complexity can be increased by
choosing a stricter refinement. The following proposition shows that in refin-
ing A-ordering by forward subsumption such an effect is impossible.

Proposition 4.2.6. Forward subsumption never increases the search com-
plexity of A-ordering refinements, or more formally: Let <A be an A-ordering
and C be a (finite) unsatisfiable set of Nc-clauses then CS<s

A
(C) ≤ CS<A

(C).

Proof. By sf(C,D) ⊆ D and by the definitions of R<A
and of R<s

A
we obtain

Si
<s

A
(C) ⊆ Si

<A
(C) for all i ∈ IN. In the proof of Theorem 4.2.1 we have shown

that for all i ∈ IN :
Si

<s
A
(C) ≤ss S

i
<A

(C).

In particular 2 ∈ Si
<A

(C) implies 2 ∈ Si
<s

A
(C) and thus

d<s
A
(C) = d<A

(C).

Putting things together we obtain

S
d<s

A
(C)

<s
A

(C) ⊆ S
d<A

(C)
<A

.

But that means CS<s
A
(C) ≤ CS<A

(C). 3

By an argument similar to that in the proof of Proposition 4.2.6 we obtain
CS∅s(C) ≤ CS∅(C), i.e., forward subsumption decreases the search complex-
ity of unrestricted resolution (Exercise 4.2.9). Forward subsumption can lead
to incompleteness if combined with certain refinements. A typical example is
lock resolution.

168 4. Redundancy and Deletion

Proposition 4.2.7. Lock resolution with forward subsumption is incom-
plete.

Proof. In order to make the above statement more precise we have to define
subsumption for indexed clauses. We define C ≤ss D for indexed clauses C,D
iff unlock(C) ≤ss unlock(D).

Let C = {(R(x1), 1) ∨ (P (x1), 5), (¬P (x1), 3) ∨ (R(x1), 6), (P (x1), 4) ∨
(¬R(x1), 7),
(¬R(x1), 2) ∨ (¬P (x1), 8)}.

(C is identical to the set of Nc-clauses defined in Example 4.1.3).
By definition of the lock operator Rl, we obtain

Rl(C) =
∞
⋃

i=0

Si
l (C) for Si+1

l (C) = Si
l (C) ∪ ρl(S

i
l (C)),

where ρl(D) denotes the set of all lock resolvents from D (with respect to
the locking l). As C is unsatisfiable and Rl is complete we have 2 ∈ Rl(C).
We show now that 2 6∈ Rls(C). For this purpose we compute the i-th levels
Si

l (C).

S1
l (C) = C ∪ {(P (x1), 5) ∨ (¬P (x1), 8), (R(x1), 6) ∨ (¬R(x1), 7)}.

The clauses in S1
l (C)− C are not subsumed by clauses in C and therefore

sf(S0
l (C), ρl(C)) = ρl(C) and S1

l (C) = S1
ls(C).

S2
l (C) = S1

l (C) ∪ {(R(x1), 6) ∨ (¬P (x1), 8), (¬R(x1), 7) ∨ (¬P (x1), 8)}.

Thus

ρl(S
1
l (C)) = ρl(S

1
ls(C)) = {(R(x1), 6)∨(¬P (x1), 8), (¬R(x1), 7)∨(¬P (x1), 8)}.

But
(¬P (x1), 3) ∨ (R(x1), 6) ≤ss (R(x1), 6) ∨ (¬P (x1), 8))

and
(¬P (x1), 2) ∨ (¬P (x1), 8) ≤ss (¬R(x1), 7) ∨ (¬P (x1), 8)).

That means C ≤ss ρl(S
1
ls(C)) and particularly sf(S1

ls(C), ρl(S
1
ls(C))) = ∅.

We obtain S2
ls(C) = S1

ls(C) and, by the nature of operator definitions,
Rls(C) = S1

ls(C). As 2 6∈ S1
ls(C) we obtain 2 6∈ Rls(C). But C is unsatisfi-

able and thus Rls is incomplete. 3

We can overcome the loss of completeness, however, by avoiding the tech-
nique of unlocking (Exercise 4.2.10). Forward subsumption can also be defined
for refinements like linear input deduction, which do not admit an operator

4.2 The Subsumption Principle 169

definition. For such refinements we have to restrict the deduction principle
to a “nonredundant” type. Our next subject is to define forward subsump-
tion for linear input deductions. Because subsumption does not respect the
order of literals within a clause, the LI-deduction refinement of Section 3.5 is
inappropriate. Therefore we will use a less restricted principle of linear input
deduction, where every literal in a center clause may be resolved.

Definition 4.2.5 (unrestricted LI-deduction). Let C be a set of (unnor-
malized) clauses, C0, E1, E2, . . . , En in C and Ci+1 ∈ Res(Ci, Ei+1) for i < n.
Then the R-deduction

Γ : C0, E1, C1, . . . , En, Cn

is called an unrestricted LI-deduction (for short: ULI-deduction) of Cn from
C with top clause C0.

Remember that LI-deductions (see Definition 3.5.5) were subjected to addi-
tional restrictions such as 1) resolving only the rightmost literal in a center
clause and 2) factoring with the leftmost literal in a center clause only. In the
definition of ULI-deductions we omit all these restrictions. As LI-deduction
is more restricted than ULI-deduction, the latter is complete relative to the
former; in particular ULI-deduction is complete on Horn logic (but is not
complete on the whole of clause logic).

In ULI-deductions (and in LI-deductions) infinite cycling may occur, a
quite unpleasant feature in automated deduction. Cycling means that in-
finitely many instances of a center clause may be produced in the deduction
procedure (more exactly, there are arbitrarily many repetitions of instances
of a center clause in ULI-deductions). Fortunately, cycling can be avoided
under preservation of completeness. This result is an immediate consequence
of the completeness result concerning nonredundant ULI-deductions.

Definition 4.2.6 (SULI-deduction). Let Γ : C0, E1, . . . , Cn−1, En, Cn be
an ULI-deduction from a set of clauses C. Γ is called subsumption-reduced
(or a SULI-deduction) if

1) C 6≤ss Ci for i = 1, . . . , n and
2) If i, j ≤ n and i < j then Ci 6≤ss Cj .

SULI-deductions model the principle of forward subsumption within ULI-
deductions. Any clause derived “later” (i.e., a Cj for j 6= 1) cannot be sub-
sumed by an input clause or by a clause derived “before” (these are the C′

is
for i < j). Our goal is to prove the completeness of SULI-deduction relative
to ULI-deduction. As linear input deduction is incomplete, SULI-deduction is
incomplete too. However we still can obtain relative completeness. Generally
a refinement Ψ is complete relative to a refinement Ω if, for all unsatisfiable

170 4. Redundancy and Deletion

sets of clauses C, Ψ(C) contains a refutation if Ω(C) contains one. To show rel-
ative completeness we require a technical lemma that replaces the lifting by
the subsumption property. A natural complexity measure for ULI-deductions
is depth:

Definition 4.2.7 (depth of ULI-deductions).
Let Γ : C0, E1, C1, . . . , En, Cn be a ULI-deduction. Then the depth of Γ is
defined by δ(Γ) = n.

It is obvious that δ(Γ) = 1
2 (l(Γ) − 1) for all ULI-deductions (where l(Γ) is

the length of Γ).

Lemma 4.2.2. Let C be a set of clauses and Γ ′ be an ULI-deduction of a
clause D′ from C with top clause C′. Let C be a clause with C ≤ss C

′. Then
there exists an ULI-deduction Γ of a clause D from (C − {C′}) ∪ {C} with
top clause C such that D ≤ss D

′ and δ(Γ) ≤ δ(Γ ′).

Proof. We proceed by induction on δ(Γ ′).

δ(Γ ′) = 0 : In this case Γ ′ must be C′. We simply define Γ = C and obtain
δ(Γ) = δ(Γ ′) = 0 and C ≤ss C

′.

(IH) Suppose that for all Γ ′ fulfilling the conditions of Lemma 4.2.2 and
δ(Γ ′) = n there exists an appropriate deduction Γ .

case δ(Γ ′) = n+ 1 : Γ must be of the form∆′, G′, E′, D′ such that Λ′ : ∆′, G′

is an ULI-deduction of G′ from C with top clause C′ and δ(∆′, G′) = n.

By (IH) there exists an ULI-deduction Λ of a clause G from (C −{C′})∪{C}
with top clause C such that G ≤ss G

′ and δ(Λ) ≤ n. By Lemma 4.2.1 we
conclude that a) G ≤ss D

′, or b) E′ ≤ss D
′, or c) there exists a resolvent D

of G and E′ such that D ≤ss D
′. In fact we need slightly more than that,

namely that always a) or c) holds. Indeed the conditions are more specific
than in Lemma 4.2.1 and we can obtain a stronger result (see Exercise 4.2.17)
namely:

Let C1, C2, D,E be clauses such that C1 ≤ss C2 and E ∈ Res(C2, D).
Then either C1 ≤ss E or there exists a resolvent F of C1 and D such
that F ≤ss E.

Setting C1 : G, C2 : G′ and D : E′ we obtain G ≤ss D
′ or the existence of

an appropriate resolvent D of G and E′. Therefore a) or c) must hold. In
case a) we define Γ = Λ. Γ fulfils the required properties and particularly
δ(Γ) < δ(Γ ′). In case c) we set Γ = ∆,G,E′, D. Then Γ is an ULI-deduction
of D from (C − {C′}) ∪ {C} with topclause C such that D ≤ss D

′ and

δ(Γ) = δ(Λ) + 1 ≤ δ(Λ′) + 1 = δ(Γ ′).

3

4.2 The Subsumption Principle 171

Looking carefully at the proof of Lemma 4.2.2 we can derive the more
general result: If C ≤ss C′ and Γ ′ is an ULI-deduction of C′ from C′ then we
can find an ULI-deduction Γ of a clause C from C such that C ≤ss C

′ and
δ(Γ) ≤ δ(Γ ′) (Exercise 4.2.11). But we do not need this more general version
for the proof of the next theorem.

Theorem 4.2.2. SULI-deduction is complete relative to ULI-deduction;
moreover the following property is fulfilled: Let Γ be an unrestricted linear in-
put refutation of a set of clauses C. Then there exists a subsumption-reduced,
unrestricted linear input refutation ∆ of C such that δ(∆) ≤ δ(Γ).

Proof. If Γ is already a SULI-deduction then the theorem trivially holds.
So let us assume that Γ is an ULI- but not a SULI-refutation of C and

Γ = C0, E1, . . . , Cn−1, En,2.

Then either

a) There exists a clause D ∈ C and a Ci for i ≥ 1 such that D ≤ss Ci

or
b) There are i, j such that i < j ≤ n and Ci ≤ss Cj .

case a) By definition of ULI-deductions, Π : Ci, Ei+1, . . . , Cn−1, En,2 is an
ULI-refutation of C ∪ {Ci} (Π may collapse to 2). Because D ≤ss Ci

we may apply Lemma 4.2.2 and obtain an ULI-refutation ∆ of C with
topclause D and δ(∆) ≤ δ(Π). From δ(Π) < δ(Γ) we infer δ(∆) < δ(Γ).
That means we obtain an ULI-refutation ∆ of a depth strictly smaller
than that of Γ . Note that ∆ still may contain “redundancies” and need
not be a SULI-deduction (yet).

case b) Γ = C0, E1, . . . , Ci, Ei+1, . . . , Cj , . . . ,2 such that Ci ≤ss Cj .
Cj cannot be 2 (otherwise Ci would already be 2). But, clearly,
Π : Cj , Ej+1; . . . ,2 is an ULI-refutation of C ∪ {Cj}. By Ci ≤ss Cj and
Lemma 4.2.2 we find an ULI-refutation Λ of C ∪ {Ci} with top clause Ci

such that δ(Λ) ≤ δ(Π).

Let Λ = Ci, Λ
′. Then ∆ : C0, E1, . . . , Ci, Λ

′ is a ULI-refutation of C with
top clause C0. But δ(∆) = i + δ(Λ′) < j + δ(Π) = δ(Γ) and therefore
δ(∆) < δ(Γ).
Again we obtain a ULI-refutation of strictly smaller depth. So we can
define a transformation Ψ with the following property:

If Γ is an ULI-refutation, but not a SULI-refutation, then Ψ(Γ)
is an ULI-refutation such that δ(Ψ(Γ)) < δ(Γ).

Because every deduction is of finite depth only, Ψ can be applied only
finitely many often. Therefore, for each ULI-refutation Γ there exists a
k ∈ IN such that Ψ (k)(Γ) is a SULI-refutation and δ(Ψ (k)(Γ)) ≤ δ(Γ)

172 4. Redundancy and Deletion

(note that equality holds only if Γ is already a SULI-refutation and k =
0). 3

Using forward subsumption in linear input deductions is not only prof-
itable with respect to proof complexity (the length of a shortest proof cannot
be increased), but also with respect to search complexity. So far we have de-
fined search complexity for operator-based refinements. For ULI-deduction it
can naturally be defined as the number of all deductions within the minimal
depth of a refutation.

Definition 4.2.8 (search complexity of linear input deduction). Let
C be a set of clauses which is ULI-refutable and let C ∈ C such that C is
admissible as top clause. We define δULI(C, C) as the minimal depth of a
ULI-refutation of C with top clause C. δSULI(C, C) is defined in the same
way, using SULI-refutations instead of ULI-refutations.

Let ∆ULI(C, C, k) (∆SULI(C, C, k)) be the set of all ULI-deductions
(SULI-deductions) from C with top clause C and depth ≤ k. We define the
search complexity of ULI-deduction (SULI-deduction) as CSULI(CSSULI):

CSULI(C, C) = |∆ULI(C, C, δULI(C, C))| and
CSSULI(C, C) = |∆SULI(C, C, δSULI(C, C))|.

Proposition 4.2.8. The search complexity of subsumption-reduced ULI-
deduction is always less or equal than that of ULI-deduction.

Proof. Let C be a set of clauses, C ∈ C and let us assume that C is ULI-
refutable with top clause C.

Because the set of all SULI-deductions is a subset of the set of all ULI-
deductions we get:

∆SULI(C, C, k) ⊆ ∆ULI(C, C, k) for all k ∈ IN.

By Theorem 4.2.2 we know that, given an ULI-refutation, there is always a
SULI-refutation of equal or smaller depth. Particularly we obtain

δSULI(C, C) = δULI(C, C).

Putting things together we obtain

∆SULI(C, C, δSULI(C, C)) ⊆ ∆ULI(C, CδULI(C, C)).

3

In forward subsumption we only allow resolvents which are not subsumed
by clauses derived on a lower level. By such a deletion technique we obtain
a refinement (in the sense of Section 3.1) which contains redundancy-free

4.2 The Subsumption Principle 173

derivations only. In fact, if Rx is a refinement and 2 ∈ Rxs(C) we can con-
struct an Rx-refutation of C by using the clauses in Rxs(C). The situation
changes if we apply the subsumption principle “backward”, which means we
delete clauses on lower levels if they are subsumed by clauses on higher levels.
By such a deletion technique we may destroy the “history” of some clauses
derived so far and, as a consequence, break the structure of the deductions.
Deleting every subsumed clause, no matter how and when it was derived,
is called the principle of replacement. While refinements are of “deduction”
type, replacement is essentially a reduction method.

Example 4.2.3. Let

C = {P (x1) ∨Q(x1), P (x1) ∨ ¬Q(x1), Q(x1) ∨ ¬P (x1),
¬P (x1) ∨ ¬Q(x1)}.

By applying Nc-resolution (without any additional restriction) we obtain the
set of Nc-resolvents:

D : {P (x1), ¬P (x1), Q(x1), ¬Q(x1), P (x1) ∨ ¬P (x1), Q(x1) ∨ ¬Q(x1)}.

In the refinement R∅ we simply add D to C and we obtain:

S1
∅(C) = C ∪ D.

But, once we have D, all clauses in C are rendered redundant. In fact
we obtain D ≤ss C. But D is even internally redundant (the tautolo-
gies in D are subsumed by other clauses in D) and thus reduces to D′ :
{P (x1),¬P (x1), Q(x1),¬Q(x1)}.

So let us replace C by D′. Then ρ∅(D
′) = {2}. But, in the presence of

2, all other clauses are redundant and we may delete D′ too. So, finally, we
are left with the set {2} only. The reduction of C to D′ and of D′ to {2}
are called replacement steps. So we may write Si

r for the “generations” of
replacement and obtain:

S0
r (C) = sub(C), S1

r (C) = D′, S2
r (C) = {2}.

We see that the aim of replacement is to reduce unsatisfiable sets of clauses
to {2}.

We can proceed similarly in using replacement for hyperresolution. In
such a case we obtain

S1
H(C) = C ∪ {P (x1), Q(x1)} and S2

H(C) = S1
H(C) ∪ {2}.

Using replacement we obtain

S0
Hr(C) = C

(C is reduced under subsumption) and

174 4. Redundancy and Deletion

S1
Hr(C) = {P (x1), Q(x1),¬P (x1) ∨ ¬Q(x1)}

(note that P (x1) ≤ss P (x1) ∨Q(x1) and Q(x1) ≤ss Q(x1) ∨ ¬P (x1)).

But δH(S1
Hr(C)) = {2} and, like before, we get S2

Hr(C) = {2}.

Definition 4.2.9 (reduction under subsumption). Let C be a set of
clauses. C is called subsumption-reduced if for all C,D ∈ C : C ≤ss D implies
C = D.

There may be more than just one subsumption-reduced form of a set of
clauses (i.e., clauses C,D such that C =ss D). But by equipping the set of
clauses with a linear ordering (e.g., the lexicographic one) and by keeping
the smallest clause of every =ss-equivalence class we can obtain a unique
reduced form. Thus we can consider subsumption-reduction as a function
(which we denote by sub()). The sub-operator (on a set of N -clauses) enjoys
the following obvious properties:

a) sub(C) ⊆ C,
b) sub(sub(C)) = sub(C) and
c) If C ≤ss D then sub(C ∪ D) =ss sub(C).

Definition 4.2.10 (replacement sequence). Let Rx be a resolution re-
finement operator defined on N -clauses for some normalization operator N .
We define

S0
xr(C) = sub(C) and

Si+1
xr (C) = sub(Si

xr(C) ∪ ρx(Si
xr(C)))

for i ∈ IN. Then the sequence (Si
xr(C))i∈IN is called the Rx-replacement se-

quence for C (in short: Rxr-sequence).
An Rx-replacement sequence (Si

xr(C))i∈IN is called convergent if there ex-
ists a k ∈ IN such that for all l ≥ k : Sl

xr(C) = Sk
xr(C); otherwise it is called

divergent. It is called a refutation-sequence if there exists a k ∈ IN such that
Sk

xr(C) = {2}.

Example 4.2.4. Let

C = {P (x1) ∨Q(x1), P (x1) ∨ ¬Q(x1), Q(x1) ∨ ¬P (x1),¬P (x1) ∨ ¬Q(x1)}

as in example 4.2.3.
Then C, {P (x1), Q(x1),¬P (x1),¬Q(x1)},2 is a R∅r-refutation sequence
(note that not only all original clauses are deleted in the second step but also
the two tautological resolvents). C, {P (x1), Q(x1)}, {2} is an RHr-refutation
sequence.
The set of clauses D , defined by D = C − {¬P (x1) ∨ ¬Q(x1)}, obviously is
satisfiable.

The RHr-sequence for D is

4.2 The Subsumption Principle 175

Ψ : D, {P (x1), Q(x1)}, {P (x1), Q(x1)}, . . .

Ψ clearly is convergent.
We will see that for unsatisfiable sets of Nc-clauses C the sequence

(Si
Hr(C))i∈IN is a refutation sequence (i.e., RH -replacement is complete). But

in case of satisfiable sets C divergent sequences must exist (note that clause
logic is undecidable).

Example 4.2.5. C = {P (a), P (f(x1)) ∨ ¬P (x1)}.

The RH -replacement sequence for C is:

Ψ : C, C ∪ {P (f(a))}, C ∪ {P (f(a)), P (f (2)(a))},

Ψ is divergent as P (f (i)(a)) ∈ Si
Hr(C) − Si−1

Hr (C) for i > 0. If C is
changed to D : {P (f (2)(x1)), P (f(x1))∨¬P (x1)} then RHr-converges. In fact
S1

Hr(D) = S0
Hr(D) = D because {P (f (3)(x1))} = ρH(D) and P (f (2)(x1)) ≤ss

P (f (3)(x1)).
Note that by omitting replacement we obtain P (f (k)(x1)) ∈ RH(D) for all
k ≥ 2.

Still the question remains whether the replacement operators Rxr are ad-
missible, i.e., whether they are correct and complete. The correctness (Rxr(C)
is refutation sequence implies that C is unsatisfiable) easily follows from the
fact that C is logically equivalent to sub(C); thus all members of a reduction
sequence are logically equivalent (Exercise 4.2.13). It remains to investigate
completeness. As in the case of forward subsumption we prove that the i-th
member in a reduction sequence (Si

xr(C))i∈N subsumes the i-th level Si
x(C) of

the corresponding refinement Rx. As refinement we choose hyperresolution.

Lemma 4.2.3. The replacement sequences for hyperresolution subsume the
level-sets generated by hyperresolution (without subsumption). More formally,
let C be a set of Nc-clauses; then for all k ∈ IN : Sk

Hr(C) ≤ss S
k
H(C).

Proof. We show first (to facilitate the argumentation below) that we can
reduce the problem to subsumption-reduced sets of clauses. Indeed Sk

Hr(C) =
Sk

Hr(sub(C)) for all k ∈ IN. From sub(C) ⊆ C we derive Sk
H(sub(C)) ⊆ Sk

H(C)
and thus
Sk

Hr(sub(C)) ≤ss S
k
H(C) implies Sk

Hr(C) ≤ss S
k
H(C) for all k ∈ IN.

So we may assume, without loss of generality, that C is subsumption
reduced. We proceed further by induction on k:

For k = 0 we obtain S0
H(C) = C and S0

Hr(C) = sub(C) = C, and so
Sk

Hr(C) ≤ss S
k
H(C) trivially holds.

(IH) Suppose that we already have Sk
Hr(C) ≤ss S

k
H(C).

We have to show that all clash resolvents in Sk+1
H (C)− Sk

H(C) are subsumed

by clauses in Sk+1
Hr (C).

Note that
Sk+1

Hr (C) = sub(Sk
Hr(C) ∪ ρH(Sk

Hr(C)))

176 4. Redundancy and Deletion

So clearly Sk+1
Hr (C) ≤ss S

k
Hr(C) and, by (IH), Sk+1

Hr (C) ≤ss S
k
H(C).

Thus it is sufficient to show Sk+1
Hr (C) ≤ss ρH(Sk

H(C)). Now let Γ ′ :
(C′;D′

1, . . . , D
′
n) be a clash sequence over the set of clauses Sk

H(C) and let E′

be a clash resolvent of Γ ′. By (IH) there exist clauses C,D1, . . . , Dn ∈ Sk
Hr(C)

such that C ≤ss C
′ and Di ≤ss D

′
1 for i = 1, . . . , n.

If C is nonpositive then Γ : (C;D1, . . . , Dn) is a clash sequence over Sk
Hr(C).

We distinguish two cases:

a) C ∈ C and
b) C 6∈ C.

We first discuss

case b) : As C ∈ Sk
Hr(C)−C, C must be a positive clause (in fact all nonposi-

tive clauses in Sk
Hr(C) must already be in C). From C = CP and C ≤ss C

′

we infer the existence of a substitution ϑ such that LIT(C)ϑ ⊆ LIT(C′
P).

Now the clash resolvent E′ must contain a subclause of the form C′
P η

for some substitution η. We conclude LIT(C)ϑη ⊆ LIT(E′) and therefore
C ≤ss E

′.
We now turn to

case a) : Because C′ must be in C (otherwise Γ ′ is not a clash sequence) and
C is subsumption reduced we obtain C′ = C.
In particular Γ : (C,D1, . . . , Dn) is a clash sequence over Sk

Hr(C). Γ does
not necessarily possess a clash resolvent at all. But we will show the
following:

Let R′
i be the i-th intermediary resolvent leading to the clash resolvent

E′, which means R′
0 = C′ and for all i < n : R′

i+1 is a PRF-resolvent of
R′

i and D′
i+1 and R′

n = E′.
Remember that PRF-resolution only cuts out the rightmost (negative)
literal of the nonpositive clause. In the positive partner clause factoring
is allowed and all of its literals are allowed to be resolved upon. For the
inductive argument used below we require a refined subsumption relation
≤ss0: Let C,D be clauses in PN-form (Definition 3.6.1). Then C ≤ss0 D
iff there exists a substitution ϑ such that LIT(CP)ϑ ⊆ LIT(DP) and, in
case CN 6= 2, CNϑ = DN . Clearly C ≤ss0 D implies C ≤ss D, but not
vice versa.
In the next step we will inductively construct a sequence of clauses Ri

with the property Ri ≤ss0 R′
i for i = 1, . . . , n. These clauses are the

intermediary resolvents of the “subsuming clash”.

i = 0 : R0 = C. From R0 = R′
0 we directly get R0 ≤ss0 R

′
0. Suppose that

Ri has already been constructed and i < n:

case aa) Ri is positive. We define Ri+1 = Ri. By (IH) we have Ri ≤ss0

R′
i. Because Ri is positive the last relation is equivalent to Ri ≤ss R

′
i.

4.2 The Subsumption Principle 177

As R′
i+1 is a PRF-resolvent of R′

i and D′
i, R

′
i must be of the form:

R′
i : E′

i+1 ∨ ¬Q
′ for some atom Q′.

So, clearly, Ri ≤ss E′
i+1. But R′

i+1 contains an instance of E′
i+1

and we conclude Ri ≤ss R
′
i+1. By definition of Ri+1 we thus obtain

Ri+1 ≤ss R
′
i+1 and, by positivity of Ri+1, Ri+1 ≤ss0 R

′
i+1.

case ab) Ri is nonpositive.
subcase aba) Di+1 ≤ss R

′
i+1:

In this case we set Ri+1 = Di+1. Because Di+1 is a positive
clause we also get Ri+1 ≤ss0 R

′
i+1.

subcase abb) Di+1 6≤ss R
′
i+1:

By (IH) Di+1 ≤ss D
′
i+1 and, by definition of R′

i+1, R
′
i+1 is PRF-

resolvent of R′
i and D′

i+1. By construction of Ri we have Ri ≤ss0

R′
i. For abbreviation we set Mi = (Ri)P ,M

′
i = (R′

i)P , Ni =
(Ri)N and N ′

i = (R′
i)N . By definition of ≤ss0 there must be a

substitution ϑ such that

LIT(Mi)ϑ ⊆ LIT(M ′
i) and Niϑ = N ′

i .

Thus there are negative clauses Ti, T
′
i (or Ti = T ′

i = 2) such that

Ri = Mi ∨ Ti ∨ ¬Q and R′
i = M ′

i ∨ T
′
i ∨ ¬Q

′

and
Tiϑ = T ′

i , Qϑ = Q′.

Let F ′
i+1 be a factor of D′

i+1 with F ′
i+1 = G′

1 ∨P
′∨G′

2 such that
P ′ is the cut literal in the binary resolvent of R′

i and F ′
i+1. By

Di+1 ≤ss D
′
i+1 there are two possibilities:

The first is Di+1 ≤ss G
′
1 ∨ G

′
2. Then clearly Di+1 ≤ss R

′
i+1, a

case settled in aba) and excluded here.
The second possibility is that there exists a factor Fi+1 of Di+1

such that Fi+1 = G1 ∨P ∨G2 and there is a substitution η such
that LIT(G1 ∨ G2)η ⊆ LIT(G′

1 ∨ G
′
2) and Pη = P ′. Let σ be

an m.g.u. of {P ′, Q′}. Then R′
i+1 = (G′

1 ∨ G
′
2 ∨M

′
i ∨ T

′
i)σ. But

P ′ = Pη and Q′ = Qϑ. Assuming, as usual, dom(η)∩dom(ϑ) = ∅
the substitution (η∪ϑ)σ is a unifier of {P,Q}. Let τ be the m.g.u.
of {P,Q}. Then we define

Ri+1 = (G1 ∨G2 ∨Mi ∨ Ti)τ.

From τ ≤s (η ∪ ϑ)σ we derive Ri+1 ≤ss0 R
′
i+1.

This completes the construction of the Ri. By definition of the Ri we
directly obtain Rn ≤ss0 R

′
n = E′. The clause Rn is either Di for some

i = 1, . . . , n or it is a resolvent of a clash (C,D1, . . . , Dk) for some k ≤ n.
Thus either Nc(Rn) ∈ Sk

Hr(C) or Nc(Rn) ∈ ρH(Sk
Hr(C)). In any case we

may define E = Nc(Rn). Then, clearly

178 4. Redundancy and Deletion

E ∈ Sk
Hr(C) ∪ ρH(Sk

Hr(C)) and E ≤ss E
′.

Therefore there must be a clause E0 ∈ sub(Sk
Hr(C) ∪ ρH(Sk

Hr(C))) such
that E0 ≤ss E and so also E0 ≤ss E

′.

Putting case a) and case b) together we realize the existence of a clause
E ∈ Sk+1

Hr (C) such that E ≤ss E
′. As E′ was an arbitrary clash resolvent in

Sk+1
H (C) we obtain

Sk+1
Hr (C) ≤ss S

k+1
H (C).

3

An argument, quite similar to that in the proof of Lemma 4.2.3 yields
the completeness of unrestricted resolution + replacement (Exercise 4.2.14).
Note that, like in the case of forward subsumption, we cannot directly use
the fact that RH is a refinement of R∅. Indeed Si

Hr(C) ⊆ Si
∅r(C) does not

hold in general (see Exercise 4.2.18).

Theorem 4.2.3 (Completeness of hyperresolution + replacement).
Let C be an unsatisfiable set of Nc-clauses, then (Si

Hr(C))i∈IN is a refutation
sequence.

Proof. Hyperresolution is complete according to Theorem 3.6.1. That means
there exists a number k such that 2 ∈ Sk

H(C). By Lemma 4.2.3 Sk
Hr(C) ≤ss

Sk
H(C) for all k ∈ N . Because only 2 subsumes 2 we get 2 ∈ Sk

Hr(C) and
even Sk

Hr(C) = {2}. It follows that (Sk
Hr(C))k∈IN is a refutation sequence. 3

Another direct consequence of Lemma 4.2.3 is that the minimal refutation
depth of hyperresolution is not increased by replacement.

Definition 4.2.11. Let Rx be a refinement such that Rx + replacement is
complete and C be an unsatisfiable set of clauses (of the appropriate normal
form). Then

dxr(C) : min{k|Sk
xr(C) = {2}}

is called the minimal refutation depth of C with respect to Rx + replacement.

Proposition 4.2.9. The minimal refutation depth of hyperresolution + re-
placement is less or equal to that of hyperresolution; i.e., dHr(C) ≤ dH(C) for
all unsatisfiable sets of Nc-clauses C.

Proof. Let k = min{m/2 ∈ Sm
H (C)}. From Lemma 4.2.3 we know that

Sk
Hr(C) ≤ss Sk

H(C); clearly 2 ∈ Sk
Hr(C) and thus Sk

Hr(C) = {2}. So we
obtain dHr(C) ≤ k. 3

The properties of completeness and preservation of minimal refutation
depth hold for unrestricted resolution too. The required arguments are quite

4.2 The Subsumption Principle 179

similar (for minimal refutation depth see Exercise 4.2.16). Reduction se-
quences may be considered as normal form computations. If, for some re-
finement Rx, Rx + replacement is complete then the normal form of every
unsatisfiable set of clauses C is {2}; indeed we eventually obtain {2} in pro-
ducing the sequence (Si

xr(C))i∈IN. In case of satisfiable sets of clauses there
may or may not exist normal forms. Choosing

C = {P (x1) ∨Q(x1), P (x1) ∨ ¬Q(x1), Q(x1) ∨ ¬P (x1)}

(see Example 4.2.4) and SHr we get

Si
Hr(C) = {P (x1), Q(x1)} for i 6= 1;

Therefore {P (x1), Q(x1)} is the “normal form” of C under SHr . Clearly the
existence of such a normal form is equivalent to the convergence of the cor-
responding replacement sequence.

Choosing SHr and D = {P (a);¬P (x) ∨ P (f(x))}, as in Example 4.2.5,
Si

Hr(D) diverges and D is not normalizable under SHr. By the undecid-
ability of the satisfiability problem of clause logic there exists no complete
replacement method which always terminates; so there must always be non-
normalizable sets of clauses. However there exist subclasses of clause logic
where Si

Hr-replacement always converges and yields such normal forms. For
such subclasses SHr defines a decision procedure. This problem will appear
again in Chapter 5, where we investigate resolution decision methods system-
atically.

Exercises

Exercise 4.2.1. Show that =ss is an equivalence relation.

Exercise 4.2.2. Consider =ss on CL[Ns] (i.e., on the set of all clauses in
standard normal form Ns). Prove that CL[Ns]/=ss

contains classes of infinite
size (construct an infinite sequence of Ns-clauses C1, . . . , Cn such that the Ci

are pairwise different and Ci =ss Cj for all i, j).
Remark: If clauses are defined as sets of literals [Rob65], [CL73], [Lov78]

then Exercise 4.2.2 proves that there are infinite equivalence classes for sub-
sumption =ss on the set of all clauses.

Exercise 4.2.3. C <ss D is defined by (C ≤ss D and not D ≤ss C). Prove
that <ss is not Noetherian on CL[Nc], i.e., there exists an infinite sequence of
Nc-normalized clauses C1, . . . , Cn, . . . such that for all i, j and i < j Cj <s Ci

(there is a strictly descending sequence of clauses without minimal elements).

Exercise 4.2.4. Modify<ss of Exercise 4.2.3 in order to obtain a Noetherian
relation <ss1 fulfilling:

(a) For all C there exists a D such that C <ss1 D.
(b) C <ss1 D ⇒ C ≤ss D and D 6≤s C.

180 4. Redundancy and Deletion

Exercise 4.2.5. Let C,D be clauses such that D is ground and not a tau-
tology. Suppose that there exists a ground substitution ϑ such that Cϑ∧¬D
is unsatisfiable. Prove that C subsumes D.

Exercise 4.2.6. Suppose that C,D are clauses and C ≤ss D. Let D′ be an
arbitrary factor of D. Show that C ≤ss D

′ holds.

Exercise 4.2.7. Let C,D be clauses and N be one of the normalization
operators Nv, N0, Ns, Nc. Show that C ≤ss D iff N(C) ≤ss N(D).

Exercise 4.2.8. Prove that unrestricted resolution + forward subsumption
is complete, i.e., show that for all unsatisfiable sets of clauses C : 2 ∈ R∅s(C).

Exercise 4.2.9. Show that, in case of unrestricted resolution, forward sub-
sumption reduces search complexity, i.e., CS∅s(C) ≤ CS∅(C) for all unsatis-
fiable sets of clauses C.

Exercise 4.2.10. Let ≤ssl be the subsumption relation on indexed clauses
without unlocking: C ≤ssl D iff C,D are indexed clauses and there exists a
ϑ such that LIT(C)ϑ ⊆ LIT(D). Show that locking + forward subsumption
is complete under use of ≤ssl instead of ≤ss (Hint: look at the proof of
Theorem 4.2.1).

Exercise 4.2.11. Let C, C′ be two sets of clauses such that C ≤ss C′. Suppose
that Γ ′ is an ULI-deduction of C′ from C′. Show that there exists an ULI-
deduction Γ of a clause C from C such that C ≤ss C

′ and δ(Γ) ≤ δ(Γ ′).

Exercise 4.2.12. Define an algorithm transforming ULI-refutations Γ into
SULI-refutations ∆ (of the same set of clauses and having the same top
clause) such that δ(∆) ≤ δ(Γ) (Hint: use the proof of Theorem 4.2.2).

Exercise 4.2.13. Prove that replacement is always correct, i.e., if Si
xr(C) is

a refutation sequence then C is unsatisfiable.

Exercise 4.2.14. Prove that unrestricted resolution fulfills Si
∅r(C) ≤ss

Si
∅(C) for all i ∈ IN.

Exercise 4.2.15. Use Exercise 4.2.14 to prove that unrestricted resolution
+ replacement is complete.

Exercise 4.2.16. Prove that the minimal refutation depth of unrestricted
resolution is not increased by replacement, i.e., d∅r(C) ≤ d∅(C) for all unsat-
isfiable sets of clauses C.

Exercise 4.2.17. Let C1, C2, D,E be clauses such that C1 ≤ss C2 and E is
a resolvent of C2 and D. Then either C1 ≤ss E or there exists a resolvent
F of C1 and D such that F ≤ss E (note that this result does not follow
immediately from Lemma 4.2.1).

4.3 Subsumption Algorithms 181

Exercise 4.2.18. Give an example of a set of clauses C fulfilling the following
two properties:

a) S1
Hr(C) 6⊆ S

1
∅r(C),

b) S1
Hr(C) 6≤ss S

1
∅r(C).

4.3 Subsumption Algorithms

In Section 4.2 we have shown that subsumption, by keeping the shortest
proof of the corresponding refinement and by reducing the number of deriv-
able clauses, always has a positive effect on search complexity. So we may
already be content from the theoretical point of view. But, in practice, the
high number of subsumption tests (which are necessary in order to make
the method effective) and even the costs of the single subsumption tests
themselves may create real problems and slow down programs considerably.
Consider, for example, a refinement of type Rxs (Rx+ forward subsumption);
here we have

Si+1
xs (C) = Si

xs(C) ∪ sf(Si
xs(C), ρx(Si

xs(C))).

Thus, on every level, we have to test for all D ∈ ρx(Si
xs(C)) whether

Si
xs(C) ≤ss {D} holds. Even more tests are required under replacement.

Therefore the total number of required subsumption tests is roughly quadratic
in the number of generated clauses. There are, in principle, two ways to im-
prove the situtation: a) to reduce the number of subsumption tests without
weakening the deletion principle and b) to improve the subsumption algo-
rithms (i.e., the decision algorithms for the subsumption property). Of course
a) and b) do not exclude each other and should both be pursued. Here in
this section we only investigate b).

In Proposition 4.2.3 we have shown that ≤ss is decidable. The argument in
the proof, however, yields an algorithm which is highly inefficient (it exhausts
all terms of a certain depth). However, we cannot really hope to find a polyno-
mial algorithm (unless P = NP) as the subsumption problem is NP-complete
[GJ79]. By C ≤ss D iff there exists a ϑ such that LIT (Cϑ) ⊆ LIT (D), we
have to search for a substitution that “maps” the literals in C to a subset of
the literals in D. By Proposition 4.2.2 we may always assume (without loss
of generality) that D is a ground clause. Moreover we always assume that all
clauses are reduced (i.e., they do not contain multiple literals) but we don’t
mention this restriction explicitly for the rest of this section.

Example 4.3.1. Let C = P (x) ∨ P (f(x)) and D = P (f(a)) ∨ P (f(b)).
We prove that C 6≤ss D.
Let us assume that there exists a ϑ such that LIT (C)ϑ ⊆ LIT (D). Without
loss of generality we may assume that dom(ϑ) = {x}. Taking the first literal

182 4. Redundancy and Deletion

P (x) of C we know that P (x)ϑ must be in {P (f(a)), P (f(b))}. So we obtain
the candidates ϑ1 = {x← f(a)} and ϑ2 = {x← f(b)}.

But under ϑ1 the second literal P (f(x)) becomes P (f(x))ϑ1 = P (f(f(a)))
and P (f(f(a))) 6∈ LIT (D). Similarly ϑ2 yields P (f(x))ϑ2 = P (f(f(b))) 6∈
LIT (D).

Therefore, neither ϑ1 nor ϑ2 do the job and we obtain C 6≤ss D. More-
over, note that P (x) ≤ss D and P (f(x)) ≤ss D both hold. So we see that
subsumption tests cannot be “parallelized”. Although very simple, Exam-
ple 4.3.1 indicates that some kind of backtracking will be required in sub-
sumption algorithms. In general, substitutions must be composed of “pieces”
and have to be corrected repeatedly.

Example 4.3.2. C = P (x) ∨ P (f(x, y)), D = P (a) ∨ P (b) ∨ P (f(b, a)).

Let us proceed as in Example 4.3.1. Then, by mapping the first literal P (x)
to D, we obtain the substitution candidates ϑ1 = {x ← a}, ϑ2 = {x ←
b}, ϑ3 = {x← f(b, a)}. Obviously ϑ2 is the right choice and we may extend
it to λ = {x← b, y ← a}. Clearly C ≤ss D by LIT (Cλ) ⊆ LIT (D).

Thus if we start with ϑ1 we must eventually correct this choice to ϑ2.
Suppose that we interchange the literals in C such that P (f(x, y)) becomes
the first one; then clearly λ is the only candidate for a subsuming substitution.
So we observe that, in searching for a subsuming substitution algorithmically,
the ordering of the literals may play a role.

The idea of searching for the right substitution from left to right forms the
basis of the algorithm of Stillman [Sti73] which henceforth will be called
ST. Suppose that C = L1 ∨ . . . ∨ Ln and a ϑi has already been found with
{L1, . . . , Li}ϑi ⊆ LIT (D); then ST tries to find an extension ϑi+1 of ϑi such
that {L1, . . . , Li+1}ϑi+1 ⊆ LIT (D). If one succeeds to extend some of the
ϑis to a ϑn then C ≤ss D; if there is no such ϑn then C 6≤ss D.

