Automated Reasoning

Organisation

Georg Moser

Office Hours
Thursday, 9:00-11:00, 3M09, Ifl Building

Outline of the Module

Advanced Topics in Logic
for example

- compactness
- model existence theorem
- Herbrand's Theorem
- Curry-Howard Isomorphism

Automated Reasoning
for example

- tableau provers
- redundancy and deletion
- superposition
- Robbins problem

Outline of the Lecture "Computational Logic"

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic
introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic
Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic
Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

GM (Institute of Computer Science © UIBK)
Automated Reasoning

Organisation

Literature

- lecture notes
(2nd edition)

\square

Additional Reading

- G.S. Boolos, J.P. Burgess, and R.C. Jeffrey Computability and Logic
Cambridge University Press, 2007
- H.-D. Ebbinghaus, J. Flum, and W. Thomas Einführung in die mathematische Logik Spektrum Akademischer Verlag, 2007
- A. Leitsch

The Resolution Calculus
Springer-Verlag, 2007

- papers, distributed during the course

Organisation

Outline of the Lecture "Automated Theorem Proving"

Early Approaches in Automated Reasoning
short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points
resolution, tableau provers, structural Skolemisation, redundancy and deletion

Automated Reasoning with Equality
ordered resolution, paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, Robbins problem, resolution and paramodulation as decision procedure, ...

Time and Place (cont'd)		
Computational Logic	Wednesday, 13:15-15:00	3W03
Automated Theorem Proving	Wednesday, 15:15-17:00	3W03
exercise class	Wednesday, 17:15-18:00	$3 W 03$

Automated Reasoning Block
block
Wednesday, 13:15-18:00 3W03

Comments

- officially there are two lectures and one exercise group
- this is nonsense, as the course on theorem proving is based on the course on logic
- suggestion: we start with logic, if we are finished, we continue with theorem proving
- typical scheduling of the block: lecture, exercises, lecture

Introduction

What is Logic?

```
Argument (1)
    1. a mother or father of a person is an ancestor of that person
    2 an ancestor of an ancestor of a person is an ancestor of a person
    3 Sarah is the mother of Isaac, Isaac is the father of Jacob
    4 Thus, Sarah is an ancestor of Jacob
```

Argument (2)
1 a square or cube of a number is a power of that number
2 a power of a power of a number is a power of that number
364 is the cube of 4 , four is the square of 2
4 Thus, 64 is a power of 2
logic tells us that argument (1) $=$ argument (2)

Introduction

Another Picture

SAT technology

- a Minesweeper solver can be coded by using a SAT solver
- verifying the correctness of a given Minesweeper configuration is an NP-complete problem
Church)

A More Serious Answer

Application (1): Program Analysis

- abstract interpretations represent the behaviour of programs
- logical products of interpretations allows the automated combination of simple interpreters
- based on Nelson-Oppen methodology

Application (2): Databases

- datalog is a declarative language and syntactically it is a subset of Prolog; used in knowledge representation systems
- disjunctive datalog is an extension of datalog that allows disjunctions in heads of rules
- disjunctive datalog is a strict extension of SQL
- (disjunctive) datalog forms the basis of semantic web applications and has connections to description logics and ontologies

Introduction

(Disjunctive) Datalog

- datalog is a subset of Horn logic; hence minimal model of any datalog program is unique
- datalog rules can be translated into inclusions in relational databases
- datalog extends positive relational algebras
- disjunctive datalog extends datalog, but remains decidable
- disjunctive datalog can be extended with negation

Complexity results

- expression complexity of datalog is EXPTIME-complete
- expression complexity for disjunctive datalog (with \neg) is NEXPTIME ${ }^{\text {NP }}$-complete
- problems complete for NEXPTIME ${ }^{\text {NP }}$ can (only) be solved on an NTM with NP-oracle running in exponential time

Application (3): Types as Formulas

- the type checking in simple λ-calculus is equivalent to derivability in intuitionistic logic
- intuitionistic logic is a (sort of) constructive restriction of classical logic
- this correspondence is called Curry-Howard isomorphism
- the Curry-Howard correspondence can be extended to richer programming languages (and logics)

Application (4): Complexity Theory

- NP is the class of problems decidable by a NTM that runs in polynomial time
- this characterisation explicitly refers to a bound
- alternatively NP can be characterised as the class of existential second-order sentence
- completeness for NP of SAT becomes trivial

Questions

- what is the truth value of the following propositional formula

$$
(p \rightarrow \neg q) \rightarrow(\neg q \rightarrow \neg p)
$$

- give an informal explanation of the following two first-order formulas

$$
\forall x \exists y A(x, y) \quad \exists y \forall x(x<y)
$$

- consider Skolemisation, is the following formula the Skolem normal form of $\forall x \exists y A(x, y)$?

$$
\forall x \forall y A(x, f(x))
$$

BoolTool

- BoolTool is a web-interfaced based tool for manipulation and transformation of formulas in propositional logic
- available at http://cl-informatik.uibk.ac.at/software/booltool/
- do the following equivalences hold (and how to verify this)?

