

Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

Organisation

Computational Logic Automated Theorem Proving exercise class

Wednesday,	13:15-15:00	3W03
Wednesday,	15:15-17:00	3W03
Wednesday,	17:15-18:00	3W03

Computational Logic Automated Theorem Proving exercise class Wednesday, 13:15–15:00 3W03 Wednesday, 15:15–17:00 3W03 Wednesday, 17:15–18:00 3W03

Schedule

week 1	October 2	wee
week 2	October 9	wee
week 3	October 16	wee
week 4	October 23	wee
week 5	November 6	wee
week 6	November 13	wee
week 7	November 20	firs

week 8	November 27
week 9	December 4
week 10	December 11
week 11	January 8
week 12	January 15
week 13	January 22
irst exam	January 29

Computational Logic Automated Theorem Proving exercise class Wednesday, 13:15–15:00 3W03 Wednesday, 15:15–17:00 3W03 Wednesday, 17:15–18:00 3W03

Schedule

week 1	October 2	week
week 2	October 9	week
week 3	October 16	week
week 4	October 23	week
week 5	no lecture	week
week 6	November 13	week
week 7	November 20	first e

veek 8	November 27
veek 9	December 4
veek 10	December 11
veek 11	January 8
veek 12	January 15
veek 13	January 22
irst exam	January 29

Computational Logic Automated Theorem Proving exercise class Wednesday, 13:15–15:00 3W03 Wednesday, 15:15–17:00 3W03 Wednesday, 17:15–18:00 3W03

> 27 4 11

Schedule

week 1	October 2	week 8	November
week 2	October 9	week 9	December
week 3	October 16	week 10	December
week 4	October 23	week 11	January 8
week 5	no lecture	week 12	January 15
week 6	November 13	week 13	January 22
week 7	November 20	first exam	January 29

Office Hours

Thursday, 9:00-11:00, 3M09, Ifl Building

GM (Institute of Computer Science @ UIBK)

Outline of the Module

Advanced Topics in Logic

for example

- compactness
- model existence theorem
- Herbrand's Theorem
- Curry-Howard Isomorphism

Outline of the Module

Advanced Topics in Logic

for example

- compactness
- model existence theorem
- Herbrand's Theorem
- Curry-Howard Isomorphism

Automated Reasoning

for example

- tableau provers
- redundancy and deletion
- superposition
- Robbins problem

Outline of the Lecture "Computational Logic"

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Outline of the Lecture "Automated Theorem Proving"

Early Approaches in Automated Reasoning

short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, structural Skolemisation, redundancy and deletion

Automated Reasoning with Equality

ordered resolution, paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem, resolution and paramodulation as decision procedure, ...

Literature

 lecture notes (2nd edition)

Literature

 lecture notes (2nd edition)

Additional Reading

- G.S. Boolos, J.P. Burgess, and R.C. Jeffrey Computability and Logic Cambridge University Press, 2007
- H.-D. Ebbinghaus, J. Flum, and W. Thomas Einführung in die mathematische Logik Spektrum Akademischer Verlag, 2007
- A. Leitsch The Resolution Calculus Springer-Verlag, 2007
- papers, distributed during the course

Time and Place (cont'd)

Computational Logic Automated Theorem Proving exercise class

Wednesday,	13:15-15:00	3W03
Wednesday,	15:15-17:00	3W03
Wednesday,	17:15-18:00	3W03

Time and Place (cont'd)

Computational Logic Automated Theorem Proving exercise class

Wednesday,	13:15-15:00	3W03
Wednesday,	15:15-17:00	3W03
Wednesday,	17:15-18:00	3W03

Automated Reasoning Block

block Wednesday, 13:15–18:00 3W03

Time and Place (cont'd)

Computational Logic Automated Theorem Proving exercise class

Wednesday,	13:15-15:00	3W03
Wednesday,	15:15-17:00	3W03
Wednesday,	17:15-18:00	3W03

Automated Reasoning Block			
block	Wednesday, 13:15–18:00	3W03	

Comments

- officially there are two lectures and one exercise group
- this is nonsense, as the course on theorem proving is based on the course on logic
- suggestion: we start with logic, if we are finished, we continue with theorem proving
- typical scheduling of the block: lecture, exercises, lecture

Introduction

What is Logic?