In Example 4.3.2 ϑ2 can be extended to the subsuming substitution λ :
{x ← b, y ← a}, while ϑ1 and ϑ3 cannot. For the specification of ST we use
some auxiliary functions: The Boolean function “unify(L,M)” that returns
true iff {L,M} is unifiable and the function mgu(L,M) which computes
an m.g.u. of {L,M} if {L,M} is unifiable and is undefined otherwise. We
represent ST by a 5-place Boolean function ST0 on (C,D, i, j, ϑ), where i
points to the i-th literal in C, j points to the j-th literal in D and ϑ is a
substitution. Initially i = j = 1 and ϑ = ǫ and the truth value of “C ≤ss D”
is computed by defining ST(C,D) = ST0(C,D, 1, 1, ǫ) for all clauses C,D (D
ground). The exact specification of ST0 can be found in Figure 4.4.

The execution of ST on clauses C,D can be described by a “process tree”
T (C,D) in which every matching attempt creates a new node.

Definition 4.3.1 (ST-tree). Let C : L1∨ . . .∨Ln and D : K1∨ . . .∨Km be
clauses. We define the ST-tree T (C,D) recursively by defining a set of nodes
Ni and a set of edges Ei for every level i ∈ {0, . . . , n}. Moreover, to every

4.3 Subsumption Algorithms 183

function ST0(C, D, i, j, ϑ);
{C = L1 ∨ . . . ∨ L|C|, D = K1 ∨ . . . ∨K|D|}
begin

if j > |D| then return false {the literals of D are ”exhausted” }
else begin

{ search for a matching literal in D}
a← j;
while not unify(Liϑ,Ka) and a ≤ |D|

do a← a + 1;
if a > |D| then return false {no matching literal has been found}
else begin

µi ← mgu(Liϑ, Ka); {extend the match ϑ}
if i = |C| or ST0(C, D, i + 1, 1, ϑµi)

then return true {the extension was successful}
else ST0(C, D, i, a + 1, ϑ) {backtracking}

end
end

end {ST}

Fig. 4.4. The algorithm of Stillman

node there is a corresponding substitution.
i = 0 : N0 = {(0, 0)} and E0 = ∅. The substitution corresponding to (0, 0) is
the empty substitution ǫ.

Suppose now that Ni and Ei have already been constructed. If i = n then
the construction is completed and T (C,D) = (Nn, En). Let us assume that
i < n :
Let N be a node in Ni and ϑ be the substitution corresponding to N . Now
let j ∈ {1, . . . ,m} and µ be a substitution (defined on V (Li+1ϑ)) such that
Li+1ϑµ = Kj. Then the node (i+ 1, j) is in Ni+1 and the edge (N, (i+ 1, j))
is in Ei+1; the substitution corresponding to (i+1, j) is ϑµ. If there exists no
Kj such that Li+1ϑ ≤s Kj then N is a leaf.

Example 4.3.3. Let C = P (x, y)∨P (y, z)∨P (x, z) and D = P (a, b)∨P (b, c)∨
P (b, a). The ST-tree T (C,D) is shown in Figure 4.5.

We write ϑij for the substitution corresponding to the node (i, j). So we
obtain ϑ00 = ǫ, ϑ11 = {x ← a, y ← b} and L1ϑ11 = K1. Now there exists
a substitution µ = {z ← c} such that L2ϑ11µ = K2; the corresponding
node is (2, 2) and ϑ22 = {x ← a, y ← b, z ← c}. After computation of
ϑ22 we find no literal Kj such that L3ϑ22 ≤s Kj and therefore (2, 2) is a
leaf. At this point backtracking is applied and ST produces the substitution
ϑ23 = {x ← a, y ← b, z ← a}. But, here too, we obtain L3ϑ23 6≤s Kj for
j = 1, 2, 3 and ST goes back to define ϑ12 etc. The sequence of calls of ST0

is characterized by the sequence of equations:

ST0(C,D, 1, 1, ǫ) = ST0(C,D, 2, 2, ϑ11) = ST0(C,D, 3, 1, ϑ22) =
ST0(C,D, 3, 2, ϑ22) = ST0(C,D, 3, 3, ϑ22) = false;

184 4. Redundancy and Deletion

b b b

b

b

b b

�
�
�
��

@
@
@
@@

@
@
@
@@

��
��
��
��
�

HH
HH

HH
HH

H

(2,2) (2,3) (2,1)

(0,0)

(1,1)
(1,2)

(1,3)

Fig. 4.5. An ST-tree

ST0(C,D, 1, 1, ǫ) = ST0(C,D, 1, 2, ǫ) = ST0(C,D, 2, 1, ϑ12) =
ST0(C,D, 2, 2, ϑ12) = ST0(C,D, 2, 3, ϑ12) = false; etc.

Eventually all such call sequences end in false and we obtain
ST0(C,D, 1, 1, ǫ) = false; i.e., ST(C,D) = false and C does not subsume
D.

By definition of ST-trees, ST(C,D) is true iff there exists a path of length
|D| in T (C,D). The number of nodes in T (C,D) coincides with the number
of substitutions generated by ST and thus is an appropriate measure for the
computing time of the algorithm.

Theorem 4.3.1. ST is a decision algorithm for subsumption, i.e., (for C 6=
2 and D ground) ST(C,D) always terminates and ST(C,D) = true iff C ≤ss

D.

Proof. It is easy to see that ST always terminates: The call-depth of ST0 is
bounded by |C|, while the maximal number of calls corresponding to a node
in the ST-tree is |D|. By definition of T (C,D) the total number of calls is
always less or equal to |NOD(T (C,D))||D|.

We now prove the correctness by induction on |C|.

|C| = 1: We have to compute ST(C,D, 1, 1, ǫ). The while-loop of ST0 is en-
tered with the values a = 1 and ϑ = ǫ.

case a): There exists an a such that a ≤ |D| and unify(L1,Ka) = true. In
this case there exists a ϑ such that L1ϑ ∈ LIT (D). Because C = L1 we
obtain C ≤ss D. But by |C| = 1 ST0(C,D, 1, 1, ǫ) yields true.

case b): For all a ≤ |D| we obtain unify(L1,Ka) = false. By defi-
nition of the while-loop in ST0 we obtain a = |D| + 1 and thus
ST(C,D) = ST0(C,D, 1, 1, ǫ) = false. Because all Ka are ground and
unify(L1,Ka) = false we get L1 6≤s Ka for all Ka in LIT (D) and so
L1 6≤ss D. But C = L1.

4.3 Subsumption Algorithms 185

(IH) Let us suppose that ST is correct on all pairs (C,D) such that |C| ≤ k.
Now let C be a clause such that |C| = k + 1 for k ≥ 1.

case 1): The first execution of the while-loop gives a = |D| + 1. By defini-
tion of ST0 we obtain ST0(C,D, 1, 1, ǫ) = ST(C,D) = false. But if a
becomes |D| + 1 then there exists no ϑ such that L1ϑ ∈ LIT (D); that
means L1 6≤ss D. As L1 ≤ss D is a necessary condition for C ≤ss D we
indeed get C 6≤ss D.

case 2): The first execution of the while-loop gives an a with a ≤ |D| and
mgu µ1. Because k + 1 > 1, the call ST0(C,D, 2, 1, µ1) is performed.
But ST0(C,D, 2, 1, µ1) gives the same value as ST0(C

′µ1, D, 1, 1, ǫ) for
C′ = L2 ∨ . . . ∨ Lk+1. Because |C′| = k we obtain by (IH) that
ST0(C

′µ1, D, 1, 1, ǫ) = true iff C′µ1 ≤ss D. If ST0(C,D, 2, 1, µ1) = true
then ST0(C,D, 1, 1, ǫ) = true and ST(C,D) = true.
This value is indeed correct as Lµ1 ∈ LIT (D) and LIT (C′µ1ϑ) ⊆
LIT (D) for some ϑ. As Lµ1 is already ground Lµ1ϑ = Lµ1 and also
Lµ1ϑ ∈ LIT (D). Putting things together we obtain

LIT (C)µ1ϑ = LIT (Lµ1ϑ ∨ C
′µ1ϑ) ⊆ D

and therefore C ≤ss D.

If ST0(C,D, 2, 1, µ1) = false then we may search for a new substitution
µ1. This case is “subsumed” under those to be discussed below:

In general we may obtain several substitutions µ1i by the execution of
the while-loop corresponding to the nodes of depth 1 in T (C,D).
If ST0(C,D, 2, 1, µ1i) gives true for such a µ1i the same argument as be-
fore yields C ≤ss D and, by definition of ST and ST0, ST(C,D) = true.
So let us suppose that for all µ1i defined on depth 1 in T (C,D) we obtain
ST0(C,D, 2, 1, µ1i) = false. That means for all K in LIT (D) such that
L1 ≤s K via µ we obtain C′µ 6≤ss D.

(*) C ≤ss D iff there exists a ϑ such that dom(ϑ) = V (L1), L1ϑ ∈
LIT (D) and (C \ L1)ϑ ≤ss D.

Indeed (*) is just the recursive definition of ≤ss. But ST0 produces all
substitutions ϑ with dom(ϑ) = V (L1) and L1ϑ ∈ LIT (D). Let us call
this set of substitutions Θ. By assumption ST0(C,D, 2, 1, ϑ) = false for
all ϑ ∈ Θ (Θ consists just of the µ′

1is).
But ST0(C,D, 2, 1, ϑ) = ST0(C

′ϑ,D, 1, 1, ǫ) and so ST0(C
′ϑ,D, 1, 1, ǫ) =

false for all ϑ ∈ Θ. By(IH) we obtain C′ϑ 6≤ss D for all ϑ ∈ Θ. But, by
(*) and by definition of Θ we obtain the following property:

C ≤ss D iff there exists a ϑ ∈ Θ : L1ϑ ∈ LIT (D) and C′ϑ ≤ss D.
As there is no such ϑ ∈ Θ we obtain C 6≤ss D.

186 4. Redundancy and Deletion

By definition of ST0 we also obtain ST0(C,D, 1, 1, ǫ) = false and, con-
sequently, ST(C,D) = false. This concludes the analysis of the case
|C| = k + 1. 3

A closer look at the proof of Theorem 4.3.1 reveals that ST is merely an
operational interpretation of the following recursive definition (D ground):

|C| = 0 : C ≤ss D (note that C = 2)
|C| > 0 : C ≤ss D iff there exists a ϑ such that L1ϑ ∈ LIT (D) and (C \

L1)ϑ ≤ss D.

The main task of ST is to produce all candidates ϑ for the recursion above.
ST is easy to specify and to implement, but may be highly inefficient on
larger clauses. The reason is that, in the worst case, we may obtain a tree
T (C,D) where all paths are of length |C| − 1 and the degree of all nodes
(except the leaf nodes) is |D|. The total number of nodes in such a tree is of
the order |D||C|. Henceforth we measure the computational expenses of ST
on a pair (C,D) by the number of nodes in T (C,D). Formally we define

stn(C,D) = |NOD(T (C,D))|.

Example 4.3.4. Let (Cn, Dn)n≥2 be a sequence of pairs of clauses such that

Cn = P (x1) ∨ . . . ∨ P (xn−1) ∨ P (fn(x1, . . . , xn))

and
Dn = P (a1) ∨ . . . ∨ P (an−1) ∨ P (fn(b1, . . . , bn))

where the fn are n-place function symbols and the ai, bj are constant symbols
which are pairwise different. It is easy to verify that T (Cn, Dn) is a tree
fulfilling the following property:

a)Every node that is not a leaf is of degree n
b)Every branch (= path from the root to a leaf) is of length n− 1.

Therefore

stn(Cn, Dn)) =

n−1
∑

i=0

ni + 1 =
(nn − 1)

n− 1
∈ O(nn−1).

For every leaf-node we have n additional matching attempts. Thus, by
counting also failing attempts to extend substitutions, we have about nn

computing steps. Now let us reorder the literals in Cn and arrange them as
follows:

En : P (fn(x1, . . . , xn)) ∨ P (x1) ∨ . . . ∨ P (xn−1).

4.3 Subsumption Algorithms 187

It is easy to see that stn(En, Dn) = 2, i.e., T (En, Dn) consists of 2 nodes only
(independent of n): After mapping P (fn(x1, . . . , xn)) to P (fn(b1, . . . , bn))
(the only possibility!) the remaining part of the En-clause is:

E′
n : P (b1) ∨ . . . ∨ P (bn−1).

E′
n is ground and P (b1) 6∈ LIT (Dn); so no further substitutions are gen-

erated and E′
n 6≤ss Dn. Because ϑ was the only matching candidate for

P (fn(x1, . . . , xn)) we eventually obtain En 6≤ss Dn. Example 4.3.4 clearly
shows that, in testing ≤ss for larger clauses, it may be a wrong choice just
to proceed from left to right – as the clause is written down. What we need
is some analysis of C, which can easily be performed and defines some pref-
erence strategy based on the structure of the variable occurrences in C. The
basic idea is to identify cases where subsumption is fast (i.e., polynomial of
a low degree) and to try to reduce the subsumption problems to such cases.
There are two typical cases:

1)The literals in C are all variable-disjoint and
2) |V (C)| ≤ 1.

Definition 4.3.2 (the clause type DEC). Let C : L1 ∨ . . . ∨ Ln be a
clause. C is called decomposed if for all i, j ≤ n and i 6= j : V (Li)∩V (Lj) =
∅. The class of all decomposed clauses is denoted by DEC.

Definition 4.3.3 (the clause type V1C). V1C is the class of all clauses
C with |V (C)| ≤ 1.

Every ground clause belongs to DEC∩V1C. Both classes are character-
ized by weak internal variable connections.

Definition 4.3.4 (simple clauses). A clause is called simple if it is in
DEC∪V1C.

ST is fast on V1C (the ST-tree is at most quadratic), but may be ex-
ponential on DEC due to superfluous backtracking. To obtain a problem in
DEC we change the sequence (Cn, Dn) from Example 4.3.4 to

Cn : P (x1) ∨ . . . ∨ P (xn−1) ∨ P (g(xn))

and
Dn : P (a1) ∨ . . . ∨ P (an−1) ∨ P (an).

Then, as before,

|NOD(T (Cn, Dn))| =
nn − 1

n− 1
.

But it is easy to see that all literals in Cn can be tested independently. For
technical reason we introduce a “parallel” version of ST which is correct on
DEC but incorrect in general.

188 4. Redundancy and Deletion

Let C : L1 ∨ . . . ∨ Ln and D be clauses (as always we assume D to be
ground); we define the Boolean function STP (parallel Stillman algorithm):

STP(C,D) =

n
∧

i=1

ST(Li, D).

The number of substitutions generated by STP is given as the sum of all
stn(Li, D). So we may assume that, in the computation of STP(C,D), the
ST(Li, D) are computed first. The expense created by the computation of
STP(C,D) out of the values ST(Li, D) is inessential (at most linear in n); so
to facilitate the analysis we don’t count these steps at all. Thus we measure
the computational expenses of STP by the new measure stpn defined by:

stpn(C,D) =
n

∑

i=1

stn(Li, D).

Proposition 4.3.1. Let C be a clause in DEC. Then STP(C,D) = true iff
C ≤ss D (STP is correct on DEC).

Proof. Let C = L1 ∨ . . .∨Ln. C ≤ss D clearly implies STP(C,D) = true for
all clauses C. By Theorem 4.3.1 ST(Li, D) = true iff Li ≤ss D. But Li ≤ss D
for i = 1, . . . , n is a necessary condition for C ≤ss D. Moreover, by definition
of STP, STP(C,D) = true iff for all i = 1, . . . , n : ST(Li, D) = true. This
concludes the proof of the first direction.

By the correctness of ST there exist substitutions ϑ1, . . . , ϑn such that
dom(ϑi) = V (Li) and Liϑi ∈ LIT (D). By C ∈ DEC we have V (Li)∩V (Lj) =
∅ for i 6= j and therefore dom(ϑi)∩ dom(ϑj) = ∅ for i 6= j. But then the sub-
stitution ϑ, ϑ : ϑ1 ∪ . . . ∪ ϑn, is well-defined and Liϑ = Liϑi for i = 1, . . . , n.
So we obtain Liϑ ∈ LIT (D) for i = 1, . . . , n, i.e., LIT (C)ϑ ⊆ LIT (D), and
therefore C ≤ss D. 3

Proposition 4.3.2. stpn(C,D) ≤ 2|C|.

Proof. Let C = L1 ∨ . . . ∨ Ln. By definition of stpn we have stpn(C,D) =
Σn

i=1stn(Li, D). But the trees T (Li, D) cannot contain more than one edge
(and therefore not more than two nodes). Note that in the computation of
ST(Li, D) at most one of the substitutions µ1 is constructed. So we obtain
stpn(C,D) ≤ 2n = 2|C|. 3

Corollary 4.3.1. The subsumption test C ≤ss D for C ∈ DEC is decidable
in quadratic time.

Proof. Let C = L1∨. . .∨Ln as in Proposition 4.3.2. Then the root of T (Li, D)
corresponds to at most |D| unification attempts. Thus the total number of
unification attempts is bounded by |C||D|. If T (Li, D) contains an edge then
the leaf node does not correspond to further unification attempts (success
has already been achieved). 3

4.3 Subsumption Algorithms 189

Proposition 4.3.3. Let C be a ground clause. Then stn(C,D) ≤ |C|+ 1.

Proof. Let C = L1∨ . . .∨Ln and all Li be ground. Then all nodes in T (C,D)
are of degree ≤ 1, because no literal Li can be mapped to more than one
literal in D (note that all clauses are reduced). The depth of T (C,D) is
bounded by |C|. Thus (including the root) there can be no more than |C|+1
nodes in T (C,D). In fact, C ≤ss D iff the only path in T (C,D) is of length
|C|. 3

Now we are in the position to estimate the expenses of ST on the class V1C.
We will see that the ST-trees for subsumption problems belonging to V1C
are of at most quadratic size (in the number of literals in C and D).

Proposition 4.3.4. Let C be in V1C and D be an arbitrary ground clause,
|C| ≥ 1 and |D| ≥ 1. Then stn(C,D) ≤ |C||D|+ 1.

Proof. If C is ground then Proposition 4.3.3 yields stn(C,D) ≤ |C|+ 1. But
by |D| ≥ 1 we have |C|+ 1 ≤ |C||D|+ 1.

It remains to analyze the case |V (C)| = 1. For this purpose let us assume
that V (C) = {x}. Then C can be written in the form C1 ∨Li ∨C2 such that
C1 : L1 ∨ . . . ∨ Li−1 is ground (possibly C1 = 2) and Li is the first literal in
C (from the left) containing the variable x.

Then T (C1, D) is an initial segment of T (C,D). In the proof of Proposition
4.3.3 we have demonstrated that T (C1, D) can only consist of a single path
and that the length of this path is ≤ |C1| = i− 1.

If the length of this path is less than i− 1 then ST(C1, D) returns false
and, by definition of ST, ST(C,D) returns false. In this case we have

stn(C,D) = stn(C1, D) < i− 1 < |C|.

So let us assume that the length of the branch in T (C1, D) is i− 1. Then

stn(C,D) = stn(C1, D) + stn(Li ∨C2, D)− 1.

Note that the root node of T (Li∨C2, D) has to be identified with the (only)
leaf node in T (C1, D). By definition of ST0, ST0(Li ∨ C2, D, 1, 1, ǫ) reduces
to ST0(Li ∨C2, 2, 1, µ1) for some substitution µ1 : {x← t}, t being a ground
term. But

ST0(Li ∨ C2, 2, 1, µ1) = ST0(C2µ1, 1, 1, ǫ).

There can be at most |D| possible substitutions µ1. No matter what they
really look like, the clause C2µ1 is ground (note that V (C2) ⊆ {x}). But

ST(C2µ1, D) = ST0(C2µ1, 1, 1, ǫ)

and, by Proposition 4.3.3,

stn(C2µ1, D) ≤ |C2µ1|+ 1 ≤ |C2|+ 1 = |C| − |C1|.

190 4. Redundancy and Deletion

Therefore stn(Li ∨ C2, D) ≤ 1 + |D|(|C| − |C1|). Putting things together we
eventually obtain

stn(C,D) = stn(C1, D) + stn(Li ∨ C2, D)− 1 ≤

|C1|+ |D|(|C| − |C1|) + 1 ≤ |C||D|+ 1.

3

On the basis of the propositions derived so far we can define an efficient
(polynomial) decision algorithm for “simple” subsumption problems. If C is
a simple clause then, by definition either C ∈ DEC or C ∈ V1C. For C ∈ DEC
we apply STP and for C ∈ V1C simply ST itself. The corresponding algo-
rithm is called SSIMP and is shown in Figure 4.6.

SSIMP(C, D):
begin

if C ∈ DEC then return STP(C, D)
else if C ∈ V1C then return ST(C,D)

else error (C is not simple)
end.

Fig. 4.6. A subsumption algorithm for simple clauses

It is easy to see that the total number of nodes in the ST-trees generated
by SSIMP is at most quadratic in max{|C|, |D|} (exercise 4.3.1).

Every clause C can be split into components C1, . . . , Ck such that
LIT (C1) ∪ . . . ∪ LIT (Ck) = LIT (C), V (Ci) ∩ V (Cj) = ∅ and LIT (Ci) ∩
LIT (Cj) = ∅ for i 6= j. If C ∈ DEC then C defines |C| one-element compo-
nents. In Propositions 4.3.1 and 4.3.2 we have shown that parallelizing ST to
STP turns out to be fruitful on DEC. But “typical” clauses are not in DEC.
On the other hand, mapping a literal from C to D in the ST-algorithm intro-
duces constants into the clause C (note that D is ground); the introduction of
constant terms by matching may result in a decomposition (where there was
none before). The algorithm DC (division into components [GL85]) is based
on the idea to find candidates L in C which optimize the decomposition of
C. The aim is to iterate splitting until all components are simple and then
to apply SSIMP.

Definition 4.3.5. Let C be a clause and ∼C be the equivalence relation on
LIT (C) induced by the following relation ∼vc: L ∼vc M iff V (L)∩V (M) 6= ∅.
The equivalence classes in LIT (C) under ∼C are called connected compo-
nents and are denoted by COMP (C).

4.3 Subsumption Algorithms 191

Note that ∼vc is reflexive and symmetric, but not transitive. Thus in order
to get the equivalence relation ∼C we must construct the transitive closure
of ∼vc. In [GL85] the ∼vc-relation was represented by a graph such that the
pair of literals (L,M) defines an edge iff V (L) ∩ V (M) 6= ∅. Although the
graph structure is very appropriate for investigating good decomposition al-
gorithms, it is easier to represent the DC-method via connected components.

Example 4.3.5.
We consider the sequence (Cn, Dn) defined in Example 4.3.4 for n ≥ 2:

Cn : P (x1) ∨ . . . ∨ P (xn−1) ∨ P (fn(x1, . . . , xn)),

Dn : P (a1) ∨ . . . ∨ P (an−1) ∨ P (fn(b1, . . . , bn)).

Then P (fn(x1, . . . xn)) ∼vc P (xi) for all i = 1, . . . , n − 1. As ∼C is the
transitive closure of ∼vc, Cn consists of one connected component only, i.e.,
COMP (Cn) = LIT (Cn).

Let us investigate the matching substitutions ϑ of the literals in Cn with
respect toD. Then either ϑ is of the form {xi ← t} or ϑ = {x1 ← b1, . . . , xn ←
bn}. Cn is not simple and for all ϑ, such that ϑ = {xi ← t}, and n ≥ 3 Cnϑ
is not simple either.

But by selecting ϑ = {x1 ← b1, . . . , xn ← bn} we achieve that Cnϑ is
ground and therefore simple. So we are advised to select P (fn(x1, . . . , xn))
as first literal and to reduce the problem under the matching substitution
{x1 ← b1, . . . xn ← bn}. We see that “grounding” the last literal in Cn maxi-
mally decomposes Cn. The graph representation of ∼ vc shown in Figure 4.7
provides intuitive evidence for the choice above.

b

b

b b��
��
��
��
�

HH
HH

HH
HH

H

P (x1) P (x2) . . . P (xn−1)

P (fn(x1, . . . , xn))

Fig. 4.7. Graph of ∼vc

Let {L1, . . . , Lm} be an element of COMP (C); then we call any reduced
disjunction of the L1, . . . , Lm (in fact a permutation of L1∨ . . .∨Lm) a clause
form of {L1, . . . , Lm}. A component is called simple if a corresponding clause
form is simple (note that the property of being simple is independent of the
ordering of literals).

192 4. Redundancy and Deletion

We now explain how DC works in general: Let us consider the problem
C ≤ss D. Initially we compute COMP (C). If all components are simple we
test Ci ≤ss D by SSIMP in parallel, where Ci is a clause representation of a
∼C component Ei ∈ COMP (C). If there are nonsimple components then we
test the simple ones by SSIMP and treat the other components Ei as follows:
Let Ci be a clause form of Ei such that Ci is not simple. We select a literal
Lfirst from Ci and start an ST-like algorithm on Lfirst. The choice of Lfirst is
crucial to the computational behavior of the algorithm. The following choice
leads to a strong improvement of the asymptotic worst case behavior with
respect to ST:

Let C be a nonsimple clause. Then there are literals containing more than
one variable. So we define:

Lfirst = The first literal L such that |V (L)| ≥ 2 and L contains a maximal
number of variables which also occur in other literals of C.

After the selection of Lfirst we try to map Lfirst to D via a matching substitu-
tion ϑ. ϑ is a ground substitution and (possibly) decomposes Ci into different
components. At this point the algorithm treats the components recursively
etc.

Before giving a formal definition of DC we show that different components
can indeed be treated independently.

Proposition 4.3.5. Let E1, . . . , En be the connected components of a clause
C and C1, . . . , Cn be their clause forms. Then C ≤ss D iff for all i =
1, . . . , n, Ci ≤ss D.

Proof. Let us suppose that Ci ≤ss D holds for all i = 1, . . . , n. Then C0 :
C1 ∨ . . . ∨ Cn is a permutation of the clause C and, clearly, C ≤ss D iff
C0 ≤ss D. Thus it is sufficient to prove C0 ≤ss D.

By Ci ≤ss D there are substitutions ϑi such that dom(ϑi) ⊆ V (Ci)
and LIT (Ci)ϑi ⊆ LIT (D). By definition of connected components we have
V (Ci) ∩ V (Cj) = ∅ for i 6= j; so we also obtain dom(ϑi) ∩ dom(ϑj) = ∅ for
i 6= j. But then ϑ : ϑ1 ∪ . . . ∪ ϑn is a (well-defined) substitution with the
property: Ciϑ = Ciϑi for i = 1, . . . , n. Therefore LIT (Ci)ϑ ⊆ LIT (D) for all
i = 1, . . . , n and so LIT (C0)ϑ ⊆ LIT (D), i.e., C0 ≤ss D.

For the other direction let us assume C ≤ss D. Again, C0 ≤ss D is an
immediate consequence. But E ∨ F ≤ss D always implies E ≤ss D and
F ≤ss D for arbitrary clauses E and F . Therefore Ci ≤ss D must hold for
all i = 1, . . . , n. 3

The last proposition provides a justification for the algorithm DC pre-
sented in Figures 4.8 and 4.9. If E is a component of a clause we write Ê for
a clause form of E.

Theorem 4.3.2. DC is a decision algorithm for subsumption.

4.3 Subsumption Algorithms 193

function DC(C,D) {tests C ≤ss D};
begin

ans ← true;
construct COMP(C);
for each E ∈ COMP(C) do

if Ê is simple then ans ← ans and SSIMP (Ê, D)

else ans ← (ans and TC(Ê, D));
return ans

end {DC}.

Fig. 4.8. The algorithm DC

TC(C,D) {TC means ”test components”};
begin

determine Lfirst in C.
a← 1;
repeat

while a ≤ |D| and not unify(Lfirst, Ka) do a← a + 1;
if a > |D| then sub ← false

else if |C| = 1 then sub ← true
else begin

µ← mgu(Lfirst, Ka);
if DC(Cµ \ Lfirstµ, D) then sub ← true

else sub ← false
end;

a← a + 1;
until a > |D| or sub {end repeat};
return sub

end.

Fig. 4.9. The algorithm TC

Proof. (sketch) By Proposition 4.3.5 C ≤ss D iff for all component clauses
Ci, Ci ≤ss D. In DC the test of the components is either performed by
SSIMP or TC. DC return true iff true is obtained for all components. Thus
the correctness is reduced to that of SSIMP and TC. The correctness of
SSIMP follows from the correctness of ST (Theorem 4.3.1) and that of STP
(Proposition 4.3.1). TC proceeds almost like ST, with the exception that
TC calls DC instead of itself. The further reduction to the correctness of
DC (again) is not cyclic, as the clauses in the call become smaller. Thus
the correctness of TC follows from that of ST and an inductive argument
reducing correctness to DC again. The formal treatment of this induction is
left as an exercise (Exercise 4.3.2). 3

The power of DC lies in the recursive use of splitting by a clever selection of
the literal Lfirst. Consider, for example, the clause Cn : P (x1)∨. . .∨P (xn−1)∨
P (fn(x1, . . . , xn)) from Example 4.3.5. P (fn(x1, . . . , xn)) is the only literal
containing at least two variables, moreover it contains n− 1 variables which

194 4. Redundancy and Deletion

also occur in other literals. Therefore the literal P (fn(x1, . . . , xn)) is selected
as Lfirst in TC (note that DC calls TC because Cn is not simple). In the next
call (of DC from TC) the clause is ground and thus decomposes into simple
components. The rest is done by testing P (bi) ≤ss Dn via ST in parallel.

Note that the number of required subsumption tests in refinements of the
type Rxs or Rxr is roughly quadratic in the number of generated clauses.
Therefore the preprocessing of clauses and the selection of Lfirst do not really
matter; even in the worst-case behavior, the computation of the components
and of Lfirst is at most quadratic. For practical applications some additional
techniques should be added to DC; one such technique is recursive filtering
leading to an algorithm DCI ([GL85a]). A detailed empirical analysis and
comparison of different algorithms can be found in [Im85]. The problem of
optimizing DC (by an adequate choice of Lfirst) is related to the problem of
graph decomposition and thus is an interesting problem of combinatorics. In
[GL85] it is shown that (using the current choice principle for Lfirst) the worst-
case complexity of O(nn) (of ST) is reduced to about O(nn/2). Moreover,
there are many cases (see Example 4.3.4) where ST is exponential but DC is
polynomial.

Exercises

Exercise 4.3.1. Show that the total number of nodes in ST-trees generated
by SSIMP is at most quadratic in max{|C|, |D|} (C,D being the clauses for
the ≤ss-test).

Exercise 4.3.2. Give a mathematical induction proof of the correctness of
DC (note that the correctness of DC and TC must be proven “simultane-
ously”).

4.4 The Elimination of Tautologies

Clauses which are subsumed are redundant with respect to other clauses.
Thus subsumption is a principle of “relative” redundancy. However, there is
a type of clauses which can be considered as “absolutely” redundant; such
are the tautological ones. Clearly a clause is a tautology iff it contains a
pair of complementary literals. In most cases (of refinements) tautologies can
be eliminated without loss of completeness. As in the case of subsumption
tautology-elimination always leads to the reduction of search complexity.

First of all it is easy to verify that the elimination of tautologies – applied
as preprocessing – preserves completeness. Let C be a set of clauses and C
be a tautological clause in C. Then F (C − {C}) ∼ F (C) and therefore C
may be replaced by C − {C}. Moreover it is easy to see that R-deductions

4.4 The Elimination of Tautologies 195

without tautologies define a complete deduction principle. Recall the proof of
completeness of GR-deduction in Section 2.5. In this proof only clauses are
resolved which are falsified at failure nodes in a semantic tree. But tautologies
cannot be falsified at any node in a semantic tree (simply because there are
no falsifying interpretations). Therefore we do not need tautologies in the set
of ground instances that has to be refuted. Moreover tautologies can never be
created by lifting (if Cϑ is not a tautology then also C cannot be one). Thus
we see that there are always R-refutations that do not contain tautologies, i.e.,
R-deduction without tautologies is complete. The following example shows a
close connection between subsumption and tautological clauses with respect
to resolution.

Example 4.4.1. Let C : {C1, . . . , C5} be the following set of Nc-clauses:

C1 : P (f(x1)) ∨R(x1) ∨ ¬P (f(x1)), C2 : P (x1) ∨Q(x1),
C3 : R(f(x1)), C4 : Q(x1) ∨ ¬R(x1), C5 : ¬Q(f(x1)).

C1 is a tautology, but it is not subsumed by another clause in C. C1 defines
three resolvents in C, the first with C2, the second with C4 and the third with
itself (note that tautologies always admit self-resolution). The Nc-resolvent
with C2 is:

C6 : P (f(x1)) ∨Q(f(x1)) ∨R(x1).

C6 is not a tautology but it is subsumed by its parent clause C2. The Nc-
resolvent of C1 and C4 is:

C7 : P (f(x1)) ∨Q(x1) ∨ ¬P (f(x1)).

Obviously C7 is a tautology. There are even two different ways to resolve C1

with itself, but these are symmmetric; the only Nc-resolvent of C1 with itself
is clearly C1 itself.

Example 4.4.1 showed that resolving with tautologies either yields tautolo-
gies again or clauses which are subsumed by one of the parent clauses. The
following proposition shows that this property is not specific to this example
only, but is a general principle.

Proposition 4.4.1. Let C,D be clauses and C be a tautology. Then every
resolvent of C and D is either a tautology or is subsumed by D.

Proof. We may assume without loss of generality that V (C)∩ V (D) = ∅. As
C is a tautology it must be of the form:

C : C1 ∨A ∨ C2 ∨A
d ∨ C3

for some literal A. Let ϑ be a G-instance of C defining a factor C′. Then ϑ
cannot unify A and Ad; consequently C′ must be of the form

C′ : C′
1 ∨A

′ ∨C′
2 ∨A

′d ∨ C′
3 or C′ : C′

1 ∨A
′d ∨C′

2 ∨A
′ ∨ C′

3

196 4. Redundancy and Deletion

for Aϑ = A′ (note that the internal ordering of A′ with respect to A′d may
be different from that of A with respect to Ad). It suffices to focus on the
first form of C′. Now let D′ be a factor of D such that

D′ = D′
1 ∨ L ∨D

′
2

and L be the literal in D′ selected for cut via binary resolution.

case a) The literal resolved from C′ is contained in C′
1 ∨ C

′
2 ∨ C

′
3: Let σ be

the m.g.u. of the resolution. Then A′σ and A′dσ are both contained in
LIT (R) for the resolvent R; therefore R is a tautology.

case b) The literal resolved from C′ is A′: Let σ be an m.g.u. of {A′, L′d}
and R be the resolvent R : (C′

1 ∨ C
′
2 ∨A

′d ∨ C′
3 ∨D

′
1 ∨D

′
2)σ.

From A′σ = Ldσ we derive A′dσ = Lσ and so Lσ ∈ LIT (R). Moreover
LIT ((D′

1 ∨D
′
2)σ) ⊆ LIT (R), that means D′ ≤ss R via σ.

case c) The literal resolved from C′ is A′d: This case is completely symmetric
to b).

We see that, in case a), R is a tautology; in the cases b) and c) R is subsumed
by D. 3

Proposition 4.4.1 suggests that, in the presence of a subsumption strategy,
tautologies may be redundant and thus can be deleted. If they don’t create
new tautologies then they produce new clauses which are eliminated by sub-
sumption anyway. In order to turn this observation into an exact result we
give a mathematical definition of tautology-elimination within an operator-
based refinement.

Definition 4.4.1. Let C be a set of clauses. By TAUTEL(C) we denote the
set C − TAUT(C), where TAUT(C) denotes the set of all tautological clauses
in C. Now let Rx be an arbitrary resolution refinement. We define RxT (Rx

under elimination of tautologies) by:

S0
xT (C) = TAUTEL(C), Si+1

xT (C) = Si
xT (C) ∪ TAUTEL(ρx(Si

xT (C))),

RxT (C) =

∞
⋃

i=0

Si
xT (C).

If Rx is a refinement then Rxs (Rx + forward subsumption) defines a re-
finement too. Consequently RxsT represents Rx + forward subsumption +
elimination of tautologies.

Many refinements can be characterized by subsets of Res({C1, C2}) for
(two) clauses C1, C2 ∈ C. In such a case we speak about a binary refinement
(for short B-refinement).

4.4 The Elimination of Tautologies 197

Definition 4.4.2 (B-refinements). A refinement Rx (defined on N -
clauses for some normalization operator N) is called a B-refinement if for all
sets of N -clauses C: ρx(C) ⊆ N(Res(C)).

A-ordering refinements are B-refinements. Lock resolution is a B-
refinement on indexed clauses; however it is not a B-refinement on ordinary
clauses, because the indices somehow reflect the history of the clauses. Hy-
perresolution is not a B-refinement. The following theorem shows that, in
the presence of forward subsumption, the elimination of tautologies cannot
destroy the completeness of B-refinements.

Theorem 4.4.1. If a B-refinement is complete under forward subsumption
then it remains complete under (additional) deletion of tautologies, or more
formally: Let Rx be a B-refinement such that Rxs is complete; then RxsT is
complete too.

Proof. We have to show that 2 ∈ Rxs(C) implies 2 ∈ RxsT (C). It suffices to
show (by induction on i):

(*) If D ∈ Si
xs(C)− S

i
xsT (C) then D is a tautology.

Suppose that (*) has already been proved: Because 2 is not a tautology
2 6∈ Si

xs(C) − S
i
xsT (C) for all i. By the completeness of Rxs there exists a k

such that 2 ∈ Sk
xsT (C) too. It remains to prove (*):

i = 0 : S0
xs(C)− S

0
xsT (C) = TAUT(C) by definition of Sxs and SxsT . Clearly

(*) is fulfilled for i = 0.

(IH) Suppose that Si
xs(C)− S

i
xsT (C) contains tautologies only.

case i+ 1 :
Suppose that D ∈ Si+1

xs (C)− Si+1
xsT (C).

Because Rxs is a B-refinement there are clauses E,F ∈ Si
xs(C) such that

D ∈ ρx({E,F}).

case a:
Both E and F are in Si

xsT (C): From D ∈ Si+1
xs (C) we conclude that

either D ∈ Si
xs(C) or (D ∈ ρx(Si

xsT (C)) and Si
xs(C) 6≤ss {D}).

If D ∈ Si
xs(C) then

D ∈ Si
xs(C)− S

i+1
xsT (C) ⊆ Si

xs(C)− S
i
xsT (C) and, by (IH), D is a tautology.

So let us assume Si
xs(C) 6≤ss {D}; clearly D ∈ ρx(Si

xsT (C)) by assumption a).

Note that D 6∈ Si+1
xsT (C) but D ∈ sf(Si

xsT (C), ρx(Si
xsT (C))). By definition of

RxsT , D must be a tautology.

case b:
E /∈ Si

xsT (C), F ∈ Si
xsT (C): Using E ∈ Si

xs(C)−S
i
xsT (C) and (IH) we conclude

198 4. Redundancy and Deletion

that E must be a tautology. From Proposition 4.4.1 and the fact that D is a
resolvent of E and F we derive that either D is a tautology or F ≤ss D. If D
is a tautology then we have achieved our goal. So let us assume that F ≤ss

D. Then, clearly, Si
xs(C) ≤ss D and, by definition of forward subsumption,

D 6∈ Si+1
xs (C)− Si

xs(C).

By assumption we have D ∈ Si+1
xs (C)− Si+1

xsT (C).

We conclude that D ∈ Si
xs(C)− S

i+1
xsT (C)

and by Si
xsT (C) ⊆ Si+1

xsT (C):

D ∈ Si
xs(C)− S

i
xsT (C).

By (IH) D must be a tautology.

case c:
E ∈ Si

xsT (C), F /∈ Si
xsT (C): This case is completely symmetric to b).

case d:
E /∈ Si

xsT (C) and F /∈ Si
xsT (C): Here we have E,F ∈ Si

xs(C)−S
i
xsT (C) and, by

(IH), E and F are both tautologies. But D as a resolvent of two tautologies
must be a tautology too (note that resolution is a sound inference rule). This
concludes the proof of case i+ 1. 3

Corollary 4.4.1. All A-ordering refinements remain complete under for-
ward subsumption and elimination of tautologies.

Proof. Immediately from Theorems 4.2.1 and 4.4.1. 3

Let Rxs be a refinement with forward subsumption. If Rxs is complete
then we may always add tautology-elimination. To refine Rxs to RxsT not
only preserves completeness but also reduces the search space. Looking more
closely at the proof of theorem 4.4.1 we see that the minimal refutation depth
cannot be increased by elimination of tautologies:

If 2 ∈ Sk
xs(C) then also 2 ∈ Sk

xsT (C).

