
Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

http://cl-informatik.uibk.ac.at

Organisation

Organisation

GM (Institute of Computer Science @ UIBK) Automated Reasoning 2/1

Organisation

Time and Place

Computational Logic Wednesday, 13:15–15:00 3W03
Automated Theorem Proving Wednesday, 15:15–17:00 3W03
exercise class Wednesday, 17:15–18:00 3W03

Schedule

week 1 October 2 week 8 November 27
week 2 October 9 week 9 December 4
week 3 October 16 week 10 December 11
week 4 October 23 week 11 January 8
week 5 no lecture week 12 January 15
week 6 November 13 week 13 January 22
week 7 November 20 first exam January 29

Office Hours

Thursday, 9:00–11:00, 3M09, IfI Building

GM (Institute of Computer Science @ UIBK) Automated Reasoning 3/1

Organisation

Time and Place

Computational Logic Wednesday, 13:15–15:00 3W03
Automated Theorem Proving Wednesday, 15:15–17:00 3W03
exercise class Wednesday, 17:15–18:00 3W03

Schedule

week 1 October 2 week 8 November 27
week 2 October 9 week 9 December 4
week 3 October 16 week 10 December 11
week 4 October 23 week 11 January 8
week 5 November 6 week 12 January 15
week 6 November 13 week 13 January 22
week 7 November 20 first exam January 29

Office Hours

Thursday, 9:00–11:00, 3M09, IfI Building

GM (Institute of Computer Science @ UIBK) Automated Reasoning 3/1

Organisation

Time and Place

Computational Logic Wednesday, 13:15–15:00 3W03
Automated Theorem Proving Wednesday, 15:15–17:00 3W03
exercise class Wednesday, 17:15–18:00 3W03

Schedule

week 1 October 2 week 8 November 27
week 2 October 9 week 9 December 4
week 3 October 16 week 10 December 11
week 4 October 23 week 11 January 8
week 5 no lecture week 12 January 15
week 6 November 13 week 13 January 22
week 7 November 20 first exam January 29

Office Hours

Thursday, 9:00–11:00, 3M09, IfI Building

GM (Institute of Computer Science @ UIBK) Automated Reasoning 3/1

Organisation

Time and Place

Computational Logic Wednesday, 13:15–15:00 3W03
Automated Theorem Proving Wednesday, 15:15–17:00 3W03
exercise class Wednesday, 17:15–18:00 3W03

Schedule

week 1 October 2 week 8 November 27
week 2 October 9 week 9 December 4
week 3 October 16 week 10 December 11
week 4 October 23 week 11 January 8
week 5 no lecture week 12 January 15
week 6 November 13 week 13 January 22
week 7 November 20 first exam January 29

Office Hours

Thursday, 9:00–11:00, 3M09, IfI Building

GM (Institute of Computer Science @ UIBK) Automated Reasoning 3/1

Organisation

Outline of the Module

Advanced Topics in Logic

for example

• compactness

• model existence theorem

• Herbrand’s Theorem

• Curry-Howard Isomorphism

Automated Reasoning

for example

• tableau provers

• redundancy and deletion

• superposition

• Robbins problem

GM (Institute of Computer Science @ UIBK) Automated Reasoning 4/1

Organisation

Outline of the Module

Advanced Topics in Logic

for example

• compactness

• model existence theorem

• Herbrand’s Theorem

• Curry-Howard Isomorphism

Automated Reasoning

for example

• tableau provers

• redundancy and deletion

• superposition

• Robbins problem

GM (Institute of Computer Science @ UIBK) Automated Reasoning 4/1

Organisation

Outline of the Lecture “Computational Logic”

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model
existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 5/1

Organisation

Outline of the Lecture “Automated Theorem Proving”

Early Approaches in Automated Reasoning

short recollection of Herbrand’s theorem, Gilmore’s prover, method of
Davis and Putnam

Starting Points

resolution, tableau provers, structural Skolemisation, redundancy and dele-
tion

Automated Reasoning with Equality

ordered resolution, paramodulation, ordered completion and proof orders,
superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem, resolu-
tion and paramodulation as decision procedure, . . .

GM (Institute of Computer Science @ UIBK) Automated Reasoning 6/1

Organisation

Literature

• lecture notes
(2nd edition)

Universität Innsbruck Academic Year 2013/14

Lecture Notes

Module Automated Reasoning

Notes for the Lectures in 2013/2014

Georg Moser

Winter 2013

c© G. Moser 2nd edition

Additional Reading

• G.S. Boolos, J.P. Burgess, and R.C. Jeffrey
Computability and Logic
Cambridge University Press, 2007

• H.-D. Ebbinghaus, J. Flum, and W. Thomas
Einführung in die mathematische Logik
Spektrum Akademischer Verlag, 2007

• A. Leitsch
The Resolution Calculus
Springer-Verlag, 2007

• papers, distributed during the course

GM (Institute of Computer Science @ UIBK) Automated Reasoning 7/1

http://cl-informatik.uibk.ac.at/teaching/ws13/cl/

Organisation

Literature

• lecture notes
(2nd edition)

Universität Innsbruck Academic Year 2013/14

Lecture Notes

Module Automated Reasoning

Notes for the Lectures in 2013/2014

Georg Moser

Winter 2013

c© G. Moser 2nd edition

Additional Reading

• G.S. Boolos, J.P. Burgess, and R.C. Jeffrey
Computability and Logic
Cambridge University Press, 2007

• H.-D. Ebbinghaus, J. Flum, and W. Thomas
Einführung in die mathematische Logik
Spektrum Akademischer Verlag, 2007

• A. Leitsch
The Resolution Calculus
Springer-Verlag, 2007

• papers, distributed during the course

GM (Institute of Computer Science @ UIBK) Automated Reasoning 7/1

http://cl-informatik.uibk.ac.at/teaching/ws13/cl/

Organisation (cont’d)

Time and Place (cont’d)

Computational Logic Wednesday, 13:15–15:00 3W03
Automated Theorem Proving Wednesday, 15:15–17:00 3W03
exercise class Wednesday, 17:15–18:00 3W03

Automated Reasoning Block

block Wednesday, 13:15–18:00 3W03

Comments

• officially there are two lectures and one exercise group

• this is nonsense, as the course on theorem proving is based on the
course on logic

• suggestion: we start with logic, if we are finished, we continue with
theorem proving

• typical scheduling of the block: lecture, exercises, lecture

GM (Institute of Computer Science @ UIBK) Automated Reasoning 8/1

Organisation (cont’d)

Time and Place (cont’d)

Computational Logic Wednesday, 13:15–15:00 3W03
Automated Theorem Proving Wednesday, 15:15–17:00 3W03
exercise class Wednesday, 17:15–18:00 3W03

Automated Reasoning Block

block Wednesday, 13:15–18:00 3W03

Comments

• officially there are two lectures and one exercise group

• this is nonsense, as the course on theorem proving is based on the
course on logic

• suggestion: we start with logic, if we are finished, we continue with
theorem proving

• typical scheduling of the block: lecture, exercises, lecture

GM (Institute of Computer Science @ UIBK) Automated Reasoning 8/1

Organisation (cont’d)

Time and Place (cont’d)

Computational Logic Wednesday, 13:15–15:00 3W03
Automated Theorem Proving Wednesday, 15:15–17:00 3W03
exercise class Wednesday, 17:15–18:00 3W03

Automated Reasoning Block

block Wednesday, 13:15–18:00 3W03

Comments

• officially there are two lectures and one exercise group

• this is nonsense, as the course on theorem proving is based on the
course on logic

• suggestion: we start with logic, if we are finished, we continue with
theorem proving

• typical scheduling of the block: lecture, exercises, lecture

GM (Institute of Computer Science @ UIBK) Automated Reasoning 8/1

Introduction

Introduction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 9/1

Introduction

What is Logic?

Argument À

1 a mother or father of a person is an ancestor of that person

2 an ancestor of an ancestor of a person is an ancestor of a person

3 Sarah is the mother of Isaac, Isaac is the father of Jacob

4 Thus, Sarah is an ancestor of Jacob

Argument Á

1 a square or cube of a number is a power of that number

2 a power of a power of a number is a power of that number

3 64 is the cube of 4, four is the square of 2

4 Thus, 64 is a power of 2

logic tells us that argument À = argument Á

GM (Institute of Computer Science @ UIBK) Automated Reasoning 10/1

Introduction

What is Logic?