$$
\forall x \forall y A(x, f(x)) \approx \forall x \exists y A(x, y) \approx \exists x \forall y A(x, y)
$$

- can we express the following statement about a given graph \mathcal{G} in first-order logic?
let s and t be nodes in \mathcal{G}, then there exists a path of length at most 3 from s to t

Outline of the Lecture

Propositional Logic
short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic
Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic
Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic
let $p_{1}, p_{2}, \ldots, p_{j}, \ldots$ denote an infinite set of propositional atoms, denoted by p, q, r; the set of atoms is denoted by AT; T, \perp are truth constants

Definition

the propositional connectives are
\qquad
Definition
(propositional) formulas are defined as follows

- a propositional atom p and a truth constant is a formula
- if A, B are formulas, then

$$
\neg A \quad(A \wedge B) \quad(A \vee B) \quad(A \rightarrow B)
$$

are formulas
we use precedence: $\neg>\vee, \wedge>\rightarrow$; right-associativity of \rightarrow
GM (Institute of Computer Science © UIBK)

Semantics

Definition
we write $\vDash A$, instead of $\varnothing \models A$ and call A a tautology or valid

Example
let $v(p)=T, v(q)=F$, then

$$
\mathrm{v}(A)=\mathrm{v}((p \rightarrow \neg q) \rightarrow(\neg q \rightarrow \neg p))=\mathrm{F}
$$

Definition

- the provability relation \vdash asserts that B is derived from A_{1}, \ldots, A_{n} in a formal calculus for propositional logic
- (propositional) natural deduction is an example of such a calculus
- we write $A_{1}, \ldots, A_{n} \vdash B$, if B is derivable from A_{1}, \ldots, A_{n}
- we write $\vdash B$ instead of $\varnothing \vdash B$
- B is called provable, if $\vdash B$ holds

The Semantics of Propositional Logic

Example
the following expression A is a formula

$$
(p \rightarrow \neg q) \rightarrow(\neg q \rightarrow \neg p)
$$

Definition

- we write T, F for the two truth values
- an assignment $\mathrm{v}: \mathrm{AT} \rightarrow\{\mathrm{T}, \mathrm{F}\}$ maps atoms to truth values
- we write $v(A)$ for valuation of A, the extension of the assignment to formulas

Definition
the consequence relation \vDash asserts that $\mathrm{v}(B)=\mathrm{T}$, whenever $\mathrm{v}\left(A_{1}\right), \ldots$, $v\left(A_{n}\right)$ is true for any assignment v, denoted as $A_{1}, \ldots, A_{n} \models B$
GM (Institute of Computer Science © UIBK; Automated Reasoning

Semantics

Why Syntax \& Semantics?

Question (1)
why is it not enough to know when a formula is true, why do we need a "formal calculus"?

Question (2)
what is the connection here:

$$
A_{1}, \ldots, A_{n} \vdash B \Longleftrightarrow A_{1}, \ldots, A_{n} \models B
$$

Answer

1 historically the proof systems were first
2 study of proof systems led to efficient SAT techniques
3 in designing new logics for applications one starts with the rules, typically the semantics comes later

Soundness \& Completeness

Theorem

- \exists provability relations \vdash such that the following holds:

$$
A_{1}, \ldots, A_{n} \vdash B \Longleftrightarrow A_{1}, \ldots, A_{n} \models B
$$

- we say the calculus underlying \vdash is sound and complete
- we say propositional logic is (finitely) axiomatised by such a (finite) formal system

Example
natural deduction for propositional logic

Soundness \& Completeness

Natural Deduction (cont'd)

	introduction	elimination
\neg		$\frac{F \quad \neg F}{\perp} \neg: \mathrm{e}$
\perp		$\begin{gathered} \frac{\perp}{F} \perp: \mathrm{e} \\ \frac{\neg \neg F}{F} \neg \neg: \mathrm{e} \end{gathered}$

Natural Deduction

Soundness \& Completeness
Example
derivation of Pierce's law $((p \rightarrow q) \rightarrow p) \rightarrow p$

1	$((p \rightarrow q) \rightarrow p)$	assumption
2	$\neg p$	assumption
3	p	assumption
4	\perp	2, \neg elimination
5	q	\perp elimination
6	$p \rightarrow q$	\rightarrow introduction
7	p	$1, \rightarrow$ elimination
8	\perp	2, $ᄀ$ elimination
9	p	derived rule
0	$((p \rightarrow q) \rightarrow p)$	1, \rightarrow introduction

Theorem
let $A \rightarrow B$ be valid, $\exists C$ such that $A \rightarrow C, C \rightarrow B$ valid
interpolant C contains only variables that occur in A and B

Propositional Resolution

Propositional Resolution

Definition

- a literal is a propositional atom p or its negation $\neg p$
- a formula F is in conjunctive normal form (CNF) if F is a conjunction of disjunctions of literals
formulas A, B are (logically) equivalent $(A \equiv B)$ if $A \models B$ and $B \models A$
Lemma
\forall formula $A \exists$ formula B in CNF such that $A \equiv B$