Moreover Si
xsT (C) ⊆ Si

xs(C) for all i ∈ IN. In particular

2 ∈ Sd
xsT (C) ⊆ Sd

xs(C)

where d is the minimal refutation depth of Rxs on C (and thus also of RxsT

on C). As an immediate consequence we obtain

CSxsT (C) ≤ CSxs(C)

for all unsatisfiable sets of clauses C.
As in the case of forward subsumption, locking plays a special role in

tautology elimination.

4.5 Clause Implication 199

Proposition 4.4.2. Lock resolution + tautology-elimination is incomplete.

Proof. Again we may take our old example used to show incompleteness of
lock resolution under forward subsumption.

C = {
1

R(x1) ∨
5

P (x1),
3

¬P (x1) ∨
6

R(x1),
4

P (x1) ∨
7

¬R(x1),
2

¬R(x1) ∨
8

¬P (x1)}

The first generation of lock resolvents is

S1
l = C ∪ {

5
P (x1) ∨

8
¬P (x1),

6
R(x1) ∨

7
¬R(x1)}.

We see that all new clauses on the first level are tautologies (their unlocked
forms are tautological clauses). Therefore S1

lT (C) = C and, by definition of
RxT for arbitrary refinements Rx, RlT (C) = C. But C is unsatisfiable and
thus RlT is incomplete. 3

We may ask the question whether hyperresolution is complete under
elimination of tautologies. In fact the answer is completely trivial: Because
RH(C) − C consists of positive clauses and (in case of unsatisfiability) of 2

only, it cannot contain any tautologies. Thus tautology-elimination can only
play the role of preprocessing in hyperresolution. The same holds for hyper-
resolution with replacement.

As an algorithmic test, tautology-elimination is much faster than sub-
sumption. In order to test the tautology property, we merely order the clause
according to their atom formulas and, for equal atoms, put the positive lit-
erals in front of the negative ones. If, by this method, C is ordered into
a clause C0 then C0 is a tautology iff there are clauses D1, D2 such that
C0 = D1 ∨ A ∨ ¬A ∨D2 for some atom formula A. Therefore the algorithm
consists in ordering the atoms first and looking for pairs A,¬A afterwards.
If n denotes the number of symbols in clauses then this procedure is of time
complexity O(n logn) (provided a fast sorting procedure is applied [AHU76]).

Exercises

Exercise 4.4.1. Prove that linear input resolution + subsumption + elimi-
nation of tautologies is relatively complete to linear input resolution + sub-
sumption. Define STULI-deductions (subsumption reduced, tautology-free,
linear input deductions) out of the concept of SULI-deductions (see Defini-
tion 4.2.6) and show that there are STULI-refutations iff there are SULI-
refutations.

4.5 Clause Implication

We have seen that, independently of the specific R-deduction methods, tau-
tology elimination and subsumption are admissible as preprocessing (and for

200 4. Redundancy and Deletion

some refinements “during” deduction too). Now we might think about fur-
ther strengthening the preprocessing by deleting clauses that are implied by
the remaining set of clauses (this problem is directly connected to the con-
struction of minimal axiom systems). Such a redundancy test, however, is
undecidable and therefore is out of range of a computational calculus. A nat-
ural restriction of such a general redundancy test could be to check whether
one input clause implies another one. Formally this is the problem of finding
out whether F ({C})→ F ({D}) is valid for two clauses C and D; in a more
convenient notation we write {C} → {D} for F ({C})→ F ({D}) (this should
not be confused with the problem C → D for open disjunctions C and D). So
let us assume that for two clauses C,D ∈ C the formula {C} → {D} is valid.
Then, clearly, C is logically equivalent to C − {D} and we may work with the
smaller set C − {D}. Such redundancy reductions, however, are not always
as beneficial as subsumption (Exercise 4.5.9). So the investigation of clause
implication is mainly of theoretical interest. Most interesting is its behavior
relative to subsumption, which will be investigated in this chapter. Concern-
ing subsumption and implication several natural questions arise: Does clause
implication coincide with subsumption? If clause implication is different from
subsumption what are the mutual relations? Is clause implication decidable?
If clause implication would indeed coincide with subsumption, all the ques-
tions following the first one would have trivial answers. But we will see that
clause implication (essentially) differs from subsumption.

First we find out that there are trivial cases where {C} → {D} is valid
but C ≤ss D is not: Just take C = P (x) and D = Q(x) ∨ ¬Q(x). Because D
is a tautology, {E} → {D} is valid for all clauses E. On the other hand C
does not subsume D. So the next step is to reduce the problem to the case
where D is not a tautology; but still {C} → {D} does not imply C ≤ss D.

Proposition 4.5.1. There are clauses C,D such that D is not a tautology,
{C} → {D} is valid, but C ≤ss D does not hold.

Proof. Let C = ¬P (x) ∨ P (f(x)) and D = ¬P (a) ∨ P (f(f(a))). Clearly C
does not subsume D because there is no substitution ϑ such that ϑ(x) = a
and ϑ(f(x)) = f(f(a)) both hold. But C implies D. To establish this fact
it suffices to refute the set of clauses {¬P (x) ∨ P (f(x)), P (a),¬P (f(f(a)))},
which represents {C} ∪ ¬D.

Indeed resolving C with itself we obtain (a variant of) the clause ¬P (x)∨
P (f(f(x))). Two further resolutions with P (a) and ¬P (f(f(a))) give 2. 3

Looking more closely at the proof of Proposition 4.5.1 we find that C
itself does not subsume D, but

¬P (x) ∨ P (f(f(x))) ≤ss D.

So we see that not C itself but a clause derivable from C (alone) subsumes D.
The question remains whether this effect is merely accidental or rather char-

4.5 Clause Implication 201

acteristic to the problem. We will show that there is some interesting law be-
hind this phenomenon, namely (a weak form of) the deduction completeness
of resolution (note that so far we have dealt with refutational completeness
only). The next step will be to prove the important theorem of Lee [Lee67];
afterwards we will show that {C} → {D} can be characterized by resolution
on {C} and by subsumption.

Roughly speaking, the theorem of Lee says that C → {D} is valid iff there
exists a C ∈ R∅(C) such that C ≤ss D (C being a set of clauses and D being
a clause). That means, if a clause D is implied by C then it can “almost” be
derived from C. It is obvious that, in order to make this statement correct,
we have to exclude tautological clauses D again. As always, we first analyse
the ground case and obtain the general one via lifting.

Lemma 4.5.1. Let C be a set of ground Nc-clauses and D be a ground Nc-
clause such that D is not a tautology and C → {D} is valid. Then there exists
a clause C ∈ R∅(C) such that C ≤ss D (i.e., we can derive a clause C from
C which subsumes D).

Proof. We proceed by induction on occl(C), the number of literal occurrences
in C (compare to the proof of Lemma 3.6.1).

occl(C) = 0 :
In this case C = ∅ or C = {2}. If C = ∅ then F (C) is a tautology and, by
the validity of C → {D}, D must be a tautology too. But we have excluded
tautological clauses D a priori and so this case cannot occur. If C = {2}
then, clearly, 2 ∈ R∅(C) and 2 ≤ss D (note that 2 subsumes every clause).
This concludes the case occl(C) = 0.

(IH) Suppose that, for all sets of ground Nc-clauses C with occl(C) ≤ n,
C → {D} is valid, and D is not a tautology, there exists a clause C ∈ R∅(C)
such that C ≤ss D.

Now let C be a set of ground Nc-clauses such that occl(C) = n + 1, D is
nontautological, and C → {D} is valid.

case a: C is unsatisfiable.
By the (refutational) completeness of resolution we obtain 2 ∈ R∅(C); clearly
2 subsumes D.

case b: C is satisfiable.
We show that D must contain a literal L which also occurs in C. Because
C → {D} is valid the set of clauses C ∪ ¬D is unsatisfiable.

By assumption D is not a tautology and thus the set of (ground unit)
clauses ¬D is satisfiable. So let ¬D = {M1, . . . ,Mk}. We assume that for all
i = 1, . . . k Md

i does not occur in C and derive a contradiction.
Still the literal Mi may occur in C for some i ∈ {1, . . . , k}. But let C′ = C

after application of the pure literal rule on Mi. Then C′ ∼sat C and C′

202 4. Redundancy and Deletion

contains neither Mi nor Md
i . Thus at(Mi) does not occur in C′ at all and C′

is satisfiable.
We iterate this procedure until there is no Mi left which occurs in C (we

thus obtain a final set C′). Because ¬D is satisfiable there exists a (proposi-
tional) interpretation J on at({M1, . . . ,Mk}) such that J(Mi) = true for all
i = 1, . . . , k.

But also C′ is satisfiable and thus there exists some (propositional) model
I with vI(C′) = true and I is defined on at(C). But, by definition of C′, at(C′)∩
at(¬D) = ∅ and therefore J ∪ I is a model of C′ ∪ ¬D.

Now note that vI∪J(Mi) = true for i = 1, . . . , k. As a consequence J ∪ I
is also a model of C ∪ ¬D (C may contain some Mi but no Md

i). But, by
assumption, C ∪ ¬D is unsatisfiable and we obtain a contradiction. So we
conclude that there must be a literal L such that L ∈ LIT (C) and Ld ∈
LIT (¬D); but that means L ∈ LIT (C) ∩ LIT (D).

Now let D : {C1 ∨ L ∨ D1, . . . , Cm ∨ L ∨Dm} be the set of all clauses in C
which contain L and let D∗ = D \ L.

Because C → {D} is valid, C ∪ {Ld} → {D∗} is valid by

A→ (B ∨ C) ∼ (A ∧ ¬B)→ C).

By the one-literal rule of Davis and Putnam (applied to Ld) we obtain a set

C∗ : (C − D) ∪ {C1 ∨D1, . . . , Cm ∨Dm}

which is sat-equivalent to C ∪ {Ld}.

The next step consists in showing that C∗ → {D∗} is valid. Because D is in
Nc-normal form and is not a tautology Ld cannot occur in D; consequently
neither L nor Ld occurs in D∗. Thus by applying the one-literal rule to
C ∪ {Ld} ∪ ¬D∗ we obtain C∗ ∪ ¬D∗.

Moreover C ∪ {Ld} ∪ ¬D∗ ∼sat C∗ ∪ ¬D∗.
Because C ∪ {Ld} → {D∗} is valid the set of clauses C ∪ {Ld} ∪ ¬D∗ is

unsatisfiable.

We conclude that C∗∪¬D∗ is unsatisfiable and, therefore, C∗ → {D∗} is valid.
Because L occurs in C, C∗ is strictly smaller than C and occl(C∗) ≤ n.

So we may apply the induction hypothesis (IH) and we obtain a clause C ∈
R∅(C∗) such that C ≤ss D∗. It remains to show that there exists a clause
E ∈ R∅(C) such that LIT (E) ⊆ LIT (C)∪{L}. Then, by LIT (C) ⊆ LIT (D∗)
(note that C and D∗ are ground) we also get

LIT (E) ⊆ LIT (C) ∪ {L} ⊆ LIT (D∗) ∪ {L} = LIT (D).

But that means E ≤ss D, which is what we intend to show. In order to
construct an appropriate clause E we first observe that the one-literal rule of
Davis and Putnam can be simulated by resolution. Particularly the clauses
Ci ∨Di are resolvents of Ci ∨ L ∨Di and Ld. Therefore we get

4.5 Clause Implication 203

C∗ ⊆ C ∪Res(C ∪ {L
d}) ⊆ R∅(C ∪ {L

d}).

By monotonicity and idempotency of R∅ we obtain

R∅(C∗) ⊆ R∅(C ∪ {L
d})

So we know that C ∈ R∅(C ∪ {L
d}) and C ≤ss D∗. Let F,G be arbitrary

Nc-ground clauses. As in the proof of Lemma 3.6.1 we define:

F ≤L G iff LIT (F) = LIT (G) or LIT (F) ∪ {L} = LIT (G).

Cleary ≤L is reflexive and transitive. We extend ≤L to sets of clauses via

C ≤L D iff for all C ∈ C there exists a D ∈ D such that C ≤L D.

It is easy to show (Exercise 4.5.1) that

R∅(C ∪ {L
d}) ≤L R∅(C) ∪ {L

d}.

From C ∈ R∅(C ∪ {L
d}) and the definition of ≤L we infer that there is a

clause E ∈ R∅(C) ∪ {L
d} such that C ≤L E. But C subsumes D∗, a clause

which neither contains L nor Ld. Particularly Ld 6∈ LIT (C). Therefore E
cannot be Ld and so E ∈ R∅(C) (note that, by satisfiability of C, C 6= 2).

But C ≤L E also implies LIT (E) ⊆ LIT (C)∪{L}. Remember we have shown
already that

LIT (E) ⊆ LIT (C) ∪ {L} implies E ≤ss D.

So E ∈ R∅(C) and E ≤ss D, which concludes the proof of case n+ 1. 3

It remains to show the theorem for the general case.

Theorem 4.5.1 (Theorem of Lee). Let C be a set of Nc-clauses, let D be
a nontautological clause and C → {D} be valid. Then there exists a clause
C ∈ R∅(C) such that C ≤ss D.

Proof. Let as assume that C → {D} is valid. Then C∪¬D is unsatisfiable. As
clauses represent universally closed disjunctions ¬D is logically equivalent to
the existential closure of a conjunction of literals. By skolemization we obtain
C ∪¬Dc, where Dc is D after replacing all variables in V (D) by new distinct
constant symbols that do not occur in C ∪{D}. Clearly C ∪¬D ∼sat C ∪¬Dc

and Dc is a ground clause.
By Herbrand’s theorem there exists a finite set of ground Nc-instances C′

of C such that C′ ∪ ¬Dc is unsatisfiable (note that ¬Dc already consists of
unit ground clauses).

But then C′ → {Dc} is valid. By Lemma 4.5.1 there exists a clause
C′ ∈ R∅(C

′) such that C′ ≤ss Dc. By Nc-ground lifting we obtain a clause
C ∈ R∅(C) such that there exists a ϑ with Nc(Cϑ) = Nc(C

′) = C′, i.e., by

204 4. Redundancy and Deletion

definition of ≤sc (Definition 3.3.7) C ≤sc C
′. As ≤ss is strictly stronger than

≤sc we also get C ≤ss C
′.

Moreover, ≤ss is transitive and we conclude C ≤ss Dc. But Proposi-
tion 4.2.2 tells us that C ≤ss Dc iff C ≤ss D. So we obtain C ∈ R∅(C) and
C ≤ss D. 3

Lee’s theorem can directly be applied to the case of clause implication.
We only have to select C = {C} for a clause C. The following proposition
was first proved (using a different method) in [Got87]:

Proposition 4.5.2. Let C,D be Nc-clauses such that D is not a tautology,
{C} → {D} is valid, and R∅({C}) = {C}; then C ≤ss D.

Proof. By R∅({C}) = {C} and by Lee’s theorem C must subsume D. 3

Typical clauses fulfilling R∅({C}) = {C} are clauses which are incapable
of self-inference. Thus Proposition 4.5.2 holds for all clauses C such that
Res({C}) = ∅. Other candidates for this property are tautologies like P (x1)∨
¬P (x1); but these can be excluded because D may not be a tautology.

Corollary 4.5.1. If C is not resolvable with itself and D is not a tautology
then the validity of {C} → {D} implies C ≤ss D.

Proof. Immediate from Proposition 4.5.2. 3

Let us assume that D is a nontautological clause. Then, by Theorem 4.5.1,
{C} → {D} is valid iff there exists an E ∈ R∅({C}) such that E ≤ss D. The
question remains, whether there is a general algorithmic method to determine
the existence or nonexistence (!) of such a clause E. For such a decision
procedure it would suffice to show the existence of a recursive function k on
pairs of clauses (C,D) such that the following property holds:

R∅({C}) ≤ss {D} iff S
k(C,D)
∅ ≤ss {D}.

Note that for every d ∈ IN Sd
∅ ({C}) is finite and ≤ss is decidable. Thus, under

the condition that such a bound k exists, we first compute d = k(C,D) and
then test F ≤ss D for F ∈ Sd

∅(C).
But clause implication is undecidable ([SS88]) and thus such a recursive

bound k does not exist. It was even shown that the problem remains undecid-
able when C is restricted to Horn form [MP92] (in fact the problem is already
undecidable for Horn clauses C of the form P ∨¬P1∨¬P2). As a consequence
there exists no algorithmic test for (Horn) clause implication. But, of course,
{C} → {D} is semidecidable: If {C} → {D} is indeed valid then, by the
completeness of resolution, we find 2 ∈ R∅({C}∪¬D), although the value of
such a test is highly questionable (it is as hard as resolution theorem prov-
ing itself!). However, there are relevant cases of decidable clause implication
problems (besides the trivial case that D is a tautology or R∅({C}) = {C}).

4.5 Clause Implication 205

In the remaining part of this chapter we present some of the decidable classes
and analyze the corresponding decision methods. These methods are based
either on Lee’s theorem or on resolution decision procedures. In contrast to
the Horn clause implication problem, the Krom clause implication problem
is decidable. This result was first shown by M. Schmidt-Schauss in [SS88].

Definition 4.5.1 (Krom clause implication KCI). : Let KCI be the set
of all pairs of clauses (C,D) such that C is a Krom clause (i.e., |C| ≤ 2) and
D is arbitrary. Then KCI is called the Krom clause implication problem.

Theorem 4.5.2. The Krom clause implication problem is decidable.

Proof. Let (C,D) ∈ KCI; we have to develop an algorithm which decides
{C} → {D}.

If C = P1∨P2 or C = ¬P1∨¬P2 for two atoms P1, P2 then clearlyR∅({C}) =
{C} and, by Proposition 4.5.2, {C} → {D} iff C ≤ss D. In these cases the
implication problem can be decided simply by the subsumption test. Even
more trivial is the case where D is a tautology. It remains to investigate
the case where C contains a positive and a negative literal and D is not
a tautology. For technical reasons we base our analysis on Nc-clause forms
again.

If Res({C}) = {C} then {C} → {D} is valid iff C ≤ss D.

So we are left with the only nontrivial case that C is capable of self-resolution.
We define recursively:

C1 = {C} and Cn+1 = ρ̂∅(C, Cn) ∪ Cn for n ≥ 1

For the definition of ρ̂x see Section 4.1. By Exercise 4.5.5 Cn+1 − Cn
consists of at most one element, which – in case of existence – we denote
by Cn+1; moreover if Cn+1 exists it is indeed the (only) resolvent of Cn and
C (for n ≥ 1). Thus Cn behaves like the “n-th power” of C. It is trivial that
Cn ⊆ R∅({C}) holds for all n ≥ 1; but here we even have

⋃

i∈IN Ci = R∅({C})
(see Exercise 4.5.6). Thus the clauses derivable from C itself are precisely the
“clause powers” Cn. Let

C(1) = C1 and C(n+1) = Cn+1 − Cn for n ≥ 1.

case a: C(n) = ∅ for some n.
In this case R∅({C}) = S

(n−1)
∅ ({C}) and, by Lee’s theorem, {C} → {D} is

valid iff S
(n−1)
∅ ({C}) ≤ss {D}. But S

(n−1)
∅ ({C}) is a finite set of clauses and

≤ss is decidable.

case b: C(n) 6= ∅ for all n ∈ IN+.
In this case the clauses Cn are defined for all n ≥ 1. We first show that the
term depth of the Cn is monotonically increasing, i.e.,

206 4. Redundancy and Deletion

τ(Cn) ≤ τ(Cn+1) for all n ≥ 1.

Let Cn = Q1 ∨¬Q2 and C = P1 ∨ ¬P2 and η1, η2 be two renaming substitu-
tions such that V (Cnη1) ∩ V (Cη2) = ∅. There are two possibilities to define
a resolvent of Cn and C.

D1 : ¬Q2η1σ ∨ P1η2σ for some m.g.u. σ or
D2 : Q1η1τ ∨ ¬P2η2τ for an m.g.u. τ .

By the uniqueness of Cn+1 we have Nc(D1) = Nc(D2) and in particular
τ(D1) = τ(D2) = τ(Cn+1). Obviously τ(¬Q2) ≤ τ(D1) and τ(Q1) ≤ τ(D2)
and therefore

τ(Cn) = max{τ(Q1), τ(Q2)} ≤ τ(C
n+1).

We now distinguish two cases:

b1: There exists a k ≥ 1 such that τ(Ck) > τ(D).
Then, by the monotonicity shown above, τ(Cl) > τ(D) for all l ≥ k. It
follows that, for all substitutions ϑ and for all l ≥ k, τ(Clϑ) > τ(D). As
a consequence Cl ≤ss D is impossible for l ≥ k. Thus R∅({C}) ≤ss {D}
iff Sk−1

∅ (C) ≤ss D. Therefore we obtain a bound on the deduction levels
like in case a).

b2: τ(Cn) ≤ τ(D) for all n ≤ 1.
As all Cn consist of two literals only and the term depth is uniformly
bounded there are only finitely many Nc-normalizations Nc(C

n) (note
that Nc performs a standard renaming of variables). Therefore the se-
quence (Cn)n∈IN+ must contain cycles, which means there are numbers
m, r with r > 0 and

Cm = Cm+r.

As a consequence we get Cm+k = Cm+k mod r for all k ∈ IN.
Let d = m+ r − 1; then

R∅({C}) =

∞
⋃

i=0

{Ci} ⊆
d

⋃

i=0

{Ci} = Sd
∅ ({C}).

Clearly R∅({C}) ≤ss {D} iff Sd
∅({C}) ≤ss {D}.

The case analysis in a), b1), and b2) suggests the following decision algorithm
KCIA:

(I) Test “C ≤ss D”; if C ≤ss D holds then {C} → {D} is valid else continue
at point (II) with n = 1.

4.5 Clause Implication 207

(II) (Suppose that we have already computed C1, . . . , Cn)
(*) If {C1, . . . , Cn} ≤ss {D} then {C} → {D} is valid, else compute Cn+1.

a: Cn+1 does not exist: {C} → {D} is not valid.

b: Cn+1 exists:

b1: τ(Cn+1) > τ(D) : {C} → {D} is not valid.

b2: Cn+1 = Ci for some i < n+ 1 : {C} → {D} is not valid.

b3: If neither b1) nor b2) then set n← n+ 1 and continue at point
(*).

By the analyses at the points a), b1), and b2) in the proof we see that
there must always be an n such that either C(n) = ∅ or τ(Cn) > τ(D) or
Cn = Ci for some i < n. But this gives us the guarantee that KCIA always
terminates; consequently KCIA is a decision algorithm for the Krom clause
implication problem. 3

We have seen that Lee’s theorem can provide tools to decide clause impli-
cation problems. There are also several subclasses of the Horn implication
problem which can be decided by this method [Lei88]. We now introduce
another method to decide clause implication problems. Instead of investigat-
ing the problem {C} → {D} directly, we turn to the satisfiability problem
{C} ∪ ¬D.

If {C} ∪ ¬D is unsatisfiable (and thus {C} → {D} is valid) then
2 ∈ Rx({C} ∪ ¬D) for every complete refinement operator Rx. The real
problem arises when {C} ∪ ¬D is satisfiable; because the clause implication
problem is undecidable we know that Rx cannot terminate on all satisfiable
sets of clauses provided Rx is complete). There are, however, subclasses of
the clause implication where appropriate refinements Rx always terminate
and thus yield a decision procedure. The idea of finding complete, terminat-
ing refinements is crucial to the resolution decision theory to be presented
in Chapter 5. For this reason we will refer to the more general results of
Chapter 5 in the analyses of some clause implication problems to follow.

Definition 4.5.2 (one-variable clause implication 1VCI).
Let 1VCI be the class of all pairs of clauses (C,D) such that |V (C)| = 1 (D
may be arbitrary). Then the problem to decide clause implication in 1VCI is
called the one-variable clause implication problem.

Theorem 4.5.3. The one-variable clause implication problem is decidable.

Proof. This theorem is a specific subcase of the more general Theorem 5.2.1
and we shall not repeat the proof under these more restricted circumstances.
Instead we merely mention the main lines of the proof.

Remember our specific A-ordering <d defined in Section 3.3:

208 4. Redundancy and Deletion

A <d B iff for all x ∈ V (A) : τmax(x,A) < τmax(x,B) and τ(A) < τ(B).

For (C,D) ∈ 1V CI the satisfiability problem {C} ∪ ¬D is contained in the
one-variable class (i.e., the class of all sets of clauses containing only clauses
with ≤ 1 variables). By Theorem 5.2.1 R<d

terminates on the one-variable
class; particularly R<d

({C} ∪ ¬D) is finite for all (C,D) ∈ 1V CI and there
exists an i such that

Si
<d

({C} ∪ ¬D) = Si+1
<d

({C} ∪ ¬D).

Thus there exists an obvious algorithm to compute R<d
({C})∪¬D). There-

fore the property “2 ∈ R<d
({C} ∪ ¬D)” is decidable for (C,D) ∈ 1V CI.

But the validity of {C} → {D} is equivalent to 2 ∈ R<d
({C} ∪ ¬D). 3

Finally, we present a clause implication class that can be decided by hyper-
resolution (while 1VCI can be decided by A-ordering).

Definition 4.5.3. Let H0CI be the class of all pairs of clauses (C,D) such
that

τ(C+) = 0 and V (C+) ⊆ V (C−) and D is arbitrary.

H0CI represents the clause implication problem for C+ being function-free
and “variable-dominated” by C−.

The clause implication problem for H0CI can be reduced to the satisfia-
bility problem of the class PVD defined in Chapter 5 (Definition 5.3.3).

Theorem 4.5.4. The clause implication problem is decidable for (C,D) ∈
H0CI.

Proof. If (C,D) ∈ H0CI then {C} ∪ ¬D is in PVD. By Theorem 5.3.1
hyperresolution terminates on PVD, i.e., for all C ∈ PVD the set RH(C) is
finite.

In particular RH({C} ∪ ¬D) is finite for all (C,D) ∈ H0CI.
Recall (again) that {C} → {D} is valid iff {C}∪¬D is unsatisfiable and that
RH is complete. Therefore, in order to decide the validity of {C} → {D}, we
just compute the set RH({C} ∪ ¬D). We know that there must be a k ∈ IN
such that

Sk
H({C} ∪ ¬D) = Sk+1

H ({C} ∪ ¬D).

Clearly {C} → {D} is valid iff 2 ∈ RH({C} ∪ ¬D). 3

More decidable clausal classes (all of them Horn classes) can be found in
[Lei88], [Lei90], [LG90], and [Rud92]. The algorithms in the latter three pa-
pers are based on hyperresolution (but not all of them on termination); the
algorithms in [Lei88] are based on self-inference and on Lee’s theorem. It

4.5 Clause Implication 209

is not sufficiently investigated how clause implication behaves as a redun-
dancy method with respect to resolution. What can be said is that clause
implication is too strong to enjoy the “uniform” improvements achieved by
subsumption (see Exercises 4.5.8 and 4.5.9). However, there are some trivial
cases where clause implication and subsumption coincide; one such case oc-
curs in hyperresolution: As RH produces positive clauses only which are not
capable of self-resolution and which can be implied by positive clauses only
(!), implication collapses to ordinary subsumption by Proposition 4.5.2 (note
that positive clauses cannot be tautologies!). Linear input deduction in Horn
logic shows a similar behavior; in this case all generated clauses are purely
negative.

Horn clause implication naturally models rule dependency in logical infer-
ence systems; here propositional inference rules (having several formulas in
the antecedent and one in the consequent) can be represented as Horn clauses.
Then clause implication represents redundancy of rules (i.e., one rule logically
implies the other one).

Exercises

Exercise 4.5.1. Let C be a set of ground Nc-clauses and L be a ground
literal. Then

R∅(C ∪ {¬L}) ≤L R∅(C) ∪ {¬L}

(≤L is defined in the proof of Lemma 4.5.1).

Exercise 4.5.2. Let C, D be Nc-clauses such that D is not a tautology and
let RH be the operator of hyperresolution defined in Definition 3.6.5. Show
that

C ≤ss D iff 2 ∈ S2
H({C} ∪ ¬D).

In general we cannot replace R∅ by a refinement operator Rx in Lee’s
theorem (which means the validity of {C} → {D} usually does not imply the
existence of an E ∈ Rx(C) such that E ≤ss D). But for positive clauses we
can obtain a stronger form of Lee’s theorem:

Exercise 4.5.3. Let C be a set of Nc-clauses and D be a positive clause
such that C → {D} is valid. Then there exists a clause E ∈ RH(C) such
that E ≤ss D (i.e., there exists a clause derivable by hyperresolution which
subsumes D).

Exercise 4.5.4. Let Γ be the class of all clauses pairs (C,D) such that
τ(C) = 0 (i.e., C is function free). Show that the clause implication problem
for Γ is decidable (hint: construct a ground clause D′ such that τ(D′) = 0
and {C} → {D} is valid iff {C} → {D′} is valid).

210 4. Redundancy and Deletion

Exercise 4.5.5 (clause powers). Let C be a Krom clause and

C1 = {C} and Cn+1 = ρ̂∅(C, Cn) ∪ Cn

for n ∈ IN (remember that ρ̂x(C,D) describes the set of all x-resolvents
between C and the set of clauses D). Let

C(1) = C1 and C(n+1) = Cn+1 − Cn.

Show that, under Nc-normalization, C(n) is either empty or consists of a single
clause only (which we may call C(n)). Moreover if C(n+1) 6= ∅ for some n ≥ 1
then C(n+1) is the (only) resolvent of C and Cn.

Exercise 4.5.6. [SS88] Let C be a Krom clause and Cn be defined as in
Exercise 4.5.5. Show that

R∅({C}) =
⋃

i∈IN

Cn.

Definitions for Exercise 4.5.7:

Let C be a Horn clause such that C = P ∨¬Q1∨. . .∨¬Qn and let C+ = {P},
C− = {¬Q1, . . . ,¬Qn}. We divide C− into two groups of literals:

Cinf = {L|L ∈ C− and there exists a renaming substitution η such that
{¬Pη, L} is unifiable },

Crest = C− − Cinf .

Cinf represents the set of all literals in C− which lead to self-resolution of C.
Crest is the “inference-free” part.

Exercise 4.5.7. [Lei88] Let Γ be the class of all pairs of clauses (C,D) such
that C is Horn and V (C) = V (Crest). Show that the clause implication
problem for Γ is decidable (Hint: Use hyperresolution and an appropriate
ordering of the literals C−).

Background on Exercise 4.5.8:

The effect of removing implied clauses can be essentially different from that
of subsumption. Indeed it may be the case that the minimal refutation depth
increases after removal of implied clauses. This phenomenon applies to dele-
tion during deduction and to deletion as preprocessing.

Exercise 4.5.8. Show that there exists a sequence of sets of clauses Cn such
that Cn is reduced under implication, d∅(Cn) = O(n), but the minimal refuta-
tion depth of Cn under elimination of implied clauses is > 2n (for the mathe-
matical treatment use the refinement R∅ci defined like forward subsumption
R∅s).

4.5 Clause Implication 211

Let IMP(C) be a reduction of C under implication, i.e., IMP(C) ⊆ C and if
C,D ∈ IMP(C) such that if {C} → {D} is valid then C = D.

Exercise 4.5.9. Construct a sentence Cn (similar to that in Exercise 4.5.8)
such that d∅(Cn) = c for some constant c independent of n, but
d∅(IMP (Cn)) ≥ dn for a constant d and for all n ∈ IN.

212 4. Redundancy and Deletion

5. Resolution as Decision Procedure

5.1 The Decision Problem

In Section 2.7 we showed that for every unsatisfiable set of clauses there exists
a resolution refutation. In the last two chapters we have exhibited some com-
pleteness preserving extensions of resolution. Here we will focus on another
aspect of refinements, namely termination. Suppose that we start a theorem
prover (i.e., a complete resolution refinement Rx) on a set of clauses C, which
may be satisfiable or unsatisfiable. Obviously there are three possibilities:

1) Rx terminates on C and refutes C.
Because Rx is correct and 2 ∈ Rx(C) we know that C is unsatisfiable.

2) Rx terminates on C without producing 2.
By the completeness of Rx C must be satisfiable.

3) Rx does not terminate on C:
In this case Rx(C) is infinite and 2 6∈ Rx(C) (we assume that the produc-
tion of new clauses is stopped as soon as 2 is derived). As in case 2) C is
satisfiable, but we cannot detect this property just by computing Rx(C).

From Proposition 3.1.1 we know that for every complete refinement op-
erator Rx there must exist a (finite) set of clauses C such that Rx(C) is
infinite. That means it is impossible in principle to avoid nontermination on
all sets of clauses. Let us trace the logical and historical background of this
phenomenon.

By Church’s famous result [Chu36] we know that (the validity problem
of) predicate logic is undecidable. It is easily verified that the validity and
satisfiability problems are recursively equivalent; note that F is valid iff ¬F
is unsatisfiable. Therefore, from now on, we may focus on the satisfiability
problem only. Let F be a sentence of (first-order) predicate logic. Using the
techniques presented in Section 2.2 we can transform F into a sat-equivalent
set of clauses C. An immediate consequence of this transformation (which is
effectively computable) is the undecidability of the unsatisfiability problem
of clause logic (roughly speaking clause logic is undecidable). On the other
hand unsatisfiability (but not satisfiability) is semi-decidable, i.e., there exists
an algorithm producing 2 on all unsatisfiable sets of clauses. An algorithm
of this type can easily be obtained by computing Rx() for a complete resolu-
tion refinement Rx. Clearly Rx cannot be a decision procedure of clause logic

214 5. Resolution as Decision Procedure

and thus it must be nonterminating on some finite, satisfiable sets of clauses;
therefore case 3) cannot be avoided.

The area of mathematical logic characterized by the term “decision problem”
originated at the beginning of the 20th century. Around 1900 Hilbert formu-
lated the problem of finding an algorithm to decide the validity of first-order
predicate logic formulas [Hil01]. He called this decision problem the “fun-
damental problem of mathematical logic”. Indeed, in some informal sense,
the problem is even older than modern symbolic logic. In the 17th century
Leibniz formulated the vision of a calculus ratiocinator [Leib], which would
settle arbitrary problems by purely mechanical computation, once they were
translated into an adequate formalism.

At the beginning of the 20th century a positive solution of the decision
problem seemed to be merely a question of mathematical invention. Indeed
some progress was achieved soon as decidable subclasses of predicate logic
were found. The decision algorithms provided for these classes were clearly
effective in any plausible intuitive sense of the word (note that before pub-
lication of Turing’s landmark paper [Tur36] no formal concept of algorithm
was available). One of the first results was the decidability of the monadic
class [Loew15] (i.e., the class of first-order formulas containing only unary
predicate symbols and no function symbols). In the same paper Löwenheim
showed that dyadic logic (in which all predicate symbols are binary) is a
reduction class, i.e., a class of first-order formulas effectively ”encoding” full
predicate logic. In the decades between the two world wars many outstand-
ing logicians attacked this problem. The initial strategy (probably) was to
enlarge the decidable classes and to “shrink” the reduction classes till they
eventually met at some point (the outcome would have been the decidability
of first-order logic). We just mention the satisfiability problem of some pre-
fix classes (i.e., classes of closed prenex formulas with function free matrix)
proved decidable in this period: ∀∃∗ (a subclass of what is called the Acker-
mann class today [Ack28]), ∀∀∃∗ (the Gödel–Kalmar–Schütte class [Göd32])
and ∃∗∀∗ (the Bernays-Schönfinkel class [BS28]). Note that the satisfiabil-
ity problem is dual to the validity problem and thus the quantifier prefixes
become dual as well; e.g., the prefix of the Bernays–Schönfinkel class in the
setting of the validity problem is ∀∗∃∗. From now on we use the sentence “the
class K is decidable” instead of the longer but more precise statement “the
satisfiablity problem of K is decidable”.

We proved the decidability of the Bernays–Schönfinkel class in Section 2.4
using the finite-model property of this class (i.e., there exists a finite model iff
there exists a model at all). A class possessing this property is called finitely
controllable. The original proofs of decidability for all the classes mentioned
above were based on the finite-model property. In fact the set of all PL-
formulas having finite models is recursively enumerable. Thus in performing
search for a refutation and for a finite model in parallel, we clearly obtain a
decision procedure. The algorithms extracted from this method, however, are

5.1 The Decision Problem 215

based on exhaustive search and are hardly applicable in computational logic.
Moreover, once we are in possession of the machinery of resolution, we have
a proof-theoretic alternative in decision theory which yields not only reason-
able algorithms but (very often) also clearer and easier proofs of decidability.

As already outlined in Section 4.5 the following proof-theoretic method proves
decidability of the satisfiability problem for a predicate logic class Γ :

Let F be in Γ . Transform F into a sat-equivalent clause form C (we obtain
a clausal class Γ ′ corresponding to Γ).

Then find a complete resolution refinement which terminates on Γ ′.

This principle is quite general and can be applied within other calculi than
resolution and other normal forms than clause form. In 1968 S.Y. Maslov
proved decidability of the so called K-class (a decision class properly contain-
ing the Gödel–Kalmar–Schütte class) using this proof-theoretic paradigm. His
approach is based on the inverse method, which is a resolution-type method
formulated within the framework of a sequent calculus [Mas68]. More results
along this line have been obtained by other representatives of the Russian
school [Zam72]. A common feature of resolution and of the inverse method is
the use of the unification principle. Note that, in order to prove decidability
of classes, we need calculi with a restricted substitution rule (otherwise a
formula may define infinitely many successors under the inference principle).
A principle yielding a condition of finiteness for substitution is most general
unification: Only unifying substitutions are necessary and there is always a
single most general unifier which “does the whole job”. Thus most general
unification is not only a powerful principle in the design of computational al-
gorithms, but also a strong tool in proving decidability of first-order classes.

In the same spirit as Maslov, but on the basis of the resolution calculus,
Joyner showed in his thesis [Joy73] that resolution theorem provers can be
used as decision procedures for some classical prefix classes (e.g., the Ack-
ermann class and the Gödel-Kalmar-Schütte class). His idea of finding com-
plete resolution refinements Rx that terminate on clause classes correspond-
ing to prefix classes is of central importance to all results in this chapter.
The method can easily be extended to clause classes that cannot be obtained
from prefix classes (via skolemization). As an example take the class of all
formulas of the form (∀v)M(v) where M(v) is a quantifier-free formula with
V (M(v)) = {v} which may contain arbitrary terms. Its decidability was
proved by Y. Gurevich [Gur73] by a model-theoretic method. In Section 5.2
we will define a resolution decision procedure for this class. More recently
decidability results for several functional (nonprefix) classes have been ob-
tained by various resolution methods [FLTZ93]; some of these classes will be
discussed in this chapter.

In order to demonstrate the power of resolution as decision procedure we
start with a simple “motivating” decision class.

216 5. Resolution as Decision Procedure

Definition 5.1.1. The class of all prenex forms (Q1x1) . . . (Qmxm)M ,
where M is a function-free conjunction of literals, is called the Herbrand
class HC [Her31].

Proposition 5.1.1. The Herbrand class is decidable (by unrestricted reso-
lution).

Proof. Let F be a formula of HC and HC′ be the class of all
clause forms of formulas in HC. Then HC′ ⊆ Γ where Γ = {C |
C is a finite set of unit clauses}.
Now let C be the set of clauses in Γ corresponding to F . Because C consists
of unit clauses only, Res(C) = ∅ or Res(C) = {2}.
Thus we obtain a decision procedure for Γ by computation of R∅; this pro-
cedure also decides HC′ and (modulo transformation to clause form) HC.

3

In proving HC decidable Herbrand showed the decidability of the unifica-
tion problem for atom formulas. Although he did not develop the principle
of most general unification his proof first illustrated the importance of unifi-
cation. Once resolution and unification are already available the decidability
of HC is in fact trivial. However, we cannot hope for such an easy game in
case of other decidable classes. Indeed the resolution operator R∅ does not
terminate on all other classes mentioned above and thus is generally useless
as decision procedure. It is the purpose of Sections 5.2 and 5.3 to investigate
several types of refinements with respect to their potential to serve as decision
methods. Note that by restricting existing refinements under preservation of
completeness we always increase the decision potential of the method: If Rx

and Ry are both complete refinements and Ry(C) ⊆ Rx(C) for all sets of
clauses C then the class decided by Rx is a subclass of that decided by Ry.

Besides serving as theoretical tools for the decision problem, resolution
decision procedures are valuable as “ordinary” theorem provers too. Because
refinements used as decision procedures mostly are very restricted and must
terminate, they favor the production of clauses having low complexity; this
property makes them quite efficient in practice.

Exercises

A class Γ of (finite) sets of clauses is called “corresponding to ∆”, ∆ being
a class of formulas in predicate logic, if Γ = {clf(F) | F ∈ ∆}, where clf is a
function mapping closed predicate logic formulas to clausal form (clf can be
computed by the techniques introduced in Section 2.2).

Let VAR1 = {C | C is a finite set of clauses with |V (C)| ≤ 1 for all C ∈ C}.

Exercise 5.1.1. Show that VAR1 does not correspond to a prefix class of
predicate logic.

5.2 A-Ordering Refinements as Decision Procedures 217

Let PS2 be the class of all finite sets of clauses C such that every predicate
symbol occurs at most twice in C.

Exercise 5.1.2. Show that PS2 can be decided by lock resolution, or more
exactly: Define an algorithm α which produces an indexed set of clauses
α(C) for every C ∈ PS2 and show that Rl(α(C)) is finite for every locking l
corresponding to α(C).