Argument ①

- 1 a mother or father of a person is an ancestor of that person
- 2 an ancestor of an ancestor of a person is an ancestor of a person
- 3 Sarah is the mother of Isaac, Isaac is the father of Jacob
- 4 Thus, Sarah is an ancestor of Jacob

What is Logic?

Argument ①

- 1 a mother or father of a person is an ancestor of that person
- 2 an ancestor of an ancestor of a person is an ancestor of a person
- 3 Sarah is the mother of Isaac, Isaac is the father of Jacob
- 4 Thus, Sarah is an ancestor of Jacob

Argument 2

- 1 a square or cube of a number is a power of that number
- 2 a power of a power of a number is a power of that number
- **3** 64 is the cube of 4, four is the square of 2
- 4 Thus, 64 is a power of 2

What is Logic?

Argument ①

- 1 a mother or father of a person is an ancestor of that person
- 2 an ancestor of an ancestor of a person is an ancestor of a person
- 3 Sarah is the mother of Isaac, Isaac is the father of Jacob
- 4 Thus, Sarah is an ancestor of Jacob

Argument 2

- 1 a square or cube of a number is a power of that number
- 2 a power of a power of a number is a power of that number
- **3** 64 is the cube of 4, four is the square of 2
- 4 Thus, 64 is a power of 2

logic tells us that argument ① = argument ②

Why Do You Need Logic?

Why Do You Need Logic?

"I can't find an efficient algorithm, because no such algorithm is possible!"

Why Do You Need Logic?

"I can't find an efficient algorithm, because no such algorithm is possible!"

Recall

(for example) the equivalence of programs is undecidable

Proof.

reduction from the undecidability of the *Entscheidungsproblem* (Alonzo Church)

GM (Institute of Computer Science @ UIBK)

Another Picture

Another Picture

SAT technology

- a Minesweeper solver can be coded by using a SAT solver
- verifying the correctness of a given Minesweeper configuration is an NP-complete problem

A More Serious Answer

Application ①: Program Analysis

- abstract interpretations represent the behaviour of programs
- logical products of interpretations allows the automated combination of simple interpreters
- based on Nelson-Oppen methodology

A More Serious Answer

Application ①: Program Analysis

- abstract interpretations represent the behaviour of programs
- logical products of interpretations allows the automated combination of simple interpreters
- based on Nelson-Oppen methodology

Application 2: Databases

- datalog is a declarative language and syntactically it is a subset of Prolog; used in knowledge representation systems
- disjunctive datalog is an extension of datalog that allows disjunctions in heads of rules
- disjunctive datalog is a strict extension of SQL
- (disjunctive) datalog forms the basis of semantic web applications and has connections to description logics and ontologies

 datalog is a subset of Horn logic; hence minimal model of any datalog program is unique

- datalog is a subset of Horn logic; hence minimal model of any datalog program is unique
- datalog rules can be translated into inclusions in relational databases

- datalog is a subset of Horn logic; hence minimal model of any datalog program is unique
- datalog rules can be translated into inclusions in relational databases
- datalog extends positive relational algebras

- datalog is a subset of Horn logic; hence minimal model of any datalog program is unique
- datalog rules can be translated into inclusions in relational databases
- datalog extends positive relational algebras
- disjunctive datalog extends datalog, but remains decidable

- datalog is a subset of Horn logic; hence minimal model of any datalog program is unique
- datalog rules can be translated into inclusions in relational databases
- datalog extends positive relational algebras
- disjunctive datalog extends datalog, but remains decidable
- disjunctive datalog can be extended with negation

- datalog is a subset of Horn logic; hence minimal model of any datalog program is unique
- datalog rules can be translated into inclusions in relational databases
- datalog extends positive relational algebras
- disjunctive datalog extends datalog, but remains decidable
- disjunctive datalog can be extended with negation

Complexity results

- datalog is a subset of Horn logic; hence minimal model of any datalog program is unique
- datalog rules can be translated into inclusions in relational databases
- datalog extends positive relational algebras
- disjunctive datalog extends datalog, but remains decidable
- disjunctive datalog can be extended with negation

Complexity results

expression complexity of datalog is EXPTIME-complete

- datalog is a subset of Horn logic; hence minimal model of any datalog program is unique
- datalog rules can be translated into inclusions in relational databases
- datalog extends positive relational algebras
- disjunctive datalog extends datalog, but remains decidable
- disjunctive datalog can be extended with negation