Argument À

1 a mother or father of a person is an ancestor of that person

2 an ancestor of an ancestor of a person is an ancestor of a person

3 Sarah is the mother of Isaac, Isaac is the father of Jacob

4 Thus, Sarah is an ancestor of Jacob

Argument Á

1 a square or cube of a number is a power of that number

2 a power of a power of a number is a power of that number

3 64 is the cube of 4, four is the square of 2

4 Thus, 64 is a power of 2

logic tells us that argument À = argument Á

GM (Institute of Computer Science @ UIBK) Automated Reasoning 10/1

Introduction

What is Logic?

Argument À

1 a mother or father of a person is an ancestor of that person

2 an ancestor of an ancestor of a person is an ancestor of a person

3 Sarah is the mother of Isaac, Isaac is the father of Jacob

4 Thus, Sarah is an ancestor of Jacob

Argument Á

1 a square or cube of a number is a power of that number

2 a power of a power of a number is a power of that number

3 64 is the cube of 4, four is the square of 2

4 Thus, 64 is a power of 2

logic tells us that argument À = argument Á

GM (Institute of Computer Science @ UIBK) Automated Reasoning 10/1

Introduction

Why Do You Need Logic?

Recall

(for example) the equivalence of programs is undecidable

Proof.

reduction from the undecidability of the Entscheidungsproblem (Alonzo
Church)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 11/1

Introduction

Why Do You Need Logic?

Recall

(for example) the equivalence of programs is undecidable

Proof.

reduction from the undecidability of the Entscheidungsproblem (Alonzo
Church)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 11/1

Introduction

Why Do You Need Logic?

Recall

(for example) the equivalence of programs is undecidable

Proof.

reduction from the undecidability of the Entscheidungsproblem (Alonzo
Church)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 11/1

Introduction

Another Picture

SAT technology

• a Minesweeper solver can be coded by using a SAT solver

• verifying the correctness of a given Minesweeper configuration is an
NP-complete problem

GM (Institute of Computer Science @ UIBK) Automated Reasoning 12/1

Introduction

Another Picture

SAT technology

• a Minesweeper solver can be coded by using a SAT solver

• verifying the correctness of a given Minesweeper configuration is an
NP-complete problem

GM (Institute of Computer Science @ UIBK) Automated Reasoning 12/1

Introduction

A More Serious Answer

Application À: Program Analysis

• abstract interpretations represent the behaviour of programs

• logical products of interpretations allows the automated combination
of simple interpreters

• based on Nelson-Oppen methodology

Application Á: Databases

• datalog is a declarative language and syntactically it is a subset of
Prolog; used in knowledge representation systems

• disjunctive datalog is an extension of datalog that allows
disjunctions in heads of rules

• disjunctive datalog is a strict extension of SQL

• (disjunctive) datalog forms the basis of semantic web applications
and has connections to description logics and ontologies

GM (Institute of Computer Science @ UIBK) Automated Reasoning 13/1

Introduction

A More Serious Answer

Application À: Program Analysis

• abstract interpretations represent the behaviour of programs

• logical products of interpretations allows the automated combination
of simple interpreters

• based on Nelson-Oppen methodology

Application Á: Databases

• datalog is a declarative language and syntactically it is a subset of
Prolog; used in knowledge representation systems

• disjunctive datalog is an extension of datalog that allows
disjunctions in heads of rules

• disjunctive datalog is a strict extension of SQL

• (disjunctive) datalog forms the basis of semantic web applications
and has connections to description logics and ontologies

GM (Institute of Computer Science @ UIBK) Automated Reasoning 13/1

Introduction

(Disjunctive) Datalog

• datalog is a subset of Horn logic; hence minimal model of any
datalog program is unique

• datalog rules can be translated into inclusions in relational databases

• datalog extends positive relational algebras

• disjunctive datalog extends datalog, but remains decidable

• disjunctive datalog can be extended with negation

Complexity results

• expression complexity of datalog is EXPTIME-complete

• expression complexity for disjunctive datalog (with ¬) is
NEXPTIMENP-complete

• problems complete for NEXPTIMENP can (only) be solved on an
NTM with NP-oracle running in exponential time

GM (Institute of Computer Science @ UIBK) Automated Reasoning 14/1

Introduction

(Disjunctive) Datalog

• datalog is a subset of Horn logic; hence minimal model of any
datalog program is unique

• datalog rules can be translated into inclusions in relational databases

• datalog extends positive relational algebras

• disjunctive datalog extends datalog, but remains decidable

• disjunctive datalog can be extended with negation

Complexity results

• expression complexity of datalog is EXPTIME-complete

• expression complexity for disjunctive datalog (with ¬) is
NEXPTIMENP-complete

• problems complete for NEXPTIMENP can (only) be solved on an
NTM with NP-oracle running in exponential time

GM (Institute of Computer Science @ UIBK) Automated Reasoning 14/1

Introduction

(Disjunctive) Datalog

• datalog is a subset of Horn logic; hence minimal model of any
datalog program is unique

• datalog rules can be translated into inclusions in relational databases

• datalog extends positive relational algebras

• disjunctive datalog extends datalog, but remains decidable

• disjunctive datalog can be extended with negation

Complexity results

• expression complexity of datalog is EXPTIME-complete

• expression complexity for disjunctive datalog (with ¬) is
NEXPTIMENP-complete

• problems complete for NEXPTIMENP can (only) be solved on an
NTM with NP-oracle running in exponential time

GM (Institute of Computer Science @ UIBK) Automated Reasoning 14/1

Introduction

(Disjunctive) Datalog

• datalog is a subset of Horn logic; hence minimal model of any
datalog program is unique

• datalog rules can be translated into inclusions in relational databases

• datalog extends positive relational algebras

• disjunctive datalog extends datalog, but remains decidable

• disjunctive datalog can be extended with negation

Complexity results

• expression complexity of datalog is EXPTIME-complete

• expression complexity for disjunctive datalog (with ¬) is
NEXPTIMENP-complete

• problems complete for NEXPTIMENP can (only) be solved on an
NTM with NP-oracle running in exponential time

GM (Institute of Computer Science @ UIBK) Automated Reasoning 14/1

Introduction

(Disjunctive) Datalog

• datalog is a subset of Horn logic; hence minimal model of any
datalog program is unique

• datalog rules can be translated into inclusions in relational databases

• datalog extends positive relational algebras

• disjunctive datalog extends datalog, but remains decidable

• disjunctive datalog can be extended with negation

Complexity results

• expression complexity of datalog is EXPTIME-complete

• expression complexity for disjunctive datalog (with ¬) is
NEXPTIMENP-complete

• problems complete for NEXPTIMENP can (only) be solved on an
NTM with NP-oracle running in exponential time

GM (Institute of Computer Science @ UIBK) Automated Reasoning 14/1

Introduction

(Disjunctive) Datalog

• datalog is a subset of Horn logic; hence minimal model of any
datalog program is unique

• datalog rules can be translated into inclusions in relational databases

• datalog extends positive relational algebras

• disjunctive datalog extends datalog, but remains decidable

• disjunctive datalog can be extended with negation

Complexity results

• expression complexity of datalog is EXPTIME-complete

• expression complexity for disjunctive datalog (with ¬) is
NEXPTIMENP-complete

• problems complete for NEXPTIMENP can (only) be solved on an
NTM with NP-oracle running in exponential time

GM (Institute of Computer Science @ UIBK) Automated Reasoning 14/1

Introduction

(Disjunctive) Datalog

• datalog is a subset of Horn logic; hence minimal model of any
datalog program is unique

• datalog rules can be translated into inclusions in relational databases

• datalog extends positive relational algebras

• disjunctive datalog extends datalog, but remains decidable

• disjunctive datalog can be extended with negation

Complexity results

• expression complexity of datalog is EXPTIME-complete

• expression complexity for disjunctive datalog (with ¬) is
NEXPTIMENP-complete

• problems complete for NEXPTIMENP can (only) be solved on an
NTM with NP-oracle running in exponential time