Definition

a clause is disjunction of literals

- \square is a clause
- literals are clauses
- if C, D are clauses, then $C \vee D$ is a clause

Propositional Resolution

Observation
(propositional) resolution is a refutation based technique; not competitive with SAT solvers

Lemma

resolution is sound and complete; more precisely if F is a formula and \mathcal{C} its clause form, then F is unsatisfiable iff $\square \in \operatorname{Res}^{*}(\mathcal{C})$

Example

$$
\frac{\frac{p \vee \neg q \vee r \quad \neg p \vee r}{\neg \vee \vee r \vee r}}{\frac{\neg q \vee q \vee r}{\frac{r}{~ q}}}
$$

the clause set \mathcal{C} is refutable, hence the CNF represented is unsatisfiable

$$
(q \vee r) \wedge(p \vee \neg q \vee r) \wedge(\neg p \vee r) \wedge \neg r
$$

Convention
we use: $p \equiv \neg \neg p, \square \vee \square \equiv \square, C \vee \square \vee D \equiv C \vee D \equiv D \vee C$
Example
$\neg \mathrm{p}, \mathrm{p} \vee \mathrm{q}, \mathrm{p} \vee \neg \mathrm{q} \vee \mathrm{r}, \square, \neg \neg \mathrm{p} \vee \mathrm{q}$ are clauses; $\neg \neg \mathrm{p} \vee \mathrm{q} \equiv \mathrm{q} \vee \mathrm{p}$

Definition
factoring

$$
\frac{C \vee p \quad D \vee \neg p}{C \vee D}
$$

$$
\frac{C \vee I \vee I}{C \vee I} \quad I \text { a literal }
$$

let \mathcal{C} be a set of clauses; define resolution operator $\operatorname{Res}(\mathcal{C})$

- $\operatorname{Res}(\mathcal{C})=\{D \mid D$ is resolvent or factor with premises in $\mathcal{C}\}$
- $\operatorname{Res}^{0}(\mathcal{C})=\mathcal{C}$
- $\operatorname{Res}^{n+1}(\mathcal{C}):=\operatorname{Res}^{n}(\mathcal{C}) \cup \operatorname{Res}\left(\operatorname{Res}^{n}(\mathcal{C})\right)$
- $\operatorname{Res}^{*}(\mathcal{C}):=\bigcup_{n \geqslant 0} \operatorname{Res}^{n}(\mathcal{C})$

GM (Institute of Computer Science @ UIBK

Application

Many-Valued Propositional Logics
Question
why do we have only two truth values?

Answer												
no reason, lets have three: $0, \frac{1}{2}, 1$												
\neg		\wedge	$0 \quad \frac{1}{2}$	1	\checkmark	0	$\frac{1}{2}$	1	\rightarrow	0	$\frac{1}{2}$	1
0	1	0	00	0	0	0	$\frac{1}{2}$	1	0	1	1	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$0 \quad \frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	2	1	1
1	0	1	$0 \frac{1}{2}$	1	1	1	1	1	1	0		

Example

three-valued logic is employed in SQL to handle unknown values

Definition

- let $V \subseteq[0,1]$ be truth values containing 0,1
- a Lukasiewicz assignment (based on V) is a mapping v: AT $\rightarrow V$
- v is extended to a valuation of formulas as follows:

$$
\begin{aligned}
\mathrm{v}(\neg A) & =1-\mathrm{v}(A) \\
\mathrm{v}(A \wedge B) & =\min \{\mathrm{v}(A), \mathrm{v}(B)\} \quad \mathrm{v}(A \vee B)=\max \{\mathrm{v}(A), \mathrm{v}(B)\} \\
\mathrm{v}(A \rightarrow B) & =\min \{1,1-\mathrm{v}(A)+\mathrm{v}(B)\}
\end{aligned}
$$

- A is valid if $v(A)=1$ for all assignments based on V

Theorem

1 (finite- or infinite-valued) Lukasiewicz logic is finitely axiomatisable, that is, there exists a finite sound and complete proof system
2 validity for Lukasiewicz logic is decidable (it is coNP-complete)

Application of Many-Valued Logics

- in databases a third truth value is useful to model unknown data
- let $[0,1]$ be the set of truth values: values denotes a probabilities
- finite or infinite-valued logic are often called fuzzy logics
- \exists (subsets of first-order) infinite valued fuzzy logics based on $[0,1]$ that are finitely axiomatisable and decidable
- CADIA (Computer Assisted DIAGnosis) is a series of medical expert systems developed at the Vienna Medical University (since 1980's)

IF suspicion of liver metastases by liver palpation THEN pancreatic cancer
with degree of confirmation 0.3

- inference system of CADIAG-2 can be expressed as a infinite valued fuzzy logics
- representation showed inconsistencies in CADIAG-2