Complexity results

- expression complexity of datalog is EXPTIME-complete
- expression complexity for disjunctive datalog (with \neg) is NEXPTIME^{NP}-complete
- problems complete for NEXPTIME^{NP} can (only) be solved on an NTM with NP-oracle running in exponential time

Application 3: Types as Formulas

• the type checking in simple λ -calculus is equivalent to derivability in intuitionistic logic

Application 3: Types as Formulas

- the type checking in simple λ -calculus is equivalent to derivability in intuitionistic logic
- intuitionistic logic is a (sort of) constructive restriction of classical logic

- the type checking in simple λ-calculus is equivalent to derivability in intuitionistic logic
- intuitionistic logic is a (sort of) constructive restriction of classical logic
- this correspondence is called Curry-Howard isomorphism

- the type checking in simple λ-calculus is equivalent to derivability in intuitionistic logic
- intuitionistic logic is a (sort of) constructive restriction of classical logic
- this correspondence is called Curry-Howard isomorphism
- the Curry-Howard correspondence can be extended to richer programming languages (and logics)

- the type checking in simple λ -calculus is equivalent to derivability in intuitionistic logic
- intuitionistic logic is a (sort of) constructive restriction of classical logic
- this correspondence is called Curry-Howard isomorphism
- the Curry-Howard correspondence can be extended to richer programming languages (and logics)

- the type checking in simple λ-calculus is equivalent to derivability in intuitionistic logic
- intuitionistic logic is a (sort of) constructive restriction of classical logic
- this correspondence is called Curry-Howard isomorphism
- the Curry-Howard correspondence can be extended to richer programming languages (and logics)

Application 4: Complexity Theory

• NP is the class of problems decidable by a NTM that runs in polynomial time

- the type checking in simple λ-calculus is equivalent to derivability in intuitionistic logic
- intuitionistic logic is a (sort of) constructive restriction of classical logic
- this correspondence is called Curry-Howard isomorphism
- the Curry-Howard correspondence can be extended to richer programming languages (and logics)

- NP is the class of problems decidable by a NTM that runs in polynomial time
- this characterisation explicitly refers to a bound

- the type checking in simple λ-calculus is equivalent to derivability in intuitionistic logic
- intuitionistic logic is a (sort of) constructive restriction of classical logic
- this correspondence is called Curry-Howard isomorphism
- the Curry-Howard correspondence can be extended to richer programming languages (and logics)

- NP is the class of problems decidable by a NTM that runs in polynomial time
- this characterisation explicitly refers to a bound
- alternatively NP can be characterised as the class of existential second-order sentence

- the type checking in simple λ -calculus is equivalent to derivability in intuitionistic logic
- intuitionistic logic is a (sort of) constructive restriction of classical logic
- this correspondence is called Curry-Howard isomorphism
- the Curry-Howard correspondence can be extended to richer programming languages (and logics)

- NP is the class of problems decidable by a NTM that runs in polynomial time
- this characterisation explicitly refers to a bound
- alternatively NP can be characterised as the class of existential second-order sentence
- completeness for NP of SAT becomes trivial

A Quiz

• what is the truth value of the following propositional formula

 $(p
ightarrow \neg q)
ightarrow (\neg q
ightarrow \neg p)$

• what is the truth value of the following propositional formula

 $(p
ightarrow \neg q)
ightarrow (\neg q
ightarrow \neg p)$

• give an informal explanation of the following two first-order formulas

 $\forall x \exists y A(x,y) \qquad \exists y \forall x(x < y)$

· what is the truth value of the following propositional formula

 $(p
ightarrow \neg q)
ightarrow (\neg q
ightarrow \neg p)$

• give an informal explanation of the following two first-order formulas

 $\forall x \exists y A(x,y) \qquad \exists y \forall x(x < y)$

consider Skolemisation, is the following formula the Skolem normal form of ∀x∃yA(x, y)?