GM (Institute of Computer Science @ UIBK) Automated Reasoning 14/1

Introduction

(Disjunctive) Datalog

• datalog is a subset of Horn logic; hence minimal model of any
datalog program is unique

• datalog rules can be translated into inclusions in relational databases

• datalog extends positive relational algebras

• disjunctive datalog extends datalog, but remains decidable

• disjunctive datalog can be extended with negation

Complexity results

• expression complexity of datalog is EXPTIME-complete

• expression complexity for disjunctive datalog (with ¬) is
NEXPTIMENP-complete

• problems complete for NEXPTIMENP can (only) be solved on an
NTM with NP-oracle running in exponential time

GM (Institute of Computer Science @ UIBK) Automated Reasoning 14/1

Introduction

Application Â: Types as Formulas

• the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

• intuitionistic logic is a (sort of) constructive restriction of classical
logic

• this correspondence is called Curry-Howard isomorphism

• the Curry-Howard correspondence can be extended to richer
programming languages (and logics)

Application Ã: Complexity Theory

• NP is the class of problems decidable by a NTM that runs in
polynomial time

• this characterisation explicitly refers to a bound

• alternatively NP can be characterised as the class of existential
second-order sentence

• completeness for NP of SAT becomes trivial

GM (Institute of Computer Science @ UIBK) Automated Reasoning 15/1

Introduction

Application Â: Types as Formulas

• the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

• intuitionistic logic is a (sort of) constructive restriction of classical
logic

• this correspondence is called Curry-Howard isomorphism

• the Curry-Howard correspondence can be extended to richer
programming languages (and logics)

Application Ã: Complexity Theory

• NP is the class of problems decidable by a NTM that runs in
polynomial time

• this characterisation explicitly refers to a bound

• alternatively NP can be characterised as the class of existential
second-order sentence

• completeness for NP of SAT becomes trivial

GM (Institute of Computer Science @ UIBK) Automated Reasoning 15/1

Introduction

Application Â: Types as Formulas

• the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

• intuitionistic logic is a (sort of) constructive restriction of classical
logic

• this correspondence is called Curry-Howard isomorphism

• the Curry-Howard correspondence can be extended to richer
programming languages (and logics)

Application Ã: Complexity Theory

• NP is the class of problems decidable by a NTM that runs in
polynomial time

• this characterisation explicitly refers to a bound

• alternatively NP can be characterised as the class of existential
second-order sentence

• completeness for NP of SAT becomes trivial

GM (Institute of Computer Science @ UIBK) Automated Reasoning 15/1

Introduction

Application Â: Types as Formulas

• the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

• intuitionistic logic is a (sort of) constructive restriction of classical
logic

• this correspondence is called Curry-Howard isomorphism

• the Curry-Howard correspondence can be extended to richer
programming languages (and logics)

Application Ã: Complexity Theory

• NP is the class of problems decidable by a NTM that runs in
polynomial time

• this characterisation explicitly refers to a bound

• alternatively NP can be characterised as the class of existential
second-order sentence

• completeness for NP of SAT becomes trivial

GM (Institute of Computer Science @ UIBK) Automated Reasoning 15/1

Introduction

Application Â: Types as Formulas

• the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

• intuitionistic logic is a (sort of) constructive restriction of classical
logic

• this correspondence is called Curry-Howard isomorphism

• the Curry-Howard correspondence can be extended to richer
programming languages (and logics)

Application Ã: Complexity Theory

• NP is the class of problems decidable by a NTM that runs in
polynomial time

• this characterisation explicitly refers to a bound

• alternatively NP can be characterised as the class of existential
second-order sentence

• completeness for NP of SAT becomes trivial

GM (Institute of Computer Science @ UIBK) Automated Reasoning 15/1

Introduction

Application Â: Types as Formulas

• the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

• intuitionistic logic is a (sort of) constructive restriction of classical
logic

• this correspondence is called Curry-Howard isomorphism

• the Curry-Howard correspondence can be extended to richer
programming languages (and logics)

Application Ã: Complexity Theory

• NP is the class of problems decidable by a NTM that runs in
polynomial time

• this characterisation explicitly refers to a bound

• alternatively NP can be characterised as the class of existential
second-order sentence

• completeness for NP of SAT becomes trivial

GM (Institute of Computer Science @ UIBK) Automated Reasoning 15/1

Introduction

Application Â: Types as Formulas

• the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

• intuitionistic logic is a (sort of) constructive restriction of classical
logic

• this correspondence is called Curry-Howard isomorphism

• the Curry-Howard correspondence can be extended to richer
programming languages (and logics)

Application Ã: Complexity Theory

• NP is the class of problems decidable by a NTM that runs in
polynomial time

• this characterisation explicitly refers to a bound

• alternatively NP can be characterised as the class of existential
second-order sentence

• completeness for NP of SAT becomes trivial

GM (Institute of Computer Science @ UIBK) Automated Reasoning 15/1

Introduction

Application Â: Types as Formulas

• the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

• intuitionistic logic is a (sort of) constructive restriction of classical
logic

• this correspondence is called Curry-Howard isomorphism

• the Curry-Howard correspondence can be extended to richer
programming languages (and logics)

Application Ã: Complexity Theory

• NP is the class of problems decidable by a NTM that runs in
polynomial time

• this characterisation explicitly refers to a bound

• alternatively NP can be characterised as the class of existential
second-order sentence

• completeness for NP of SAT becomes trivial

GM (Institute of Computer Science @ UIBK) Automated Reasoning 15/1

Introduction

Application Â: Types as Formulas

• the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

• intuitionistic logic is a (sort of) constructive restriction of classical
logic

• this correspondence is called Curry-Howard isomorphism

• the Curry-Howard correspondence can be extended to richer
programming languages (and logics)

Application Ã: Complexity Theory

• NP is the class of problems decidable by a NTM that runs in
polynomial time

• this characterisation explicitly refers to a bound

• alternatively NP can be characterised as the class of existential
second-order sentence

• completeness for NP of SAT becomes trivial
GM (Institute of Computer Science @ UIBK) Automated Reasoning 15/1

Quiz

A Quiz

GM (Institute of Computer Science @ UIBK) Automated Reasoning 16/1

Quiz

Questions

• what is the truth value of the following propositional formula

(p → ¬q)→ (¬q → ¬p)

• give an informal explanation of the following two first-order formulas

∀x∃yA(x , y) ∃y∀x(x < y)

• consider Skolemisation, is the following formula the Skolem normal
form of ∀x∃yA(x , y)?

∀x∀yA(x , f (x))

• do the following equivalences hold (and how to verify this)?

∀x∀yA(x , f (x)) ≈ ∀x∃yA(x , y) ≈ ∃x∀yA(x , y)

• can we express the following statement about a given graph G in
first-order logic?

let s and t be nodes in G, then there exists a path of
length at most 3 from s to t

GM (Institute of Computer Science @ UIBK) Automated Reasoning 17/1

Quiz

Questions

• what is the truth value of the following propositional formula

(p → ¬q)→ (¬q → ¬p)

• give an informal explanation of the following two first-order formulas

∀x∃yA(x , y) ∃y∀x(x < y)

• consider Skolemisation, is the following formula the Skolem normal
form of ∀x∃yA(x , y)?

∀x∀yA(x , f (x))

• do the following equivalences hold (and how to verify this)?

∀x∀yA(x , f (x)) ≈ ∀x∃yA(x , y) ≈ ∃x∀yA(x , y)

• can we express the following statement about a given graph G in
first-order logic?

let s and t be nodes in G, then there exists a path of
length at most 3 from s to t

GM (Institute of Computer Science @ UIBK) Automated Reasoning 17/1

Quiz

Questions

• what is the truth value of the following propositional formula

(p → ¬q)→ (¬q → ¬p)

• give an informal explanation of the following two first-order formulas

∀x∃yA(x , y) ∃y∀x(x < y)

• consider Skolemisation, is the following formula the Skolem normal
form of ∀x∃yA(x , y)?

∀x∀yA(x , f (x))

• do the following equivalences hold (and how to verify this)?