Exercise 5.1.3. Show that PS2 cannot be decided by unrestricted resolu-
tion, i.e., there exists a C ∈ PS2 such that R∅(C) is infinite.

5.2 A-Ordering Refinements as Decision Procedures

Let us consider the class of closed predicate logic formulas of the form

F : (∃x1) . . . (∃xm)(∀y)(∃z1) . . . (∃zk)M(x1, . . . , xm, z1, . . . , zk, y)

where k,m ≥ 0 and M is a function- and constant- free matrix (we al-
ways speak about “matrices” when referring to quantifier-free parts of prenex
form). This class was shown decidable by Wilhelm Ackermann in 1928 [Ack28]
and thus is called the Ackermann class. Because it is characterized by the
form of its quantificational prefix it is frequently symbolized by ∃∗∀∃∗, where
Q∗ denotes an arbitrary repetition of the quantifier Q. By skolemizing F
above we obtain a closed formula

F ′ : (∀y)M(c1, . . . , cm, f1(y), . . . , fk(y), y),

where c1, . . . , cm are (different) constant symbols and f1, . . . , fk are (differ-
ent) one-place function symbols. In transforming the matrix of F ′ into con-
junctive normal form (we may take the straightforward method based on
distributivity) we obtain a set of clauses C fulfilling the following properties:

1) All clauses contain at most one variable,
2) all function symbols occuring in C are unary,
3) the term depth of all clauses C in C is ≤ 1.

In particular all sets of clauses obtained from the Ackermann class belong
to the one-variable class introduced in the following definition:

Definition 5.2.1. The class VAR1 (also called the one-variable class) is the
set of all finite sets of clauses C fulfilling the following condition: For all
C ∈ C : |V (C)| ≤ 1.

We have seen that the clause forms of the formulas of the Ackermann class
belong to VAR1; on the other hand there exist sets of clauses in VAR1 that
cannot be obtained by transforming Ackermann formulas into clause form
(see Exercise 5.1.1).

218 5. Resolution as Decision Procedure

A decision algorithm α for the class VAR1 can easily be transformed into
a decision algorithm β for the Ackermann class: First transform a formula
of the Ackermann class into a clause form C and then apply α to C. If a set
of clauses C in VAR1 is not normalized, then C (but not its elements) may
contain several variables due to variable renaming. But using the Nc-normal
form for clauses we even obtain V (C) ≤ 1 (every nonground clause can only
contain the variable x1). For technical reasons which will become clear later,
we restrict VAR1 to its subset of Nc-normalized sets of clauses.

Definition 5.2.2. VAR1C is the set of all finite sets of Nc-clauses such that
C ∈ VAR1.

The decision problem of VAR1 can easily be reduced to that of VAR1C;
we simply have to replace sets of clauses by their normalized forms in a
preprocessing step.

Example 5.2.1. The following set of clauses is an element of VAR1 for

C1 = P (a), C2 = ¬P (x)∨R(f(x)), C3 = ¬R(y)∨R(f(y)), C4 = ¬R(f(f(b))).

By applying condensed normalization Nc we obtain the set

D : {P (a), R(f(x1)) ∨ ¬P (x1), R(f(x1)) ∨ ¬R(x1), ¬R(f(f(b)))}.

It is easy to see that D (and, of course, C too) is satisfiable. Thus clearly
2 6∈ R∅(D) (here we use unrestricted resolution on Nc-clauses). But, un-
fortunately, R∅(D) is infinite and R∅ cannot serve as decision algorithm for
VAR1C; note that R(f (n)(a)) ∈ R∅(D) for all n ≥ 1. Even hyperresolution
does not yield a decision procedure as RH(D) is infinite too.

We will prove in this chapter that VAR1C can be decided by a specific
A-ordering refinement. Remember the A-ordering <d defined in Section 3.3:

A <d B iff

(1) τ(A) < τ(B) and
(2) For all x ∈ V (A): τmax(x,A) < τmax(x,B) (and also V (A) ⊆ V (B)).

Applying R<d
to the set of clauses in Example 5.2.1 we obtain

R<d
(D) = D ∪ {¬R(f(b)), ¬P (f(b)), ¬P (b), ¬R(b)}.

Thus R<d
(D) is finite and 2 6∈ R<d

(D) and we have shown that D is
satisfiable by computing R<d

on D.
Our goal is to prove the finiteness of R<d

(C) for all C ∈ VAR1C. But in
the attempt to show termination of R<d

on VAR1C we face the technical
problem that VAR1C is not invariant under R<d

, i.e., ρ<d
(C) may contain

clauses C with |V AR(C)| > 1 for C ∈ VAR1C.

5.2 A-Ordering Refinements as Decision Procedures 219

Example 5.2.2. Let C = {P (a)∨R(x1), Q(x1)∨¬P (a)}; clearly C ∈ VAR1C.
In resolving the two clauses in C we must rename the variables and obtain the
Nc-resolvent Q(x1)∨R(x2). Obviously the set of clauses C ∪{Q(x1)∨R(x2)}
is no longer in VAR1C.

Therefore our first step consists in enlarging the class VAR1C in order to
obtain a class which is invariant under R<d

. The classes defined below are
even invariant under R∅ and contain VAR1C.

Definition 5.2.3. The class K∞ is the set of all (possibly infinite!) sets of
clauses C in Nc-normal form such that for all C ∈ C and for all literals L in
C: V (L) ≤ 1 (every literal contains at most one variable). The class K is the
subclass of K∞ containing only finite sets of clauses.

By definition the sets of clauses C in K∞ and in K possess the following
property:

For all C ∈ C the connected components C1, . . . , Ck of C (see Defi-
nition 4.3.5) contain at most one variable.

If D is the set of clauses defined in Example 5.2.1 then R<d
(D) ∈ K and

R∅(D) ∈ K∞ but R∅(D) 6∈ K. Our final goal is to show that K is invariant
under R<d

, i.e., R<d
(C) ∈ K for all C ∈ K (this property implies termination

as K contains only finite sets of clauses). The next step consists in showing
that for every C ∈ R∅(C) and C ∈ K also {C} ∈ K. As indicated above we
cannot expect R∅(C) to be contained in K but merely in K∞.

Lemma 5.2.1. Let C be in K, then R∅(C) ∈ K∞.

Proof. By definition of R∅ it is sufficient to prove Si
∅(C) ∈ K for all i. This

in turn can be reduced further to

(I) Let C ∈ K and C1, C2 ∈ C and let C be a resolvent of C1 and C2;
then {C} ∈ K (and thus C ∪ {C} ∈ K.

We first show that factoring a clause does not lead outside of K, i.e., if
{C} ∈ K, C′ is a variant of C and C′ϑ is a factor of C′ then {Nc(C

′ϑ)} ∈ K.
Let us assume first that we factor inside a connected component. Then

ϑ must be a ground substitution (note that corresponding pairs (x, t) such
that x 6= t and x ∈ V (t) cannot be unified). But if ϑ is a ground substitution
then clearly {Nc(C

′ϑ)} ∈ K (one of the one-variable component is grounded
and added to the ground component).

By factoring over different components we obtain factoring substitutions
of the form

ϑ : λ ∪ {xi ← t[xj]|i ∈ A, j ∈ B}

where A∪B ⊆ {1, . . . , n} for V (C′) = {x1, . . . , xn} and A∩B = ∅ and λ is a
ground substitution; note that A ∩B must be empty by the idempotence of

220 5. Resolution as Decision Procedure

m.g.u.’s (indeed all m.g.u.’s σ fulfill σσ = σ, see Exercise 2.6.5). Clearly C′ϑ
again consists of components with ≤ 1 variables only and {Nc(C

′ϑ)} ∈ K.

It remains to show that K is closed under binary resolution.
Let D1, D2 be factors of variants of clauses C1, C2 such that {C1, C2} ∈ K.

Assume that D1 = E1 ∨ P ∨ F1 and D2 = E2 ∨ ¬Q ∨ F2 and let σ be an
m.g.u. of {P,Q}. Then

R : (E1 ∨ F1 ∨E2 ∨ F2)σ

is a binary resolvent of D1 and D2.

We have to show that {R} ∈ K.

First of all we observe that {Nc(G)}, for G = E1 ∨ F1 ∨ E2 ∨ F2 is in K.
Because σ is a unifier of {P,Q} it must unify all elements in DIFF (P,Q)
(see Definition 2.6.9). If σ is a ground substitution then {Nc(R)} ∈ K (the
argument is the same as for factoring substitutions). Thus we may assume
that V (P) = {xi} and V (Q) = {yj} and σ is a nonground m.g.u. of {P,Q}.
Then either σ = {xi ← t[yj]} or σ = {yj ← s[xi]} for some terms s and t. In
both cases two components are merged into a single one and thus

{Nc(Gσ)} = {Nc(R)} ∈ K.

This completes the proof of (I). 3

We are now ready to attack the main result of this chapter.

Theorem 5.2.1. The class K can be decided by the A-ordering <d. More
exactly: R<d

(C) is finite for all C ∈ K and 2 ∈ R<d
(C) iff C is unsatisfiable.

Proof. By using the results in Section 3.3 it is easy to show that 2 ∈ R<d
(C)

iff C is unsatisfiable. First of all R<d
is correct and it is also complete by

Theorem 3.3.1.

It remains to show termination.

From Lemma 5.2.1 we know that R<d
(C) ∈ K∞ for C ∈ K (note that

R<d
(C) ⊆ R∅(C) for all sets of Nc-clauses C). What we actually need is

the result R<d
(C) ∈ K.

Every set of clauses C contains only finitely many function symbols and con-
stant symbols. Resolution does not change the signature (it can only intro-
duce new variables) and thus the set of function and constant symbols in
R<d

(C) is the same as in C itself. We therefore can reduce the proof of ter-
mination to

(*) There exist constants k, l ∈ IN such that for all C ∈ R<d
(C):

(*1) |V (C)| ≤ k and
(*2) τ(C) ≤ l

5.2 A-Ordering Refinements as Decision Procedures 221

It is easy to see that there are only finitely many Nc-normalized clauses of
term depth ≤ l and containing ≤ k different variables over a finite signature
(Exercise 5.2.2).

We show now (*2) and, in fact, the more specific result:

(I) Let C ∈ K. Then for all C ∈ R<d
(C):

Π(C) : τ(Cg) ≤ 2τ(C) and τ(C \ Cg) ≤ τ(C)

(where Cg denotes a clause form of the ground component of C).

The property (I) trivially implies τ(C) ≤ 2τ(C) for all C ∈ R<d
(C).

Formally we have proved (I) for Si
<d

(C) via induction. From Lemma 5.2.1
we know that R<d

(C) ∈ K∞ and therefore all Si
<d

(C) are in K. Thus it is
sufficient to prove:

Let C,D be clauses in R<d
(C) fulfilling Π(C) and Π(D) and E be a

resolvent of C and D then E fulfills Π(E).

For C ∈ S0
<d

(C) the property (I) is trivially fulfilled.
Again we split our argument into one part concerning factoring and another
for binary resolution. Moreover factoring can be simulated by iterated binary
factoring. Thus we have to prove that for {C} ∈ K and Π(C) and for a
binary factor Cϑ of C we also get Π(Cϑ). The proof is similar to that for
binary resolution shown below and is left as an exercise (Exercise 5.2.3).

We now turn to binary resolution:

Let C1 and C2 be factors of renamed variants of two clauses in R<d
(C) such

that Π(C1) and Π(C2) both hold. Let R be a binary R<d
-resolvent of C1, C2,

i.e., R ∈ ρ<d
({C1, C2}) obtained by binary resolution only. We distinguish

the following basic cases:

a) C1 is ground, C2 is nonground,

b) C1 is nonground, C2 is ground,

c) C1, C2 are both nonground,

d) C1, C2 are both ground.

The simplest case is d):
Here, by assumption, τ(C1) ≤ 2τ(C) and τ(C2) ≤ 2τ(C), (C1)g =
C1, (C2)g = C2. Because the m.g.u. of the resolution is ǫ we obtain
LIT(R) ⊆ LIT(C1) ∪ LIT(C2) and thus τ(R) ≤ 2τ(C);
R is ground too and thus R \Rg = 2

Let us consider the case a):
Let σ be the m.g.u. of the resolution. If σ = ǫ we again obtain

LIT(R) ⊆ LIT(C1) ∪ LIT(C2)

222 5. Resolution as Decision Procedure

and, by assumption,

τ(Rg) ≤ τ(LIT(C1) ∪ LIT(C2)) ≤ 2τ(C),

τ(R \Rg) ≤ max{τ(C1 \ (C1)g), τ(C2 \ (C2)g} ≤ τ(C).

If σ 6= ǫ it must be of the form {y ← s} for y ∈ V (C2) and a ground term
s. In the resolvent R the x-components for x 6= y are identical to those of
C1 ∨ C2.
Moreover R does not contain a y-component and

LIT(R \Rg) ⊆ LIT(C1 ∨ C2)

Let C2[y] be the y-component of C2.
By Π(C2) we have τ(C2[y]) ≤ τ(C). Now R is an R<d

-resolvent. That means
there is no literal L ∈ LIT(R) such that A <d L, where A is the resolved
atom. Because C1 is ground either A or ¬A must be a literal of C1 and thus
τ(A) ≤ τ(C1) ≤ 2τ(C).

Let us assume that there exists a literal L in R such that τ(L) > 2τ(C). Then
L must occur in Rg and therefore L is ground. Thus, by definition of <d, we
obtain A <d L and L ∈ LIT(Rg). But this contradicts the assumption that
R is a <d-resolvent. Therefore τ(L) > 2τ(C) is impossible and we obtain

τ(R) ≤ 2τ(C)

case b): Completely symmetric to case a).

It remains to investigate case c):
Let C1 = E1∨L∨E2 and C2 = F1∨M ∨F2 such that the resolution operates
on the literals L and M . If either L or M belongs to a ground component
the argument is exactly as in case a). If L and M are both ground then
R = E1 ∨ E2 ∨ F1 ∨ F2 and Π(R) holds trivially.

The only interesting case is that both components (containing L and M are
nonground. Thus let us assume that L ∈ C1(x) and M ∈ C2(y), C1(x) being
the x-component of C1 and C2(y) the y-component of C2. Let σ be the m.g.u.
of {L,Md}; then σ must have one of the following forms:

(α) σ = {x← t, y ← s} for ground terms s and t, or

(β) σ = {x← t[y]} for some term t[y] with V (t[y]) = {y}, or

(γ) σ = {y ← s[x]} for some term s[x] with V (s[x]) = {x}.

We have to show that in all three cases τ(Rg) ≤ 2τ(C) and τ(R \Rg) ≤ τ(C)
Let us assume that A is the resolved atom, i.e., A = at(Lσ).

case (α):
A is ground. Let us assume that L is some ground literal in R. Then

5.2 A-Ordering Refinements as Decision Procedures 223

τ(L) ≤ τ(A), for τ(A) < τ(L) would imply A <d L, which is impossible
as R is a <d-resolvent. It remains to show that τ(A) ≤ 2τ(C). By the form of
σ it is indeed possible that τ(A) > max{τ(C1(x)), τ(C2(y))} (Exercise 5.2.4).
But τ(A) ≤ τ(L)+τ(M). Note that both L and M belong to variable compo-
nents and thus, by assumption, τ(L), τ(M) ≤ τ(C). Therefore τ(A) ≤ 2τ(C)
and thus also τ(Rg) ≤ 2τ(C). Moreover we have

LIT(R \Rg) ⊆ LIT((C1 ∨ C2) \ (C1 ∨ C2)g).

Note that the x- and y-components become ground and the other components
are not changed by σ.

By assumption we have

τ(C1 ∨ C2) \ (C1 ∨ C2)g) = max{τ(C1 \ (C1)g), τ(C2 \ (C2)g)} ≤ τ(C).

So we infer τ(R \Rg) ≤ τ(C).

case (β):
Here the resolved atom is of the form A : A0{x← t[y]} for A0 = at(L).

In this case we obtain LIT(Rg) ⊆ LIT((C1 ∨ C2)g) and, by assumption,

τ(Rg) ≤ 2τ(C).

All z-components for z 6∈ {x, y} remain unchanged and the x-component
disappears. Let R(y) be the y-component of R. Then it is enough to show
that τ(R(y)) ≤ τ(C). Because {x← t[y]} is a matching substitution we have
at(M) = A. By assumption we have

τ(M) ≤ τ(C2 \ (C2)g) ≤ τ(C).

Thus we obtain for the resolved atom τ(A) ≤ τ(C).

It remains to show that for all L′ ∈ R(y) : τ(L′) ≤ τ(C).

Because R is a <d-resolvent we have τmax(y, L
′) ≤ τmax(y,A); note that

otherwise we would obtain τ(A) < τ(L′) and τmax(y, L
′) ≤ τmax(y,A), what

implies A <d L
′ contradicting the assumption that R is a <d-resolvent.

If L′ comes from C2(y) then clearly τ(L′) ≤ τ(C) (by τ(C2 \ (C2)g) ≤
τ(C)).
Now assume that L′ = L′

0{x← t[y]} for some L′
0 ∈ LIT(C1(x)). By assump-

tion we have τ(L′
0) ≤ τ(C). Moreover τmax(x, L

′
0) ≤ τmax(x,A0), because

τmax(x, L
′
0) > τmax(x,A0) would also imply τmax(y, L

′) > τmax(y,A), a prop-
erty which we have already excluded (because it contradicts the assumption
that R is a <d-resolvent).

In any case we obtain the inequality

τ(L′) ≥ τmax(x, L
′
0) + τ(t[y]).

224 5. Resolution as Decision Procedure

If τ(L′) > τmax(x, L
′
0) + τ(t[y]) then τ(L′) = τ(L′

0) and, consequently,

τ(L′) ≤ τ(C).

So let us assume that τ(L′) = τmax(x, L
′
0) + τ(t[y]).

Then by τmax(x, L
′
0) ≤ τmax(x,A0) and

τ(A) = max{τmax(x,A0) + τ(t[y]), τ(A0)} ≤ τ(C)

we also obtain

τ(L′) ≤ max{τ(L0), τmax(x,A0) + τ(t[y])} ≤ τ(C)

So we have proved τ(R(y)) ≤ τ(C) and, to sum up, τ(R \ Rg) ≤ τ(C) and
τ(Rg) ≤ 2τ(C).

case (γ): Symmetric to case (β).

This concludes the proof of (I) and thus of (*2).

It remains to prove (*1):
The depth limit on clauses proved in (I) does not depend on the condensation
normal form of the clauses. But note that there are infinitely many clauses
with depth ≤ k even over the empty signature. The Nc-normal form will give
us the guarantee that the size of clauses in R<d

(C) is uniformely bounded.

Let k be the maximal term depth occuring in R<d
(C). Then there exists a

number l such that for every literal occurring in a clause C : C ∈ R<d
(C)

the number of different subterms in L is ≤ l. Because all clauses C : C ∈
R<d

(C) are condensed there can be no literals M,N in C such that M and
N are different and M ∼v N : Within one component of C M ∼v N trivially
implies M = N (simply because V (M) = V (N) = {x} for some variable
x). As every component contains one variable only the number of literals in
the components is uniformely bounded by some number, i.e., there exists a
number k such that for all connected components C(x) of a clause C : C ∈
R<d

(C), |C(x)| ≤ k holds. To sum up, there are numbers k and l such that for
all C : C ∈ R<d

(C) and for all components C′ of C: |C′| ≤ k and τ(C′) ≤ l.

It remains to show that there exists a number m such that comp(C) ≤ m for
all C : C ∈ R<d

(C), where comp() denotes the number of components.

Let us assume on the contrary that for everym there exists a C : C ∈ R<d
(C)

with comp(C) > m. By the uniform bound on the size of components there
must be a clause C and components C(xi), C(xj) of C such that C(xi) ∼v

C(xj). But this contradicts the assumption that all clauses are in Nc-normal
form (it is here that we actually need Nc-normal form – Ns-normalization
would not give us termination). Note that {xi ← xj} defines a factor of
C which is a proper subclause of C. So we conclude that there must be a
uniform bound m on comp(C) for C ∈ R<d

(C). But by definition of K∞ and
by R<d

(C) ∈ K∞ we have |V (C)| = comp(C) − 1 for all C : C ∈ R<d
(C).

5.2 A-Ordering Refinements as Decision Procedures 225

Therefore there exists a number m such that |V (C)| ≤ m for all C : C ∈
R<d

(C). It follows that R<d
(C) is finite and R<d

(C) ∈ K. 3

Corollary 5.2.1. R<d
decides VAR1C and the Ackermann class.

Proof. The Ackermann class is contained (modulo transformation to clause
form) in VAR1C and VAR1C ⊆ K. R<d

decides K by Theorem 5.2.1. 3

The class K can be generalized further to the class K∗ fulfilling the fol-
lowing condition: All literals in a clause contain the same variables or are
variable-disjoint, and every functional term containing variables contains all
of them. In [FLTZ93] it has been shown that K∗ can be decided by an A-
ordering refinement (different from R<d

) under additional use of saturation.
Saturation is a method which, after computation of a level Si

x(C), adds a
finite set of instances which are not obtained by most general unification. We
will use this technique to decide the Bernays–Schönfinkel class in Section 5.3.
Saturation techniques are also required to decide the Gödel class ∀∀∃∗ and
the Skolem class (see [Joy76] and [Fer91]). Saturation is a deviation from the
pure resolution paradigm, which is based on most general unification. It is
necessary in those cases where termination cannot be obtained by the mere
use of most general unifiers. Among the classical decision classes not only
the Ackermann class, but also the monadic class can be decided by “pure”
A-ordering refinements. As we have seen in Section 5.1, the Herbrand class
can even be decided by unrestricted resolution.

Definition 5.2.4 (Monadic Class). Let PL0 be the set of all closed PL-
formulas without constant symbols and function symbols. The subclass of PL0

containing only unary predicate symbols is called the monadic class and de-
noted by MON.

We show first how MON can be transformed into a sat-equivalent class
MON∗, i.e., we will define a transformation π such that for all F ∈ MON∗:
π(F) ∈ MON∗ and F ∼sat π(F).

For the sake of simplicity we transform F into prenex form, i.e., we obtain
a formula G ∈ PL0 such that F ∼ G and

G = (Q1x1) . . . (Qmxm)M(x1, . . . , xm)

where M(x1, . . . , xm) is a quantifier-free matrix. Let H be the skolemized
form of G obtained by the transformation β defined in Section 2.2. Then H
is of the form

H : (∀y1) . . . (∀yn)M(t1, . . . , tn)

where the ti are either variables, constant symbols or functional terms. Ac-
cording to the prenex form of G a functional term s must fulfill the following
property: There exist a number k ≤ n and a k-ary function symbol f such
that s = f(y1, . . . , yk) (Exercise 5.2.5).

226 5. Resolution as Decision Procedure

Example 5.2.3. Let F be the formula

((∀x)P (x) ∧ (∀x)Q(x) ∧ (∃z)(¬P (z) ∨R(z))→ (∀z)R(z)

F is a satisfiable nonvalid formula in MON.
We first transform F into α(F) (see Section 2.2) and obtain

F ′ : (∃x)¬P (x) ∨ (∃y)¬Q(y) ∨ (∀z)(P (z) ∧ ¬R(z)) ∨ (∀u)R(u).

A prenex form of F ′ is

(∀u)(∃x)(∀z)(∃y)(¬P (x) ∨ ¬Q(y) ∨ (P (z) ∧ ¬R(z)) ∨R(u)).

The skolemized form β(G) is

H : (∀u)(∀z)(¬P (f(u)) ∨ ¬Q(g(u, z)) ∨ (P (z) ∧ ¬R(z)) ∨R(u)).

By using the law of distributivity we obtain the set of clauses

C : {¬P (f(u)) ∨ ¬Q(g(u, z)) ∨ P (z) ∨R(u),
¬P (f(u)) ∨ ¬Q(g(u, z)) ∨ ¬R(z) ∨R(u)}

In both clauses there exists the “dominating” literal ¬Q(g(u, z)) which con-
tains all variables of the clause.

The following line of argument is similar to that of Joyner in [Joy76] but is
somewhat more general.

Definition 5.2.5. Two functional terms s, t are called similar if s =
g(r1, . . . , rn) and t = f(w1, . . . , wn) such that f and g are two possibly dif-
ferent function symbols of the same arity and {r1, . . . , rn} = {w1, . . . , wn}.
A functional term s dominates a functional term t if there are function
symbols f, g and terms r1, . . . , rn, w1, . . . , wm such that s = f(r1, . . . , rn),
t = g(w1, . . . , wm) and n > m and {w1, . . . , wm} ⊆ {r1, . . . , rn}. Every func-
tional term dominates every constant symbol.

We introduce the following relation <1 on terms: s <1 t iff either s properly
occurs in t or t dominates s or t contains a proper subterm which dominates
s or is similar to s.

Proposition 5.2.1. <1 is irreflexive and transitive and for all substitutions
ϑ: s <1 t implies sϑ <1 tϑ.

Proof. Exercise 5.2.6.

Example 5.2.4. f(x, y) and g(x, y) are similar, h(x, y, z) dominates both
f(x, y) and g(y, x).

g(f(x, y), x) does not dominate g(y, x) but g(y, x) <1 g(f(x, y), x) because
g(y, x) and f(x, y) are similar and f(x, y) is a proper subterm of g(f(x, y), x).
Clearly we also have x <1 g(y, x).

5.2 A-Ordering Refinements as Decision Procedures 227

Definition 5.2.6. We define the following binary relation <2 on atoms:
A <2 B iff there exists an argument t of B such that for all arguments s
of A we have s <1 t.

Example 5.2.5. P (x, y) <2 Q(f(x, y)) as x <1 f(x, y) and y <1 f(x, y).
P (x, z) 6<2 Q(f(x, y)) because z 6<1 f(x, y).

Proposition 5.2.2. <2 is an A-ordering.

Proof. <2 is irreflexive because <1 is.

Assume that A <2 B. Then there exists an argument t of B such that for
all arguments s in A: s <1 t. Let ϑ be a substitution; then sϑ <1 tϑ by
Proposition 5.2.1. Clearly tϑ is an argument of Bϑ such that w <1 tϑ for all
arguments w of Aϑ and therefore Aϑ <1 Bϑ.

It remains to prove transitivity.
Let A <2 B and B <2 C. By A <2 B there exists an argument t of B such
that for all arguments s of A: s <1 t. By B <2 C there exists an argument r
of C such that for all arguments w of B: w <1 r. By the transitivity of <1

we obtain s <1 r for all arguments s of A and thus A <2 C. 3

We now define the the clausal class MON∗ which (properly) contains the
clausal forms of the formulas in MON.

Definition 5.2.7. MON∗ is the set of all finite sets of Nc-clauses C such
that

1. All predicate symbols occurring in C are unary.
2. All terms occurring as arguments of atoms in C are either constant sym-

bols, variables, or terms of the form f(x1, . . . , xn) for (distinct) variables
x1, . . . , xn.

3. If C is a clause in C and D is a connected component of C contain-
ing the functional terms t1, . . . , tr as arguments of literals then there ex-
ist variables y1, . . . , yk and function symbols g1, . . . , gr such that ti =
gi(y1, . . . , yli) for i = 1, . . . , r and li ≤ k. In particular we obtain
V (ti) ⊆ V (tj) or V (tj) ⊆ V (ti) for all i, j = 1, . . . , r.

Let Σ be a finite signature, i.e., a finite set of predicate, function, and con-
stant symbols. Then MON∗(Σ) is the subclass of MON∗ defined over the
signature Σ.

Note that by the properties 2 and 3 in Definition 5.2.7 every component
D ∈ COMP(C) such that |V (D)| > 1 must contain a literal L : P (t) or
L : ¬P (t) respectively such that t = f(x1, . . . , xn) for some function symbol
f and variables x1, . . . , xn. Every other argument s appearing in D is either
similar to t or s <1 t. Thus if M ∈ LIT(D) then either L and M contain a
similar argument or M <2 L.

We show now that MON∗ restricted to a fixed finite signature is finite.

228 5. Resolution as Decision Procedure

Proposition 5.2.3. Let Σ be a finite signature. Then MON∗(Σ) is finite.

Proof. Let k be the maximal arity of a function symbol in Σ. Then by Def-
inition 5.2.7 points 2 and 3 (and by the fact that the maximal term depth
is one) every component of a clause C contains at most k variables. Because
the number of variables and the term depth are uniformely bounded and Σ is
finite there are only finitely many different components modulo renaming of
variables. But MON∗ is a class of condensed sets of clauses, i.e., all clauses are
in Nc-normal form. Thus if C ∈ C and C ∈MON∗(Σ) then C cannot contain
two different components D1, D2 such that D1 ∼v D2; note that otherwise
C would contain a factor which is a proper subclause of C. Therefore the set
{C|{C} ∈MON∗(Σ)} is finite and thus MON∗(Σ) must be finite too. 3

Let C be in MON∗; then clearly C ∈ MON∗(Σ) where Σ is the signature
of C. Because MON∗(Σ) is finite, all we need is a resolution refinement Rx

such that Rx(C) ∈MON∗(Σ) for every C ∈MON∗(Σ). Our candidate for Rx

is R<2 for the A-ordering <2 in Definition 5.2.6. But, unfortunately, MON∗

is not invariant under R<2 if we allow arbitrary factors in <2-resolution (see
Exercise 5.2.7). Fortunately we may restrict factoring in A-ordering refine-
ments without losing completeness. As we presented Robinson’s resolution
concept in Section 2.8, we demonstrated that factoring can be restricted to
literals which are eventually cut out by binary resolution. We used this prin-
ciple in lock resolution where factoring was restricted to literals of lowest
index. The principle of connecting factoring with binary resolution in this
way never leads to incompleteness (unless we deal with quite pathological
refinements).

Definition 5.2.8. Let C be a clause and let F be a set of literals in C (se-
lected for factorization). Let σ be the factoring substitution unifying F such
that Fσ = {L′} and (Cσ)r = A∨L′ ∨B (Dr denotes the reduced form of the
clause D – see Definition 2.4.1). Let E be a binary resolvent of C′ : (Cσ)r

and a clause D by resolution on L′. Then we call every literal L : L ∈ F
selected for resolution (or more exactly selected for this specific resolution).

Definition 5.2.9. A factor is called selected for a resolution Π if it is de-
fined by unifying a set of literals F which are selected for Π. A resolvent E
of two clauses C and D is called obtained under selected factoring if E is
obtained by a resolution, where the factors of C and D are selected for Π.

Definition 5.2.10 (A-ordering with selected factoring). Let ρ<A
be

defined as in Definition 3.3.4. Then ρ0
<A

(C) is a subset of ρ<A
(C) obtained

by resolution under selected factoring. R0
<A

is defined like R<A
, but on the

basis of ρ0
<A

.

It is not hard to show that R0
<A

is complete for every A-ordering <A (see
Exercise 5.2.8). Unlike R<A

, R0
<A

does not destroy the structure of MON∗

and thus gives a decision procedure for this class.

5.2 A-Ordering Refinements as Decision Procedures 229

Theorem 5.2.2. The A-ordering <2 with selected factoring decides MON∗,
i.e., for all C : C ∈ MON∗: R0

<2
(C) is finite, and C is unsatisfiable iff 2 ∈

R0
<2

(C).

Proof. By the completeness of R0
<2

, 2 ∈ R0
<2

(C) iff C is unsatisfiable. Thus
it suffices to prove termination of R0

<2
on MON∗.

Let C be in MON∗; then C ∈ MON∗(Σ) where Σ is the signature of C. Propo-
sition 5.2.3 tells us that MON∗(Σ) is finite. Therefore it remains to show that
MON∗(Σ) is invariant under R0

<2
, i.e., R0

<2
(C) ∈ MON∗(Σ).

By the definition of R0
<2

it is sufficient to show that

ρ0
<2

(C) ∈MON∗(Σ).

Moreover, ρ0
<2

is a binary operator, i.e.,

ρ0
<2

(C) =
⋃

{ρ0
<2

({C1, C2})|C1, C2 ∈ C}.

Due to this property of ρ0
<2

it is enough to show that for clauses C,D such that
{C,D} ∈MON∗(Σ) and for E ∈ ρ0

<2
({C,D}) we obtain {E} ∈ MON∗(Σ).

Let C′, D′ be variable-disjoint variants of C and D. We limit our attention
to the components of C′ and D′ which are affected by the resolution. Still
we face the problem that more than just two components may be involved
in the resolution, as even selected factoring may work on several components
at once.

Let F ∈ COMP(C′) or F ∈ COMP(D′); we call F a constant component if
V (F) = ∅ and a v-component if V (F) 6= ∅ and F is function-free. Components
containing function symbols are called functional components.

Let L : {L1, . . . , Lm} be the set of literals in C′ selected for resolution and
similarlyM : {M1, . . . ,Mk} for the clause D′. If L andM are both ground
then the resolvent E fulfills

LIT(E) ⊆ LIT(C′) ∪ LIT(D′) and {Nc(E)} ∈ MON∗(Σ).

Let L ∈ L such that L belongs to a functional component F . We show
that L must be maximal in F with respect to <2. For let us assume on
the contrary that L is not maximal in F , i.e., there exists an L0 in F such
that L <2 L0. Because <2 is an A-ordering we obtain Lϑ <2 L0ϑ for all
substitutions ϑ and thus L0 6∈ L (note that the set L must be unifiable!).

Let λ be the factoring substitution for L and σ be the m.g.u. of the binary
resolvent; then we have

Lλσ <2 L0λσ.

Because L0 is not selected for resolution, L0λσ is a literal of the resolvent.
That means the resolvent E contains a literal L′ such that Lλσ <2 L

′. But

230 5. Resolution as Decision Procedure

Lλσ is the resolved literal and therefore E cannot be <2-resolvent. So we
obtain a contradiction to the assumption that E ∈ ρ0

<2
({C,D}). We see that

only maximal literals of a functional component can be selected for resolution.

We now distinguish the following cases:

a) All L in L and all M in M belong to v-components.
b) One of the L in L or of the M inM is a constant component.
c) L contains literals from v-components and from functional components,
M contains literals from v-components only.

d) L contains only literals from v-components, M contains literals from v-
and from functional components.

e) L andM both contain only literals from functional components.

case a):
Here we have Li = P (xi) and Mj = ¬P (yj) for variables xi, yj, the factoring
substitutions are λ : {xi ← x1|i = 2, . . . ,m} and µ : {yj ← y1|j = 2, . . . , k};
the m.g.u. of the binary resolution then is of the form σ : {y1 ← x1} (there
are in fact different possibilities to define λ, µ and σ, but all are variants of
each other). In the resolvent E the xi- and yj-components disappear – with
the exception of the x1-component. Clearly this component is a v-component
again and {Nc(E)} ∈ MON∗(Σ).

case b):
at(L) (or at(M) respectively) is of the form P (c) for a constant symbol c.
BecauseM∪Ld must be unifiable all literals in L ∪M must either contain
the atom P (c) or belong to v-components. Therefore the m.g.u. of the binary
resolvent is either ǫ or of the form σ : {y1 ← c}. In both cases all involved
components become constant and the arguments of all ground literals are
constant symbols. Again we obtain {Nc(E)} ∈MON∗(Σ).

case c):
L contains literals from v-components and from functional components, M
contains literals from v-components only.
Let Li1 , . . . , Lir

be the functional literals in L. Because L is unifiable all the
Lij

are variants of some P (f(v1, . . . , vn)). Let P (z1), . . . , P (zl) be the other
literals in L. Clearly

{z1, . . . , zl} ∩ V ({Li1 , . . . , Lir
}) = ∅

for otherwise L is not unifiable. Moreover there must exist some variables
y1, . . . , yn in V (L) such that the factoring substitution is of the form

λ : {z1 ← f(y1, . . . , yn), . . . , zl ← f(y1, . . . , yn)} ∪ π

where π is a variable permutation such that V (rg(π)) = {y1, . . . , yn}. After
factoring by λ the components of L are contracted into a functional compo-
nent containing one or more dominating literals having atoms of the form
P (f(y1, . . . , yn)) or P (g(y1, . . . , yn)) for some g 6= f . Note that the Lij

must

5.2 A-Ordering Refinements as Decision Procedures 231

be maximal in their components! The m.g.u. of the binary resolution must
be of the form

σ : {x1 ← f(y1, . . . , yn), . . . , xr ← f(y1, . . . , yn)}

the xi being variables inM. Then either all components belonging to L∪M
disappear in the resolvent E or E contains (new) components having maxi-
mal literals of the form P (g(y1, . . . , ym)). Note that any two functional literals
L,M belonging to the same component of C′ or of D′ have argument lists
of the form (x1, . . . , xs) and (x1, . . . , xq) respectively. This form is preserved
under the permutation π and thus {Nc(E)} ∈ MON∗(Σ).

case d):
This case is completely symmetric to c).

case e):
We already know that all L in L and all M in M must be maximal in their
component and thus are all functional. Because L ∪Md must be unifiable
all atoms of the literals must be variants of some P (f(v1, . . . , vn)). The fac-
toring substitutions λ, µ and also the m.g.u. σ of the binary resolution must
all be variable permutations. Consequently the resolved literal itself must be
of the form P (f(v1, . . . , vn)). Because C′ and D′ fulfill condition 3) in Def-
inition 5.2.7, all functional literals in E containing variables in {v1, . . . , vn}
must have an argument list of the form (v1, . . . , vk) for some k ≤ n. Thus con-
dition 3) in Definition 5.2.7 hols for E too; conditions 1) and 2) are trivially
fulfilled. Therefore we obtain {Nc(E)} ∈MON∗(Σ). 3

We have shown that the one-variable class and the monadic class are
decidable by A-ordering refinements. It is a natural question, whether we
can deal similarly with the two-variable class and with the dyadic class (i.e.,
the class of all function-free PL-formulas containing only two-place predicate
symbols). Unfortunately the answer to both questions is negative. The prefix
class ∀∃∀ has been proved undecidable by Kahr, Moore, and Wang [KMW61];
its skolemization clearly is contained in the 2-variable class. That the dyadic
class is a reduction class was already known to Löwenheim [Loew15]; thus
its undecidability directly follows from Church’s result on the undecidability
of predicate logic. However, there are possible extensions of MON∗ under
preservation of decidability. In particular we can get rid of the restriction
that all terms must be of depth ≤ 1 ([FLTZ93] Chapter 5).

Exercises

Exercise 5.2.1. Show that the set of all clauses obtained by transforming
the Ackermann class into clause form is a proper subset of VAR1.

Exercise 5.2.2. Let Γl,k be the set of all Nc-clauses over a finite signature
containing ≤ k variables having depth ≤ l. Show that for all l, k ∈ IN, Γl,k is
finite (why is this set infinite without normalization?).

232 5. Resolution as Decision Procedure

Exercise 5.2.3. Let {C} be in K and Cϑ be a factor of C. Then τ((Cϑ)G) ≤
2τ(C) and τ(Cϑ \ (Cϑ)G) ≤ τ(C) holds (EG stands for a clause form of the
ground component of the clause E).

Exercise 5.2.4. Let L,M be two literals such that V (L) = {x} and V (M) =
{y} and let σ be the m.g.u. of {L,M}. Prove that

τ(Lσ) ≤ τ(L) + τ(M).

Exercise 5.2.5. Let G ∈ PL0 be a formula in prenex form and H :
(∀y1) . . . (∀yn)M be its skolemized form obtained by the transformation β.
Then for every functional term s in M there exists a k ≤ n and a k-ary
function symbol f such that s = f(y1, . . . , yk).

Exercise 5.2.6. Give a proof of Proposition 5.2.1.

Exercise 5.2.7. Show that there are clauses C1, C2 such that {C1, C2} ∈
MON∗, but there exists a <2-resolvent D of C1 and C2 which is not in
MON∗ (hint: define a factor that destroys the syntax structure of MON∗).

Exercise 5.2.8. Show that A-ordering with selected factoring is complete
(hint: use the proof of Theorem 3.3.1). Let MON′ be the class of all finite
sets of clauses C such that

1. C contains only monadic predicate symbols.
2. For all C ∈ C: τ(C) ≤ 1.
3. If C ∈ C and D ∈ COMP(C) then either |V (D)| ≤ 1 or D or D contains

a literal L such that V (L) = V (D).

Exercise 5.2.9. Show that MON′ is not invariant under R0
<2

, i.e., there
exists a C ∈ MON′ such that R0

<2
(C) 6∈MON′.

5.3 Hyperresolution as Decision Procedure

Refinements based on A-orderings or on other types of orderings do not suffice
to obtain decision procedures for all relevant decision classes. Particularly in
the case of the Bernays–Schönfinkel class as well as of many functional clause
classes hyperresolution is superior to ordering refinements. On the other hand
hyperresolution is not suited as decision method for the one-variable class or
for the Ackermann class. Thus we will discuss some syntactic features, which
characterize the applicability of decision methods of different types.

Definition 5.3.1 (Bernays–Schönfinkel class). Let BS be the class of all
closed formulas of the form

(∃x1) . . . (∃xm)(∀y1) . . . (∀ym)M

5.3 Hyperresolution as Decision Procedure 233

where M is free of quantifiers, constant symbols, and function symbols. BS is
called the Bernays–Schönfinkel class. If M is a conjunction of Horn clauses
then we obtain the subclass BSH.