 $\forall x \forall y A(x, f(x))$

what is the truth value of the following propositional formula

 $(p
ightarrow \neg q)
ightarrow (\neg q
ightarrow \neg p)$

• give an informal explanation of the following two first-order formulas

 $\forall x \exists y A(x,y) \qquad \exists y \forall x(x < y)$

consider Skolemisation, is the following formula the Skolem normal form of ∀x∃yA(x, y)?
 ∀x∀yA(x, f(x))

• do the following equivalences hold (and how to verify this)? $\forall x \forall y A(x, f(x)) \approx \forall x \exists y A(x, y) \approx \exists x \forall y A(x, y)$

• what is the truth value of the following propositional formula

 $(p
ightarrow \neg q)
ightarrow (\neg q
ightarrow \neg p)$

• give an informal explanation of the following two first-order formulas

 $\forall x \exists y A(x,y) \qquad \exists y \forall x(x < y)$

- consider Skolemisation, is the following formula the Skolem normal form of ∀x∃yA(x, y)?
 ∀x∀yA(x, f(x))
- do the following equivalences hold (and how to verify this)? $\forall x \forall y A(x, f(x)) \approx \forall x \exists y A(x, y) \approx \exists x \forall y A(x, y)$
- can we express the following statement about a given graph ${\mathcal G}$ in first-order logic?

let **s** and **t** be nodes in \mathcal{G} , then there exists a path of length at most 3 from **s** to **t**

BoolTool

- BoolTool is a web-interfaced based tool for manipulation and transformation of formulas in propositional logic
- available at http://cl-informatik.uibk.ac.at/software/booltool/

Propositional Logic

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Definition

the propositional connectives are

 $\land \land \lor \rightarrow$

 $\land \lor \lor$

Definition

the propositional connectives are

Definition

(propositional) formulas are defined as follows

- a propositional atom p and a truth constant is a formula
- if A, B are formulas, then

 $\neg A$ $(A \land B)$ $(A \lor B)$ $(A \to B)$

are formulas

 $\neg \land \lor \rightarrow$

Definition

the propositional connectives are

Definition

(propositional) formulas are defined as follows

- a propositional atom p and a truth constant is a formula
- if A, B are formulas, then

eg A $(A \land B)$ $(A \lor B)$ $(A \to B)$

are formulas

we use precedence: \neg > \lor , \land > \rightarrow ; right-associativity of \rightarrow

The Semantics of Propositional Logic

Example the following expression *A* is a formula

$$(p
ightarrow \neg q)
ightarrow (\neg q
ightarrow \neg p)$$

The Semantics of Propositional Logic

Example the following expression A is a formula

```
(p 
ightarrow \neg q) 
ightarrow (\neg q 
ightarrow \neg p)
```

- we write T, F for the two truth values
- an assignment $v \colon \mathsf{AT} \to \{\mathsf{T},\mathsf{F}\}$ maps atoms to truth values
- we write v(A) for valuation of A, the extension of the assignment to formulas

The Semantics of Propositional Logic

Example the following expression *A* is a formula

$$(p
ightarrow \neg q)
ightarrow (\neg q
ightarrow \neg p)$$

Definition

- we write T, F for the two truth values
- an assignment $v\colon \mathsf{AT}\to \{\mathsf{T},\mathsf{F}\}$ maps atoms to truth values
- we write v(A) for valuation of A, the extension of the assignment to formulas

Definition

the consequence relation \models asserts that v(B) = T, whenever $v(A_1), \ldots, v(A_n)$ is true for any assignment v, denoted as $A_1, \ldots, A_n \models B$

we write $\models A$, instead of $\varnothing \models A$ and call A a tautology or valid

we write $\models A$, instead of $\varnothing \models A$ and call A a tautology or valid

Example let v(p) = T, v(q) = F, then $v(A) = v((p \rightarrow \neg q) \rightarrow (\neg q \rightarrow \neg p)) = F$

we write $\models A$, instead of $\varnothing \models A$ and call A a tautology or valid

Example let v(p) = T, v(q) = F, then $v(A) = v((p \rightarrow \neg q) \rightarrow (\neg q \rightarrow \neg p)) = F$

Definition

the provability relation ⊢ asserts that B is derived from A₁, ..., A_n in a formal calculus for propositional logic

we write $\models A$, instead of $\varnothing \models A$ and call A a tautology or valid

Example
let
$$v(p) = T$$
, $v(q) = F$, then
 $v(A) = v((p \rightarrow \neg q) \rightarrow (\neg q \rightarrow \neg p)) = F$

- the provability relation ⊢ asserts that B is derived from A₁, ..., A_n in a formal calculus for propositional logic
- (propositional) natural deduction is an example of such a calculus

we write $\models A$, instead of $\varnothing \models A$ and call A a tautology or valid

Example
let
$$v(p) = T$$
, $v(q) = F$, then
 $v(A) = v((p \rightarrow \neg q) \rightarrow (\neg q \rightarrow \neg p)) = F$