∀x∀yA(x , f (x)) ≈ ∀x∃yA(x , y) ≈ ∃x∀yA(x , y)

• can we express the following statement about a given graph G in
first-order logic?

let s and t be nodes in G, then there exists a path of
length at most 3 from s to t

GM (Institute of Computer Science @ UIBK) Automated Reasoning 17/1

Quiz

Questions

• what is the truth value of the following propositional formula

(p → ¬q)→ (¬q → ¬p)

• give an informal explanation of the following two first-order formulas

∀x∃yA(x , y) ∃y∀x(x < y)

• consider Skolemisation, is the following formula the Skolem normal
form of ∀x∃yA(x , y)?

∀x∀yA(x , f (x))

• do the following equivalences hold (and how to verify this)?

∀x∀yA(x , f (x)) ≈ ∀x∃yA(x , y) ≈ ∃x∀yA(x , y)

• can we express the following statement about a given graph G in
first-order logic?

let s and t be nodes in G, then there exists a path of
length at most 3 from s to t

GM (Institute of Computer Science @ UIBK) Automated Reasoning 17/1

Quiz

Questions

• what is the truth value of the following propositional formula

(p → ¬q)→ (¬q → ¬p)

• give an informal explanation of the following two first-order formulas

∀x∃yA(x , y) ∃y∀x(x < y)

• consider Skolemisation, is the following formula the Skolem normal
form of ∀x∃yA(x , y)?

∀x∀yA(x , f (x))

• do the following equivalences hold (and how to verify this)?

∀x∀yA(x , f (x)) ≈ ∀x∃yA(x , y) ≈ ∃x∀yA(x , y)

• can we express the following statement about a given graph G in
first-order logic?

let s and t be nodes in G, then there exists a path of
length at most 3 from s to t

GM (Institute of Computer Science @ UIBK) Automated Reasoning 17/1

Quiz

BoolTool

• BoolTool is a web-interfaced based tool for manipulation and
transformation of formulas in propositional logic

• available at http://cl-informatik.uibk.ac.at/software/booltool/

GM (Institute of Computer Science @ UIBK) Automated Reasoning 18/1

http://cl-informatik.uibk.ac.at/software/booltool/

Propositional Logic

Propositional Logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 19/1

Propositional Logic

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model
existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 20/1

Propositional Logic

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model
existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 20/1

The Language of Propositional Logic

let p1, p2, . . . , pj , . . . denote an infinite set of propositional atoms,
denoted by p, q, r ; the set of atoms is denoted by AT; >, ⊥ are truth
constants

Definition

the propositional connectives are

¬ ∧ ∨ →

Definition

(propositional) formulas are defined as follows

• a propositional atom p and a truth constant is a formula

• if A, B are formulas, then

¬A (A ∧ B) (A ∨ B) (A→ B)

are formulas

we use precedence: ¬ > ∨,∧ > →; right-associativity of →

GM (Institute of Computer Science @ UIBK) Automated Reasoning 21/1

The Language of Propositional Logic

let p1, p2, . . . , pj , . . . denote an infinite set of propositional atoms,
denoted by p, q, r ; the set of atoms is denoted by AT; >, ⊥ are truth
constants

Definition

the propositional connectives are

¬ ∧ ∨ →

Definition

(propositional) formulas are defined as follows

• a propositional atom p and a truth constant is a formula

• if A, B are formulas, then

¬A (A ∧ B) (A ∨ B) (A→ B)

are formulas

we use precedence: ¬ > ∨,∧ > →; right-associativity of →

GM (Institute of Computer Science @ UIBK) Automated Reasoning 21/1

The Language of Propositional Logic

let p1, p2, . . . , pj , . . . denote an infinite set of propositional atoms,
denoted by p, q, r ; the set of atoms is denoted by AT; >, ⊥ are truth
constants

Definition

the propositional connectives are

¬ ∧ ∨ →

Definition

(propositional) formulas are defined as follows

• a propositional atom p and a truth constant is a formula

• if A, B are formulas, then

¬A (A ∧ B) (A ∨ B) (A→ B)

are formulas

we use precedence: ¬ > ∨,∧ > →; right-associativity of →

GM (Institute of Computer Science @ UIBK) Automated Reasoning 21/1

The Language of Propositional Logic

let p1, p2, . . . , pj , . . . denote an infinite set of propositional atoms,
denoted by p, q, r ; the set of atoms is denoted by AT; >, ⊥ are truth
constants

Definition

the propositional connectives are

¬ ∧ ∨ →

Definition

(propositional) formulas are defined as follows

• a propositional atom p and a truth constant is a formula

• if A, B are formulas, then

¬A (A ∧ B) (A ∨ B) (A→ B)

are formulas

we use precedence: ¬ > ∨,∧ > →; right-associativity of →
GM (Institute of Computer Science @ UIBK) Automated Reasoning 21/1

Semantics

The Semantics of Propositional Logic

Example

the following expression A is a formula

(p → ¬q)→ (¬q → ¬p)

Definition
• we write T, F for the two truth values

• an assignment v : AT→ {T,F} maps atoms to truth values

• we write v(A) for valuation of A, the extension of the assignment to

formulas �

Definition

the consequence relation |= asserts that v(B) = T, whenever v(A1), . . . ,
v(An) is true for any assignment v , denoted as A1, . . . ,An |= B

GM (Institute of Computer Science @ UIBK) Automated Reasoning 22/1

Semantics

The Semantics of Propositional Logic

Example

the following expression A is a formula

(p → ¬q)→ (¬q → ¬p)

Definition
• we write T, F for the two truth values

• an assignment v : AT→ {T,F} maps atoms to truth values

• we write v(A) for valuation of A, the extension of the assignment to

formulas �

Definition

the consequence relation |= asserts that v(B) = T, whenever v(A1), . . . ,
v(An) is true for any assignment v , denoted as A1, . . . ,An |= B

GM (Institute of Computer Science @ UIBK) Automated Reasoning 22/1

Semantics

The Semantics of Propositional Logic

Example

the following expression A is a formula

(p → ¬q)→ (¬q → ¬p)

Definition
• we write T, F for the two truth values

• an assignment v : AT→ {T,F} maps atoms to truth values

• we write v(A) for valuation of A, the extension of the assignment to

formulas �

Definition

the consequence relation |= asserts that v(B) = T, whenever v(A1), . . . ,
v(An) is true for any assignment v , denoted as A1, . . . ,An |= B

GM (Institute of Computer Science @ UIBK) Automated Reasoning 22/1

Semantics

Definition

we write |= A, instead of ∅ |= A and call A a tautology or valid

Example

let v(p) = T, v(q) = F, then

v(A) = v((p → ¬q)→ (¬q → ¬p)) = F

Definition

• the provability relation ` asserts that B is derived from A1, . . . , An

in a formal calculus for propositional logic

• (propositional) natural deduction is an example of such a calculus

• we write A1, . . . ,An ` B, if B is derivable from A1, . . . ,An

• we write ` B instead of ∅ ` B

• B is called provable, if ` B holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 23/1

Semantics

Definition

we write |= A, instead of ∅ |= A and call A a tautology or valid

Example

let v(p) = T, v(q) = F, then

v(A) = v((p → ¬q)→ (¬q → ¬p)) = F

Definition

• the provability relation ` asserts that B is derived from A1, . . . , An

in a formal calculus for propositional logic

• (propositional) natural deduction is an example of such a calculus

• we write A1, . . . ,An ` B, if B is derivable from A1, . . . ,An

• we write ` B instead of ∅ ` B

• B is called provable, if ` B holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 23/1

Semantics

Definition

we write |= A, instead of ∅ |= A and call A a tautology or valid

Example

let v(p) = T, v(q) = F, then

v(A) = v((p → ¬q)→ (¬q → ¬p)) = F

Definition
• the provability relation ` asserts that B is derived from A1, . . . , An

in a formal calculus for propositional logic

• (propositional) natural deduction is an example of such a calculus

• we write A1, . . . ,An ` B, if B is derivable from A1, . . . ,An

• we write ` B instead of ∅ ` B

• B is called provable, if ` B holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 23/1

Semantics

Definition

we write |= A, instead of ∅ |= A and call A a tautology or valid

Example

let v(p) = T, v(q) = F, then

v(A) = v((p → ¬q)→ (¬q → ¬p)) = F

Definition
• the provability relation ` asserts that B is derived from A1, . . . , An

in a formal calculus for propositional logic

• (propositional) natural deduction is an example of such a calculus

• we write A1, . . . ,An ` B, if B is derivable from A1, . . . ,An

• we write ` B instead of ∅ ` B

• B is called provable, if ` B holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 23/1