We have shown in Section 2.4 that BS (and thus also BSH) is decidable; but
the argument was model theoretic. Here we are interested in the termination
behavior of resolution refinements on BS and BSH. For this purpose we have
to define clauses classes corresponding to BS and BSH.

Definition 5.3.2. BS∗ is the class of all finite sets of clauses C such that for
all C ∈ C : τ(C) = 0. BSH∗ is the subclass of BS∗ containing sets of Horn
clauses only.

The condition τ(C) = 0 in Definition 5.3.2 guarantees that there are no func-
tion symbols in C. All constant symbols appearing in a set C ∈ BS∗ can be
thought to have been introduced by skolemization. Thus BS∗ is exactly the
clause class corresponding to BS; similarly BSH∗ is the clause class corre-
sponding to BSH. BS∗ and BSH∗ can be decided by (total) saturation:

Take a C ∈ BSH∗, replace C by the set of all ground instances C′ and then
decide C′ by a propositional method (e.g., propositional resolution or the
Davis–Putnam method).

This method can be very inefficient due to the fact that C′ may be much larger
than C itself. It is also an interesting fact that BS is of highest computational
complexity among the classical prefix classes [DL84].

We now investigate how A-ordering refinements behave on BS and BSH.

Example 5.3.1. Let C : {C1, C2, C3, C4} be the following set of PN-clauses in
BSH∗:

C1 = P (a, b), C2 = P (x, y)∨¬P (y, x), C3 = P (x, z)∨¬P (x, y) ∨¬P (y, z),

C4 = ¬P (b, c).

C2 expresses symmetry and C3 transitivity. C is satisfiable because P (b, c)
cannot be obtained from P (a, b) using the rules of symmetry and transitiv-
ity. We show now that all A-ordering refinements are nonterminating on C,
i.e., there exists no A-ordering refinement which decides BSH (note that C
even is a set of Horn clauses).

Indeed R<A
({C2, C3}) = R∅({C2, C3}) for every A-ordering <A. The reason

for this effect is the unifiability of resolved atoms with all atoms in the resol-
vent (for all R-derivable clauses); therefore the case L <A M can never occur
and no resolvents can be excluded. In particular, R<A

({C2, C3}) contains the
infinite sequence of clauses

Cn : P (x1, xn) ∨ ¬P (x1, x2) . . . ∨ ¬P (xk, xk+1) . . . ∨ ¬P (xn−1, xn)

for n ≥ 2. These clauses cannot be removed by subsumption, nor do they
“collapse” by condensing (the Nc-normal form only changes the names of the

234 5. Resolution as Decision Procedure

variables). Thus even R<s
A

(A-ordering + forward subsumption) and R<r
A

(A-ordering + replacement) are nonterminating on C. On the other hand we
obtain

RH(C) = C ∪ {P (b, a), P (a, a), P (b, b)}

and thus RH terminates on C. Moreover we know from Theorem 3.6.2 that

M : {P (a, b), P (b, a), P (a, a), P (b, b)}

is an atom representation of a Herbrand model of C.

We show now that termination of RH can be guaranteed on BSH∗.

Proposition 5.3.1. Hyperresolution decides BSH∗, i.e., RH(C) is finite for
all C in BSH∗.

Proof. Let C be in BSH∗. Then C is in Horn form and R+
H(C) consists of unit

clauses only. There are no function symbols in C and no function symbols
can be introduced by resolution. Therefore we obtain

R+
H(C) ⊆ {A|A is an atom over Σ(C), τ(A) = 0}.

Moreover all clauses in RH+(C) are in Nc-normal form and thus
are subjected to variable renaming; so we obtain that the set
Nc({A|A is an atom over Σ(C), τ(A) = 0}) is finite. 3

Example 5.3.2.

C = {P (x1, x1, a), P (x, z, u) ∨ ¬P (x, y, u) ∨ ¬P (y, z, u),

P (x, y, u) ∨ P (y, z, u) ∨ ¬P (x, z, u), ¬P (x, x, b)}.

C is non-Horn and even “essentially” non-Horn; which means there exists no
sign renaming γ such that γ(C) is a set of Horn clauses. For γ = {¬P} only
the roles of a and b are exchanged, otherwise C remains as it is. RH neither
terminates on C nor on γ(C). RH produces clauses of arbitrary length on C
– even if we add subsumption (i.e., we replace RH by RHs). Thus RHs +
sign renaming does not terminate on C. That means hyperresolution cannot
decide the Bernays–Schönfinkel class. Moreover none of the other refinements
terminates on C. However, there is general semantic clash resolution over
arbitrary models M as defined in Section 3.6; in such a refinement only
clauses which are false in M are derivable. So, in case C is satisfiable, we
only have to choose a model of C; on such a model all clauses are true and
thus semantic clash resolution does not produce any resolvents. But this trick
can hardly be recommended as a method in resolution decision theory. Note
that models should be the outcome of our procedures, not the starting point!

Of course there is the brute force method to decide BS∗ by ground saturation.
We will see later that, by an appropriate use of hyperresolution, saturation

5.3 Hyperresolution as Decision Procedure 235

can be reduced considerably.

We show now how hyperresolution can be applied as decision procedure on
functional clauses classes. These classes can be considered as generalizations
of DATALOG [CGT90]. Formally DATALOG is a subclass of BSH such that
all positive clauses are ground and V (CP) ⊆ V (CN) for all other clauses (for
CP , CN see Definition 3.6.1).

Definition 5.3.3. A set of PN-clauses C belongs to PVD (positive variable
dominated) if for all C ∈ C:

PVD-1) V (CP) ⊆ V (CN) (C is ground for CN = 2),
PVD-2) τmax(x,CP) ≤ τmax(x,CN) for all x ∈ V (CP).

PVD corresponds to a subclass of a class named PVD in [FLTZ93], where the
properties above were “relativized” under settings. That means there might
be some sign renaming γ such that γ(C) ∈ PVD even if C itself is not in PVD.
Take for example the set of clauses

C : {P (x1) ∨Q(g(x1, x1)), R(f(x1), x2), P (a), R(x, y) ∨ ¬Q(y),

¬P (x) ∨ ¬P (f(x)), ¬R(a, a) ∨ ¬R(f(b), a)}.

Obviously C is not in PVD (there are positive clauses containing variables
and R(x, y) ∨ ¬Q(y) violates PVD-(1)).

But let γ be the sign renaming {P,¬Q,¬R}. Then

γ(C) = {P (x1) ∨ ¬Q(g(x1, x1)), R(f(x1, x2), P (a), Q(y) ∨ ¬R(x, y),

¬P (x) ∨ ¬P (f(x)), R(a, a) ∨R(f(b), a)}.

and γ(C) ∈ PVD.
The idea behind PVD is that the positive parts are always “smaller” than

the negative ones. As hyperresolution produces positive clauses only, we may
hope that the clauses produced are small too (i.e., small enough to achieve
termination). The example above suggests a generalization of PVD by use of
renaming; this definition is much clearer than the original definition of PVD
given in [Lei93] and [FLTZ93] and was suggested first in [Mat93].

Definition 5.3.4. A set of clauses C belongs to PVDr if there exists a sign
renaming γ such that the PN-form of γ(C) belongs to PVD.

Let us assume that RH decides PVD (which will indeed be shown later);
then there exists the following decision procedure for PV Dr:

1. Search for a renaming γ such that the PN-form of γ(C) is in PVD (if
there is no such γ then C 6∈ PVDr.

2. Apply RH to γ(C).

Note that there are only finitely many sign renamings on a set of clauses
and that the properties PVD-(1) and PVD-(2) are decidable. Thus we can

236 5. Resolution as Decision Procedure

always decide whether a set of clauses is in PVDr. Once we have found the
right renaming γ, we replace C by γ(C) and apply hyperresolution. Thus in
order to show the decidability of PVDr it is sufficient to show that of PVD.

Theorem 5.3.1. Hyperresolution decides PVD, i.e., for every C ∈ PVD
RH(C) is finite.

Proof. Let C be in PVD and d = max{τ(CP)|C ∈ C}. In order to show that
RH(C) is finite it is sufficient to prove:

a) All clauses in R+
H(C) are ground.

b) For all C ∈ R+
H(C) : τ(C) ≤ d.

Note that there are only finitely many ground Nc-clauses of depth ≤ d over
the signature of C. Moreover it is sufficient to focus on the set of positive
derivable clauses because

RH(C)− C ⊆ R+
H(C).

Because of RH(C) =
⋃∞

i=0 S
i
H(C) we may proceed by induction on i and prove

(a) and (b) for the sets Si
H

+
(C). To simplify the notation within the proof

we write Mi(C) for the set of all positive clauses in Si
H(C) (including 2 if

2 ∈ Si
H(C)).

case i = 0:
M0(C) = C+ For all C ∈ C+ we have CP = C and, by definition of d:
τ(C+) ≤ d. By condition PVD-(1) in Definition 5.3.3, C+ consists of ground
clauses only. Thus (a) and (b) are both fulfilled.

(IH) Suppose that

a-(i) All clauses in Mi(C) are ground and
b-(i) τ(Mi(C)) ≤ d holds.

Let C be an arbitrary clause in Mi+1(C). Then either C ∈ Mi(C) in which
case C is ground and τ(C) ≤ d by (IH), or C ∈Mi+1(C)−Mi(C).
In the second case C is a hyperresolvent of a clash Γ : (E;D1, . . . , Dn) such
that E ∈ C−C+ andDj ∈Mi(C) for j = 1, . . . , n. By (IH) and by definition of
Mi(C) the Dj are all ground Nc-clauses (i.e., the ground clauses are ordered
and reduced). Thus in order to define a hyperresolvent of Γ we don’t need
to factor the clauses Dj .

So let

E = P1 ∨ . . . ∨ Pm ∨ ¬Q1 ∨ . . . ∨ ¬Qn and Dj = Fj ∨Aj ∨Gj

for i = 1, . . . , n such that the atoms Aj are selected for resolution. Let C be
the resolvent of Γ ; then C = (P1∨ . . .∨Pm)λ for some matching substitution
λ such that dom(λ) ⊆ V (EN) and Qnλ = A1, Qn−1λ = A2, . . . , Q1λ = An

(note that the Aj are ground!).

5.3 Hyperresolution as Decision Procedure 237

Because E is in C and C ∈ PVD we obtain V (EP) ⊆ V (EN). But
C = EPλ where λ is a ground substitution with domain V (EN). There-
fore V (EP) ⊆ dom(λ) and EPλ, i.e., the clash resolvent C of Γ , is ground.
So we obtain a-(i+ 1).

It remains to show τ(C) ≤ d.
By PVD-(2) we have

τmax(x,EP) ≤ τmax(x,EN)

for all x ∈ V (EP). Recall that C = EPλ for the ground substitution λ defined
by Γ . We distinguish two cases:

(I) τ(EP λ) = τ(EP) and
(II) τ(EPλ) > τ(EP).

In case (I) τ(EP λ) ≤ d because τ(EP) ≤ d by E ∈ C and by definition of d.

In case (II) there exists a variable x ∈ V (EP) such that

τ(EPλ) = τmax(x,EP) + τ(xλ).

By PVD-(2) we have τmax(x,EP) ≤ τmax(x,EN) and therefore

τmax(x,EP) + τ(xλ) ≤ τmax(x,EN) + τ(xλ) ≤ τ(ENλ).

But we have shown before that, for EN = ¬Q1 ∨ . . . ∨ ¬Qn,

{Q1, . . . , Qn}λ ⊆ {A1, . . . , An} ⊆
n
⋃

j=1

LIT (Dj).

Therefore τ(EPλ) ≤ τ(
⋃n

j=1 LIT (Dj)).

But all the clauses Dj are in Mi(C) and, by (IH) b-(i), τ(Mi(C)) ≤ d. As a
consequence we obtain τ({D1, . . . , Dn}) ≤ d and therefore τ(ENλ) = τ(C) ≤
d.

As C was chosen as arbitrary element in Mi+1(C) −Mi(C) we get a-(i+ 1)
and b-(i+ 1), i.e., all clauses in Mi+1(C) are ground and τ(Mi+1(C) ≤ d. 3

The proof of Theorem 5.3.1 reveals that the condensation normal form
of clauses is not really necessary to obtain termination; indeed all derived
(positive) clauses are ground and thus the Ns normal form or even pure
clause reduction would do the job.

The class PVD is relatively “tight” with respect to undecidability: If we add
the clause

T− : P (x1, x2) ∨ P (x2, x3) ∨ ¬P (x1, x3)

(i.e., the transitivity of ¬P) we can encode the word problem of any equa-
tional theory (see [FLTZ93] Chapter 3.3). From the fact that there are equa-
tional theories with undecidable word problems (e.g., the theory of combina-
tors [Ste71]) it follows that

238 5. Resolution as Decision Procedure

Γ : {C ∪ {T−}|C ∈ PVD}

is an undecidable class of clause sets.

Let us consider the rough structure of the proof of Theorem 5.3.1. The
main point consists in showing that R+

H(C) is ground and τ(R+
H(C)) ≤ d for

some constant d. While the property PVD-(1) is essential (note that T− does
not fulfil PVD-(1)) PVD-(2) can be replaced by a more general condition
(term depth is only a specific complexity measure for literals and clauses).
In particular we obtain a more general decision class in replacing term depth
by arbitrary atom complexity measures ψ fulfilling the general axioms:

1. ψ(A) ≤ ψ(Aϑ) for all atoms A and substitutions ϑ.
2. For all natural numbers k the set {ψ(B) | ψ(B) ≤ k,B ground} is finite.

Moreover ψ has to be extended to literals, clauses and sets of clauses in a
straightforward manner (precisely like term depth). For such a measure ψ
we have to postulate that there exists a constant d such that for all clauses
C ∈ C and ground substitutions ϑ either ψ(CPϑ) ≤ d or ψ(CPϑ) ≤ ψ(CNϑ)
holds. Then hyperresolution terminates on C [Lei93].

BS∗ is not a subclass of PVDr. But we will define a method to transform
BS∗ into BS∗ ∩ PVD under preservation of sat-equivalence. This method is
subtler and more efficient than complete ground saturation. The basic idea
is the following:

Let C be in BS∗. Search for a renaming γ such that γ(C) ∈ PVD. If there is
such a γ then apply RH to γ(C) else select some arbitrary γ and transform
γ(C) into PVD by partial saturation of the variables which violate PVD-1).
The exact procedure is shown in Figure 5.1.

BSALG (input is a set C ∈ BS∗);
{ REN(C) denotes the set of all sign-renamings on C }
begin

if there exists a γ ∈ REN(C) such that γ(C) ∈ PVD then C′ ← γ(C)
else begin

select a γ ∈ REN(C); C ← γ(C);
for all C ∈ C do (compute T (C))

if V (CP) ⊆ V (CN) then T (C)← {C}
else T (C)← {Cλ| dom(λ) ⊆ V (CP)− V (CN), rg(λ) ⊆ H(C)};

C′ ←
⋃

{T (C)|C ∈ C}
end

compute RH(C′)
end

Fig. 5.1. A decision procedure for BS∗

5.4 Hyperresolution and Automated Model Building 239

BSALG is indeed a decision algorithm for BS∗. First of all C′ ∼sat C as
the set of all ground instances of C and C′ are the same. By definition of T (C)
all clauses in T (C) fulfil PVD-(1) (if PVD-(1) holds then PVD-(2) follows
trivially as there are no function symbols in C for C ∈ BS∗). So we obtain
C′ ∈ PVD and, by Theorem 5.3.1, RH(C′) is finite. We conclude that BSALG
is correct and always terminating on BS∗. For the actual performance of
BSALG the right selection of a renaming is crucial; clearly one should try to
select a γ for which C′ becomes minimal. In the next example we compare
brute force saturation with BSALG. For this purpose we replace RH by the
more restrictive operator RHs. This leads to a further increase of efficiency,
but without loss of correctness and termination (note that RHs is complete
and RHs(C) ⊆ RH(C) for all sets of clauses C).

Example 5.3.3. We take the set of clauses from Example 5.3.2, i.e.,

C = {P (x1, x1, a), P (x, z, u) ∨ ¬P (x, y, u) ∨ ¬P (y, z, u),

P (x, y, u) ∨ P (y, z, u) ∨ ¬P (x, z, u),¬P (x, x, b)}.

We already know that RH does not terminate on C. Clearly C 6∈ PVD but
C ∈ BS∗. We compute the set T (without renaming the predicate symbol P)
and obtain

C′ = {P (a, a, a), P (b, b, a), P (x, z, u) ∨ ¬P (x, y, u) ∨ ¬P (y, z, u),

P (x, a, u) ∨ P (a, z, u) ∨ ¬P (x, z, u), P (x, b, u) ∨ P (b, z, u) ∨ ¬P (x, z, u),

¬P (x, x, b)}.

C′ ∈ PVD and |C′| = |C|+ 2 = 6.

RHs(C
′) = C′ ∪ {P (a, b, a) ∨ P (b, a, a)}.

Thus RHs terminates on C′ producing only one additional clause (|RHs(C′)| =
7). Note that in ρH(S1

Hs(C
′)) we have the clauses

P (b, a, a) ∨ P (a, a, a) ∨ P (a, b, a), P (b, b, a) ∨ P (b, a, a) ∨ P (a, b, a)

which are both subsumed by S1
Hs(C). So we obtain

RHs(C
′) = S1

Hs(C
′).

Using the brute force saturation method we obtain a set of ground clauses C′′

which contains 36 clauses. Moreover C′′ has still to be tested for satisfiability.
Thus we see that BSALG is much faster than the pure saturation method.

5.4 Hyperresolution and Automated Model Building

The construction of models of abstract structures lies at the very heart of
mathematical activity. Although mathematical logic brought forward deep

240 5. Resolution as Decision Procedure

results on the existence and on the structure of models (in the discipline
of model theory), very little is known about algorithmic methods for model
building. Even in automated theorem proving, considering the importance
of constructing counterexamples to the practice of automated reasoning, the
body of knowledge about model generation is relatively small. But in more
recent times many different methods and techniques have been invented, an-
alyzed and applied. Automated model building (sometimes also called model
generation) is becoming a discipline on its own and one of the most fascinat-
ing applications of computational logic. In this section our aim is to present
automated model building as an application of resolution decision theory;
thus it is not the right place to give a substantial survey on this topic (in-
stead we refer to [FL96]). We just mention the approaches of T. Tammet
[Tam91], R. Manthey and F. Bry [MB88], R. Caferra and N. Zabel [CZ92],
J. Slaney [Sla92] [Sla93], and C. Fermüller and the author [FL96].

Tammet’s approach, like that of Fermüller and the author, is based on reso-
lution decision procedures. But while Tammet’s method directly yields finite
models, that of [FL96] produces symbolic representations of Herbrand models
(finite models are extracted from Herbrand models in a postprocessing step).
Tammet uses narrowing and works with equations (in the object language),
while the approach in [FL96] is based on the use of hyperresolution only; a
simplified version of this method will be presented in this section.

Caferra and Zabel define an extension (called RAMC) of the resolution cal-
culus by an equational constraint logic, which is specifically designed for the
purpose of model building. Their method is symbolic and yields (like that in
[FL96]) complete representations of Herbrand models. Meanwhile Caferra et
al. have extended the method to clause logic with equality. A recent paper
[CP96] even shows that the calculus naturally simulates hyperresolution, thus
generalizing some results in [FL96].

Manthey and Bry describe a hyperresolution prover called SATCHMO which
is based on a model generation paradigm [MB88]. Their method of model
building, although similar concerning the use of hyperresolution, differs from
that in [FL96] in several aspects. They essentially use splitting of positive
clauses and backtracking, features that are both avoided in [FL96]. Moreover
[FL96] makes use of subsumption and replacement in an essential way and
guarantees termination for specific syntax classes.

Slaney [Sla92] devised the program FINDER that identifies finite models (of
reasonable small cardinality) of clause sets whenever they exist. The algo-
rithm is based on a clever variant of exhaustive search through all finite
interpretations and does not refer to resolution or another first-order infer-
ence system. In [Sla93] Slaney defined SCOTT, a combination of FINDER
with the resolution theorem prover OTTER [McC90]. His method was ap-
plied successfully to solve open problems in algebra (concerning groupoids).
In comparison to the other methods mentioned above, Slaney’s method be-

5.4 Hyperresolution and Automated Model Building 241

haves like a “numeric” rather than a symbolic one. Despite this difference the
main point – demonstrating the usefulness of model building in automated
deduction – coincides with that of the approach presented here.

In Theorem 3.6.2 we have shown that R+
H(C), the set of positive clauses in

RH(C), defines a Herbrand model if C is a set of Horn clauses. Indeed, for
Horn sets, R+

H(C) consists of unit clauses only which form the atom represen-
tation of a Herbrand model. R+

H(C) is an atom representation of an H-model
even in the more general case that the nonpositive clauses in C may be arbi-
trary , but R+

H(C) consists of unit clauses only (Exercise 5.4.3). By resolution
decision theory we possess means to guarantee termination of RH on certain
clause classes. If C is a set of Horn clauses and RH terminates on C then
(clearly) we obtain a finite atom representation of a Herbrand model of C. In
particular we obtain such finite representations on the class PVD∩Hornlogic
by Theorem 5.3.1. The main purpose of this section is to show how we can ex-
tract atom representations of models from finite sets RHr(C), where R+

Hr(C)
does not necessarily consist of unit clauses only. In particular we will define a
procedure that extracts a Herbrand model from every satisfiable set of clauses
in PVD; this procedure is free of backtracking and does not rely on search.
Our basic operator, however, will not be RH but the reduction operator RHr .
The choice of RHr is based on some particular mathematical properties of
subsumption-reduced sets which turn out to be fruitful for model building.

Recall (see Definitions 4.2.9 and 4.2.10) that an RHr-sequence is of the
form (Si

Hr(C))i∈IN such that S0
Hr(C) = sub(C) and

Si+1
Hr (C) = sub(Si

Hr(C) ∪ ρH(Si
Hr(C))).

If the sequence converges on a class of clause sets Γ then RHr is a decision
procedure for Γ ; in this case we have to compute Si

Hr(C) until we obtain a
k such that Sk

Hr(C) = Sk+1
Hr (C). The final set of clauses obtained that way is

“stable”, i.e., it remains unchanged under further reductions (it is in fact in
some normal form).

Definition 5.4.1. Let C be a set of Nc-clauses and let R̂Hr be the opera-
tor defined by R̂Hr(C) = sub(C ∪ ρH(C)). Then C is called (RHr-) stable if
R̂Hr(C) = C.

If a RHr-sequence (Si
Hr(C))i∈IN converges to Sk

Hr(C) then, by Definition 5.4.1,

Sk
Hr(C) is stable and a fixed point of the operator R̂Hr . Let us assume that

an RHr-sequence converges and yields a (stable) set C′ such that all positive
clauses in C′ are unit. Then, by the following lemma, these clauses form an
atom representation of a Herbrand model of C′; this lemma is closely related
to Theorem 3.6.2. For the remaining part of this section we write “AR” for
atom representation and “stable” for RHr-stable.

242 5. Resolution as Decision Procedure

Lemma 5.4.1. Let C be a finite set of nonpositive Nc-clauses and A be a
finite set of (Nc-normalized) atoms such that C ∪ A is satisfiable and stable.
Then A is an AR of a Herbrand model of C ∪ A (over the signature of A).

Proof. Assume on the contrary that A is not an AR of a Herbrand model of
C ∪A. Then the interpretation I induced by A falsifies C ∪A. It follows that
the (possibly infinite) set

C ∪ A ∪ {¬P |P ∈ HB(C)− I}

is unsatisfiable (note that the Herbrand interpretation I is a set of ground
atoms).

By the compactness theorem of first-order logic (see for example [BJ74])
there exists a finite set F such that F ⊆ {¬P |P ∈ HB(C)−I} andD : C∪A∪F
is unsatisfiable.

Because RHr is complete (i.e., for every unsatisfiable set of PN-clauses
the H-reduction sequences converge to 2) there exists a k ∈ IN such that
2 ∈ Sk

Hr(D). Because C ∪ A is satisfiable and F consists of negative unit
clauses only we obtain 2 6∈ D. So there must be a number m ≥ 1 such that

2 ∈ Sm
Hr(D) − Sm−1

Hr (D).

But Sm
Hr(D) = R̂Hr(S

m−1
Hr (D)).

Because C ∪ A is stable we have

Sm−1
Hr (C ∪ A) = C ∪ A.

As a clash with nonpositive clause from F can only give the resolvent 2 we
also obtain

R̂Hr(S
m−1
Hr (D)) = R̂Hr(D) = sub(D ∪ ρH(D)).

By the definition of m we get 2 ∈ sub(D ∪ ρH(D)).
By sub(D∪ρH(D)) ⊆ D∪ρH(D) and 2 6∈ D this gives us 2 ∈ ρH(D). Clearly
2 6∈ ρH(C ∪ A) as C ∪ A is satisfiable. Thus 2 must have been obtained by
a clash of the form (¬Q,Q′) for some ¬Q in F . But, by definition of F , ¬Q
must be ground and thus there exists a substitution γ such that Q = Q′γ.

By the definition of I Q′γ must be contained in I; but then it is impossible
that ¬Q′γ is in F . So we obtain a contradiction and therefore

C ∪ A ∪ {¬P |P ∈ HB(C)− I}

must be satisfiable, i.e., A is an AR of a Herbrand model of C ∪ A. 3

Lemma 5.4.1 suggests the following strategy for finding a model: Suppose
that a RHr-sequence converges to C such that 2 6∈ C (which is equivalent
to C 6= {2}). Then search for a finite set of atoms A such that (C − C+) ∪

5.4 Hyperresolution and Automated Model Building 243

A is finite, satisfiable, and implies C. The resulting set A is an AR of a
Herbrand model of (C − C+) ∪ A which is also a model of C itself. Before
developing a method to obtain such a set of atoms A we show that RHr-
reduction terminates on PVD. Note that this result is not trivial due to the
nonmonotonicity of RHr . The property Sk

Hr(C) ≤ss S
k
H(C) merely yields the

completeness of RHr and not its (relative) termination.

Lemma 5.4.2. RHr decides PVD, i.e., if C ∈ PVD then the replacement
sequence (Si

Hr(C))i∈IN converges.

Proof. In the proof of Theorem 5.3.1 we have shown that for C ∈ PVD,
R+

H(C) is finite and consists of ground clauses only. From Lemma 4.2.3 we
know that

Sk
Hr(C) ≤ss S

k
H(C) for k ∈ IN.

Moreover, by the definition of a reduction sequence, we also have

Sk+1
Hr (C) ≤ss S

k
Hr(C) for k ∈ IN.

Now let us assume that for all k ∈ IN : Sk
Hr(C) 6= Sk+1

Hr (C), i.e., that
(Si

Hr(C))i∈IN diverges.
Because RH(C) is finite there exists an m such that RH(C) = Sm

H (C). More-
over, we must have

Sk
Hr(C) ≤ss S

m
H (C) for k ≥ m.

Let C0 be the set of all nonpositive clauses in C and Ck be the set of all
nonpositive clauses in Sk

Hr(C) for k ≥ 1. Then, by definition of hyperresolu-
tion,

Ck ⊆ C0 and Ck+1 ⊆ Ck for all k ≥ 1.

Let C∗ be the subset of all C ∈ C0 such that C ∈ Sk
Hr(C) for all k ∈ IN. If

C∗ = ∅ then there exists a k such that for all p ≥ k the sets Sp
Hr(C) consist of

positive clauses only. But in this case there can be no more hyperresolvents
and therefore

Sk
Hr(C) = Sk+1

Hr (C);

but this contradicts our assumption of divergence of the sequence
(Si

Hr(C))i∈IN.

If C∗ 6= ∅ then, at least, there exists a number k such that for all p ≥ k and
for all C ∈ C0:

C 6∈ Sp
Hr(C)− S

p+1
Hr (C).

The last property indicates that, after some fixed generation, no clause in
C0 can be deleted any more. But by the assumption of divergence we have
Sp

Hr(C) 6= Sp+1
Hr (C) for all p ≥ k. Therefore deletions beyond the k-th level

apply to positive clauses only.

244 5. Resolution as Decision Procedure

Now let r = max{k,m}. Then for all p ≥ r, the sets of positive clauses
in Sp

Hr(C) (we denote in by Dp) subsume the set Fm : (Sm
H (C))+. Let M be

the set of all ground Nc-clauses which subsume Fm. As Fm is a finite set of
Nc-clauses,M must be finite too. Moreover, we have the property

Dp ⊆M for all p ≥ r.

Thus we know that the sets Dp are uniformly bounded by the set M and
Sp

Hr(C) by the setM∪C∗ for p ≥ r. Still divergence may occur by “cycling”,
i.e., clauses deleted in former generations are again introduced in later ones.
We show now that this is impossible too.

Let D ∈ Dp−Dp+1. Then there exists an Nc-clause E in ρH(Sp
Hr(C)) such

that E ≤ss D. Because E and D are both ground clauses D ≤ss E cannot
hold; note that E =ss D would imply LIT(E) = LIT(D) and, by the Nc-
form, E = D! ThereforeE must properly subsumeD, i.e., LIT(E) ⊂ LIT (D).
Clearly D 6∈ Ds for s ≥ p + 1, as Ds ≤ss Dp+1 and either E ∈ Ds or there
is an F ∈ Ds such that F ≤ss E. Thus for all s ≥ p + 1 there exist an
F ∈ Ds such that LIT(F) ⊂ LIT(D) and thus F properly subsumes D. But
all the sets SHrs(C) are subsumption-reduced and so D 6∈ Ds for s ≥ p+ 1.
Therefore also cycling is impossible and there must exist a p ≥ r such that
Dp = Dp+1. According to the choice of r this yields

Sp
Hr(C) = Sp+1

Hr (C)

in contradiction to the assumption of divergence. Therefore the sequence
(Si

Hr(C))i∈IN must converge. 3

Lemma 5.4.2 gives us finite RHr-stable sets and provides the raw material
for our model-building method. For every set C ∈ PVD we obtain a set Sk

Hr(C)
such that Sk

Hr(C) is stable. If C is satisfiable then, by the logical equivalence
of C and Sk

Hr(C), every model of Sk
Hr(C) is also a model of C. If the positive

clauses in Sk
Hr(C) are all unit then, by Lemma 5.4.1, we already have an AR

of a Herbrand model of C.
The following lemma gives us the key technique for the transformation

of a stable set into another stable set, where all positive clauses are unit.
This lemma holds not only for PVD but for a much larger set of clause sets
(see [FL96]); but to make things easier, we concentrate on PVD. Essentially
we show that, for stable sets of clauses, positive clauses can be replaced by
proper subclauses under preservation of satisfiability.

Lemma 5.4.3. Let C ∈ PVD such that C is satisfiable and stable and let D
be a positive nonunit clause in C. Let P be an (arbitrary) atom in D. Then

(1) (C − {D}) ∪ {P} is satisfiable and
(2) (C − {D}) ∪ {P} → C is valid.

Remark:
(1) and (2) together imply the existence of a model of (C −{D})∪{P} which
is also a model of C.

5.4 Hyperresolution and Automated Model Building 245

Proof. (2) is trivial by the validity of {P} → {D}.
It remains to prove (1).

Let us assume (for a proof by contradiction) that

C1 : (C − {D}) ∪ {P} is unsatisfiable.

Then, by the completeness of hyperresolution, 2 ∈ RH(C1).
Let E = Nc(D \ P); we introduce an auxiliary relation ≤E on clauses such
that

F ≤E G iff G ≤ss F ∨ E and F ≤ss G.

If F and G are both ground clauses then F ≤E G iff

LIT(F) ⊆ LIT(G) and LIT(G) ⊆ LIT(F) ∪ LIT(E).

We extend the relation ≤E to sets of clauses by

C ≤E D iff for all C ∈ C there exists a D ∈ D such that C ≤E D.

Note that the way ≤E is extended to sets of clauses differs from that of ≤ss.
Our next step consists in showing (by induction on i) that

Si
H(C1) ≤E RH(C) for i ∈ IN.

Note that RH(C) is finite by Theorem 5.3.1.

i = 0:
By choice of E we have LIT(P)∪LIT(E) = LIT(D) and thus P ≤E D. Note
that, by C ∈ PVD, all positive clauses in C are ground. Moreover C1−{P} =
C − {D} and therefore C1 ≤E C. But RH is a monotonic operator and so
C ⊆ RH(C). By definition of ≤E we get C1 ≤E RH(C) and therefore

S0
H(C1) ≤E RH(C).

(IH) Suppose that Si
H(C1) ≤E RH(C) holds.

Let F be a clause in Si+1
H (C1).

By (IH) we have Si
H(C1) ≤E RH(C) and thus the only interesting case is

F ∈ Si+1
H (C1)− Si

H(C1).
By the definition of the operator RH (and of SH) there must exist a clash

Γ : (C;D1, . . . , Dn) over Si
H(C1) such that F is clash resolvent of Γ . By (IH)

there exist clauses H1, . . . , Hn ∈ RH(C) such that

Dj ≤E Hj for j + 1, . . . , n.

By C ∈ PVD all clauses Dj are ground and, because E is ground, the Hj are
ground too.
As all clauses Dj are ground and in Nc-form no factoring is required in

246 5. Resolution as Decision Procedure

resolving the clash Γ (note that by definition of RH only positive clauses
may be subjected to factoring).

Let Lj be the literals cut out from the Dj in the intermediary steps of
the clash resolution. Then, by Dj ≤E Hj we get Lj ∈ LIT(Hj). As the Dj

are positive and ground and also E is ground, the definition of ≤E gives us

LIT(Dj) ⊆ LIT(Hj) ⊆ LIT(Dj) ∪ LIT(E).

Thus Γ ′ : (C;H1, . . . , Hn) is a clash over RH(C). By simulating an analogous
clash resolution on the Lj in Hj we obtain a clash resolvent F ′ such that

F ≤ss F
′ and F ′ ≤ss F ∨ E.

In fact Nc(F
′) = Nc(F ∨ E1 ∨ . . . ∨ En) for clauses E1, . . . , En fulfilling

LIT(Ei) ⊆ LIT(E) for i = 1, . . . , n. Therefore

LIT(F ∨ E1 ∨ . . . ∨En) ⊆ LIT (F ∨ E)

and consequently F ≤ss F
′ ≤ss F ∨ E.

By the definition of ≤E we obtain F ≤E F ′.

Therefore Si+1
H (C1) ≤E RH(C) and the case i+ 1 is shown.

From RH(C1) =
⋃∞

i=0 S
i
H(C1) we eventually obtain

RH(C1) ≤E RH(C).

Now recall that C1 is unsatisfiable and thus 2 ∈ RH(C1). By the definition of
≤E there must be a clause I in RH(C) such that 2 ≤E I. Because E is ground
and by the definition of ≤E this implies LIT(I) ⊆ LIT(E) and particularly
I ≤ss E.

By Lemma 4.2.3 we know that Sk
Hr(C) ≤ss Sk

H(C) for all k ∈ IN. By as-

sumption C is RHr-stable, i.e., R̂Hr(C) = C and Sk
Hr(C) = C for all k ∈ IN.

Consequently we obtain
C ≤ss RH(C)

Therefore there must be a clause G ∈ C such that G ≤ss I. Now remember
that E = Nc(D \ P) and Nc(D) = D. In particularly LIT(E) ⊂ LIT(D) and
D does not subsume E.

But G ≤ss I ≤ss E and thus G ≤ss E.

From E ≤ss D we also obtain G ≤ss D. Now D ≤ss G is impossible by
G ≤ss E <ss D. Therefore D and G are two clauses in C such that G ≤ss D
and D 6≤ss G. But C is RHr-stable, i.e.,

sub(C ∪ ρH(C)) = C.

In particular C cannot contain two different clauses G,D such that G ≤ss D.
So we obtain a contradiction and conclude that the set (C−{D})∪{P} must
be satisfiable. 3

5.4 Hyperresolution and Automated Model Building 247

The validity of Lemma 5.4.3 is essentially based on the stability of the set
of clauses C. It is very easy to see that the result becomes wrong for nonstable
sets C: Just take

C = {P (a) ∨ P (b), ¬P (a)}.

Trivially C is satisfiable. But if we replace P (a) ∨ P (b) by P (a) we obtain
the set of clauses C1 : {P (a),¬P (a)} which is unsatisfiable. But note that C
is not stable; rather we have R̂Hr(C) = {P (b),¬P (a)} and the replacement
sequence converges to the set {P (b),¬P (a)}.

The transformation of C into (C − {D}) ∪ {P} can be described by an op-
erator α that (deterministically) selects a clause D and a literal P in D; if
C+ consists of unit clauses only we define α(C) = C. Then we may iterate
the application of α and RHr-closure on the new sets of clauses. Note that
(C − {D})∪ {P} need not be stable, even if C is stable. Therefore we have to
compute a reduction sequence on α(C) in order to obtain the next stable set.

Let us assume that the reduction sequence (Si
Hr(C))i∈IN converges; then we

denote its limit by RHr. The iterated reduction process can be defined com-
fortably by an operator on stable sets of clauses.

Definition 5.4.2 (the operator T). T is defined on stable sets of clauses
in PVD by T (C) = RHr(α(C)). The iteration of T is defined by:

T 0(C) = C and T i+1(C) = T (T i(C))

if T i(C) is a stable set in PVD and i ∈ IN.

It is easy to verify that for all stable sets in PVD all T i(C) are again stable
sets in PVD (Exercise 5.4.2). Therefore T i(C) is well-defined for all stable
sets C ∈ PVD and i ∈ IN.

Let C be a stable set in PVD. Then, by Lemma 5.4.3 we know that α(C)→ C
is valid and that α(C) is satisfiable, provided C is satisfiable. Thus also T (C)
is satisfiable (by the correctness of RHr) and T (C) → C is valid. Therefore
we already know that T i(C)→ C is valid and that T i(C) is satisfiable for all
i ∈ IN. But, unfortunately, we have not yet reached our goal. We still have to
show that the sequence (T i(C))i∈IN converges, i.e., that there exists a number
k such that T k(C) = T k+1(C); we obtain such a k when all positive clauses
in T k(C) are unit clauses and α(T k(C)) = T k(C). In this case T k(C)+ is an
AR of a Herbrand model of C.

Example 5.4.1. Consider the following set of Nc-clauses

C = {E(a) ∨ S(a), Q(a) ∨R(a), P (x1) ∨Q(x1) ∨ ¬R(x1) ∨ ¬S(x1),

¬P (a) ∨ ¬Q(a)}

C is in PVD but C is not stable. We compute the reduction sequence
(Si

Hr(C))i∈IN which converges and gives

248 5. Resolution as Decision Procedure

RHr(C) = S1
Hr(C) = C ∪ {E(a) ∨ P (a) ∨Q(a)}.

By writing C1 for S1
Hr(C) and applying α we obtain

α(C1) = (C1 − {E(a) ∨ S(a)}) ∪ {S(a)}.

By Lemma 5.4.3 we know that α(C1) is satisfiable and that each of its models
is a model of C too.

Again α(C1) is not stable and we compute its corresponding RHr-
reduction sequence. Then let

C2 = T (C1) = RHr(α(C1)).

So we get

C2 = {P (a) ∨Q(a), S(a), Q(a) ∨R(a),

P (x1) ∨Q(x1) ∨ ¬R(x1) ∨ ¬S(x1), ¬P (a) ∨ ¬Q(a)}.

Note that in the computation of C2 we obtain the new clash resolvent P (a)∨
Q(a) which subsumes E(a) ∨ P (a) ∨Q(a). On C2 we define

α(C2) = (C2 − {P (a) ∨Q(a)}) ∪ {Q(a)}.

Then C3 = RHr(α(C2)) = T (C2) =

{S(a), Q(a), P (x1) ∨Q(x1) ∨ ¬R(x1) ∨ ¬S(x1), ¬P (a) ∨ ¬Q(a)}.

Clearly α(C3) = C3 and our procedure stops with T (C3) = C3 and C3 = T 2(C1)
(in fact C3 is a fixed point of T). By the validity of T 2(C1) → C and by the
satisfiability of T 2(C1) via the modelM : {S(a), Q(a)} we obtainM as model
of C itself.

To prove the convergence of the sequence (T i(C))i∈IN to a stable set of clauses
D such that D+ consists of unit clauses only, we introduce an ordering on
sets of clauses and show that the T i(C) are “decreasing” in i.

Definition 5.4.3. Let C and D be two finite sets of Nc-clauses. We define
C < D if the following conditions are fulfilled:

a) C ≤ss D.
b) For all C ∈ C there exists a D ∈ D such that C ≤ss D and |C| ≤ |D|.
c) D 6≤ss C.

Lemma 5.4.4. < is irreflexive, transitive, and Noetherian (i.e., there exists
no infinite strictly descending chain . . .Ci < Ci−1 < . . . C0 of finite sets of
Nc-clauses).

5.4 Hyperresolution and Automated Model Building 249

Proof. < is irreflexive because of Definition 5.4.3 - (c).

We now show transitivity:
Let us assume that C < D < F holds. Then in particular C ≤ss D and
D ≤ss F ; by transitivity of ≤ss we obtain C ≤ss F .