- the provability relation ⊢ asserts that B is derived from A₁, ..., A_n in a formal calculus for propositional logic
- (propositional) natural deduction is an example of such a calculus
- we write $A_1, \ldots, A_n \vdash B$, if B is derivable from A_1, \ldots, A_n

we write $\models A$, instead of $\varnothing \models A$ and call A a tautology or valid

Example
let
$$v(p) = T$$
, $v(q) = F$, then
 $v(A) = v((p \rightarrow \neg q) \rightarrow (\neg q \rightarrow \neg p)) = F$

- the provability relation ⊢ asserts that B is derived from A₁, ..., A_n in a formal calculus for propositional logic
- (propositional) natural deduction is an example of such a calculus
- we write $A_1, \ldots, A_n \vdash B$, if B is derivable from A_1, \ldots, A_n
- we write $\vdash B$ instead of $\varnothing \vdash B$

we write $\models A$, instead of $\varnothing \models A$ and call A a tautology or valid

Example
let
$$v(p) = T$$
, $v(q) = F$, then
 $v(A) = v((p \rightarrow \neg q) \rightarrow (\neg q \rightarrow \neg p)) = F$

- the provability relation ⊢ asserts that B is derived from A₁, ..., A_n in a formal calculus for propositional logic
- (propositional) natural deduction is an example of such a calculus
- we write $A_1, \ldots, A_n \vdash B$, if B is derivable from A_1, \ldots, A_n
- we write $\vdash B$ instead of $\varnothing \vdash B$
- *B* is called provable, if $\vdash B$ holds

${\sf Question}\ \textcircled{1}$

why is it not enough to know when a formula is true, why do we need a "formal calculus"?

Question 1

why is it not enough to know when a formula is true, why do we need a "formal calculus"?

Question 2

what is the connection here:

$$A_1,\ldots,A_n\vdash B$$
 $A_1,\ldots,A_n\models B$

Question 1

why is it not enough to know when a formula is true, why do we need a "formal calculus"?

Question 2

what is the connection here:

$$A_1,\ldots,A_n\vdash B \iff A_1,\ldots,A_n\models B$$

Question 1

why is it not enough to know when a formula is true, why do we need a "formal calculus"?

Question 2

what is the connection here:

$$A_1,\ldots,A_n\vdash B \Longleftrightarrow A_1,\ldots,A_n\models B$$

Answer

1 historically the proof systems were first

Question 1

why is it not enough to know when a formula is true, why do we need a "formal calculus"?

Question 2

what is the connection here:

$$A_1,\ldots,A_n\vdash B \Longleftrightarrow A_1,\ldots,A_n\models B$$

Answer

- 1 historically the proof systems were first
- 2 study of proof systems led to efficient SAT techniques
Why Syntax & Semantics?

Question ①

why is it not enough to know when a formula is true, why do we need a "formal calculus"?

Question 2

what is the connection here:

$$A_1,\ldots,A_n\vdash B \Longleftrightarrow A_1,\ldots,A_n\models B$$

Answer

- 1 historically the proof systems were first
- 2 study of proof systems led to efficient SAT techniques
- in designing new logics for applications one starts with the rules, typically the semantics comes later

Soundness & Completeness

Theorem

• \exists provability relations \vdash such that the following holds:

 $A_1,\ldots,A_n\vdash B \iff A_1,\ldots,A_n\models B$

- we say the calculus underlying ⊢ is sound and complete
- we say propositional logic is (finitely) axiomatised by such a (finite) formal system

Soundness & Completeness

Theorem

• \exists provability relations \vdash such that the following holds:

 $A_1,\ldots,A_n\vdash B \iff A_1,\ldots,A_n\models B$

- we say the calculus underlying ⊢ is sound and complete
- we say propositional logic is (finitely) axiomatised by such a (finite) formal system

Example natural deduction for propositional logic

Natural Deduction

Natural Deduction (cont'd)

Example

derivation of Pierce's law ((p
ightarrow q)
ightarrow p)
ightarrow p

Example

derivation of Pierce's law ((p
ightarrow q)
ightarrow p)
ightarrow p

Theorem

let $A \rightarrow B$ be valid, $\exists C$ such that $A \rightarrow C$, $C \rightarrow B$ valid interpolant C contains only variables that occur in A and B

GM (Institute of Computer Science @ UIBK)

Definition

- a literal is a propositional atom p or its negation $\neg p$
- a formula *F* is in conjunctive normal form (CNF) if *F* is a conjunction of disjunctions of literals