Semantics

Definition

we write |= A, instead of ∅ |= A and call A a tautology or valid

Example

let v(p) = T, v(q) = F, then

v(A) = v((p → ¬q)→ (¬q → ¬p)) = F

Definition
• the provability relation ` asserts that B is derived from A1, . . . , An

in a formal calculus for propositional logic

• (propositional) natural deduction is an example of such a calculus

• we write A1, . . . ,An ` B, if B is derivable from A1, . . . ,An

• we write ` B instead of ∅ ` B

• B is called provable, if ` B holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 23/1

Semantics

Definition

we write |= A, instead of ∅ |= A and call A a tautology or valid

Example

let v(p) = T, v(q) = F, then

v(A) = v((p → ¬q)→ (¬q → ¬p)) = F

Definition
• the provability relation ` asserts that B is derived from A1, . . . , An

in a formal calculus for propositional logic

• (propositional) natural deduction is an example of such a calculus

• we write A1, . . . ,An ` B, if B is derivable from A1, . . . ,An

• we write ` B instead of ∅ ` B

• B is called provable, if ` B holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 23/1

Semantics

Definition

we write |= A, instead of ∅ |= A and call A a tautology or valid

Example

let v(p) = T, v(q) = F, then

v(A) = v((p → ¬q)→ (¬q → ¬p)) = F

Definition
• the provability relation ` asserts that B is derived from A1, . . . , An

in a formal calculus for propositional logic

• (propositional) natural deduction is an example of such a calculus

• we write A1, . . . ,An ` B, if B is derivable from A1, . . . ,An

• we write ` B instead of ∅ ` B

• B is called provable, if ` B holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 23/1

Semantics

Why Syntax & Semantics?

Question À

why is it not enough to know when a formula is true, why do we need a
“formal calculus”?

Question Á

what is the connection here:

A1, . . . ,An ` B

⇐⇒

A1, . . . ,An |= B

Answer

1 historically the proof systems were first

2 study of proof systems led to efficient SAT techniques

3 in designing new logics for applications one starts with the rules,
typically the semantics comes later

GM (Institute of Computer Science @ UIBK) Automated Reasoning 24/1

Semantics

Why Syntax & Semantics?

Question À

why is it not enough to know when a formula is true, why do we need a
“formal calculus”?

Question Á

what is the connection here:

A1, . . . ,An ` B

⇐⇒

A1, . . . ,An |= B

Answer

1 historically the proof systems were first

2 study of proof systems led to efficient SAT techniques

3 in designing new logics for applications one starts with the rules,
typically the semantics comes later

GM (Institute of Computer Science @ UIBK) Automated Reasoning 24/1

Semantics

Why Syntax & Semantics?

Question À

why is it not enough to know when a formula is true, why do we need a
“formal calculus”?

Question Á

what is the connection here:

A1, . . . ,An ` B ⇐⇒ A1, . . . ,An |= B

Answer

1 historically the proof systems were first

2 study of proof systems led to efficient SAT techniques

3 in designing new logics for applications one starts with the rules,
typically the semantics comes later

GM (Institute of Computer Science @ UIBK) Automated Reasoning 24/1

Semantics

Why Syntax & Semantics?

Question À

why is it not enough to know when a formula is true, why do we need a
“formal calculus”?

Question Á

what is the connection here:

A1, . . . ,An ` B ⇐⇒ A1, . . . ,An |= B

Answer

1 historically the proof systems were first

2 study of proof systems led to efficient SAT techniques

3 in designing new logics for applications one starts with the rules,
typically the semantics comes later

GM (Institute of Computer Science @ UIBK) Automated Reasoning 24/1

Semantics

Why Syntax & Semantics?

Question À

why is it not enough to know when a formula is true, why do we need a
“formal calculus”?

Question Á

what is the connection here:

A1, . . . ,An ` B ⇐⇒ A1, . . . ,An |= B

Answer

1 historically the proof systems were first

2 study of proof systems led to efficient SAT techniques

3 in designing new logics for applications one starts with the rules,
typically the semantics comes later

GM (Institute of Computer Science @ UIBK) Automated Reasoning 24/1

Semantics

Why Syntax & Semantics?

Question À

why is it not enough to know when a formula is true, why do we need a
“formal calculus”?

Question Á

what is the connection here:

A1, . . . ,An ` B ⇐⇒ A1, . . . ,An |= B

Answer

1 historically the proof systems were first

2 study of proof systems led to efficient SAT techniques

3 in designing new logics for applications one starts with the rules,
typically the semantics comes later

GM (Institute of Computer Science @ UIBK) Automated Reasoning 24/1

Soundness & Completeness

Soundness & Completeness

Theorem
• ∃ provability relations ` such that the following holds:

A1, . . . ,An ` B ⇐⇒ A1, . . . ,An |= B

• we say the calculus underlying ` is sound and complete

• we say propositional logic is (finitely) axiomatised by such a (finite)
formal system

Example

natural deduction for propositional logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 25/1

Soundness & Completeness

Soundness & Completeness

Theorem
• ∃ provability relations ` such that the following holds:

A1, . . . ,An ` B ⇐⇒ A1, . . . ,An |= B

• we say the calculus underlying ` is sound and complete

• we say propositional logic is (finitely) axiomatised by such a (finite)
formal system

Example

natural deduction for propositional logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 25/1

Soundness & Completeness

Natural Deduction

introduction elimination

∧ E F
E ∧ F

∧i
E ∧ F

E
∧ : e E ∧ F

F
∧ : e

∨ E
E ∨ F

∨ : i
F

E ∨ F
∨ : i

E ∨ F

E
...
G

F
...
G

G
∨ : e

→

E
...
F

E → F
→ : i

E E → F
F

→ : e

GM (Institute of Computer Science @ UIBK) Automated Reasoning 26/1

Soundness & Completeness

Natural Deduction (cont’d)

introduction elimination

¬

E
...
⊥
¬E

¬ : i
F ¬F
⊥ ¬ : e

⊥ ⊥
F
⊥ : e

¬¬ ¬¬F
F
¬¬ : e

GM (Institute of Computer Science @ UIBK) Automated Reasoning 27/1

Soundness & Completeness

Example

derivation of Pierce’s law ((p → q)→ p)→ p

1 ((p → q)→ p) assumption
2 ¬p assumption
3 p assumption
4 ⊥ 2, ¬ elimination
5 q ⊥ elimination
6 p → q → introduction
7 p 1, → elimination
8 ⊥ 2, ¬ elimination
9 p derived rule

10 ((p → q)→ p)→ p 1, → introduction

Theorem

let A→ B be valid, ∃ C such that A→ C , C → B valid
interpolant C contains only variables that occur in A and B

GM (Institute of Computer Science @ UIBK) Automated Reasoning 28/1

Soundness & Completeness

Example

derivation of Pierce’s law ((p → q)→ p)→ p

1 ((p → q)→ p) assumption
2 ¬p assumption
3 p assumption
4 ⊥ 2, ¬ elimination
5 q ⊥ elimination
6 p → q → introduction
7 p 1, → elimination
8 ⊥ 2, ¬ elimination
9 p derived rule

10 ((p → q)→ p)→ p 1, → introduction

Theorem

let A→ B be valid, ∃ C such that A→ C , C → B valid
interpolant C contains only variables that occur in A and B