For Definition 5.4.3 let C be an arbitrary clause in C. Then there exists a
D ∈ D such that C ≤ss D and |C| ≤ |D|. For this D, in turn, there must
exist an F ∈ F such that D ≤ss F and |D| ≤ |F |. As both ≤ss and ≤ are
transitive we obtain C ≤ss F and |C| ≤ |F |.

By Definition 5.4.3(c) we have D 6≤ss C and F 6≤ss D. By assuming
F ≤ss C we obtain F ≤ss D (due to C ≤ss D and the transitivity of ≤ss);
this however contradicts our assumption D < F . We have thus shown that
C < F and that < is transitive.

It remains to show that there exists no infinite descending chain with respect
to <. We assume the existence of such a chain and derive a contradiction.

Let (Ci)i∈IN be a sequence with Ci+1 < Ci for all i ∈ IN. By Definition 5.4.3(b)
and by transitivity of < there exists a constant d such that for all Ci and for
all C ∈ Ci: |C| ≤ d (just choose d as the maximal clause size in C0).

Let C0 = {C1, . . . , Cm}. Then (by transitivity of <) Ci < C0 and (by Defini-
tion 5.4.3(b)) for all C ∈ Ci there exists a Cj in C0 such that C ≤ss Cj and
|C| ≤ d.

We show now that the total number of different Nc-clauses appearing in
(Ci)i∈IN must be infinite, or more precisely:

For every Ci there exists a Di ∈ Ci such that Di 6∈ Ck for all k < i.

This property follows from the fact that

i−1
⋃

j=0

Cj 6≤ss Ci

(Exercise 5.4.3). Therefore we obtain a sequence (Di)i∈IN of Nc-clauses which
are pairwise different and for all Di there exist a Cj ∈ C0 such that Di ≤ss Cj

and |Di| ≤ d. By the (transfinite) pigeonhole principle there exist a Ck ∈ C0
such that Dl ≤ss Ck and |Dl| ≤ d for infinitely many l ∈ IN (if you file
infinitely many objects in finitely many holes then at least one hole must
contain infinitely many objects).

But there can’t be infinitely many different clauses in condensed form
with a uniform bound on the number of literals and on term depth (note
that Dl ≤ss Ck implies τ(Dl) ≤ τ(Ck)). So we obtain a contradiction and <
must indeed be Noetherian. 3

We might expect that T (C) < C for all stable sets C in PVD; this property
would directly yield a minimal element T i(C) in the sequence (T j(Cj))j∈IN

such that T i(C)+ consists of unit clauses only. But T (C) < C does not hold
in general and we have to make a detour.

250 5. Resolution as Decision Procedure

Example 5.4.2. The following set of clauses is stable and in PVD:

C = {R(a) ∨ S(a), R(a) ∨ U(a), P (a) ∨ S(a), Q(x) ∨ ¬P (x) ∨ ¬U(x)}.

Note that the only clash resolvent Q(a)∨R(a)∨S(a) is subsumed by R(a)∨
S(a).

For α we select P (a) out of P (a) ∨ S(a) and obtain

α(C) = {R(a) ∨ S(a), R(a) ∨ U(a), P (a), Q(x) ∨ ¬P (x) ∨ ¬U(x)}.

α(C) is not stable and

RHr(α(C)) = α(C) ∪ {Q(a) ∨R(a)}.

Note that Q(a) ∨ R(a) is not subsumed by a clause in α(C). Moreover there
exists no clause C ∈ C such that Q(a) ∨R(a) ≤ss C. But T (C) = RHr(α(C))
and so

T (C) 6< C

(in fact condition (b) in Definition 5.4.3 is violated).

Example 5.4.2 tells us that we must be careful in using the (nonmonotonic)
operator RHr; there may be subsumption relations on the less general level
which cannot be carried over to the more general one (note that always
T (C) ≤ss C). Fortunately we can save termination via the (monotonic) RH -
closure of the sets of clauses.

Lemma 5.4.5. Let C be a stable satisfiable set of clauses in PVD such that
there exists a positive nonunit clause in C; then RH(T (C)) < RH(C).

Proof. We first show RH(α(C)) < RH(C) (note that T (C) = RHr(α(C))).
Let E be the positive unit clause selected by α and P be the selected atom
in E. Then

α(C) = (C − {E}) ∪ {P}.

By the definition of α(C) we have α(C) ≤ss C and thus also RH(α(C)) ≤ss

RH(C) (Exercise 5.4.4). This gives us property (a) of Definition 5.4.3.

In our next step we show point (c) i.e., RH(C) 6≤ss RH(α(C)).

In particular we show that RH(C) 6≤ss {P}; note that P ∈ α(C) and α(C) ⊆
RH(α(C)).

Let us assume RH(C) ≤ss {P}. Then, by C ≤ss RH(C), we also get
C ≤ss {P} (C is stable and RHr(C) ≤ss RH(C) by Lemma 4.2.3). Because
C ∈ PVD the set RH(C) is in PVD too; in fact PVD is “robust” with respect
to hyperresolution (see the proof of Theorem 5.3.1). Thus if D ∈ C and
D ≤ss P then, as D and P are both ground Nc-clauses and 2 6∈ C, we obtain
D = P . But P cannot be in C because P properly subsumes E and E ∈ C
(note that C is stable). So we obtain a contradiction and therefore

5.4 Hyperresolution and Automated Model Building 251

RH(C) 6≤ss RH(α(C)).

It remains to establish point (b) of Definition 5.4.3. For this purpose we prove
by induction on n:

(*) For all n ∈ IN and for all positive clauses C in Sn
H(α(C)) there exists a

positive clause D in RH(C) such that C ≤ss D and |C| ≤ |D|.

case n = 0:
P ≤ss E and |P | = 1 < |E|. Moreover α(C)− {P} = C − {E}.

(IH) Suppose that (*) holds for n.

Let C be a positive clause in Sn+1
H (α(C)). If C ∈ Sn

H(α(C)) then we may
apply (IH) and obtain the desired result.

Thus it is sufficient to assume that C ∈ Sn+1
H (α(C)) − Sn

H(α(C)).

By definition ofRH , C must be a resolvent of a clash Γ : (G;D1, . . . , Dm) such
that G is a nonpositive clause in α(C) and Dj ∈ S

n
H(α(C)) for j = 1, . . . ,m.

By (IH) there are positive clauses E1, . . . , Em in RH(C) such that Dj ≤ss Ej

and |Dj| ≤ |Ej | for j = 1, . . . ,m. Because all clauses Ej , Dj must be ground
(note that RH(C) and Sn

H(α(C)) are both in PVD) we obtain

LIT(Dj) ⊆ LIT(Ej) for j = 1, . . . ,m.

Thus let Γ ′ be the clash (G;E1, . . . , Em). Then we can “simulate” the clash
resolution of Γ by that of Γ ′. The outcome is a clash resolvent F of Γ ′ such
that LIT(C) ⊆ LIT(F). Because C and F are Nc-normalized it follows that
|C| ≤ |F | and C ≤ss F . So we have shown (*) for the case n + 1 and thus,
by induction, for every C ∈ RH(α(C)) there exists a D ∈ RH(C) such that
C ≤ss D and |C| ≤ |D|. This gives us condition (b) of Definition 5.4.3 and
eventually

RH(α(C)) < RH(C).

It remains to prove RH(T (C)) < RH(C):

By definition of T we have T (C) = RHr(α(C)). By definition of RHr we obtain
RHr(α(C)) ⊆ RH(α(C)) and by Lemma 4.2.3RHr(α(C)) ≤ss RH(α(C)); these
two properties give

RHr(α(C)) =ss RH(α(C)).

By the monotonicity and idempotency of RH we obtain

RH(RHr(α(C))) ⊆ RH(α(C)) and also

RH(RHr(α(C))) =ss RH(α(C)).

Therefore

RH(T (C)) ⊆ RH(α(C)) and RH(T (C)) =ss RH(α(C)).

252 5. Resolution as Decision Procedure

From the last two properties and from RH(α(C)) < RH(C) we obtain

RH(T (C)) < RH(C).

3

We are now in a position to show our main result, the convergence of the
sequence (T i(C))i∈IN on stable sets of clauses C for C ∈ PVD. From this result
we will extract an algorithm which, on satisfiable sets of clauses C ∈ PVD,
always terminates with an atom representation of a Herbrand model of C (if
C is unsatisfiable then RHr(C) = {2} and the model-building procedure does
not start at all).

Theorem 5.4.1. Let C be a stable and satisfiable set of clauses in PVD.
Then the sequence (T i(C))i∈IN converges to a set of clauses D such that D+

is an atom representation of a Herbrand model of C.

Proof. If C+ consists of unit clauses only then α(C) = C and T (C) = C;
trivially (T i(C))i∈IN converges to C.

If C+ contains nonunit clauses then RH(T (C)) < RH(C) by Lemma 5.4.5.
Because also T (C) is stable and satisfiable and T (C) ∈ PVD we may iterate
the application of T and obtain a chain

Γ : . . . < RH(T i(C)) < . . . < RH(C).

By Lemma 5.4.4 < is Noetherian and thus there must be a minimal element
in Γ ; let RH(T k(C)) be this element. We show now that T k+1(C) = T k(C)
and that T k(C)+ consists of unit clauses only.

Let us assume on the contrary that T k(C)+ contains nonunit clauses. In
this case Lemma 5.4.5 yields

RH(T k+1(C)) < RH(T k(C)),

which contradicts the minimality of RH(T k(C)).
Therefore T k+1(C) = T k(C) and T k(C)+ consists of unit clauses only.

By Lemma 5.4.1 T k(C)+ is an AR of a Herbrand model M of T k(C). By
Lemma 5.4.3 α(C) → C is valid and so is T (C) → C. Therefore M is also a
Herbrand model of C. 3

If the sequence (T i(C))i∈IN converges then we denote the limit by T ∗(C).
By Theorem 5.4.1 we may always apply the following algorithm to sets of
clauses in PVD:

MB:
a) Compute RHr(C).
b) If 2 ∈ RHr(C) then stop else compute T ∗(RHr(C)).

5.4 Hyperresolution and Automated Model Building 253

MB is correct and complete; thus MB yields 2 for unsatisfiable sets of
clauses C in PVD and Herbrand models for satisfiable ones. RHr is complete
and always terminates on PVD (Lemma 5.4.2). Thus if C is unsatisfiable we
obtain a stable set of clauses C′ which is in PVD too. But then, by Theo-
rem 5.4.1, T ∗(C′) is defined and and T ∗(C′)+ is an AR of a Herbrand model
of C′. But C′ → C is valid and thus T ∗(C′)+ is also an AR of a Herbrand
model of the input clauses set C. Note that MB is free of backtracking and
search; indeed the computation of T ∗ is purely “iterative”.

MB can be applied to all decision classes of hyperresolution where RHr(C)
is finite and all positive clauses in RHr(C) are decomposed (i.e., if L and M
are two different literals in a positive clause then V (L) ∩ V (M) = ∅). Such
a decision class (besides PVD) is OCC1N (see [FLTZ93]) where the positive
clauses may contain variables, but all of them occur only once. Moreover the
Herbrand models obtained via MB can be transformed into finite models by
a filtration technique [FL93] for PVD and OCC1N.

The whole model building method can be extended to the more general class
PVDr (see Definition 5.3.4): Given a set of clauses C, search for a renaming
γ such that γ(C) ∈ PVD and then apply MB to γ(C). MB then yields an AR
of a Herbrand model of γ(C); by changing the signs backwards one obtains
an atom representation of a Herbrand model of C.

Example 5.4.3. We define the following satisfiable set of clauses:

C = {P (b), P (f(x1)) ∨ ¬P (x1), ¬P (a) ∨ ¬P (f(a))}.

C is not in PVD and (Si
Hr(C))i∈IN is divergent. Note that for all i ≥ 1:

P (f i(b)) ∈ Si
Hr(C)− S

i−1
Hr (C).

But C ∈ PVDr as can be seen by computing γ(C) for γ = {¬P}. Indeed

{¬P (b), P (x1) ∨ ¬P (f(x1)), P (a) ∨ P (f(a))}

is in PVD. By setting C1 = γ(C) we obtain

S0
Hr(C1) = C1 and S1

Hr(C1) = {¬P (b), P (x1) ∨ ¬P (f(x1)), P (a)}.

Clearly ρH(S1
Hr(C1)) = ∅ and S2

Hr(C1) = S1
Hr(C1).

We see that (Si
Hr(C))i∈IN converges and

RHr(C1) = {¬P (b), P (x1) ∨ ¬P (f(x1)), P (a)}.

By Lemma 5.4.1 (and clearly visible in this case) A : {P (a)} is an atom
representation of a Herbrand model of C1 (A is also a ground representation
of this model).

ThereforeM : {P (b)}∪ {P (f(t))|t ∈ H(C)} is a ground representation of
a Herbrand model of C. By Theorem 3.6.2 R+

H(C) must be an atom represen-
tation of a Herbrand model of C. Indeed R+

H(C) = M, but as M is infinite

254 5. Resolution as Decision Procedure

the computation of RH on C does not yield a syntactic model representation.
However we can compute a finite AR of M directly out of A itself; such a
representation is B : {P (b), P (f(x))} (over H(C)).

It is not hard to show that the complement set of a finite ground rep-
resentation always possesses a finite AR (Exercise 5.4.5); moreover this AR
can be obtained algorithmically.

Exercises

Exercise 5.4.1. Let C be a set of clauses such that RH(C) = C and all posi-
tive clauses in C are unit clauses. Show that R+

H(C) is an atom representation
of a Herbrand model of C (compare with Theorem 5.4.1).

Exercise 5.4.2. Let T be the operator on stable sets in PVD as in Defini-
tion 5.4.2 and let C be a stable set in PVD. Show that the T i(C) are stable
sets in PVD for all i ∈ IN.

Exercise 5.4.3. Let < be as in Definition 5.4.3. Show that for all k ≥ 1 and
for every sequence C0, . . . , Ck with Ck < Ck−1 < . . . < C0

⋃k−1
i=0 Ci 6≤ss Ck.

Exercise 5.4.4. Let C and D be two sets of clauses such that C ≤ss D. Show
that RH(C) ≤ss RH(D) (hint: look at the proof of Lemma 4.2.3).

Exercise 5.4.5. Let M be a finite ground representation of a Herbrand
model of C. Show that AT (C)−M has a finite atom representation over the
signature of C.

Exercise 5.4.6. Let A : {P (x, f(x))} be an AR of a Hebrand interpretation
M over the signature Σ : {P, f} (M is in fact the corresponding ground
interpretation). Show that AT (A)−M does not possess a finite AR.

Exercise 5.4.7. Show that every satisfiable set of clauses C in PVD has a
finite model (hint: construct the finite model out of T ∗(C)).

6. On the Complexity of Resolution

6.1 Herbrand Complexity and Proof Length

By the undecidability of clause logic there exists no recursive bound on the
length of refutations of clause sets C in terms of the length of C, regardless of
what logic calculus and what concept of length are chosen. Thus we cannot
present a complexity theory similar to that of propositional inference systems
[Boe92]. Instead there are basically two different mathematical approaches
to proof complexity in predicate logic:

a) Analyze the relative complexity of resolution versus other inference meth-
ods.

b) Define some absolute complexity measure for sets of clauses which is in-
dependent of deduction concepts but is recursively related to all “reason-
able” inference systems.

The book of E. Eder [Ede92] is based on approach (a) and presents many
interesting complexity results for first-order calculi (among them also resolu-
tion). In [BL92], a paper which mainly focuses on the complexity of resolution,
Herbrand complexity is taken as inference-independent basic measure. Most
of the results in this section are contained in [BL92] but the concepts and
the formalism are different. The Herbrand complexity of a set of clauses C is
defined as the minimal cardinality of an unsatisfiable set of ground clauses
C′ (obtained via ground instantiation from C). By Herbrand’s theorem (The-
orem 2.3.3) every unsatisfiable set of clauses possesses such a finite unsatis-
fiable set of ground instances; therefore Herbrand complexity is well-defined
on the set of all unsatisfiable sets of clauses.

Definition 6.1.1. Let C be a (finite) unsatisfiable set of clauses and GI(C)
be the set of all ground instances of clauses from C. Then the Herbrand com-
plexity of C is defined as
HC(C) = min{|C′| | C′ is unsatisfiable and C′ ⊆ GI(C)}.

Example 6.1.1.
Let C be the set of clauses {P (x), ¬P (f(y)) ∨ ¬P (g(y))}.
Then the set

C′ : {P (f(a)), P (g(a)), ¬P (f(a)) ∨ ¬P (g(a))}

256 6. On the Complexity of Resolution

is a minimal unsatisfiable set of ground instances from C. Therefore HC(C) ≤
3. It is easy to see that all sets of ground instances D of C with |D| = 2 are
satisfiable and so HC(C) = 3.

As every unsatisfiable set of clauses defines finite, unsatisfiable sets of ground
instances (by Herbrand’s theorem), HC can be considered as a measure of the
“logical complexity” of a theorem; this measure is independent of particular
inference systems and can be taken as a basis to compare different computa-
tional calculi. Therefore the problem is to find out how many ground instances
of a set of clauses are required in order to achieve unsatisfiability. However,
this number is not recursively computable, i.e., there exists no computable
function f such that dom(f) = IN and HC(C) ≤ f(|C|) for any unsatisfiable
set of clauses C. Even if we consider the undecidability of clause logic as given,
this property is not completely trivial because the number of sets of ground
clauses D such that |D| ≤ k (for some k ∈ IN) may be infinite. Indeed if C
is a nonground clause and the Herbrand universe H(C) is infinite then C has
infinitely many ground instances. Therefore, even if HC(C) = k, it might be
necessary to test arbitrary many sets of ground instances D with |D| ≤ k.
But we will see below that for small Herbrand complexity there exist sets of
unsatisfiable ground instances consisting of reasonably “flat” clauses.

Example 6.1.2.
Let C be the set of clauses {Q(x), ¬Q(y) ∨ ¬Q(f(y))}.
Then clearly HC(C) = 3 and all of the sets Dt (t ∈ H(C)) of ground clauses
are unsatisfiable:

Dt : {Q(t), Q(f(t)), ¬Q(t) ∨ ¬Q(f(t))}

In particular there are infinitely many sets of ground clauses with 3 elements
that are unsatisfiable. We now give a sketch of the general method which,
given an arbitrary setDt, constructs a term-minimal set of the same structure.
For every clause D ∈ Dt take the clause in C having D as instance and keep
all clauses variable-disjoint. So we obtain a set

C0 = {Q(x1), Q(x2), ¬Q(x3) ∨ ¬Q(f(x3))}

Dt is an instance of C0 via the substitution ϑ : {x1 ← t, x2 ← f(t), x3 ← t}.
ϑ is a simultaneous unifier of the sets of expressions

W1 : {Q(x1), Q(x3)}, W2 : {Q(x2), Q(f(x3))}

The corresponding most general unifier is σ : {x1 ← x3, x2 ← f(x3)}.
The set of clauses

C0σ : {Q(x3), Q(f(x3)), ¬Q(x3) ∨ ¬Q(f(x3))}

is the “schema” of all the sets Dt (by C0σ ≤s Dt for all t).

6.1 Herbrand Complexity and Proof Length 257

By applying the ground instance γ : {x3 ← a} we obtain the set Da which
is of minimal term depth among all the unsatisfiable sets of ground clauses
with 3 elements.

In Example 6.1.2 the sets of clauses Dt are all logically isomorphic, i.e., if we
replace all ground atoms by propositional variables then (modulo renaming)
we obtain the same set of propositional clauses.

Definition 6.1.2 (propositional skeleton). Let C be a set of clauses and
π be a one-one mapping from the sets of all atoms in C to the set of all propo-
sitional variables VPROP. π can be extended to C in the following obvious
way:
π(¬A) = ¬π(A) for atoms A in C.
π(L1 ∨ . . . ∨ Ln) = π(L1) ∨ . . . ∨ π(Ln) for clauses in C.
π(C) = ∪{π(C)|C ∈ C}.
Then the set π(C) is called a propositional skeleton of C.

Definition 6.1.3. A propositional renaming is a bijective mapping ψ :
VPROP → VPROP such that the set {X |ψ(X) 6= X} is finite. Renamings
can be extended to sets of propositional clauses in the canonical (homomor-
phic) way.
Two sets of propositional clauses B1,B2 are called r-equivalent if there exists
a propositional renaming ψ such that ψ(B1) = B2.

Example 6.1.3.
Let Dt = {Q(t), Q(f(t)), ¬Q(t) ∨ ¬Q(f(t))} for some ground term t (see
Example 6.1.2).
We define π(Q(t)) = X, π(Q(f(t)) = Y . Then

π(Dt) : {X, Y, ¬X ∨ ¬Y }

is a propositional skeleton of Dt. Now let

C′ = {Q(y), Q(f(y)), ¬Q(y) ∨ ¬Q(f(y))}

and π′(Q(y)) = U, π′(Q(f(y)) = V . Then we get

π′(C′) = {U, V, ¬U ∨ ¬V }.

π′(C′) is a propositional skeleton of C′ which is r-equivalent to π(Dt).
Note that all propositional skeletons of the set

C0 : {Q(x1), Q(x2),¬Q(x3) ∨ ¬Q(f(x3))}

are r-equivalent to the set of propositional clauses

B : {U, V, ¬X ∨ ¬Y }

B is not r-equivalent to π′(C′).

258 6. On the Complexity of Resolution

Definition 6.1.4. Two sets of ground clauses D1 and D2 are called logically
isomorphic if there are skeletons B1 of D1 and B2 of D2 such that B1 and B2

are r-equivalent.

Lemma 6.1.1. Logically isomorphic sets of clauses are sat-equivalent.

Proof. Exercise 6.1.1.

Example 6.1.2 suggests the existence of a general method which, given an
arbitrary unsatisfiable set of ground instances D of a set of clauses C, con-
structs a logically isomorphic set of ground instances D′ with minimal term
depth. The minimal term depth we obtain this way can always be recursively
bounded in terms of HC(C) and the “length” of C. As concept of length we
need the number of symbol occurrences in C. It is not hard to show that the
minimal term depth of an unsatisfiable set of ground clauses in C cannot be
bounded in terms of |C| or τ(C) (Exercise 6.1.2). We give a formal definition
of the symbolic length ‖‖ below:

‖t‖ = 1 if t is a constant symbol or a variable.

‖f(t1, . . . , tn)‖ = 1 +
∑n

i=1 ‖ti‖ for functional terms.

‖P (t1, . . . , tn)‖ = 1 +
∑n

i=1 ‖ti‖ for atom formulas.

‖A⊙B‖ = 1 + ‖A‖+ ‖B‖ for ⊙ ∈ {∧,∨,→}.

‖¬A‖ = 1 + ‖A‖.

‖(Qx)A‖ = 2 + ‖A‖ for Q ∈ {∀, ∃}.

‖L1 ∨ . . . ∨ Ln‖ = ‖L1‖+ . . .+ ‖Ln‖ for clauses.

‖{C1, . . . , Ck}‖ = ‖C1‖+ . . .+ ‖Ck‖ for sets of clauses.

Lemma 6.1.2. Let C be an unsatisfiable set of clauses; then there exists an
unsatisfiable set of ground instances D from C with ‖D‖ ≤ 23HC(C)‖C‖.

Proof. We formally develop the method indicated in Example 6.1.2.

Suppose that C = {C1, . . . , Cn} and let D be an arbitrary unsatisfiable set
of ground instances from C such that |D| = HC(C). Then D must be of the
form

D = D1 ∪ . . . ∪Dn

where the Di are the sets of ground instances coming from the clause
Ci. For every set Di : {Di,1, . . . , Di,ki

} we define a set of clauses Ci :
{Ciηi,1, . . . , Ciηi,ki

} such that all ηi,j are variable renamings and V (Ciηi,j)∩
V (Ciηi,k) = ∅ for j 6= k. Then we define

6.1 Herbrand Complexity and Proof Length 259

C0 = C1 ∪ . . . ∪ Cn.

Because of the variable renamings ηi,j the propositional skeletons of D and
C0 are (in general) different. In any case C0 is more general as D and we have
C0 ≤s D.

Our aim is to construct the most general instance of C0 which has the
same propositional skeleton as D.

By C0 ≤s D there exists a substitution ϑ such that C0ϑ = D. Then ϑ acts
as simultaneous unifier for sets of atoms occurring in C0. To be more precise,
there exist sets of atoms A1, . . . ,Ar such that the Ai are pairwise disjoint
and ϑ unifies all of the Ai for i = 1, . . . , r. We can represent ϑ as a unifier
of two terms in the following way. Replace every predicate symbol occurring
in the sets Ai by a new function symbol of the appropriate arity. Then we
obtain sets of terms T1, . . . , Tr having the same leading function symbol. Let
Ti = {ti,1, . . . , ti,li} and g be a new function symbol of appropriate arity.
Then every simultaneous unifier of the family A1, . . . ,Ar is a unifier of the
following two terms (and vice versa):

w1 = g(t1,1, . . . , t1,l1 , . . . , tr,1, . . . , tr,lr),
w2 = g(t1,1, . . . , t1,1, . . . , tr,1, . . . , tr,1).

By the unification theorem (Theorem 2.5.1) there exists an m.g.u. of w1

and w2 which is also an m.g.u. of the simultaneous unification problem of
the A1, . . . ,Ar. Then clearly C0σ ≤s D and C0σ and D have r-equivalent
propositional skeletons. By Exercise 6.1.3 we have

‖w1σ‖ = ‖w2σ‖ ≤ 2‖w1‖+‖w2‖

But by construction of the wi we have ‖wi‖ ≤ |C0|cmax

where cmax = max{‖C‖|C ∈ C}. Clearly cmax ≤ ‖C‖ and therefore

‖w1‖+ ‖w2‖ ≤ 2‖C‖|C0|

By construction of the set C0 and by definition of D we also have
|C0| = |D| = HC(C) and ‖C0‖ ≤ HC(C)‖C‖. Moreover

‖C0σ‖ ≤ ‖C0‖‖w1σ‖

By putting things together we obtain the inequality

‖C0σ‖ ≤ HC(C)‖C‖22‖C‖HC(C)

A rather rough estimation then gives

‖C0σ‖ ≤ 23‖C‖HC(C)

By definition, C0σ has a propositional skeleton that is r-equivalent to that of
D. Therefore every ground instance of C0σ is unsatisfiable!

260 6. On the Complexity of Resolution

Finally we just define γ = {v ← c | v ∈ rg(σ)} where c is a constant in the
Herbrand universe of C. Then the sets of ground clauses D and D′ : C0σγ are
logically isomorphic; consequently D′ is unsatisfiable and ‖D′‖ = ‖C0σ‖ and
we obtain

‖D′‖ ≤ 23‖C‖HC(C).

3

Corollary 6.1.1. Let C be an unsatisfiable set of clauses; then there exists
an unsatisfiable set of ground instances D from C with τ(D) ≤ 23HC(C)‖C‖.

Proof. By Lemma 6.1.2 and τ(D) ≤ ‖D‖. 3

Lemma 6.1.2 also yields a method to determine a bound on the size of
shortest resolution proofs in terms of Herbrand complexity and the size of
the input. Properties of this type hold also for other calculi of first-order logic
[KP88].

The following proposition shows that there is no recursive bound on the
number of instances of clauses necessary to “realize” Herbrand’s theorem.

Proposition 6.1.1. There exists no computable function f such that
domain(f) = IN and for all unsatisfiable sets of clauses C: HC(C) ≤ f(|C|).

Proof. Let C be an unsatisfiable set of clauses. By Lemma 6.1.2 there exists
an unsatisfiable set of ground clauses D such that for all D ∈ D:

‖D‖ ≤ 23HC(C)‖C‖

Because exponentiation is monotonic we also obtain

‖D‖ ≤ 23f(|C|)‖C‖

Then the following procedure working on the class of all (finite) sets of clauses
decides satisfiability:

1. Compute f(|C|) for a given set of clauses C.
2. Test all sets of ground clauses D with
‖D‖ ≤ 23f(|C|)‖C‖ for satisfiability
(note that there are only finitely many D’s having this property).

If one of the D’s is unsatisfiable, which can be tested by the Davis–Putnam
procedure, then clearly C is unsatisfiable.

Now assume that all set of clauses D with

‖D‖ ≤ 23f(|C|)‖C‖

are satisfiable. Then, by definition of f and HC and by Lemma 6.1.2, C itself
must be satisfiable.

6.1 Herbrand Complexity and Proof Length 261

Thus the above algorithm defines a decision procedure for the satisfia-
bility problem of clause logic. But clause logic is undecidable (clause logic
is a reduction class of predicate logic) and consequently HC(C) cannot be
bounded by a computable function f with domain IN. 3

Our next step consists in comparing the size of resolution proofs with
Herbrand complexity. For this purpose we choose the simple length measure
l for resolution proofs. Recall (Definition 2.7.6) that l(C1, . . . , Cn) = n for
any R-deduction C1, . . . , Cn. We first analyze the lengths of PR- and GR-
deductions (see Definitions 2.5.3 and 2.5.4).

Lemma 6.1.3. Every instance of a PR-deduction from a set of clauses C is
also a PR-deduction from C.

Proof. We proceed by induction on the length of PR-deductions Γ .

l(Γ) = 0 :
In this case Γ = Cσ for some C ∈ C and for some substitution σ. But then
Γη = Cση for every substitution η and Cση is an instance of a clause in C.
By Definition 2.5.3 Γη is a PR-deduction from C.

(IH) Suppose that for all PR-deductions Γ from C such that l(Γ) ≤ n and
for all substitutions η Γη is a PR-deduction from C.

Now let Γ : C1, . . . , Cn+1 be a PR-deduction from C.

case a):
Cn+1 is an instance of a clause in C, i.e., Cn+1 = Dµ for some D ∈ C and
some substitution µ:
By (IH) (C1, . . . , Cn)λ is a PR-deduction for every λ; moreover Cn+1λ is an
instance of D (Cn+1λ = Dµ). Thus by Definition 2.5.3 (C1, . . . , Cn+1)λ is a
PR-deduction from C.

case b):
Cn+1 is a PR-resolvent of clauses D and E where D and E are p-reducts of
clauses Ci and Cj respectively for some i, j < n+ 1.
Then D = A1 ∨L∨A2 and E = B1∨Ld∨B2 for some clauses A1, A2, B1, B2

and some literal L and

Cn+1 = A1 ∨A2 ∨B1 ∨B2.

Let λ be a substitution applied to ∆ : C1, . . . , Cn. Then Ciλ and Ciλ are
clauses in ∆. Moreover the clauses Dλ : A1λ ∨ Lλ ∨ A2λ and Eλ : B1λ ∨
Ldλ ∨ B2λ are p-reducts of Ciλ and Cjλ respectively (this follows directly
from the definition of a p-reduct). It follows that

Cn+1λ : (A1 ∨A2 ∨B1 ∨B2)λ

is a PR-resolvent of p-reducts of Ciλ and Cjλ.
By (IH) ∆λ is a PR-deduction from C. But then, by Definition 2.5.3(b),
(∆,Cn+1)λ is a PR-deduction from C too. 3

262 6. On the Complexity of Resolution

Proposition 6.1.2. Let C be a set of clauses and Γ be a PR-refutation of
C; then HC(C) ≤ l(Γ).

Proof. Let Γ : C1, . . . , Cn,2 be a PR-refutation of C. By Lemma 6.1.3 every
instance Γλ of Γ is a PR-refutation of C. Let λ be a substitution such that
Γλ is a sequence of ground clauses. Then Γλ is even a GR-refutation of C;
which means Γλ is an R-refutation of the set of ground instances of clauses
from C appearing in Γλ. Because Γλ is an R-refutation and the principle of
R-deduction is sound, the set D of all ground instances of input clauses Ci

appearing in Γ must be unsatisfiable. It follows that HC(C) ≤ |D| ≤ l(Γ). 3

Corollary 6.1.2. Let C be a set of clauses and Γ be a GR-refutation of C ;
then HC(C) ≤ l(Γ).

Proof. Every GR-deduction is a PR-deduction. 3

The proof of Proposition 6.1.2 is based on the fact that every instance
of a PR-deduction is a PR-deduction too. Of course, due to the principle of
variable renaming and of most general unification, instances of R-deductions
typically are not R-deductions. But for the purpose of complexity analysis it
is interesting to know, whether to an R-deduction Γ there are substitutions
λ1, . . . , λn such that C1λ1, . . . , Cnλn is a GR-deduction (from the same set
of clauses).

Definition 6.1.5. Let Γ : C1, . . . , Cn be an R-deduction from C. A sequence
of clauses Γ ′ is called propositional projection of Γ if it holds:

P1) Γ ′ is a PR-deduction from C.
P2) There exist substitutions λ1, . . . , λn such that Γ ′ = C1λ1, . . . , Cnλn.

If Γ ′ is a propositional projection consisting of ground clauses only then Γ ′

is called a ground projection of Γ (in this case Γ ′ is a GR-deduction from
C).

Ground projection is, in some sense, the inverse operation to lifting. As every
GR-deduction can be lifted to a general R-deduction (Theorem 2.7.1) we may
ask whether the other direction holds too, i.e. whether every R-deduction
possesses a ground projection. The following example shows that the answer
is negative.

Example 6.1.4. Let C = {¬P (x) ∨ P (f(x)), P (a),¬P (f2(a))}. Then

Γ : ¬P (x) ∨ P (f(x)),¬P (x) ∨ P (f2(x)), P (a), P (f2(a)),¬P (f2(a)),2

is an R-refutation of C. Note that ¬P (x)∨P (f2(x)) is obtained from ¬P (x)∨
P (f(x)) by self-resolution. Now let s1, s2 be arbitrary ground terms and

Γ ′ : ¬P (s1) ∨ P (f(s1)),¬P (s2) ∨ P (f2(s2)), P (a), P (f2(a)),¬P (f2(a)),2.

6.1 Herbrand Complexity and Proof Length 263

Then Γ ′ cannot be an R-refutation of a set of ground instances C′ of C. Note
that the second clause in Γ ′ is neither a ground instance of a clause in C nor
a resolvent of the first clause with itself (no matter how we choose the ground
terms s1 and s2). In fact the sequence Γ ′ is not a GR-deduction at all.

The possibility of resolving a clause with a renamed copy of itself is typical to
general resolution. In case of a ground clause C, C can only be self-resolving
if it is a tautology; then the self-resolvent D of C is a tautology too (if C and
D are both Nc-clauses then even C = D). It is trivial that there are always R-
refutations of a set of clauses having ground projections: if Γ is obtained from
a GR-deduction Γ ′ via lifting then Γ ′ is a ground projection of Γ . Moreover,
as we will see in this section, there are resolution refinements which always
admit ground projections. The following proposition shows that HC is a lower
bound to the length of R-deductions admitting ground projections.

Proposition 6.1.3. Let Γ be an R-refutation of C which has a ground pro-
jection; then HC(C) ≤ l(Γ).

Proof. Let Γ = C1, . . . , Cn,2 and Γ ′ : C1λ1, . . . , Cnλn,2 be a ground projec-
tion of Γ . Then Γ ′ is a GR-refutation of C. By Corollary 6.1.2 HC(C) ≤ l(Γ ′).
Moreover we also have l(Γ) = l(Γ ′). 3

Example 6.1.4 tells us that there are R-deductions without ground projec-
tions; thus we cannot conclude that Herbrand complexity is a lower bound
to the length of all resolution refutations (which in fact is not the case).
However, we will show that linear input refutations (see Definition 3.5.5) al-
ways have ground projections. For the proof of this result it is convenient to
measure the depth of LI-deductions instead of their length.

Definition 6.1.6. Let Γ : C0, E1, . . . , Cn−1, En, Cn be a linear deduction.
Then the depth of Γ (depth(Γ)) is n.

According to the definition of LI-deductions Γ we always have

depth(Γ) =
(l(Γ)− 1)

2
.

Lemma 6.1.4. Every LI-deduction has a ground projection.

Proof. We first show by induction on the depth of LI-deductions Γ that Γ has
a propositional projection Γ ′ with the following property: If Γ is a deduction
of C then Γ ′ is a deduction of a variant of C.

depth(Γ) = 0:
Γ : C0 is an LI-deduction. Thus Γ ′ : C0 is a propositional projection of Γ
which derives a variant of C0 (namely C0 itself).

(IH) Suppose that every LI-deduction Γ of a clause C such that depth(Γ) ≤
n has a propositional projection Γ ′ such that Γ ′ derives a variant C′ of
C.

264 6. On the Complexity of Resolution

Now let depth(Γ) = n+ 1.
Then Γ is of the form C0, E1, . . . , Cn, En+1, Cn+1.
By (IH) there exist substitutions λ0, . . . , λn and µ1, . . . , µn such that

∆ : C0λ0, E1µ1, . . . , Enµn, Cnλn

is a propositional projection of Γ and λn is a renaming substitution.
By the definition of LI-deductions En+1 must be an element of the set

of input clauses C and Cn+1 is LRM-resolvent of (Cn, En+1). Let µ be the
substitution defining the l-factor of Cn corresponding to the resolution. Then
the factor Dn of Cn is a p-reduct of Cnµ. Let En+1η be a renamed version
of En+1 such that V (En+1η) ∩ V (Cnλn) = ∅. Then Cn+1 is a variant of a
propositional resolvent of Dnσ and En+1ησ, where σ is an m.g.u. of a binary
resolution (note that λn is a renaming too). In particular the sequence

Cnµσ, En+1ησ, Cn+1τ

is a PR-deduction from C ∪ {Cnµσ} where τ is a renaming substitution. By
Lemma 6.1.3 every instance of a PR-deduction from C is also a PR-deduction
from C. Particularly ∆µσ is a PR-deduction of Cnµσ from C. But then

Ω : (C0λ0, E1µ1, . . . , Enµn, Cnλn)µσ, En+1ησ, Cn+1τ

is a propositional projection of Γ which derives a variant of Cn+1. This com-
pletes the induction proof and we know that all LI-deductions have appro-
priate propositional projections.

Now let Γ be an LI-deduction of C and Γ ′ be a propositional projection
of Γ deriving a variant C′ of C. Let λ be a ground substitution over the
signature of the clauses in Γ such that the domain of λ is the set of all
variables occurring in Γ ′. Because Γ ′ is a propositional projection of Γ , Γ ′λ
is a ground projection of Γ . 3

Theorem 6.1.1. Let C be a set of clauses and Γ be an LI-refutation of C.
Then HC(C) ≤ l(Γ).

Proof. By Lemma 6.1.4, Γ has a ground projection. Therefore, by Proposi-
tion 6.1.3, HC(C) ≤ l(Γ). 3

In the proof of Lemma 6.1.4 we have shown that every LI-deduction has
a ground projection. This property is important in the theory of logic pro-
gramming, as it guarantees the existence of a “total” substitution for such
a deduction. These total substitutions applied to the variables of the goal
clause (i.e., the negative top clause of a LI-deduction in Horn logic) define
the answer substitutions of a logic program [Llo87]. Theorem 6.1.1 might sug-
gest that Herbrand complexity is a lower bound to the length of resolution
proofs in general. The following theorem shows that, for general resolution,
the situation is quite different.

6.1 Herbrand Complexity and Proof Length 265

Theorem 6.1.2. There exists a sequence of sets of clauses (Cn)n∈IN such
that all Cn are refutable by R-deductions of length n + 5, but HC(Cn) > 2n

(Herbrand complexity may be exponential in the length of a shortest resolution
refutation).

Proof. Let Cn = {P (a),¬P (x) ∨ P (f(x)),¬P (f2n

(a))} for all n ≥ 0.
Then the deduction Γn:

¬P (x) ∨ P (f(x)),¬P (x) ∨ P (f2(x)), . . . ,¬P (x) ∨ P (f2i

(x)),

¬P (x) ∨ P (f2i+1

(x)), . . . ,¬P (x) ∨ P (f2n

(x)), P (a), P (f2n

(a)),

¬P (f2n

(a)),2

is an R-refutation of Γn of length n+ 5. The first n resolvents are defined by
iterated self-resolution.

To show the exponentiality of HC(Cn) we prove that every set of ground
instances C′n of Cn such that |C′n| < 2n + 2 is satisfiable.

Suppose that D is a minimal unsatisfiable set of ground instances from
Cn and |D| < 2n + 2.
As D is unsatisfiable it must contain the clauses P (a) and ¬P (f2n

(a)) (oth-
erwise all clauses contain a negative (positive) literal and D is satisfiable).
So let

D = {P (a),¬P (f2n

(a))} ∪ {¬P (f i(a)) ∨ P (f i+1(a))|i ∈ J}

where J is a set of natural numbers such that |J | < 2n. By |J | < 2n there
must exist a number k ≥ 0 such that k 6∈ J and k < 2n. In particularly the
number

p : min{k|k 6∈ J, k < 2n}

is well-defined.
If p = 0 then ¬P (a)∨P (f(a)) is not contained in D; but then there is no

clause in D containing ¬P (a) at all. By the pure-literal-rule (Definition 2.4.2)
we conclude that D ∼sat D − {P (a)}. But then also D − {P (a)} is an un-
satisfiable set of ground clauses from Cn which contradicts the minimality of
D.

If p > 0 then p− 1 ∈ J and

D : ¬P (fp−1(a)) ∨ P (fp(a)) ∈ D.