Definition

- a literal is a propositional atom p or its negation $\neg p$
- a formula *F* is in conjunctive normal form (CNF) if *F* is a conjunction of disjunctions of literals

formulas A, B are (logically) equivalent $(A \equiv B)$ if $A \models B$ and $B \models A$

Definition

- a literal is a propositional atom p or its negation $\neg p$
- a formula *F* is in conjunctive normal form (CNF) if *F* is a conjunction of disjunctions of literals

formulas A, B are (logically) equivalent $(A \equiv B)$ if $A \models B$ and $B \models A$

Lemma

 \forall formula A \exists formula B in CNF such that A \equiv B

Definition

- a literal is a propositional atom p or its negation $\neg p$
- a formula *F* is in conjunctive normal form (CNF) if *F* is a conjunction of disjunctions of literals

formulas A, B are (logically) equivalent $(A \equiv B)$ if $A \models B$ and $B \models A$

Lemma

 \forall formula A \exists formula B in CNF such that A \equiv B

Definition

- a clause is disjunction of literals
 - 🗆 is a clause
 - literals are clauses
 - if C, D are clauses, then $C \lor D$ is a clause

we use: $p \equiv \neg \neg p$, $\Box \lor \Box \equiv \Box$, $C \lor \Box \lor D \equiv C \lor D \equiv D \lor C$

we use: $p \equiv \neg \neg p$, $\Box \lor \Box \equiv \Box$, $C \lor \Box \lor D \equiv C \lor D \equiv D \lor C$

Example

 $\neg p$, $p \lor q$, $p \lor \neg q \lor r$, \Box , $\neg \neg p \lor q$ are clauses

we use: $p \equiv \neg \neg p$, $\Box \lor \Box \equiv \Box$, $C \lor \Box \lor D \equiv C \lor D \equiv D \lor C$

Example

 $\neg p, \ p \lor q, \ p \lor \neg q \lor r, \ \Box, \ \neg \neg p \lor q \text{ are clauses; } \neg \neg p \lor q \equiv q \lor p$

we use: $p \equiv \neg \neg p$, $\Box \lor \Box \equiv \Box$, $C \lor \Box \lor D \equiv C \lor D \equiv D \lor C$

Example

 $\neg p, \ p \lor q, \ p \lor \neg q \lor r, \ \Box, \ \neg \neg p \lor q \text{ are clauses; } \neg \neg p \lor q \equiv q \lor p$

Definition $\frac{C \lor p \quad D \lor \neg p}{C \lor D}$

factoring

 $\frac{C \lor I \lor I}{C \lor I} \quad I \text{ a literal}$

we use: $p \equiv \neg \neg p$, $\Box \lor \Box \equiv \Box$, $C \lor \Box \lor D \equiv C \lor D \equiv D \lor C$

Example

 $\neg p, \ p \lor q, \ p \lor \neg q \lor r, \ \Box, \ \neg \neg p \lor q \text{ are clauses; } \neg \neg p \lor q \equiv q \lor p$

Definition resolution factoring $\frac{C \lor p \quad D \lor \neg p}{C \lor D} \qquad \frac{C \lor I \lor I}{C \lor I} \quad I \text{ a literal}$

let C be a set of clauses; define resolution operator Res(C)

• $\operatorname{Res}(\mathcal{C}) = \{D \mid D \text{ is resolvent or factor with premises in } \mathcal{C}\}$

we use: $p \equiv \neg \neg p$, $\Box \lor \Box \equiv \Box$, $C \lor \Box \lor D \equiv C \lor D \equiv D \lor C$

Example

 $\neg p, \ p \lor q, \ p \lor \neg q \lor r, \ \Box, \ \neg \neg p \lor q \text{ are clauses; } \neg \neg p \lor q \equiv q \lor p$

Definition resolution factoring $\frac{C \lor p \quad D \lor \neg p}{C \lor D} \qquad \frac{C \lor I \lor I}{C \lor I} \quad I \text{ a literal}$

let C be a set of clauses; define resolution operator Res(C)

• $\operatorname{Res}(\mathcal{C}) = \{D \mid D \text{ is resolvent or factor with premises in } \mathcal{C}\}$

•
$$\operatorname{Res}^{0}(\mathcal{C}) = \mathcal{C}$$

we use: $p \equiv \neg \neg p$, $\Box \lor \Box \equiv \Box$, $C \lor \Box \lor D \equiv C \lor D \equiv D \lor C$