GM (Institute of Computer Science @ UIBK) Automated Reasoning 28/1

Propositional Resolution

Propositional Resolution

Definition
• a literal is a propositional atom p or its negation ¬p

• a formula F is in conjunctive normal form (CNF) if F is a
conjunction of disjunctions of literals

formulas A, B are (logically) equivalent (A ≡ B) if A |= B and B |= A

Lemma

∀ formula A ∃ formula B in CNF such that A ≡ B

Definition
a clause is disjunction of literals �

• 2 is a clause

• literals are clauses

• if C , D are clauses, then C ∨ D is a clause

GM (Institute of Computer Science @ UIBK) Automated Reasoning 29/1

Propositional Resolution

Propositional Resolution

Definition
• a literal is a propositional atom p or its negation ¬p

• a formula F is in conjunctive normal form (CNF) if F is a
conjunction of disjunctions of literals

formulas A, B are (logically) equivalent (A ≡ B) if A |= B and B |= A

Lemma

∀ formula A ∃ formula B in CNF such that A ≡ B

Definition
a clause is disjunction of literals �

• 2 is a clause

• literals are clauses

• if C , D are clauses, then C ∨ D is a clause

GM (Institute of Computer Science @ UIBK) Automated Reasoning 29/1

Propositional Resolution

Propositional Resolution

Definition
• a literal is a propositional atom p or its negation ¬p

• a formula F is in conjunctive normal form (CNF) if F is a
conjunction of disjunctions of literals

formulas A, B are (logically) equivalent (A ≡ B) if A |= B and B |= A

Lemma

∀ formula A ∃ formula B in CNF such that A ≡ B

Definition
a clause is disjunction of literals �

• 2 is a clause

• literals are clauses

• if C , D are clauses, then C ∨ D is a clause

GM (Institute of Computer Science @ UIBK) Automated Reasoning 29/1

Propositional Resolution

Propositional Resolution

Definition
• a literal is a propositional atom p or its negation ¬p

• a formula F is in conjunctive normal form (CNF) if F is a
conjunction of disjunctions of literals

formulas A, B are (logically) equivalent (A ≡ B) if A |= B and B |= A

Lemma

∀ formula A ∃ formula B in CNF such that A ≡ B

Definition
a clause is disjunction of literals �

• 2 is a clause

• literals are clauses

• if C , D are clauses, then C ∨ D is a clause

GM (Institute of Computer Science @ UIBK) Automated Reasoning 29/1

Propositional Resolution

Convention

we use: p ≡ ¬¬p, 2 ∨2 ≡ 2, C ∨2 ∨ D ≡ C ∨ D ≡ D ∨ C

Example

¬p, p ∨ q, p ∨ ¬q ∨ r, 2, ¬¬p ∨ q are clauses

; ¬¬p ∨ q ≡ q ∨ p

Definition
resolution factoring

C ∨ p D ∨ ¬p

C ∨ D
C ∨ l ∨ l

C ∨ l l a literal

let C be a set of clauses; define resolution operator Res(C)

• Res(C) = {D | D is resolvent or factor with premises in C}
• Res0(C) = C
• Resn+1(C) := Resn(C) ∪ Res(Resn(C))

• Res∗(C) :=
⋃

n>0 Resn(C)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 30/1

Propositional Resolution

Convention

we use: p ≡ ¬¬p, 2 ∨2 ≡ 2, C ∨2 ∨ D ≡ C ∨ D ≡ D ∨ C

Example

¬p, p ∨ q, p ∨ ¬q ∨ r, 2, ¬¬p ∨ q are clauses

; ¬¬p ∨ q ≡ q ∨ p

Definition
resolution factoring

C ∨ p D ∨ ¬p

C ∨ D
C ∨ l ∨ l

C ∨ l l a literal

let C be a set of clauses; define resolution operator Res(C)

• Res(C) = {D | D is resolvent or factor with premises in C}
• Res0(C) = C
• Resn+1(C) := Resn(C) ∪ Res(Resn(C))

• Res∗(C) :=
⋃

n>0 Resn(C)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 30/1

Propositional Resolution

Convention

we use: p ≡ ¬¬p, 2 ∨2 ≡ 2, C ∨2 ∨ D ≡ C ∨ D ≡ D ∨ C

Example

¬p, p ∨ q, p ∨ ¬q ∨ r, 2, ¬¬p ∨ q are clauses; ¬¬p ∨ q ≡ q ∨ p

Definition
resolution factoring

C ∨ p D ∨ ¬p

C ∨ D
C ∨ l ∨ l

C ∨ l l a literal

let C be a set of clauses; define resolution operator Res(C)

• Res(C) = {D | D is resolvent or factor with premises in C}
• Res0(C) = C
• Resn+1(C) := Resn(C) ∪ Res(Resn(C))

• Res∗(C) :=
⋃

n>0 Resn(C)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 30/1

Propositional Resolution

Convention

we use: p ≡ ¬¬p, 2 ∨2 ≡ 2, C ∨2 ∨ D ≡ C ∨ D ≡ D ∨ C

Example

¬p, p ∨ q, p ∨ ¬q ∨ r, 2, ¬¬p ∨ q are clauses; ¬¬p ∨ q ≡ q ∨ p

Definition
resolution factoring

C ∨ p D ∨ ¬p

C ∨ D
C ∨ l ∨ l

C ∨ l l a literal

let C be a set of clauses; define resolution operator Res(C)

• Res(C) = {D | D is resolvent or factor with premises in C}
• Res0(C) = C
• Resn+1(C) := Resn(C) ∪ Res(Resn(C))

• Res∗(C) :=
⋃

n>0 Resn(C)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 30/1

Propositional Resolution

Convention

we use: p ≡ ¬¬p, 2 ∨2 ≡ 2, C ∨2 ∨ D ≡ C ∨ D ≡ D ∨ C

Example

¬p, p ∨ q, p ∨ ¬q ∨ r, 2, ¬¬p ∨ q are clauses; ¬¬p ∨ q ≡ q ∨ p

Definition
resolution factoring

C ∨ p D ∨ ¬p

C ∨ D
C ∨ l ∨ l

C ∨ l l a literal

let C be a set of clauses; define resolution operator Res(C)

• Res(C) = {D | D is resolvent or factor with premises in C}

• Res0(C) = C
• Resn+1(C) := Resn(C) ∪ Res(Resn(C))

• Res∗(C) :=
⋃

n>0 Resn(C)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 30/1

Propositional Resolution

Convention

we use: p ≡ ¬¬p, 2 ∨2 ≡ 2, C ∨2 ∨ D ≡ C ∨ D ≡ D ∨ C

Example

¬p, p ∨ q, p ∨ ¬q ∨ r, 2, ¬¬p ∨ q are clauses; ¬¬p ∨ q ≡ q ∨ p

Definition
resolution factoring

C ∨ p D ∨ ¬p

C ∨ D
C ∨ l ∨ l

C ∨ l l a literal

let C be a set of clauses; define resolution operator Res(C)

• Res(C) = {D | D is resolvent or factor with premises in C}
• Res0(C) = C

• Resn+1(C) := Resn(C) ∪ Res(Resn(C))

• Res∗(C) :=
⋃

n>0 Resn(C)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 30/1

Propositional Resolution

Convention

we use: p ≡ ¬¬p, 2 ∨2 ≡ 2, C ∨2 ∨ D ≡ C ∨ D ≡ D ∨ C

Example

¬p, p ∨ q, p ∨ ¬q ∨ r, 2, ¬¬p ∨ q are clauses; ¬¬p ∨ q ≡ q ∨ p

Definition
resolution factoring

C ∨ p D ∨ ¬p

C ∨ D
C ∨ l ∨ l

C ∨ l l a literal

let C be a set of clauses; define resolution operator Res(C)

• Res(C) = {D | D is resolvent or factor with premises in C}
• Res0(C) = C
• Resn+1(C) := Resn(C) ∪ Res(Resn(C))

• Res∗(C) :=
⋃

n>0 Resn(C)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 30/1

Propositional Resolution

Convention

we use: p ≡ ¬¬p, 2 ∨2 ≡ 2, C ∨2 ∨ D ≡ C ∨ D ≡ D ∨ C

Example

¬p, p ∨ q, p ∨ ¬q ∨ r, 2, ¬¬p ∨ q are clauses; ¬¬p ∨ q ≡ q ∨ p

Definition
resolution factoring

C ∨ p D ∨ ¬p

C ∨ D
C ∨ l ∨ l

C ∨ l l a literal

let C be a set of clauses; define resolution operator Res(C)

• Res(C) = {D | D is resolvent or factor with premises in C}
• Res0(C) = C
• Resn+1(C) := Resn(C) ∪ Res(Resn(C))

• Res∗(C) :=
⋃

n>0 Resn(C)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 30/1

Propositional Resolution

Observation

(propositional) resolution is a refutation based technique; not competitive
with SAT solvers

Lemma

resolution is sound and complete; more precisely if F is a formula and C
its clause form, then F is unsatisfiable iff 2 ∈ Res∗(C)