But by p 6∈ J and p < 2n, D is the only clause containing the atom P (fp(a)).
Using the pure literal rule once more we obtain D − {D} ∼sat D, again
contradicting the minimality of D. Therefore HC(Cn) < 2n + 2 leads to a
contradiction. So we obtain HC(Cn) > 2n.

3

Theorem 6.1.2 tells us that resolution can give an exponential “speed-up”
relative to Herbrand complexity. However, in the sequence defined there, the
terms in the atoms P (f2n

(a)) are of exponential size if we count the number

266 6. On the Complexity of Resolution

of occurrences of function symbols. This effect is notation dependent (e.g.,
we may use a binary coding for exponents and obtain a representation of
linear size). But an exponential speed-up is possible even when we take the
standard notation and the number of symbol occurrences as a measure for
the length of deductions (see [Ede92]).

The question remains, whether it is possible to obtain even shorter refu-
tations (in terms of HC). The following theorem shows that this is not the
case and that the exponential bound is tight.

Theorem 6.1.3. Let Γ be an R-refutation of a set of clauses C; then
HC(C) ≤ 22l(Γ).

Proof. We transfer every R-deduction Γ of a clause C from C into a PR-
deduction Γ ′ of C from C such that

(*) l(Γ ′) ≤ 22l(Γ).

Because PR-deductions always have ground projections we then obtain
HC(C) ≤ 22l(Γ).
We prove the inequality (*) by induction on l(Γ).

l(Γ) = 1: Γ ′ = Γ = C and Γ ′ is a PR-deduction of C with l(Γ ′) ≤ 22l(Γ).

(IH) Assume that for all R-deductions Γ of a clause C from C such that
l(Γ) ≤ n there exists a PR-deduction Γ ′ of C from C with l(Γ ′) ≤ 22l(Γ).

Let Γ : C1, . . . , Cn+1 be an R-deduction of length n + 1 from C. By the
definition of an R-deduction we have to distinguish two cases:

a) Cn+1 is a variant of a clause in C.
b) Cn+1 is a resolvent two clauses Ci and Cj for i, j < n+ 1.

By (IH) there exists a PR-deduction Γ ′
k of Ck from C such that l(Γ ′

k) ≤ 22k

for all k = 1, . . . , n.
In case a) Γ ′ : Γ ′

n, Cn+1 is a PR-deduction of Cn+1 from C and

l(Γ ′) ≤ 22n + 1 < 22(n+1) = 22l(Γ).

It remains to investigate case (b).
As i, j < n+ 1 we obtain PR-deductions Γ ′

i of Ci and Γ ′
j of Cj . Now let Ciη

and Cjϑ be variants of Ci and Cj which are variable-disjoint. Then Γ ′
iη is a

PR-deduction of Ciη and Γ ′
jϑ one of Cjϑ. Let us choose η and ϑ in a way

that Cn+1 is resolvent of Ciη and Cjϑ without additional renaming. Then
there are instances (in fact G-instances) Ciηλ of Ciη and Cjϑµ of Cjϑ such
that Cn+1 is a propositional resolvent of p-reducts of Ciηλ and of Cjϑµ.

Because PR-deduction is closed under substitution (Lemma 6.1.3) Γ ′
iηλ is a

PR-deduction of Ciηλ and Γ ′
jϑµ is a PR-deduction of Cjθµ (both from C).

By Definition 2.5.3 the sequence

Γ ′ : Γ ′
iηλ, Γ

′
jϑµ, Cn+1

6.1 Herbrand Complexity and Proof Length 267

is a PR-deduction of Cn+1 from C. For Γ ′ we obtain

l(Γ ′) ≤ 22i + 22j + 1 ≤ 22n + 22n + 1 < 22(n+1) = 22l(Γ).

3

The sequence (Cn)n∈IN in the proof of Theorem 6.1.2 is a sequence of sets
of Horn clauses. By Theorem 3.5.2, LI-deduction is complete on Horn logic
and therefore there exist LI-refutations Γn of Cn. By Lemma 6.1.4 the Γn have
ground projections and therefore HC(Cn) ≤ l(Γn) for n ∈ IN. By definition
of the sequence (Cn)n∈IN we thus obtain l(Γn) > 2n + 2 for all n, i.e., all
LI-refutations of Cn are of length exponential in n. As resolution complexity
is linear on (Cn)n∈IN we see that refinements can lead to an exponential
increase in proof complexity. That even holds in refining linear deduction to
linear input deduction.

Theorem 6.1.4. There exists a sequence of clauses (Cn)n∈IN such that

(1) For every n there exists a linear refutation Γn of Cn with l(Γn) ≤ 2n+5.
(2) For all n and for all LI-refutations ∆ of Cn l(∆) > 2n + 2; moreover

there exist LI-refutations of Cn for all n ∈ IN.

Proof. We only have to adapt the proof of Theorem 6.1.2.
Let Cn = {P (a), ¬P (x)∨P (f(x)), ¬P (f2n

(a))} for n ≥ 0 as in the proof of
Theorem 6.1.2. By definition of LR-deductions (Definition 3.5.3) the sequence

Γn : ¬P (x) ∨ P (f(x)), ¬P (x) ∨ P (f(x)), ¬P (x) ∨ P (f2(x)),

¬P (x) ∨ P (f2i

(x)), ¬P (x) ∨ P (f2i

(x)), ¬P (x) ∨ P (f2i+1

(x)),

¬P (x) ∨ P (f2n

(x)), P (a), P (f2n

(a)), ¬P (f2n

(a)),2

is an LR-refutation of Cn. Moreover l(Γn) = 2n+ 5.
Note that the length of Γn is about double the length of the refutations

in Theorem 6.1.2; the reason for this effect is purely notational (in linear
deduction self-resolution requires clause copying).

For (2): HC(Cn) > 2n + 2 directly follows from the proof of Theorem 6.1.2.
As every LI-refutation ∆ of Cn has a ground projection we get l(∆) > 2n +2.
Because (Cn)n∈IN is a sequence of Horn clauses there exist LI-refutations of
Cn for every n (by Theorem 3.5.2). 3

In using the depth measure (Definition 6.1.6) instead of length we obtain
LR-refutations of depth n+2, but in the example of Theorem 6.1.4 the depth
of all LI-refutations is > 2n−1 + 1. Moreover this theorem also tells us that
the proof complexity of LR-deduction strongly depends on the choice of the
top clauses. Consider

Cn : {P (a), ¬P (x) ∨ P (f(x)), ¬P (f2n

(a))}

and select ¬P (f2n

(a)) as top clause of a linear refutation of Cn. As Cn is
a set of Horn clauses every LR-refutation with this top clause must be an

268 6. On the Complexity of Resolution

LI-refutation too; but then the length of the refutation is greater than 2n +2.
Similarly all LR-refutations with top clause P (a) are of exponential length.
On Cn hyperresolution is exponential too. To apply hyperresolution we only
have to rewrite the clause ¬P (x)∨P (f(x)) to P (f(x))∨¬P (x). It is easy to
see that a hyperrefutation must contain all clauses

P (a), . . . , P (f i(a)), . . . , P (f2n

(a)).

A similar property holds for any A-ordering with P (x) < P (f(x)). Note
that the self-resolvent ¬P (x)∨P (f2(x)) of ¬P (x)∨P (f(x)) is not admissible
(P (f(x)) is the resolved atom and P (f(x)) < P (f2(x))). As a consequence,
a <-refutation generates all clauses ¬P (f i(a)) for i < 2n. But this does not
mean that linear deduction always yields shorter proofs.

The exponential speed-up of proof complexity versus Herbrand complexity in
Theorem 6.1.3 is essentially based on the internal renaming of variables for
resolution. Without the possibility of self-renaming, self-inference of clauses
becomes impossible in the sequence (Cn)n∈IN. In PR-deductions renaming is
not allowed and therefore all PR-deductions are exponential on Cn. It is the
property of ground projection which is responsible for the effect that only
one instance per clause is used in the deduction.

Resolution is just one among many clausal inference methods based on the
unification principle. However, concepts like Herbrand complexity (which is
inference-independent) and ground projections can also be used in measuring
the complexity of other inference methods. We mention just a few of them:
the matrix method of D. Prawitz [Pra69], the mating method of P. Andrews
[And81], and W. Bibel’s connection method [Bib82]. Without giving a formal
mathematical analysis, we illustrate how these methods behave with respect
to Herbrand complexity. There are different versions of Prawitz’s method,
but we refer to the later improved one. The basic idea consists in searching
for a model of the set of clauses. Clearly a model exists if one can define a
path π containing one literal from each clause such that no pairs of different
literals on π can be made complementary (in this case we set all these liter-
als to true). Links between complementary literals indicate that there is no
such path containing both of them. If all possible paths can be excluded by
links connecting complementary literals then the set of connections is called
spanning. Because in predicate logic literals need not be complementary in
advance they have to be made so by unification. Thus we need a “simulta-
neous” single substitution in such a matrix which admits the construction of
such a spanning set of connections. If the Herbrand complexity exceeds the
number of given clauses then such a simultaneous instance of the original ma-
trix cannot exist; in this case we need the additional rule of clause copying.
The minimal number of clauses in a matrix needed to show unsatisfiability
is just the Herbrand complexity.

6.1 Herbrand Complexity and Proof Length 269

Example 6.1.5. Let C be the set of clauses

{ ¬P (x) ∨ P (f(x)), P (a), ¬P (f2(a))}.

Because HC(C) = 4 there exists no single ground instance of the formula

(¬P (x) ∨ P (f(x))) ∧ P (a) ∧ ¬P (f2(a))

making it propositionally unsatisfiable. In Prawitz’s formalism C is repre-
sented by the matrix M(x) shown in Figure 6.1. Obviously there exists no

¬P (x), P (f(x))

P (a)

¬P (f2(a))

Fig. 6.1. A Prawitz matrix

ground substitution λ : {x← t} such that M(x)λ (= M(t)) is unsatisfiable.
In this case one generates a copy M(y) of M(x) such that y is a new variable.
Afterwards the matrix M(x) is replaced by the matrix

M ′(x, y) :
M(x)
M(y)

In applying the substitution λ : {x ← a, y ← f(a)} we obtain a ground
matrix M ′(a, f(a)) which is unsatisfiable. In M(x) the sets

{¬P (x), P (a)} and {P (f(x)),¬P (f2(a))}

cannot be made complementary simultaneously. But inM ′(x, y) we may focus
on the sets

{¬P (x), P (a)}, {¬P (y), P (f(x))}, {P (f(y)),¬P (f2(a))}

which all can be made complementary by λ : {x← a, y ← f(a)}.
Note that the general method for obtaining the adequate simultaneous

substitutions is the same as that used in Lemma 6.1.2.

It is easy to see that Herbrand complexity is a lower bound to the lines in
an unsatisfiable matrix. Every line represents a clause and there must be a
ground substitution making the set of clauses in the matrix unsatisfiable. For
the sequence

Cn : {P (a),¬P (x) ∨ P (f(x)),¬P (f2n

(a))}

defined in Theorem 6.1.2 we have HC(Cn) = 2n + 2 and thus 2n−1 copies of
the corresponding matrices Mn(x) are required in the method of Prawitz.

270 6. On the Complexity of Resolution

The methods of Andrews [And81] and Bibel [Bib82] can be considered as
improvements of Prawitz’s method. While the search for a simultaneous sub-
stitution in a matrix is characteristic to all these methods, only copying of
single clauses (instead of copying whole matrices) is performed in [And81] and
[Bib82]. As the methods of Andrews and Bibel are quite similar we select one
of them (namely Bibel’s) for illustration. Figure 6.2 shows connections in a
matrix for the set of clauses

C : {¬P (x) ∨ P (f(x)), P (a),¬P (f2(a))}

which are not compatible (simultaneous unifiers don’t exist).

¬P (x)

P (f(x))

P (a) P (f2(a))

x← a

x← f(a)

Fig. 6.2. Incompatible connections

Again we produce the copy ¬P (y) ∨ P (f(y)) of ¬P (x) ∨ P (f(x)) to ob-
tain spanning compatible set of connections shown in Figure 6.3 (for de-
tails see [Bib82]). In fact the term equations {x = a, y = f(x), y = f(a)}

¬P (x)

P (f(x))

¬P (y)

P (f(y))

P (a) P (f2(a))

x← a

y ← f(a)

y ← f(x)

Fig. 6.3. Compatible and spanning connections

have the solution x = a, y = f(a). Again Herbrand complexity is a lower
bound to the number of clause occurrences in such a matrix. To make the
set Cn : {P (a), ¬P (x) ∨ P (f(x)), ¬P (f2n

(a))} unsatisfiable, 2n−1 copies of
¬P (x) ∨ P (f(x)) are needed.

6.2 Extension and the Use of Lemmas 271

There is a variant of resolution, called V-resolution [Cha72], where renaming
is not allowed and a total substitution must exist (defining a propositional
projection). To compensate for the absence of renaming clause copying is
required again.

It is significant that all methods mentioned above have ground projections,
i.e., there exists a total substitution which can be turned into a ground sub-
stitution. In the matrix methods we obtain a ground matrix that is unsatis-
fiable. V-resolution has a ground projection in the sense of Definition 6.1.5.
Iterated “lemmatization” was used to obtain refutations in Theorem 6.1.2.
Proofs containing such a mechanism of lemma building do not possess ground
projections, i.e., there are no direct ground versions of these proofs.

Exercises

Exercise 6.1.1. Give a proof of Lemma 6.1.1.

Exercise 6.1.2. Let C be an unsatisfiable set of clauses and δ(C) be the
minimal term depth of an unsatisfiable set of ground instances from C. Show
that there exists no function f : IN→ IN such that

δ(C) ≤ f(|C|+ τ(C))

for all unsatisfiable sets of clauses C.

Exercise 6.1.3. Let L and M be two unifiable expressions and σ the m.g.u.
of L and M . Show that

‖Lσ‖ ≤ 2‖L‖+‖M‖

(hint: show that the length can be at most doubled in the single substitution
steps of UAL).

6.2 Extension and the Use of Lemmas

In Section 6.1 we investigated the length of resolution proofs relative to Her-
brand complexity. The question remains, how resolution behaves relative to
other methods of inference. A systematic and thorough treatment of this
problem is outside the scope of this book and we refer to [Ede92] for this
purpose. However, we will point out in this section that some features of
minimality that are characteristic to computational calculi can negatively
influence proof complexity.

A substantial weakness of resolution and of most other computational
calculi is in their low power to use lemmas in proofs. For this reason resolu-
tion proofs usually differ strongly from real mathematical proofs; the latter
are typically very structured and expressed over a large base of previously
derived theorems. R. Statman [Sta79] has shown that Herbrand complexity

272 6. On the Complexity of Resolution

may even be nonelementary(!) with respect to the length of a shortest proof
in a full logic calculus like LK [Tak75] or Natural Deduction [Pra71]. Because
R-refutations maximally give an exponential speed-up with respect to Her-
brand complexity it follows that the complexity of resolution relative to that
of full logic calculi is nonelementary too.

Example 6.2.1 (Statman’s example). Let (Cn)n∈IN be a sequence of sets of
clauses such that

Cn = ST ∪ ID ∪ {¬pq = p((Tnq)q)},

where pq is an abbreviation for f(p, q), p and q are constant symbols, and f
is a two-place function symbol. By assuming association to the left, i.e., abc
denotes (ab)c, we reduce the number of parentheses in the term notation. ST
is a set of combinator equations (see [Ste71]) and ID a set of equality axioms.

ST = {Sxyz
.
=(xz)(yz), Bxyz

.
=x(yz), Cxyz

.
=(xz)y, Ix

.
=x, px

.
=p(qx)}.

S,B,C, I are constant symbols, written in capital letters to conform to the
standard notation in combinatory logic. We use “

.
=” in order to distinguish

equality in the object language from that in the metalanguage. The first four
equations are the standard definitions of the combinators S,B,C, and I and
the fifth is a specific additional axiom. The expression “Tn” appearing in the
definition of the set Cn serves as metatheoretical abbreviation for combinator
terms defined by

T
.
=(SB)((CB)I), T1

.
=T, Tk+1

.
=TkT for k ∈ IN+.

Note that () is not associative and thus TkT is not equal to TTk.

The set of equality axioms ID is defined as

ID = {x
.
=x,¬x

.
=y ∨ y

.
=x,¬x

.
=y ∨ ¬y

.
=z ∨ x

.
=z,¬x

.
=y ∨ ¬u

.
=v ∨ xu

.
=yv}.

Now let s : IN→ IN be the following function:

s(0) = 1, s(n+ 1) = 2s(n) for all n ∈ IN.

s is not a member of the class of elementary functions [BL74]; in particular
there exists no number k such that

s(n) ≤ 22..
2n

}k times

holds for infinitely many n.
In [Sta79] Statman proved that HC(Cn) ≥ 1

2s(n). The proof requires
methods and results from combinatory logic which are outside the scope
of our presentation. Using Theorem 6.1.3 we conclude that every resolution

6.2 Extension and the Use of Lemmas 273

refutation of Cn must be of length ≥ cs(n − 1) for a constant c which is
independent of n.

As clause logic is undecidable the existence of a sequence (Cn)n∈IN with
HC(Cn) ≥ 1

2s(n) comes hardly by surprise (see Proposition 6.1.1). But the
importance of Statman’s example can be found in the fact that there are short
(formal) refutations of Cn. It is not our purpose to formalize such a short proof
in a logic calculus, but rather to give a semiformal representation. Readers
familiar with Hilbert-type calculi can easily extract a purely formal version
of this proof.

First we show that Tyx
.
=y(yx) is derivable in the equational theory de-

fined by ST. Indeed

(SB)((CB)I)yx =(S) (By)((CB)Iy)x =(C) (By)((By)I)x

=(B) y((ByI)x) =(B) y(y(Ix)) =(I) y(yx).

We now define a sequence of PL-formulas Hi:

H1(y) = (∀x1)px1
.
=p(yx1) and

Hm+1(y) = (∀xm+1)(Hm(xm+1)→ Hm(yxm+1)) for m = 1, . . . , n.

Using some elementary logical rules we can construct the following derivation:

(∀x)px
.
=p(yx)

px
.
=p(yx)

(∀x)px
.
=p(yx)

p(yx)
.
=p(y(yx))

px
.
=p(y(yx))

F (y) : (∀x)px
.
=p(y(yx))

But by the property of T shown above F (y) is logically equivalent to
(∀x)px

.
=p(Tyx), which is exactlyH1(Ty). So we have derived the implication

G(y) : H1(y)→ H1(Ty).

From this we can obtain the generalized version (∀y)G(y). But H2(T) =
(∀y)G(y).

More generally, for any A, we can derive the implication

(∀xm+1)(A(xm+1)→ A(yxm+1))→ (∀xm+1)(A(xm+1)→ A(y(yxm+1)))

Again by y(yxm+1)
.
=Tyxm+1, by setting A = Hm and by definition of Hm+1

we obtain
Hm+1(y)→ Hm+1(Ty) and

(∀xm+2)(Hm+1(xm+2)→ Hm+1(Txm+2)).

The last formula is just Hm+2(T).

In particular we can derive H2(T), . . . , Hn+1(T) by short proofs. It is easy
to see that (in a Hilbert-type system or in Natural Deduction) the number

274 6. On the Complexity of Resolution

Hn(T)

Hn+1(T) : (∀xn+1)(Hn(xn+1)→ Hn(Txn+1))

Hn(T)→ Hn(T2)

Hn(T2) : (∀xn)(Hn−1(xn)→ Hn−1(T2xn))

.

.

.

¬pq
.
=p((Tnq)q)

(∀x1)px1
.
=p(qx1)

H2(Tn)

(∀x1)px1
.
=p(qx1)→ (∀x1)px1

.
=p((Tnq)x1)

(∀x1)px1
.
=p((Tnq)x1)

pq
.
=p((Tnq)q)

2

Fig. 6.4. A refutation of Statman’s example

of steps required to derive Hi(T) is constant and does not depend on i.

Having derived the Hi(T) for i = 2, . . . , n + 1 the final refutation is easily
obtained (see Figure 6.4).

Note that the derivation in Figure 6.4 is essentially based on the substi-
tution rule and on modus ponens.

The essential difference between a resolution refutation and a refutation such
as that in Example 6.2.1 (Figure 6.4) consists in the type of formulas used in
the deduction. Particularly the formulasHm(y) contain quantifiers and do not
appear in the syntactical representation of the problems Cn; they come from
“outside”, as it were. By applying resolution on the sets Cn we can only derive
clauses which are defined over the signature of Cn. Not only is it impossible to
introduce and use (new) quantificational formulas, but also we are without
means to introduce new predicate and function symbols. To obtain short
proofs we are forced to somehow introduce new “concepts” into the deduction
machinery. In fact we can obtain short proofs by maintaining the clause
form and adding extension rules for predicate and function symbols. The
introduction of new symbols gives us the means to encode more complex
formulas and to use them in deduction. Moreover, extension can also be
used in normalization of formulas (note that skolemization is a method of
functional extension). Before describing the power of extension principles we
first describe their role in formula normalization and then in inference.

6.2.1 Structural Normalization

In constructing propositional normal forms (e.g., conjunctive normal form)
we basically have two options:

a) structural transformation and

6.2 Extension and the Use of Lemmas 275

b) nonstructural (standard) transformation.

In contrast to skolemization (where ∃-quantifiers are eliminated) we don’t
need extension at all to transform formulas in skolemized form into con-
junctive normal form (CNF). Clearly it is always possible to transform a
quantifier-free formula A into a logically equivalent conjunctive normal form
cnf(A). As logical equivalence is stronger than sat-equivalence and extensions
merely preserve sat-equivalence, we might think about preferring nonstruc-
tural transformation. However, structural transformation, by keeping more
information about the original formula, behaves much better with respect to
proof complexity (we will come to this point again). For the sake of simplic-
ity we focus on negation normal forms (NNF, see Section 2.2) and define a
transformation γstruc which transforms NNFs into clause form.

In order to define structural CNFs we first have to create names for sub-
formulas of an NNF A. By subf(A) we denote the set of all subformulas
occurring in an NNF A (note that subf(A) itself consists of formulas in nega-
tion normal form).

Definition 6.2.1. Let A be a formula in NNF. We first define a mapping
πA: subf(A)→ PS with the following properties:

(1) If |V (B)| = n then the arity of πA(B) is n for n ≥ 1; if |V (B)| = 0 (B
is ground) then the arity of πA(B) is 1.

(2) If B1, B2 ∈ subf(A) and B1 6= B2 then πA(B1) 6= πA(B2).
(3) For all B ∈ subf(A) πA(B) does not occur in A.

πA can be used to assign (new) literals to the elements of subf(A). We denote
the corresponding mapping by ωA. ωA must have the following properties:

(a) If B ∈ subf(A) and B is a literal then ωA(B) = B.
(b) If B ∈ subf(A), B is not a literal and V (B) = {v1, . . . , vn} (for n ≥ 1)

then ωA(B) = πA(B)(v1, . . . , vn).
(c) If B ∈ subf(A), B is not a literal and B is ground then ωA(B) =

πA(B)(c) for some constant symbol c (c need not be new).

We give names to all subformulas of A and literals are named by themselves.
Still we have to express in the object language that the (new) literals indeed
correspond to some subformulas of A. Note that NNFs are quantifier-free
formulas, but semantically they denote universally closed forms. Instead of
writing down the whole ∀-prefix of a formula A we use the more comfortable
notation ∀(A) for the universal closure of A.

Definition 6.2.2. Let A be a formula in NNF. We define a mapping δA
assigning universally closed equivalences to the subformulas of A:

(a) δA(B) = TAUT for some tautological clause TAUT if B ∈ subf(A) and
B is a literal.

276 6. On the Complexity of Resolution

(b) δA(B) = ∀(ωA(B) ↔ (ωA(B1) ∧ ωA(B2))) if B ∈ subf(A) and B =
B1 ∧B2.

(c) δA(B) = ∀(ωA(B) ↔ (ωA(B1) ∨ ωA(B2))) if B ∈ subf(A) and B =
B1 ∨B2.

Every δA(B) is called definitional equivalence induced by A. The set of all
definitional equivalences induced by A is denoted by EA. The formula

∀(ωA(A)) ∧
∧

{E|E ∈ EA}

is called extension formula of A and is denoted by EA(A) (if no confusion
can arise we write E(A)).

Example 6.2.2. Let A be the NNF P (x, y) ∨ (Q(x) ∧ ¬R(y))
and πA(A) = P1, πA(Q(x) ∧ ¬R(y)) = P2.

Then ωA(A) = P1(x, y) and ωA(Q(x) ∧ ¬R(y)) = P2(x, y).

Moreover we have
ωA(P (x, y)) = P (x, y), ωA(Q(x)) = Q(x) and ωA(¬R(y)) = ¬R(y).

We define

δA(P (x, y)) = δA(Q(x)) = δA(¬R(y)) = R(c) ∨ ¬R(c)

(note that any tautology would do the job). The other definitional equiva-
lences are:

δA(P (x, y) ∨ (Q(x) ∧ ¬R(y)) = (∀x)(∀y)(P1(x, y)↔ (P (x, y) ∨ P2(x, y))),

δA(Q(x) ∧ ¬R(y)) = (∀x)(∀y)(P2(x, y)↔ (Q(x) ∧ ¬R(y))).

Under deletion of tautologies (which is always possible in a conjunction of
formulas) the extension formula of A is

(∀x)(∀y)P1(x, y) ∧ (∀x)(∀y)(P1(x, y)↔ (P (x, y) ∨ P2(x, y)))∧
(∀x)(∀y)(P2(x, y)↔ (Q(x) ∧ ¬R(y))).

Extension formulas are the cornerstones of the structural normal form trans-
formation. However we already see that (in general) A is not logically equiv-
alent to its extension formula E(A). Fortunately logical equivalence is not
really necessary (it gets lost by skolemization anyway); it suffices to preserve
sat-equivalence.

Lemma 6.2.1. Let A be a formula in NNF and EA(A) be the extension
formula of A. Then ∀(A) is sat-equivalent to EA(A).

6.2 Extension and the Use of Lemmas 277

Proof. For every formula F in predicate logic we write F 0 for its open form,
i.e., F 0 is F without quantifiers.
First we prove that E(A)0 → A is a valid formula. Then clearly the formula
∀(E(A)0 → A) is valid too. By distributing the universal quantifiers we even-
tually obtain the validity of E(A)→ ∀(A). As a consequence the satisfiability
of E(A) implies that of ∀(A).

We prove the validity of E(A)0 → A by induction on the complexity comp
of the formula A, where comp(A)is the number of connectives from {∧,∨}
occurring in A.

comp(A) = 0:
Then A is a literal and (by definition) E(A) = ∀(A). Thus E(A)0 → A =
A→ A and the validity is obvious.

(IH) Assume that E(A)0 → A is valid for all A with comp(A) ≤ k.

Let A be an NNF-formula with comp(A) = k + 1.
Then either A = A1 ∨ A2 or A = A1 ∧ A2 for two formulas A1, A2 in NNF
such that comp(A1), comp(A2) ≤ k.

case a) A = A1 ∧A2:

By the definition of the extension formula we obtain:

E(A1)
0 = P1(ȳ1) ∧ E0

A1
,

E(A2)
0 = P2(ȳ2) ∧ E0

A2
,

E(A)0 = P (x̄) ∧ E0
A and

(∗) E0
A = E0

A1
∧ E0

A2
∧ (P (x̄)↔ (P1(ȳ1) ∧ P2(ȳ2))).

By (IH) the formulas

P1(ȳ1) ∧ E0
A1
→ A1 and

P2(ȳ2) ∧ E
0
A2
→ A2

are valid.
By the definition of E(A) and (*) we obtain that

E(A)0 → P1(ȳ1) ∧ E
0
A1
, E(A)0 → P2(ȳ2) ∧ E

0
A2

are both valid.
By transitivity of “→” we obtain the validity of the formulas E(A)0 → A1,
E(A)0 → A2 and eventually that of the formula E(A)0 → (A1 ∧A2).

case b) A = A1 ∨A2:

Let E(A1), E(A2), E(A) be as in case a) with the exception that

(+) E0
A = E0

A1
∧ E0

A2
∧ (P (x̄)↔ (P1(ȳ1) ∨ P2(ȳ2))).

278 6. On the Complexity of Resolution

Again by (IH) we obtain the validity of

P (ȳ1) ∧ E0
A1
→ A1,

P (ȳ2) ∧ E0
A2
→ A2.

This implies the validity of the formulas

P (ȳ1) ∧ E0
A1
∧ E0

A2
→ A1 ∨A2,

P (ȳ2) ∧ E0
A1
∧ E0

A2
→ A1 ∨A2.

Using the valid propositional schema

((A ∧ B)→ C) ∧ ((F ∧ B)→ C) → (((A ∨ F) ∧ B)→ C)

we obtain the validity of the formula

(P1(ȳ1) ∨ P2(ȳ2)) ∧ E
0
A1
∧ E0

A2
→ A1 ∨A2.

But by definition of E(A) and by (+) the formula

E(A)0 → E0
A1
∧ E0

A2
∧ (P1(ȳ1) ∨ P2(ȳ2))

is valid. By transitivity of → we eventually obtain the validity of E(A)0 →
A1 ∨A2. This concludes the first part of the proof.

We show now that the satisfiability of ∀(A) implies that of E(A). This
direction is a little more difficult than the first one, due to the fact that
∀(A) → E(A) need not be valid. Here we can only prove satisfiability of
E(A) by extending models of ∀(A). To simplify the notation we write E(B)
instead of EA(B) for B ∈ subf(A). As in the first part of the proof we analyze
the open formulas A and E(A)0. We reduce the proof to

(I) Suppose that the interpretations MJ : (D,Φ, J) are models of A (for
some environments J). Then there exists a Φ′ such that Φ ⊆ Φ′ and all
interpretationsM′

J : (D,Φ′, J) are models of E(A)0.

Suppose that (I) has already been proved. If ∀(A) is satisfiable then there
exist modelsMI : (D,Φ, I) of A such that vMI

(A) = T for all environments
I (note that ∀(A) is closed). By (I) every model M′

I : (D,Φ′, I) is a model
of E(A)0, i.e.,

vM′

I
(E(A)0) = T for all I.

By the definition of the extension formula we have V (E(A)0) = V (A) and
so vM′

I
(∀(E(A)0)) = T, i.e., M′

I (for any environment I) is a model of

∀(E(A)0)). But E(A) is logically equivalent to ∀(E(A)0)) and thereforeM′
I

is a model of E(A).

As in the first part of the proof we show (I) by induction on comp(A).

comp(A) = 0:
E(A)0 = A. Thus if vM(A) = T then vM(E(A)0) = T and Φ′ = Φ.

6.2 Extension and the Use of Lemmas 279

(IH) Assume that (I) holds for all A with comp(A) ≤ k.

If comp(A) = k + 1 then A = A1 ∧ A2 or A = A1 ∨ A2 for A1, A2 such
that comp(A1) and comp(A2) are both ≤ k. As in the first part of the proof
we use the definitions E(A1)

0, E(A2)
0, and E(A)0:

E(A1)
0 = P1(ȳ1) ∧ E0

A1
,

E(A2)
0 = P2(ȳ2) ∧ E0

A2
,

E(A)0 = P (x̄) ∧ E0
A, and

(∗) E0
A = E0

A1
∧ E0

A2
∧ (P (x̄)↔ (P1(ȳ1) ◦ P2(ȳ2))).

for ◦ ∈ {∧,∨}.

case a) A = A1 ∧A2.

Suppose that vM(A) = T. Let M1 be the restriction of M to Σ(A1) and
M2 be the restriction of M to Σ(A2) (remember that Σ(F) denotes the
signature of F). Then clearly

vM1(A1) = vM2(A2) = T.

By (IH) there exist extensions N1 ofM1 and N2 ofM2 such that

Ni = (D,Φ′
i, I) forMi = (D,Φi, I) and Φi ⊆ Φ

′
i for i = 1, 2

Note that the evaluation functions Φ′
1, Φ

′
2 don’t depend on the environment

I.
By Exercise 6.2.1 N1 and N2 must coincide on Σ(E(A1))

0) ∩ Σ(E(A2)
0).

Therefore there exists a common extension N of N1 and N2 such that

N = (D,Ψ, I) and vN (E(A1)
0) = vN (E(A2)

0) = T.

In particular we obtain

vN (P1(ȳ1)) = vN (P2(ȳ2)) = vN (E0
A1

) = vN (E0
A2

) = T.

By the definition of the extension formula EA(A) the predicate symbol P
neither occurs in E(A1) nor in E(A2). So we may extend N to P : (D,Ξ, I)
such that Ξ(P)(d̄) = T for all d̄ ∈ Dl where l is the arity of P . Then clearly

vP(P (x̄)↔ (P1(ȳ1) ∧ P2(ȳ2))) = T, vP(P (x̄)) = T

and
vP(E0

A1
) = vP(E0

A2
) = T.

Moreover P is an extension ofM and thus fulfills all requirements ofM′ in
(I).

case b) A = A1 ∨A2

280 6. On the Complexity of Resolution

Let M = (D,Φ, I) and vM(A) = T.
Then either vM1(A1) = T or vM2(A2) = T for the restrictions Mi to

Σ(Ai). It suffices to investigate the case vM1(A1) = T (the other case is
symmetric). But note that the truth values may “oscillate” under the change
of the environments. It is only necessary that for every model (D,Φ, J) of
A either the restriction (D,Φ1, J) verifies A1 or the restriction (D,Φ2, J)
verifies A2. For different environments J the roles of A1 and A2 may change.

By (IH) there exists an extension N1 ofM1 such that vN1(E(A1)
0) = T.

In particular we obtain

vN1 (P1(ȳ1)) = vN1(E
0
A1

) = T.

N1 can be extended to an interpretation N such that vN (E0
A2

) = T. Note
that E0

A2
consists of equivalences only and (for the specific environment I!)

we can assign the appropriate truth values to the extension predicates. Again
these assignments may be different for different environments I. Particularly
N may falsify P2(ȳ2) and the formula E(A2)

0. We then extend N further to
P : (D,Ξ, I) such that Ξ(P)(d̄) = T for all d̄ ∈ Dl.

By vP(P1(ȳ1)) = T we also obtain

vP (P (x̄)↔ (P1(ȳ1) ∨ P2(ȳ2))) = T.

Therefore vP(E) = T for all conjuncts appearing in E(A)0 and therefore
vP (E(A)0) = T. Again P is of the formM′ in statement (I).

Finally, we must be sure to really obtain a single interpretation Ξ of
predicate and function symbols which is independent of specific environments.
Let U be the set of environments J such that vM1(A1) = T and V be the
complement of U . By (I) we obtain two evaluation functions Φ1, Φ2 such that
the (D,Φ1, I) are models of E(A1)

0 for I ∈ U and the (D,Φ2, J) are models
of E(A2)

0 for J ∈ V . By U ∩ V = ∅ the construction above is consistent and
we obtain interpretations NI : (D,Ψ, I) such that

vNI
(E0

A1
∧ E0

A2
) = T for all I.

The assignments of Ξ on P are clearly independent of environments and all
interpretations PI : (D,Ξ, I) verify E(A)0. This concludes the proof of case
k + 1. 3

The definitional equivalences are simple formulas (they contain at most
three atom formulas) which can easily be transformed into CNF and into
clause form. We define

clf(δA(B)) = ∅ if δA(B) = TAUT for some tautology TAUT.

clf(δA(B)) = {ωA(B)d ∨ ωA(B1), ωA(B)d ∨ ωA(B2),

ωA(B1)
d ∨ ω(B2)

d ∨ ωA(B)} if B = B1 ∧B2,

clf(δA(B)) = {ωA(B)d ∨ ωA(B1) ∨ ωA(B2), ωA(B1)
d ∨ ωA(B),

6.2 Extension and the Use of Lemmas 281

ωA(B2)
d ∨ ωA(B)} if B = B1 ∨B2.

as the clause form of a definitional equivalence.

Definition 6.2.3. Let A be a formula in negation normal form. Then the
structural clause form clstruc is defined by

clstruc(A) = {ωA(A)} ∪
⋃

{clf(δA(B)) | B ∈ subf(A)}.

Example 6.2.3. Let A = P (x, y) ∨ (Q(x) ∧ ¬R(y)).
In Example 6.2.2 we have computed the definitional equivalences

(∀x)(∀y)(P1(x, y)↔ (P (x, y) ∨ P2(x, y)),

(∀x)(∀y)(P2(x, y)↔ (Q(x) ∧ ¬R(y)),

and TAUT for the literals in A. So we obtain

clstruc(A) = {P1(x, y), ¬P1(x, y) ∨ P (x, y) ∨ P2(x, y), ¬P (x, y) ∨ P1(x, y),

¬P2(x, y) ∨ P1(x, y), ¬P2(x, y) ∨Q(x), ¬P2(x, y) ∨ ¬R(y),

¬Q(x) ∨R(y) ∨ P2(x, y)}.

Theorem 6.2.1. Let A be a formula in negation normal form. Then ∀(A)
is sat-equivalent to clstruc(A).

Proof. By Lemma 6.2.1, ∀(A) is sat-equivalent to its extension formula
EA(A). But clstruc(A) is a clause form of a conjunctive normal form of EA(A)
which is based on distributivity and thus preserves logical equivalence. There-
fore ∀(A) ∼sat clstruc(A). 3

In Example 6.2.3 the structural clause form of A consists of seven clauses,
while there are only two clauses in the standard clause form. Thus the exam-
ple might suggest that structural clause forms are always more complicated.
For the use in practice there are several techniques to optimize structural
transformation with respect to the number of clauses obtained (we just men-
tion [BT90]). In the sense of worst-case complexity structural normalization
is clearly superior to the standard normalization; the former is polynomial
(see Exercise 6.2.2), the latter exponential. For example let

An : (L1
1 ∧ L

1
2) ∨ . . . ∨ (Ln

1 ∧ L
n
2)

be a sequence of disjunctive normal forms. The standard clause form of An

contains n2n literals and thus is exponential in the length of An. If one focuses
on proof complexity (instead of the length of representation) the difference
can even be much stronger. The following theorem is based on a slightly
different structural transformation from that we have given here (it starts
from full PL-syntax, not from NNF).

282 6. On the Complexity of Resolution

Theorem 6.2.2. There exists a sequence of unsatisfiable formulas (Fn)n∈IN

such that for the structural clause forms clstruc(Fn) there are resolution refu-

tations of length ≤ 222dn

for some constant d. For the nonstructural clause
forms Dn every resolution refutation has a length > s(n − 1) for s(0) = 1,
s(n+ 1) = 2s(n) for n ∈ IN.

Proof. We omit the proof, but refer to [BFL94]. 3

Note that the bound on the resolution refutations of the Dn in Theo-
rem 6.2.2 is the same as for Statman’s example (Example 6.2.1). Indeed the
formulas Fn above are constructed via Statman’s example by adding formu-
las containing the cut formulas of short proofs in the Gentzen calculus LK.
Roughly speaking, the nonstructural transformation destroys the structure
of the cut formulas and thus prevents short resolution proofs. But by extend-
ing the signature via structural normalization we can keep the information
contained in the formulas even under transformation to conjunctive normal
form.

While extension is necessary for the elimination of quantifiers in skolem-
ization, it can be avoided in the construction of propositional normal forms.
However, at least from the theoretical point of view, there is no reason to avoid
extension in propositional normalization. The method of structural transfor-
mation into clause form is also applicable to nonclassical logics [Min93].

6.2.2 Functional Extension

The second way to use extension is to add extension rules to logical infer-
ence systems. A detailed discussion of such extended inference systems can
be found in E. Eder’s book [Ede92]; the basic idea, formulated by Tseitin for
propositional logic, can be found in [Tsei83]. In Eder’s extension method new
predicate and function symbols have to be introduced, where the introduc-
tion is based on definitional equivalences as in Definition 6.2.2. In a slightly
different and more restrictive way a functional extension rule is defined in
[BL92]; it is based on shifting of quantifiers and reskolemization. Introducing
new function symbols in a resolution calculus is somehow against the philos-
ophy of resolution, where minimality of substitutions and terms is the key
characteristic. On the other hand, clinging to minimality prevents formula-
tion and use of substantial lemmas. So, in using extension methods, we must
carefully preserve the computational power of resolution and its small search
space (otherwise the extension calculus would not be a “computational” one).
The function introduction rule defined in [BL92] preserves clause forms and
the principle of most general unification and is restricted by the pattern of
variable occurrences in the clauses.

6.2 Extension and the Use of Lemmas 283

Example 6.2.4 (Egly 1994).

Cn = {C1, C2, C
n
3 } for

C1 = P (a, g(a, b)), C2 = ¬P (x, y) ∨ P (f(x), y) ∨ P (f(x), g(x, y)),

Cn
3 = ¬P (f2n

(a), z).

Every R-refutation of Cn is of length exponential in n [Egl94]. Much
shorter proofs (of length linear in n) can be obtained if C2 is subjected to
quantifier shifting and subsequent (re)skolemization. By this operation we
eliminate the variable y in the positive literals of C2. First let us consider the
formula F2 representing C2:

F2 = (∀x)(∀y)(¬P (x, y) ∨ P (f(x), y) ∨ P (f(x), g(x, y))).