Example

 $\neg p, \ p \lor q, \ p \lor \neg q \lor r, \ \Box, \ \neg \neg p \lor q \text{ are clauses; } \neg \neg p \lor q \equiv q \lor p$

Definition resolution factoring $\frac{C \lor p \quad D \lor \neg p}{C \lor D} \qquad \frac{C \lor I \lor I}{C \lor I} \quad I \text{ a literal}$

let C be a set of clauses; define resolution operator Res(C)

- $\operatorname{Res}(\mathcal{C}) = \{D \mid D \text{ is resolvent or factor with premises in } \mathcal{C}\}$
- $\operatorname{Res}^{0}(\mathcal{C}) = \mathcal{C}$

•
$$\operatorname{\mathsf{Res}}^{n+1}(\mathcal{C}) := \operatorname{\mathsf{Res}}^n(\mathcal{C}) \cup \operatorname{\mathsf{Res}}(\operatorname{\mathsf{Res}}^n(\mathcal{C}))$$

we use: $p \equiv \neg \neg p$, $\Box \lor \Box \equiv \Box$, $C \lor \Box \lor D \equiv C \lor D \equiv D \lor C$

Example

 $\neg p, \ p \lor q, \ p \lor \neg q \lor r, \ \Box, \ \neg \neg p \lor q \text{ are clauses; } \neg \neg p \lor q \equiv q \lor p$

Definition resolution factoring $\frac{C \lor p \quad D \lor \neg p}{C \lor D} \qquad \frac{C \lor I \lor I}{C \lor I} \quad I \text{ a literal}$

let C be a set of clauses; define resolution operator Res(C)

- $\operatorname{Res}(\mathcal{C}) = \{D \mid D \text{ is resolvent or factor with premises in } \mathcal{C}\}$
- $\operatorname{Res}^{0}(\mathcal{C}) = \mathcal{C}$
- $\operatorname{\mathsf{Res}}^{n+1}(\mathcal{C}) := \operatorname{\mathsf{Res}}^n(\mathcal{C}) \cup \operatorname{\mathsf{Res}}(\operatorname{\mathsf{Res}}^n(\mathcal{C}))$
- $\operatorname{Res}^*(\mathcal{C}) := \bigcup_{n \ge 0} \operatorname{Res}^n(\mathcal{C})$

(propositional) resolution is a refutation based technique; not competitive with SAT solvers

(propositional) resolution is a refutation based technique; not competitive with SAT solvers

Lemma

resolution is sound and complete;

(propositional) resolution is a refutation based technique; not competitive with SAT solvers

Lemma

resolution is sound and complete; more precisely if F is a formula and C its clause form, then F is unsatisfiable iff $\Box \in \text{Res}^*(C)$

(propositional) resolution is a refutation based technique; not competitive with SAT solvers

Lemma

resolution is sound and complete; more precisely if F is a formula and C its clause form, then F is unsatisfiable iff $\Box \in \text{Res}^*(C)$

Example

$$\frac{q \lor r}{\frac{\neg q \lor r \lor r}{\neg q \lor r \lor r}} = \frac{\frac{p \lor \neg q \lor r \lor r}{\neg q \lor r \lor r}}{\frac{r \lor r}{r}}$$

LEO FEL

(propositional) resolution is a refutation based technique; not competitive with SAT solvers

Lemma

resolution is sound and complete; more precisely if F is a formula and C its clause form, then F is unsatisfiable iff $\Box \in \text{Res}^*(C)$

Example

the clause set ${\mathcal C}$ is refutable, hence the CNF represented is unsatisfiable $(q\vee r)\wedge(p\vee\neg q\vee r)\wedge(\neg p\vee r)\wedge\neg r$

GM (Institute of Computer Science @ UIBK)

Question

why do we have only two truth values?

Question

why do we have only two truth values?

Answer

Question

why do we have only two truth values?

Question

why do we have only two truth values?

Answer

Question

why do we have only two truth values?

Answer

Question

why do we have only two truth values?

Answer

Question

why do we have only two truth values?

Answer

Question

why do we have only two truth values?

Answer

Question

why do we have only two truth values?