Example

q ∨ r

p ∨ ¬q ∨ r ¬p ∨ r
¬q ∨ r ∨ r
¬q ∨ r

r ∨ r
r ¬r

2

the clause set C is refutable, hence the CNF represented is unsatisfiable

(q ∨ r) ∧ (p ∨ ¬q ∨ r) ∧ (¬p ∨ r) ∧ ¬r

GM (Institute of Computer Science @ UIBK) Automated Reasoning 31/1

Propositional Resolution

Observation

(propositional) resolution is a refutation based technique; not competitive
with SAT solvers

Lemma

resolution is sound and complete;

more precisely if F is a formula and C
its clause form, then F is unsatisfiable iff 2 ∈ Res∗(C)

Example

q ∨ r

p ∨ ¬q ∨ r ¬p ∨ r
¬q ∨ r ∨ r
¬q ∨ r

r ∨ r
r ¬r

2

the clause set C is refutable, hence the CNF represented is unsatisfiable

(q ∨ r) ∧ (p ∨ ¬q ∨ r) ∧ (¬p ∨ r) ∧ ¬r

GM (Institute of Computer Science @ UIBK) Automated Reasoning 31/1

Propositional Resolution

Observation

(propositional) resolution is a refutation based technique; not competitive
with SAT solvers

Lemma

resolution is sound and complete; more precisely if F is a formula and C
its clause form, then F is unsatisfiable iff 2 ∈ Res∗(C)

Example

q ∨ r

p ∨ ¬q ∨ r ¬p ∨ r
¬q ∨ r ∨ r
¬q ∨ r

r ∨ r
r ¬r

2

the clause set C is refutable, hence the CNF represented is unsatisfiable

(q ∨ r) ∧ (p ∨ ¬q ∨ r) ∧ (¬p ∨ r) ∧ ¬r

GM (Institute of Computer Science @ UIBK) Automated Reasoning 31/1

Propositional Resolution

Observation

(propositional) resolution is a refutation based technique; not competitive
with SAT solvers

Lemma

resolution is sound and complete; more precisely if F is a formula and C
its clause form, then F is unsatisfiable iff 2 ∈ Res∗(C)

Example

q ∨ r

p ∨ ¬q ∨ r ¬p ∨ r
¬q ∨ r ∨ r
¬q ∨ r

r ∨ r
r ¬r

2

the clause set C is refutable, hence the CNF represented is unsatisfiable

(q ∨ r) ∧ (p ∨ ¬q ∨ r) ∧ (¬p ∨ r) ∧ ¬r

GM (Institute of Computer Science @ UIBK) Automated Reasoning 31/1

Propositional Resolution

Observation

(propositional) resolution is a refutation based technique; not competitive
with SAT solvers

Lemma

resolution is sound and complete; more precisely if F is a formula and C
its clause form, then F is unsatisfiable iff 2 ∈ Res∗(C)

Example

q ∨ r

p ∨ ¬q ∨ r ¬p ∨ r
¬q ∨ r ∨ r
¬q ∨ r

r ∨ r
r ¬r

2

the clause set C is refutable, hence the CNF represented is unsatisfiable

(q ∨ r) ∧ (p ∨ ¬q ∨ r) ∧ (¬p ∨ r) ∧ ¬r

GM (Institute of Computer Science @ UIBK) Automated Reasoning 31/1

Application

Many-Valued Propositional Logics

Question

why do we have only two truth values?

Answer

no reason, lets have three: 0, 1
2 , 1

value unknown

¬
0 1
1
2

1
2

1 0

∧ 0 1
2 1

0 0

0

0
1
2

0 1
2

1
2

1 0

1
2

1

∨ 0 1
2 1

0 0

1
2

1
1
2

1
2

1
2 1

1 1

1

1

→ 0 1
2 1

0 1

1

1
1
2

1
2 1 1

1 0

1
2

1

Example

three-valued logic is employed in SQL to handle unknown values

GM (Institute of Computer Science @ UIBK) Automated Reasoning 32/1

Application

Many-Valued Propositional Logics

Question

why do we have only two truth values?

Answer

no reason, lets have three: 0, 1
2 , 1

value unknown

¬
0 1
1
2

1
2

1 0

∧ 0 1
2 1

0 0

0

0
1
2

0 1
2

1
2

1 0

1
2

1

∨ 0 1
2 1

0 0

1
2

1
1
2

1
2

1
2 1

1 1

1

1

→ 0 1
2 1

0 1

1

1
1
2

1
2 1 1

1 0

1
2

1

Example

three-valued logic is employed in SQL to handle unknown values

GM (Institute of Computer Science @ UIBK) Automated Reasoning 32/1

Application

Many-Valued Propositional Logics

Question

why do we have only two truth values?

Answer

no reason, lets have three: 0, 1
2 , 1

value unknown

¬
0 1
1
2

1
2

1 0

∧ 0 1
2 1

0 0

0

0
1
2

0 1
2

1
2

1 0

1
2

1

∨ 0 1
2 1

0 0

1
2

1
1
2

1
2

1
2 1

1 1

1

1

→ 0 1
2 1

0 1

1

1
1
2

1
2 1 1

1 0

1
2

1

Example

three-valued logic is employed in SQL to handle unknown values

GM (Institute of Computer Science @ UIBK) Automated Reasoning 32/1

Application

Many-Valued Propositional Logics

Question

why do we have only two truth values?

Answer

no reason, lets have three: 0, 1
2 , 1

value unknown

¬
0 1
1
2

1
2

1 0

∧ 0 1
2 1

0 0

0

0
1
2

0 1
2

1
2

1 0

1
2

1

∨ 0 1
2 1

0 0

1
2

1
1
2

1
2

1
2 1

1 1

1

1

→ 0 1
2 1

0 1

1

1
1
2

1
2 1 1

1 0

1
2

1

Example

three-valued logic is employed in SQL to handle unknown values

GM (Institute of Computer Science @ UIBK) Automated Reasoning 32/1

Application

Many-Valued Propositional Logics

Question

why do we have only two truth values?

Answer

no reason, lets have three: 0, 1
2 , 1

value unknown

¬
0 1
1
2

1
2

1 0

∧ 0 1
2 1

0 0

0

0
1
2

0 1
2

1
2

1 0

1
2

1

∨ 0 1
2 1

0 0

1
2

1
1
2

1
2

1
2 1

1 1

1

1

→ 0 1
2 1

0 1

1

1
1
2

1
2 1 1

1 0

1
2

1

Example

three-valued logic is employed in SQL to handle unknown values

GM (Institute of Computer Science @ UIBK) Automated Reasoning 32/1

Application

Many-Valued Propositional Logics

Question

why do we have only two truth values?

Answer

no reason, lets have three: 0, 1
2 , 1

value unknown

¬
0 1
1
2

1
2

1 0

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

∨ 0 1
2 1

0 0

1
2

1
1
2

1
2

1
2 1

1 1

1

1

→ 0 1
2 1

0 1

1

1
1
2

1
2 1 1

1 0

1
2

1

Example

three-valued logic is employed in SQL to handle unknown values

GM (Institute of Computer Science @ UIBK) Automated Reasoning 32/1

Application

Many-Valued Propositional Logics

Question

why do we have only two truth values?

Answer

no reason, lets have three: 0, 1
2 , 1

value unknown

¬
0 1
1
2

1
2

1 0

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

→ 0 1
2 1

0 1

1

1
1
2

1
2 1 1

1 0

1
2

1

Example

three-valued logic is employed in SQL to handle unknown values

GM (Institute of Computer Science @ UIBK) Automated Reasoning 32/1

Application

Many-Valued Propositional Logics

Question

why do we have only two truth values?

Answer

no reason, lets have three: 0, 1
2 , 1

value unknown

¬
0 1
1
2

1
2

1 0

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

→ 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

Example

three-valued logic is employed in SQL to handle unknown values

GM (Institute of Computer Science @ UIBK) Automated Reasoning 32/1

Application

Many-Valued Propositional Logics

Question

why do we have only two truth values?