Applying the valid schema

(S) (∀y)(A(y) ∨B(y))→ (∀y)A(y) ∨ (∃y)B(y)

to F2 we obtain the formula

F : (∀x)((∀y)¬P (x, y) ∨ (∃y)(P (f(x), y) ∨ P (f(x), g(x, y)))).

By skolemizing F we obtain the clause

C : ¬P (x, y) ∨ P (f(x),m(x)) ∨ P (f(x), g(x,m(x))).

The short refutation is then based on iterated self-resolution of C combined
with iterated factoring. We illustrate the first step:
Resolving C with a renamed copy of itself (on the second literal) gives the
clause

D : ¬P (x, y)∨P (f(x), g(x,m(x)))∨P (f2(x),m(f(x)))∨P (f2(x), g(f(x),m(f(x)))).

By resolving D (on its second literal) with a renamed copy of C we get the
clause:

E : ¬P (x, y) ∨ P (f2(x),m(f(x))) ∨ P (f2(x), g(f(x),m(f(x)))) ∨ P (f2(x),m(f(x)))∨
P (f2(x), g(f(x),m(f(x)))).

By factoring (even p-reduction suffices) in E we obtain

¬P (x, y) ∨ P (f2(x),m(f(x))) ∨ P (f2(x), g(f(x),m(f(x)))).

Eventually (after 5n steps) the clause

C′ : ¬P (x, y)∨P (f2n

(x),m(f2n−1(x)))∨P (f2n

(x), g(f2n−1(x),m(f2n−1(x))))

is derived. The two positive literals in C′ can be resolved with C3 which gives
us C′′ : ¬P (a, y). C′′ and C1 resolve to 2. The length of the whole refutation

284 6. On the Complexity of Resolution

is linear in n. In trying to simulate the proof above, using C2 instead of C,
we obtain clauses of exponential length that cannot be factored. Thus the
introduction of the new function symbol via the schema (S) made additional
factoring possible and thus led to a much shorter refutation.

Of course, C is not R-derivable from Cn. We don’t even have the validity
of F (Cn)→ F ({C}), which could be called the strong correctness of inferring
C. But still Cn∪{C} ∼sat Cn holds,which guarantees refutational correctness.
Note that the principle of logical equivalence has already been given up in
skolemization.

There are many variants of function introduction depending on the type of
inference rule (shifting of quantifiers, introduction of ∃-quantifiers) applied
to clauses. For theoretical purposes it suffices to restrict the inference to the
innermost quantifier.

Definition 6.2.4. Let C be a set of clauses and C ∈ C. Suppose that

A : (∀x̄)(∀y)(F1 ∨ F2)

is a representation of the clause C in predicate logic where the range of the
∀-quantifiers in A is minimized (under the rules of quantifier shifting). Then
the (skolemized) clause form of the formula

F (C) ∧ (∀x̄)((Qy)F1 ∨ (Qdy)F2)

(obtained via the transformation defined in Section 2.2) for Q ∈ {∀, ∃} is
called a 1-F-extension (or simply F-extension) of C.

Note that there are many different ways of representing a clause in the form
A above and thus there are different F-extensions based on C. If A = C1∨C2

such that V (C1) ∩ V (C2) = ∅ then there exists no F-extension based on
this representation of C. Moreover F-extension is not just a rule applied
to single clauses but has to be applied to the whole set of clauses C. This
is necessary because the newly introduced function symbol (generated by
skolemization) may not occur in C. Indeed the F-extension rule would be
incorrect if (∀x̄)((Qy)F1∨(Qdy)F2) were skolemized relative to itself (without
respect to the other clauses in C).

By shifting k quantifiers at once we obtain the principle of k-F-extension
and by shifting until A is of the form G1 ∨ G2 that of SF-extension (split-
ting F-extension). Although a single step of a k-F-extension cannot be
represented by k 1-F-extensions, 1-F-extension polynomially simulates k-F-
extension [Egl94]. Thus for the purpose of complexity analysis we may focus
on F-extension only.

Suppose that Q in Definition 6.2.4 is ∀; then the F-extension is of the
form

C ∪ {C1 ∨C2{y ← f(x1, . . . , xk)}}.

6.2 Extension and the Use of Lemmas 285

For Q = ∃ we obtain

C ∪ {C1{y ← f(x1, . . . , xk)} ∨ C2}.

Note that (by definition of the form A in Definition 6.2.4)

y ∈ V (C1) ∩ V (C2), but y 6∈ V (C1) ∩ V (C2{y ← f(x1, . . . , xk)}).

The last property indicates that F-extension somehow works as “variable-
decomposer” on clauses. In fact the connection of variables within a clause
codes much of the logical structure of a problem. Note that without any vari-
able connections we obtain sets of decomposed clauses (i.e., V (L)∩V (M) = ∅
for any two different literals L,M in C); the corresponding class of clause sets
is decidable (it is reducible to the Herbrand class via splitting)!

Because F-extension changes the term universe we cannot expect to pre-
serve strong correctness (i.e. all clauses derivable from C logically follow from
C). But if C ∪ {C} is an F-extension of C then C ∪ {C} ∼sat C and (at least)
we obtain refutational correctness.

Definition 6.2.5 (FR-deduction). Let C be a set of clauses and C be a
clause. A sequence C1, . . . , Cn is called FR-deduction of C from C if the fol-
lowing conditions hold:

(1) Cn = C.
(2) For all i = 1, . . . , n:

a) Ci is a resolvent of Cj , Ck for j, k < i or

b) C
⋃i

j=1{Cj} is an F-extension of C
⋃i−1

j=1{Cj}.

The behavior of FR-deductions is different from that of R-deductions due
to the fact that skolemization is a global rule. Thus if Γ and ∆ are both
FR-deductions from C, Γ,∆ need not be an FR-deduction.

Example 6.2.5. C = {P (x) ∨ P (f(x)),¬P (y)}.

Γ : P (x)∨P (f(c)), ¬P (y), 2 is an FR-refutation of C. Note that C∪{P (x)∨
P (f(c))} is an F-extension of C and P (x)∨P (f(c)) has P (f(c)) as factor. On
the other hand there exists no nontrivial factor of the clause P (x)∨P (f(x)).
Thus one of the shortest R-refutations of C is

P (x) ∨ P (f(x)), ¬P (y), P (x), 2.

The Herbrand complexity of C is 3, but

HC(C ∪ {P (x) ∨ P (f(c))}) = 2.

Even in this very simple case we see that F-extension may lead to proofs of
a different type; we can make factoring possible, where in pure resolution it
cannot be applied.

286 6. On the Complexity of Resolution

Theorem 6.2.3 (soundness and completeness of FR-deduction).
Let C be a set of clauses. C is unsatisfiable iff there exists an FR-refutation
of C.

Proof. Let us assume that C is unsatisfiable.
If Γ is an R-refutation of C then Γ is also an FR-refutation. Thus (by

the completeness of resolution shown in Theorem 2.7.2) there exists an FR-
refutation of C.

To prove the other direction, let Γ be an FR-refutation of C. Then Γ is
of the form C1, . . . , Cn and Cn = 2. If Ci is a resolvent of Cj , Ck for j, k < i

and C ∪
⋃i−1

j=0{Cj} is satisfiable then C ∪
⋃i

j=0{Cj} is satisfiable too. On the

other hand if C∪
⋃i

j=0{Cj} is satisfiable then C∪
⋃i−1

j=0{Cj} is also satisfiable.
Therefore (in case of a resolvent) we obtain

C ∪
i−1
⋃

j=0

{Cj} ∼sat C ∪
i

⋃

j=0

{Cj}

Now let us assume that C ∪
⋃i

j=0{Cj} is an F-extension of C ∪
⋃i−1

j=0{Cj}.
Then Ci is the clause form of a formula

B : (∀x̄)((Qy)F1 ∨ (Qdy)F2),

where A : (∀x̄)(∀y)(F1 ∨ F2) is a minimal representation of a clause Cj for
j < i or of a D ∈ C (again “minimal” means the range of quantifiers). But
the formula

(∀x̄)(∀y)(F1 ∨ F2)→ (∀x̄)((Qy)F1 ∨ (Qdy)F2)

is logically valid and therefore

F (C ∪
i−1
⋃

j=0

{Cj}) ∼ F (C ∪
i−1
⋃

j=0

{Cj}) ∧B.

But then we also have

C ∪
i−1
⋃

j=0

{Cj} ∼sat C ∪
i

⋃

j=0

{Cj}.

Thus a straightforward induction argument yields

(∗) C ∼sat C ∪
i

⋃

j=0

{Cj} for i = 1, . . . , n

But Cn = 2 and therefore C ∪
⋃n

j=0{Cj} is unsatisfiable. By (*) C must be
unsatisfiable too. 3

6.2 Extension and the Use of Lemmas 287

Although F-extension models a simple quantifier shifting rule, its effect
can be very strong (in fact stronger than in Example 6.2.4).

Theorem 6.2.4 ([BL92]). There exists a sequence of sets of clauses
(Cn)n∈IN such that Cn = C ∪ {¬Pn} (where the Pn’s are atoms for n ∈ IN)
and constants c, d such that

(1) l(Γ) ≥ cs(n− 1) for all R-refutations Γ of Cn,
(2) For every n there exists an FR-refutation ∆n of Cn such that l(∆n) ≤ 2dn

(s is defined by s(0) = 1, s(n+ 1) = 2s(n) as in Example 6.2.1).

An exact proof of Theorem 6.2.4 requires tools from combinatory logic and
proof theory and is beyond the scope of this book. For a complete proof we
refer to [Sta79] and [BL92]. However, we sketch the idea of the proof in order
to give an insight into what methods have to be used.

To prove (1) in Theorem 6.2.4 we formulate a modified version of Stat-
man’s example having a nonelementary Herbrand complexity, i.e., HC(Cn) ≥
c′s(n) for some constant c′. As R-deduction maximally gives an exponen-
tial speed-up over HC (Theorem 6.1.3) we obtain l(Γ) ≥ cs(n − 1) for all
R-refutations Γ of Cn (c is an appropriate constant).

For (2) formulate a short refutation in a full logic calculus (see Figure 6.4
and derive some clausal codifications of the skolemized cut formulas via F-
extension. The structural coding of the complex cut formulas (the Hm in
Example 6.2.1) is based on a representation of the schema of structural CNF-
transformation for NNFs. The simulation of the short refutation by resolution
and F-extension (only) requires exponential expense.

Theorem 6.2.4 states that functional extension can shorten proofs nonelemen-
tarily. The question remains whether FR-deduction can be of real computa-
tional value. It is hardly surprising that F-extension does not always reduce
the search space. However, there have been several encouraging experiences
in experiments [Egl90], [Pel94].

Frequently a beneficial effect results if F-extension leads to the decompo-
sition of a clause. In such a case the set of clauses can be split into two parts
such that each of them can be treated in parallel. Such a splitting can be
interpreted as the application of a lemma in a proof [BL90].

Example 6.2.6 ([BL92]). Let C be the set of clauses {C1, C2, C3, C4} for

C1 = P (x, f(y)) ∨Q(x, y), C2 = ¬P (x, f(y)) ∨Q(x, y),

C3 = P (x, f(y)) ∨ ¬Q(x, y), C4 = ¬P (x, y) ∨ ¬Q(x, f(y))

We first construct the FR-deduction

C5, C6 : ¬P (x, y) ∨ ¬Q(x, f(g(x))),¬P (a, y) ∨ ¬Q(x, f(g(x))).

The clause C6 is decomposed and consequently C ∪ {C5, C6} is unsatisfiable
iff the sets of clauses

288 6. On the Complexity of Resolution

C1 : C ∪ {C5} ∪ {¬P (a, y)} and C2 : C ∪ {C5} ∪ {¬Q(x, f(g(x)))}

are both unsatisfiable. Then Γ1 is a refutation of C1 for

Γ1 : ¬P (a, y), P (u, f(v))∨Q(u, v), Q(a, v), P (x, f(y))∨¬Q(x, y), ¬Q(a, y), 2.

Γ2 is a refutation of C2:

Γ2 : ¬Q(x, f(g(x))), P (x, f(y)) ∨Q(x, y), P (x, f(f(g(x)))),

¬P (x, f(y)) ∨Q(x, y), ¬P (x, f(f(g(x)))), 2.

In using ¬P (a, y) and ¬Q(x, f(g(x))) instead of the original clause C4 we
obtain two shorter refutations instead of a single longer one. The refutations
Γ1 and Γ2 can be carried out independently of each other, which creates a
beneficial effect with respect to proof search. Afterwards we can combine Γ1

and Γ2 and obtain a refutation Γ of C. In such a combination we see the effect
of lemmatization: C is “proved” out of C1 and C2. In using unrestricted resolu-
tion we cannot obtain a similar effect, as the clause ¬P (a, y)∨¬Q(x, f(g(x)))
is not derivable. Moreover no decomposable clause can be derived from C via
resolution.

Note that F-extension is an inference method, i.e., we add a new clause
to the original set of clauses. In general it is not allowed to replace a clause C
by its F-extension, a rule which would destroy the completeness of the calcu-
lus. However, in particular cases it is possible to perform such a replacement
[BL85] without losing completeness. In practice it may be useful to apply
F-extensions which split clauses (as in Example 6.2.6) and to decompose the
problem – even without further information [Egl90]; if we only search for a
refutation (and do not try to decide the set of clauses) the loss of complete-
ness cannot lead to incorrect results.

The introduction of new function symbols can be considered as a computa-
tional tool to simulate quantificational inference in clause logic, where quan-
tifiers don’t belong to the syntax. Although more research is required to
obtain efficient applications, functional extension marks a starting point for
stronger computational inference systems. Unlike the extension rules defined
in [Ede92] function introduction is purely “predicate logical” and without sig-
nificance to propositional logic (it simply does not exist there). While many
methods in automated deduction owe their existence to prototypes in propo-
sitional logic, F-extension is of quantificational nature. It is weaker than
Hilbert’s ǫ-calculus [HB34] in which quantifiers are coded by terms under
preservation of logical equivalence (instead of sat-equivalence only), but the
calculi are intuitively related. In FR-deduction skolemization becomes a prin-
ciple of inference instead of a principle of normalization in the preprocessing
of formulas.

6.2 Extension and the Use of Lemmas 289

Exercises

Exercise 6.2.1. Let A be a formula in NNF such that A = A1 ◦ A2 for
◦ ∈ {∧,∨} and letM be an interpretation of A. Assume further thatM1 is
the restriction ofM to A1 andM2 the restriction ofM to A2. LetN1 (N2) be
an extension ofM1 (M2) to E(A1)

0 (E(A2)
0). Then N1 and N2 coincide on

their common signatureΣ(E(A1)∩Σ(E(A2)) (note thatΣ(E(A1)∩Σ(E(A2))
may properly contain Σ(A1) ∩Σ(A2)).

Exercise 6.2.2. Prove that the structural transformation to clause form is
polynomial, i.e., there exists a polynomial p such that for all formulas A in
negation normal form

‖ (clstruc(A)) ‖≤ p(‖ A ‖)

(where ‖ A ‖ denotes the number of symbols occurring in A).

290 6. On the Complexity of Resolution

References

[AB70] R. Anderson, W.W. Bledsoe: A linear format for resolution with merging
and a new technique for establishing completeness. Journal of the ACM
17(3), 525–534 (1970)

[Ack28] W. Ackermann: Über die Erfüllbarkeit gewisser Zählausdrücke. Mathe-
matische Annalen 100, 638–649 (1928)

[AHU76] A. Aho, J. Hopcroft, J. Ullman: The design and analysis of computer
algorithms. Addison-Wesley (1975)

[And81] P.B. Andrews: Theorem proving via general matings. Journal of the ACM
28(2), 193–214 (1981)

[Ba87] M. Baaz: Automatisches Beweisen für Logiksysteme, in denen
Widersprüche behandelt werden können. Informatik-Fachberichte 151,
Springer (1987)

[BF81] A. Barr, E.A. Feigenbaum (eds.): The handbook of Artificial Intelligence,
vol. I, chap. 2, “Search”. Pitman Books (1981)

[BG94] L. Bachmair, H. Ganzinger: Rewrite-based equational theorem proving
with selection and simplification. Journal of Logic and Computation
4(3), 1–31 (1994)

[Bib82] W. Bibel: Automated theorem proving. Vieweg (1982)
[BJ74] G.S. Boolos, R.C. Jeffrey: Computability and logic. Cambridge Univer-

sity Press (1974).
[BFL94] M. Baaz, C. Fermüller, A. Leitsch: A non-elementary speed-up in proof

length by structural clause form transformation. Proceedings LICS ’94,
IEEE Computer Science Press, 213–219 (1994)

[BL74] W.S. Brainerd, L.H. Landweber: Theory of computation. John Wiley &
Sons (1974)

[BL85] M. Baaz, A. Leitsch: Die Anwendung starker Reduktionsregeln im au-
tomatischen Beweisen. Proc. of the Austrian Academy of Sciences II
194(4-10), 287–307 (1985)

[BL90] M. Baaz, A. Leitsch: A strong reduction method based on function in-
troduction, ISSAC’90, ACM Press 30–37 (1990)

[BL92] M. Baaz, A. Leitsch: Complexity of resolution proofs and function intro-
duction. Annals of Pure and Applied Logic 57, 181–215 (1992)

[BL94] M. Baaz, A. Leitsch: On skolemization and proof complexity. Funda-
menta Informaticae 20(4), 353–379 (1994)

[Boe92] E. Börger: Berechenbarkeit, Komplexität, Logik. Vieweg (1992)
[Boy71] R.S. Boyer: Locking: a restriction of resolution. The University of Texas

at Austin, Ph.D. dissertation (1971)
[BS28] P. Bernays, M. Schönfinkel: Zum Entscheidungsproblem der Mathema-

tischen Logik. Math. Annalen 99, 342–372 (1928)
[BT90] T. Boy de la Tour: Minimizing the number of clauses by renaming. Proc.

CADE 10, 558–572, Springer (1990)

292 References

[Cha72] C.L. Chang: Theorem proving with variable-constraint resolution. Infor-
mation Sciences 4, 217–231

[Chu36] A. Church: A note on the Entscheidungsproblem. Journal of Symbolic
Logic 1, 40–44 (1936)

[CGT90] S. Ceri, G. Gottlob, L. Tanca: Logic programming and databases.
Springer (1990)

[CL73] C.L. Chang, R.C.T. Lee: Symbolic logic and mechanical theorem proving.
Academic Press (1973)

[CP96] R. Caferra, N. Peltier: Decision procedures using model building tech-
niques. Proc. CSL ’95, Lecture Notes in Computer Science 1092, 130–
144, Springer (1996)

[CZ92] R. Caferra, N. Zabel: A method for simultaneous search for refutations
and models by equational constraint solving. Journal of Symbolic Com-
putation 13, 613–641 (1992)

[DLL62] M. Davis, G. Logemann, D. Loveland: A machine program for theorem
proving. Communications of the ACM 5(7), 394–397 (1962)

[DP60] M. Davis, H. Putnam: A computing procedure for quantification theory.
Journal of the ACM 7(3), 201–215 (1960)

[DL84] L. Denenberg, H.R. Lewis: Logical syntax and computational complexity.
Lecture Notes in Math. 1104, 101–115, Springer (1984)

[Ede85] E. Eder: Properties of substitutions and unifications. J.Symbolic Com-
putation 1, 31–46 (1985)

[Ede92] E. Eder: Relative complexities of first-order calculi, Vieweg (1992)
[Egl90] U. Egly: Problem reduction methods and clause splitting in automated

theorem proving. Master thesis, Technische Universität Wien (1990)
[Egl91] U. Egly: A generalized factorization rule based on the introduction of

Skolem terms. Proc. Seventh Austrian Conference on Artificial Intelli-
gence, Informatik-Fachberichte 287, Springer (1991)

[Egl92] U. Egly: Shortening proofs by quantifier introduction. Proc. LPAR’92,
Lecture Notes in AI 624, 148–159, Springer (1992)

[Egl94] U. Egly: Methods of function introduction. Dissertation, TU Darmstadt
(1994)

[Fer91] C. Fermüller: Deciding classes of clause sets by resolution. Dissertation,
Technische Universität Wien (1991)

[Fer91a] C. Fermüller: A resolution variant deciding some classes of clause sets.
CSL ’90, Lecture Notes in Computer Science 533, 128–144, Springer
(1991)

[Fit90] M.C. Fitting: First-order logic and automated theorem proving. Springer
(1990)

[FL93] C. Fermüller, A. Leitsch: Model building by resolution. Proc. CSL ’92,
Lecture Notes in Computer Science 702, 134–148, Springer (1993)

[FL96] C. Fermüller, A. Leitsch: Hyperresolution and automated model build-
ing. Journal of Logic and Computation 6(2), 173–203 (1996)

[FLTZ93] C. Fermüller, A. Leitsch, T. Tammet, N. Zamov: Resolution methods for
the decision problem. Lecture Notes in AI 679, Springer (1993)

[Gen34] G.Gentzen: Untersuchungen über das logische Schliessen I-II. Math.Z.
39, 176–210, 405–431 (1934)

[GF92] G. Gottlob, Ch. Fermüller: Removing redundancy from a clause. Artifi-
cial Intelligence 61, 263–289 (1993)

[GH93] D.M. Gabbay, C.J. Hogger (eds.): Handbook of logic in artificial intelli-
gence and logic programming. Oxford University Press (1993)

[Gil60] P.C. Gilmore: A proof method for quantification theory; its justification
and realization. IBM J. Res. Develop. 4, 28–35 (1960)

References 293

[GJ79] M.R. Garey, D.S. Johnson: Computers and intractability. Freeman (1979)
[GL85] G. Gottlob, A. Leitsch: On the efficiency of subsumption algorithms.

Journal of the ACM 32(2), 280–295 (1985)
[GL85a] G. Gottlob, A. Leitsch: Fast subsumption algorithms. Proc. EUROCAL

’85, Lecture Notes in Computer Science 204-II, 64–77, Springer (1985)
[Göd30] K. Gödel: Die Vollständigkeit der Axiome des logischen Funktio-

nenkalküls. Mh. Math. Phys. 37, 349–360 (1930)

[Göd31] K.Gödel: Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme. Mh. Math. Phys. 38, 175–198 (1931)

[Göd32] K. Gödel: Ein Spezialfall des Entscheidungsproblems der theoretischen
Logik. Ergebn. math. Kolloq. 2, 27–28 (1932)

[Got87] G. Gottlob: Subsumption and implication. Information Processing Let-
ters 24, 109–111 (1987)

[Gur73] Y. Gurevich: Formuly s odnim ∀ (formulas with one ∀). In Izbrannye
voprosy algebry i logiki (Selected Questions in Algebra and Logics; in
memory of A. Mal’cev). Nauka, Nowosibirsk, 97–110 (1973)

[HB34] D. Hilbert, P. Bernays: Grundlagen der Mathematik II, Springer (1970)
[Her30] J. Herbrand: Recherches sur la theorie de la démonstration. Travaux de

la Societé des Sciences et des Lettres de Varsovie 33 (1930)
[Her31] J. Herbrand: Sur le problème fondamentale de la logique mathématique,

Sprawozdania z posiedzeń Towarzystwa Naukowego Warzawskiego,
Wydzia l III 33 (1931)

[Hil01] D. Hilbert: Probleme der Mathematik. Archiv der Mathematik und
Physik 3(1), 44–63, 213–237 (1901)

[Im85] R. Imhoff: Subsumptionsalgorithmen und ihre Effizienz. Master’s thesis,
Dept. of Mathematics, Univ. of Linz Austria (1985)

[Joy73] W.H. Joyner: Automated theorem proving and the decision problem.
Ph.D. thesis, Harvard University (1973)

[Joy76] W.H. Joyner: Resolution strategies as decision procedures. Journal of the
ACM 23(1), 398–417 (1976)

[KD68] D.E. Knuth: The art of computer programming. Addison-Wesley (1968)
[KH94] S. Klingenbeck, R. Hähnle: Semantic tableaus with ordering restrictions.

Proc. of the CADE’94, Lecture Notes in AI 814, 708–722, Springer
(1994)

[KH69] R. Kowalski, P. Hayes: Semantic trees in automatic theorem proving. In:
B. Meltzer, D. Michie (eds.): Machine Intelligence 4, 87–101, Elsevier
(1969)

[Kow75] R. Kowalski: A proof procedure using connection graphs. Journal of the
ACM 22, 572–595 (1975)

[KP88] J. Krajicek, P. Pudlak: The number of proof lines and the size of proofs
in first-order logic. Arch. Math. Logic 27, 69–84 (1988)

[KMW61] A.S. Kahr, E.F. Moore, Hao Wang: Entscheidungsproblem reduced to
the ∀∃∀ case. Proc. Nat. Acad. Sci. USA 48, 365–377 (1962)

[Lee67] R.C.T. Lee: A completeness theorem and a computer program for find-
ing theorems derivable from given axioms. Ph.D. thesis, University of
California at Berkeley (1967)

[Leib] G.W. Leibniz: Calculus ratiocinator. In: Sämtliche Schriften und Briefe
edited by Preussische Akademie der Wissenschaften Darmstadt, Reichel
(1923)

[Lei88] A. Leitsch: Implication algorithms for classes of Horn clauses. In: W.H.

Janko (ed.): Statistik Informatik + Ökonomie 172–189, Springer (1988).
[Lei89] A. Leitsch: On different concepts of resolution. Zeitschr. für Math. Logik

und Grundlagen der Math. 35, 71–77 (1989)

294 References

[Lei90] A. Leitsch: Deciding Horn classes by hyperresolution. Proc. of the CSL
’89, Lecture Notes in Computer Science 440, 225–241, Springer (1990)

[Lei93] A. Leitsch: Deciding clause classes by semantic clash resolution. Funda-
menta Informaticae 18, 163–182 (1993)

[Lei93a] A. Leitsch: Resolution theorem proving. AILA preprint 15, Associazione
Italiana di Logica e sue Applicazioni (1993)

[LG90] A. Leitsch, G. Gottlob: Deciding clause implication problems by ordered
semantic resolution. In: F. Gardin and G. Mauri (eds.): Computational
Intelligence II, 19–26, North-Holland (1990)

[Lew79] H.R. Lewis: Unsolvable classes of quantificational formulas. Addison-
Wesley (1979)

[Lov70] D.W. Loveland: A linear format for resolution. Proc. IRIA Symposium
on Automatic Demonstration, Lecture Notes in Mathematics 125, 147–
162, Springer (1970)

[Lov78] D.W. Loveland: Automated theorem proving – a logical basis. North-
Holland (1978)

[Llo87] J.W. Lloyd: Foundations of logic programming. Springer (2nd ed. 1987)

[Loew15] L. Löwenheim: Über Möglichkeiten im Relativkalkül. Math. Ann. 68,
169–207 (1915)

[LP92] S.J. Lee, D. Plaisted: Eliminating duplication with the hyperlinking
strategy. Journal of Automated Reasoning 9(1), 25–42 (1992)

[Luc70] D. Luckham: Refinements in resolution theory. Proc. IRIA Symposium
on Automatic Demonstration, Lecture Notes in Mathematics 125, 163–
190, Springer (1970).

[MB88] R. Manthey, F. Bry: Satchmo: a theorem prover implemented in Prolog.
CADE 9, Lecture Notes in Computer Science 310, 415–434, Springer
(1988)

[Mas64] S.Y. Maslov: An inverse method of establishing deducibilities in the clas-
sical predicate calculus. Dokl. Akad. Nauk SSSR 159, 1420–1424 (1964)

[Mas68] S.Y. Maslov: The inverse method of establishing deducibility for logical
calculi. Proc. Steklov Inst. Math. 98, 25–96 (1968)

[Mat93] R. Matzinger: On lock resolution and decision methods for clause classes.
Master’s thesis, Dept. of Computer Science, Technische Universität Wien
(1993)

[McC90] W. McCune: Otter 2.0 users guide. Argonne National Laboratory, Ar-
gonne (1990)

[Min93] G.E. Mints: Gentzen-type systems and resolution rules. Part II: Predicate
Logic. In: Logic Colloquium 1990, Lecture Notes in Logic 2, 163–190,
Springer (1993)

[MM82] A. Martelli, U. Montanari: An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems 4(2), 258–282
(1982)

[MP92] J. Marcinkowski, L. Pacholski: Undecidability of the Horn clause im-
plication problem. Rapport de Recherche 1992-5, Groupe de recherche
algorithmique et logique, University of Caen, France (1992)

[MR85] N.V. Murray, E. Rosenthal: Path resolution and semantic graphs. Proc.
of the EUROCAL ’85, Lecture Notes in Computer Science 204, 50–63,
Springer (1985)

[Niv96] H. de Nivelle: Resolution games and non-liftable orderings. Collegium
Logicum, Annals of the Kurt Gödel Society 2, 1–20 (1996)

[Pea84] J. Pearl: Heuristics: Intelligent search strategies for computer problem
solving. Addison-Wesley (1984)

References 295

[Pel94] J. Pellizzari: Methods of function introduction. Master’s thesis, Dept. of
Computer Science, Technische Universität Wien (1994)

[Pra69] D. Prawitz: Advances and problems in mechanical proof procedures. Ma-
chine Intelligence 4, 59–71, Elsevier (1969)

[Pra71] D. Prawitz: Ideas and results in proof theory. In: J.E. Fenstad (ed.): Proc.
of the 2nd Scandinavian Logic Symposium, 235 –308, North-Holland
(1971)

[PW78] M.S. Paterson, M.N. Wegman: Linear unification. Journal of Computer
and System Sciences 16(2), 158–167(1978)

[Rob65] J.A. Robinson: A machine oriented logic based on the resolution princi-
ple. Journal of the ACM 12(1), 23–41 (1965)

[Rob65a] J.A. Robinson: Automatic deduction with hyperresolution. Intern. Jour-
nal of Comp. Math. 1, 227–234 (1965)

[Rob79] J.A. Robinson: Logic: form and function. North-Holland (1979)
[Rud92] V. Rudenko: Decision of a Horn clause implication class with ≤ 2 vari-

ables in the head. Yearbook of the Kurt Gödel Society 1992, 81–91
[Sko20] T. Skolem: Logisch-kombinatorische Untersuchungen über die Erfüllbar-

keit und Beweisbarkeit mathematischer Sätze nebst einem Theoreme
über dichte Mengen. In: J.E. Fenstad (ed.): Selected works in logic by
Th. Skolem, Universitetsforlaget Oslo-Bergen-Tromsö 103–136 (1970)

[Sla67] J.R. Slagle: Automatic theorem proving with renamable and semantic
resolution. Journal of the ACM 14(4), 687–697 (1967)

[Sla92] J. Slaney: Finder (finite domain enumerator): notes and guide. Tech-
nical Report TR-ARP-1/92, Australian National University Automated
Reasoning Project, Canberra (1992)

[Sla93] J. Slaney: Scott: A model-guided theorem prover. Proc. of the IJCAI ’93
vol. 1, 109–114, Morgan Kaufmann (1993)

[SS76] E. Specker, V. Strassen: Komplexität von Entscheidungsproblemen. Lec-
ture Notes in Computer Science 43, Springer (1976)

[SS88] M. Schmidt-Schauss: Implication of clauses is undecidable. Theoretical
Computer Science 59, 287–296 (1988)

[Sta79] R. Statman: Lower bounds on Herbrand’s theorem. Proc. AMS 75, 104–
107 (1979)

[Ste71] S. Stenlund: Combinators, λ-terms and proof theory. Reidel (1971)
[Sti73] R.B. Stillman: The concept of weak substitution in theorem proving.

Journal of the ACM 20(4), 648–667 (1973)
[Tak75] G. Takeuti: Proof theory. North-Holland (1975)
[Tam91] T. Tammet: Using resolution for deciding solvable classes and building

finite models. Lecture Notes in Computer Science 502, 33–64, Springer
(1991)

[Tsei83] G.S. Tseitin: On the complexity of derivation in propositional calculus.
In: J. Siekmann, G. Wrightson (eds.): Automation of reasoning, 466–483,
Springer (1983)

[Tur36] A. Turing: On computable numbers with an application to the Entschei-
dungsproblem. Proc. of the London Math. Soc. Ser. 2 42, 230–265
(1936/37)

[WRC65] L. Wos, G.A. Robinson, D.F. Carson: Efficiency and completeness of the
set of support strategy in theorem proving. Journal of the ACM 12(4),
536–541 (1965)

[Zam72] N.K. Zamov: On a bound for the complexity of terms in the resolution
method. Proc. of the Steklov Math. Inst. 128, 5–13 (1972)

296 References

Notation Index

<A 99
α normalization 12
AS atom set 24
AT atom formulas 6

β ∃-elimination 13
2 empty clause 18
BS 230
BSALG 236
BSH 230
BSH∗ 231
BS∗ 231

C+ 132
∼C 190
C \ L 44
CL 89
Clos(T) 36
CN 130
CNF conjunctive normal form 17
comp 150
CORR(,) 64
CP 130
Cr reduced clause 43
CS constant symbols 5
CSH 155
CSl 155
CS<s

A
167

CSSULI 172
clstruc 279
CSULI 172
CSx 154
CSxsT 198
CSxt 157

<d 100
DEC 187
∆SULI 172
∆ULI 172
δ 169

δSULI 172
δULI 172
DIFF(,) difference set 65
dom domain 10
dx 154
dxr 178

E() edges 31
ǫ empty substitution 60
=s 61

F () formula operator 23
FS function symbols 5

GI 253

HC 253
H(C) Herbrand universe 24

K∞ 217

l length 76
‖‖ symbolic length 256
≤s generality relation 61
LIT literals 6
<1 224
<2 224

MB 250
MON 223
MON∗ 225

Nc 96
Nl 109
No 95, 96
NOD() nodes 31
Nr 95, 96
Ns 96
Nv 95, 96
Nvl 109

ϕ 92

297

298 Notation Index

PL predicate logic 5
≺q ordering of quantifiers 12
PS predicate symbols 5
PVD 233
PVDr 233

R<A 103
RcM 142
R∅ 92
Res() 92
Res(,) resolvents 91
rg range 10
RH 132
ρx 92
ρ<A 101
ρcM 142
ρH 132
ρl 111
ρM 142
ρN 98
ρ0

<A
226

ρ̂x 152
R+

H 132
Rl 111
RlT 199
RM 142
RN 98
R0

<A
226

ROOT 31
R∅t

156
Rx refinement operator 92
Rxs 163
RxsT 197
RxT 196

s 270
∼sat sat-equivalence 10

≤sc 105
≤scs 137
sf(,) 163
Si

x 92
Si

H 132
Si

Hr 175
Si
∅t

156

Si
xr 174
≤sl 112
≤ss subsumption 158
SSIMP 190
ST 182
ST0ST0 182
stn 186
STP 187
stpn 188
sub 174
SUBST(C) 60
SUBSTΣ 60
SUBST substitutions 60

T 245
T terms 5
T semantic tree 31
τ term depth 6
τmax 100
TAUTEL 156, 196

UN(W) 62

V variables 5
∼v 73
V1C 187
VAR1 215
VAR1C 216
∼ vc 190
VPROP 255

Subject Index

A-ordering 99
A-resolvent 101
algorithm
– BSALG 236
– KCIA 206
– MB 250
– of Stillman 182
atom 6
– resolved 101
– resolved upon 73
– set 24
atom representation 139

B-refinement 196
backtracking 152
branch 32

clash
– semantic 142
– sequence 131
clause 18
– center 117
– condensed 96
– connected component 190
– copying 266
– empty 18
– Horn 19
– – implication problem 204
– implication 200
– – class 1VCI 207
– – class H0CI 208
– indexed 109
– Krom 19
– – implication problem 205
– normalization 95
– PN-form 130
– powers 209
– r-equivalent 255
– reduced 43
– relevant 119

– side 117
– simple 187
– top 117
– variant 73
clause form 18
– structural 279
completeness
– relative 169
component
– constant 227
– functional 227
– v- 227
computational logic 77
condensation 96
connection method 268
connectives 5
constant symbol 5
corresponding pairs 64

Davis-Putnam 43
– completeness 48
– correctness 48
– method of 43
– rules 44
decision class
– Ackermann 212, 215, 223
– Bernays-Schönfinkel 51
– Bernays-Schönfinkel 212, 230
– BS 230
– BSH 230
– dyadic 212
– Gödel 212
– Herbrand 213
– K 217
– monadic 212, 223
– PS2 215
– PVD 233
– VAR1 214, 215
– VAR1C 216, 223
decision problem 212

299

300 Subject Index

deduction
– A-ordering 102
– Chang-Lee- 86
– FR- 283
– – completeness 284
– – soundness 284
– LI- 125
– – unrestricted 169
– linear input 125
– lock 111
– – completeness 113
– LR- 117
– – completeness 123
– NR- 98
– RA- 102
– – completeness 105
– Robinson- 83
– STULI- 199
– SULI- 169
– ULI- 169
difference set 65
DP-
– decision tree 48
– tree 46

environment 8
equivalence
– sat- 15–17
equivalent
– interpretations 8
– logically 10
– sat- 10
expression 60
– length 69
extension 272
– F- 282
– formula 274
– functional 280

F-extension 282
fact 126
factor 75
– l- 117
– lock 110
– nontrivial 75
– S- 82
– selected 226
– standard 84
failure node 35
finitely controllable 212
formula 6
– atom 6
– closed 7

– open 7
– prenex 40
– satisfiable 10
– standard form 7
– sub 7
– valid 10
function symbol 5

G-instance 75
generality 61
Gilmore 41
– method of 41
goal 126
GR-deduction 54
– completeness 55
ground
– projection 260
ground instance 24

H-interpretation 25
– atom representation 139
– corresponding 27
H-model
– least 145
Herbrand
– complexity 253
– interpretation 25
– theorem of 38, 41
– universe 24
heuristics 150
Horn logic 126
hyperresolution 130
– completeness 136
– with replacement 178
hyperresolvent 131

instance 60
interpretation 8
– equivalence 8
– function 8

lifting lemma 79
lifting theorem 79
literal 6
– indexed 109
locking 108
logically isomorphic 256

m.g.u. 62
matrix 40, 215
maximal path 31
merging low 109
model 9
– Herbrand

Subject Index 301

– – least 145
model building 139, 238
– algorithm MB 250

normal form
– clausal 18
– conjunctive 17
– negation 17

one-variable class 215
operator
– A-ordering 103
– clause ordering 96
– clause reduction 96
– hyperresolution 132
– lock 111
– N-resolution 98
– replacement- 174
– standard normalization 96
– T 245
– unrestricted resolution 92
– variable
– – standardization 96
ordering
– a posteriori 102
– a priori 102

p-reduct 53
p-resolvent 53
pair
– corresponding 64
– irreducible 64
permutation 61
PR-deduction 54
– soundness 54
Prawitz’s method 266
predicate symbol 5
prefix 40
prenex form 40
projection
– ground 260
– propositional 260
proof search 149
propositional
– projection 260
– renaming 255
– skeleton 255

quantifiers 5

R-deduction 76
– more general 77
refinement 90
– A-ordering 102

– – completeness 105
– – with subsumption 165
– B- 196
– complete 90
– forward subsumption- 163
– hyperresolution 132
– – completeness 136
– linear 117
– – completeness 123
– lock 111
– – completeness 113
– model-based 141
– operator 92
– – complete 93
– semantic 142
– semantic clash 142
– – completeness 144
refutation
– -sequence 174
relation
– strictly stronger 161
– stronger 161
renaming 61
replacement 172
– completeness of 178
– minimal refutation depth 178
– sequence 174
– – convergent 174
– – divergent 174
resolution
– completeness 80
– deduction 76
– – length 76, 259
– general 75
– propositional 52
– refinement 90
– set of support 116
resolvent 75
– A-ordering 101
– binary 73
– Chang-Lee- 84
– hyper- 131
– lock 110
– LRM- 117
– N- 97
– PRF 130
– propositional 53
– Robinson- 82
– semantic 142
rule 126

S-factor 82
satisfiable 10

302 Subject Index

saturation 223
search 149
– breadth-first 151
– complexity 154, 167, 172
– – ULI-deduction 172
– depth-first 152
semantic clash 142
semantic tree 31
– closed 35
– complete 32
sentence 7
setting 133
sign-renaming 132
signature 6
skeleton 255
Skolem 14
skolemization 14
splitting 285
ST-tree 182
stable 239
Statman’s example 270
subformula 7
– immediate 7
substitution 10
– domain 10
– ground 11, 24, 60
– range 10
– total 262
subsumption 158
– -reduced 162, 173
– algorithm
– – DC 192
– – SSIMP 190
– – ST 182
– backward 162
– forward 162
symbolic length 256

taut-equivalent 40
taut-reduced 48
TAUTEL 196
tautology
– elimination 156, 196
term 5
– depth 6
– dominating 224
– functional 6
– ground 6
– similar 224
theorem
– of Lee 203
transformation
– nonstructural 272
– structural 272
tree
– semantic 31
– ST- 182

UAL 66
unification 59
– algorithm 66
– complexity 70
– theorem 67
unifier 61
– most general 62
universal closure 8
unlocking 113

V-resolution 269
valid 10
variable 5
– assignment 8
– depth 100
– standardization 96