Answer

no reason, lets have three: 0, $\frac{1}{2}$, 1

GM (Institute of Computer Science @ UIBK)

Definition

• let $V \subseteq [0,1]$ be truth values containing 0,1

Definition

- let $V \subseteq [0,1]$ be truth values containing 0,1
- a Lukasiewicz assignment (based on V) is a mapping v: AT \rightarrow V

Definition

- let $V \subseteq [0,1]$ be truth values containing 0,1
- a Lukasiewicz assignment (based on V) is a mapping v: AT \rightarrow V
- v is extended to a valuation of formulas as follows:

$$v(\neg A) = 1 - v(A)$$

$$v(A \land B) = \min\{v(A), v(B)\} \qquad v(A \lor B) = \max\{v(A), v(B)\}$$

$$v(A \rightarrow B) = \min\{1, 1 - v(A) + v(B)\}$$

Definition

- let $V \subseteq [0,1]$ be truth values containing 0,1
- a Lukasiewicz assignment (based on V) is a mapping v: AT \rightarrow V
- v is extended to a valuation of formulas as follows:

$$v(\neg A) = 1 - v(A)$$

$$v(A \land B) = \min\{v(A), v(B)\} \quad v(A \lor B) = \max\{v(A), v(B)\}$$

$$v(A \rightarrow B) = \min\{1, 1 - v(A) + v(B)\}$$

• A is valid if v(A) = 1 for all assignments based on V

Definition

- let $V \subseteq [0,1]$ be truth values containing 0,1
- a Lukasiewicz assignment (based on V) is a mapping v: AT \rightarrow V
- v is extended to a valuation of formulas as follows:

$$v(\neg A) = 1 - v(A)$$

$$v(A \land B) = \min\{v(A), v(B)\} \quad v(A \lor B) = \max\{v(A), v(B)\}$$

$$v(A \rightarrow B) = \min\{1, 1 - v(A) + v(B)\}$$

• A is valid if v(A) = 1 for all assignments based on V

Theorem

(finite- or infinite-valued) Lukasiewicz logic is finitely axiomatisable, that is, there exists a finite sound and complete proof system

Definition

- let $\textit{V} \subseteq [0,1]$ be truth values containing 0,1
- a Lukasiewicz assignment (based on V) is a mapping v: AT \rightarrow V
- v is extended to a valuation of formulas as follows:

$$v(\neg A) = 1 - v(A)$$

$$v(A \land B) = \min\{v(A), v(B)\} \quad v(A \lor B) = \max\{v(A), v(B)\}$$

$$v(A \rightarrow B) = \min\{1, 1 - v(A) + v(B)\}$$

• A is valid if v(A) = 1 for all assignments based on V

Theorem

- **1** (finite- or infinite-valued) Lukasiewicz logic is finitely axiomatisable, that is, there exists a finite sound and complete proof system
- 2 validity for Lukasiewicz logic is decidable (it is coNP-complete)

• in databases a third truth value is useful to model unknown data

- in databases a third truth value is useful to model unknown data
- let [0,1] be the set of truth values: values denotes a probabilities
- finite or infinite-valued logic are often called fuzzy logics

- in databases a third truth value is useful to model unknown data
- let [0,1] be the set of truth values: values denotes a probabilities
- finite or infinite-valued logic are often called fuzzy logics
- ∃ (subsets of first-order) infinite valued fuzzy logics based on [0,1] that are finitely axiomatisable and decidable

- in databases a third truth value is useful to model unknown data
- let [0,1] be the set of truth values: values denotes a probabilities
- finite or infinite-valued logic are often called fuzzy logics
- ∃ (subsets of first-order) infinite valued fuzzy logics based on [0, 1] that are finitely axiomatisable and decidable
- CADIA (Computer Assisted DIAGnosis) is a series of medical expert systems developed at the Vienna Medical University (since 1980's)

IF suspicion of liver metastases by liver palpation THEN pancreatic cancer

with degree of confirmation 0.3

- in databases a third truth value is useful to model unknown data
- let [0,1] be the set of truth values: values denotes a probabilities
- finite or infinite-valued logic are often called fuzzy logics
- ∃ (subsets of first-order) infinite valued fuzzy logics based on [0, 1] that are finitely axiomatisable and decidable
- CADIA (Computer Assisted DIAGnosis) is a series of medical expert systems developed at the Vienna Medical University (since 1980's)

IF suspicion of liver metastases by liver palpation THEN pancreatic cancer

with degree of confirmation 0.3

- inference system of CADIAG-2 can be expressed as a infinite valued fuzzy logics
- representation showed inconsistencies in CADIAG-2