Answer

no reason, lets have three: 0, 1
2 , 1

value unknown

¬
0 1
1
2

1
2

1 0

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

→ 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

Example

three-valued logic is employed in SQL to handle unknown values

GM (Institute of Computer Science @ UIBK) Automated Reasoning 32/1

Application

Definition

• let V ⊆ [0, 1] be truth values containing 0,1

• a Lukasiewicz assignment (based on V) is a mapping v : AT→ V

• v is extended to a valuation of formulas as follows:

v(¬A) = 1− v(A)
v(A ∧ B) = min{v(A), v(B)} v(A ∨ B) = max{v(A), v(B)}

v(A→ B) = min{1, 1− v(A) + v(B)}
• A is valid if v(A) = 1 for all assignments based on V

Theorem

1 (finite- or infinite-valued) Lukasiewicz logic is finitely axiomatisable,
that is, there exists a finite sound and complete proof system

2 validity for Lukasiewicz logic is decidable (it is coNP-complete)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 33/1

Application

Definition

• let V ⊆ [0, 1] be truth values containing 0,1

• a Lukasiewicz assignment (based on V) is a mapping v : AT→ V

• v is extended to a valuation of formulas as follows:

v(¬A) = 1− v(A)
v(A ∧ B) = min{v(A), v(B)} v(A ∨ B) = max{v(A), v(B)}

v(A→ B) = min{1, 1− v(A) + v(B)}
• A is valid if v(A) = 1 for all assignments based on V

Theorem

1 (finite- or infinite-valued) Lukasiewicz logic is finitely axiomatisable,
that is, there exists a finite sound and complete proof system

2 validity for Lukasiewicz logic is decidable (it is coNP-complete)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 33/1

Application

Definition

• let V ⊆ [0, 1] be truth values containing 0,1

• a Lukasiewicz assignment (based on V) is a mapping v : AT→ V

• v is extended to a valuation of formulas as follows:

v(¬A) = 1− v(A)
v(A ∧ B) = min{v(A), v(B)} v(A ∨ B) = max{v(A), v(B)}

v(A→ B) = min{1, 1− v(A) + v(B)}

• A is valid if v(A) = 1 for all assignments based on V

Theorem

1 (finite- or infinite-valued) Lukasiewicz logic is finitely axiomatisable,
that is, there exists a finite sound and complete proof system

2 validity for Lukasiewicz logic is decidable (it is coNP-complete)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 33/1

Application

Definition

• let V ⊆ [0, 1] be truth values containing 0,1

• a Lukasiewicz assignment (based on V) is a mapping v : AT→ V

• v is extended to a valuation of formulas as follows:

v(¬A) = 1− v(A)
v(A ∧ B) = min{v(A), v(B)} v(A ∨ B) = max{v(A), v(B)}

v(A→ B) = min{1, 1− v(A) + v(B)}
• A is valid if v(A) = 1 for all assignments based on V

Theorem

1 (finite- or infinite-valued) Lukasiewicz logic is finitely axiomatisable,
that is, there exists a finite sound and complete proof system

2 validity for Lukasiewicz logic is decidable (it is coNP-complete)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 33/1

Application

Definition

• let V ⊆ [0, 1] be truth values containing 0,1

• a Lukasiewicz assignment (based on V) is a mapping v : AT→ V

• v is extended to a valuation of formulas as follows:

v(¬A) = 1− v(A)
v(A ∧ B) = min{v(A), v(B)} v(A ∨ B) = max{v(A), v(B)}

v(A→ B) = min{1, 1− v(A) + v(B)}
• A is valid if v(A) = 1 for all assignments based on V

Theorem

1 (finite- or infinite-valued) Lukasiewicz logic is finitely axiomatisable,
that is, there exists a finite sound and complete proof system

2 validity for Lukasiewicz logic is decidable (it is coNP-complete)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 33/1

Application

Definition

• let V ⊆ [0, 1] be truth values containing 0,1

• a Lukasiewicz assignment (based on V) is a mapping v : AT→ V

• v is extended to a valuation of formulas as follows:

v(¬A) = 1− v(A)
v(A ∧ B) = min{v(A), v(B)} v(A ∨ B) = max{v(A), v(B)}

v(A→ B) = min{1, 1− v(A) + v(B)}
• A is valid if v(A) = 1 for all assignments based on V

Theorem

1 (finite- or infinite-valued) Lukasiewicz logic is finitely axiomatisable,
that is, there exists a finite sound and complete proof system

2 validity for Lukasiewicz logic is decidable (it is coNP-complete)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 33/1

Application

Application of Many-Valued Logics

• in databases a third truth value is useful to model unknown data

• let [0, 1] be the set of truth values: values denotes a probabilities

• finite or infinite-valued logic are often called fuzzy logics

• ∃ (subsets of first-order) infinite valued fuzzy logics based on [0, 1]
that are finitely axiomatisable and decidable

• CADIA (Computer Assisted DIAGnosis) is a series of medical expert
systems developed at the Vienna Medical University (since 1980’s)

IF suspicion of liver metastases by liver palpation

THEN pancreatic cancer

with degree of confirmation 0.3

• inference system of CADIAG-2 can be expressed as a infinite valued
fuzzy logics

• representation showed inconsistencies in CADIAG-2

GM (Institute of Computer Science @ UIBK) Automated Reasoning 34/1

Application

Application of Many-Valued Logics

• in databases a third truth value is useful to model unknown data

• let [0, 1] be the set of truth values: values denotes a probabilities

• finite or infinite-valued logic are often called fuzzy logics

• ∃ (subsets of first-order) infinite valued fuzzy logics based on [0, 1]
that are finitely axiomatisable and decidable

• CADIA (Computer Assisted DIAGnosis) is a series of medical expert
systems developed at the Vienna Medical University (since 1980’s)

IF suspicion of liver metastases by liver palpation

THEN pancreatic cancer

with degree of confirmation 0.3

• inference system of CADIAG-2 can be expressed as a infinite valued
fuzzy logics

• representation showed inconsistencies in CADIAG-2

GM (Institute of Computer Science @ UIBK) Automated Reasoning 34/1

Application

Application of Many-Valued Logics

• in databases a third truth value is useful to model unknown data

• let [0, 1] be the set of truth values: values denotes a probabilities

• finite or infinite-valued logic are often called fuzzy logics

• ∃ (subsets of first-order) infinite valued fuzzy logics based on [0, 1]
that are finitely axiomatisable and decidable

• CADIA (Computer Assisted DIAGnosis) is a series of medical expert
systems developed at the Vienna Medical University (since 1980’s)

IF suspicion of liver metastases by liver palpation

THEN pancreatic cancer

with degree of confirmation 0.3

• inference system of CADIAG-2 can be expressed as a infinite valued
fuzzy logics

• representation showed inconsistencies in CADIAG-2

GM (Institute of Computer Science @ UIBK) Automated Reasoning 34/1

Application

Application of Many-Valued Logics

• in databases a third truth value is useful to model unknown data

• let [0, 1] be the set of truth values: values denotes a probabilities

• finite or infinite-valued logic are often called fuzzy logics

• ∃ (subsets of first-order) infinite valued fuzzy logics based on [0, 1]
that are finitely axiomatisable and decidable

• CADIA (Computer Assisted DIAGnosis) is a series of medical expert
systems developed at the Vienna Medical University (since 1980’s)

IF suspicion of liver metastases by liver palpation

THEN pancreatic cancer

with degree of confirmation 0.3

• inference system of CADIAG-2 can be expressed as a infinite valued
fuzzy logics

• representation showed inconsistencies in CADIAG-2

GM (Institute of Computer Science @ UIBK) Automated Reasoning 34/1

Application

Application of Many-Valued Logics

• in databases a third truth value is useful to model unknown data

• let [0, 1] be the set of truth values: values denotes a probabilities

• finite or infinite-valued logic are often called fuzzy logics

• ∃ (subsets of first-order) infinite valued fuzzy logics based on [0, 1]
that are finitely axiomatisable and decidable

• CADIA (Computer Assisted DIAGnosis) is a series of medical expert
systems developed at the Vienna Medical University (since 1980’s)

IF suspicion of liver metastases by liver palpation

THEN pancreatic cancer

with degree of confirmation 0.3

• inference system of CADIAG-2 can be expressed as a infinite valued
fuzzy logics

• representation showed inconsistencies in CADIAG-2

GM (Institute of Computer Science @ UIBK) Automated Reasoning 34/1

