

Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

Summary Last Lecture

- let A be closed and rectified
- we define the mapping rsk as follows:

$$\mathsf{rsk}(A) = \begin{cases} A & \text{no existential quant. in } A \\ \mathsf{rsk}(A_{-\exists y}) \{ y \mapsto f(x_1, \dots, x_n) \} & \forall x_1, \dots, \forall x_n <_A \exists y \end{cases}$$

- $\exists y$ is the first existential quantifier in A
- 2 $A_{-\exists y}$ denotes A after omission of $\exists y$
- 3 the Skolem function symbol f is fresh
- the formula rsk(A) is the (refutational) structural Skolem form of A

Theorem

- **1** \exists a set of sentences \mathcal{D}_n with $HC(\mathcal{D}'_n)=2^{2^{2^{O(n)}}}$ for the structural Skolem form \mathcal{D}'_n
- 2 $HC(\mathcal{D}''_n) \geqslant \frac{1}{2}2_n$ for the prenex Skolem form

Definition (Optimised Skolemisation)

- let A be a sentence in NNF and $B = \exists x_1 \cdots x_k (E \land F)$ a subformula of A with \mathcal{FV} ar $(\exists \vec{x}(E \land F)) = \{y_1, \dots, y_n\}$
- suppose *A* = *C*[*B*]
- suppose $A \to \forall y_1, \dots, y_n \exists x_1 \dots x_k E$ is valid
- we define an optimised Skolemisation step as follows

$$\mathsf{opt_step}(A) = \forall \vec{y} E \{ \dots, x_i \mapsto f_i(\vec{y}), \dots \} \land C[F \{ \dots, x_i \mapsto f_i(\vec{y}), \dots \}]$$

where f_1, \ldots, f_k are new Skolem function symbols

Outline of the Lecture

Early Approaches in Automated Reasoning

short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, . . .

Outline of the Lecture

Early Approaches in Automated Reasoning

short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, . . .

• a proper order is a irreflexive and transitive relation

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive
- a partial order is an anti-symmetric quasi-order

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive
- a partial order is an anti-symmetric quasi-order
- a proper order

 on a set A is well-founded (on A) if

$$\neg \exists \ a_1 \succ a_2 \succ \cdots \qquad a_i \in A$$

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive
- a partial order is an anti-symmetric quasi-order
- a proper order \succ on a set A is well-founded (on A) if

$$\neg \exists \ a_1 \succ a_2 \succ \cdots \qquad a_i \in A$$

a well-founded order is a well-founded proper order

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive
- a partial order is an anti-symmetric quasi-order
- a proper order \succ on a set A is well-founded (on A) if

$$\neg \exists \ a_1 \succ a_2 \succ \cdots \qquad a_i \in A$$

- a well-founded order is a well-founded proper order
- a linear (or total) order fulfills:

 $\forall a, b \in A, a \neq b$, either $a \succ b$ or $b \succ a$

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive
- a partial order is an anti-symmetric quasi-order
- a proper order \succ on a set A is well-founded (on A) if

$$\neg \exists \ a_1 \succ a_2 \succ \cdots \qquad a_i \in A$$

- a well-founded order is a well-founded proper order
- a linear (or total) order fulfills: $\forall a, b \in A, a \neq b$, either $a \succ b$ or $b \succ a$
- a well-order is a linear well-founded order

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive
- a partial order is an anti-symmetric quasi-order
- a proper order

 on a set A is well-founded (on A) if

$$\neg \exists \ a_1 \succ a_2 \succ \cdots \qquad a_i \in A$$

- a well-founded order is a well-founded proper order
- a linear (or total) order fulfills: $\forall a, b \in A, a \neq b$, either $a \succ b$ or $b \succ a$
- a well-order is a linear well-founded order

Example

 \geqslant on $\mathbb N$ is a partial order; we often write $(\mathbb N,\geqslant)$ to indicate the domain; $(\mathbb N,\geqslant)$ is not well-founded, but $(\mathbb N,>)$ is a well-order

Orders on Literals

Definition

ullet let \succ be a well-founded and total order on ground atomic formulas

Orders on Literals

- \bullet let \succ be a well-founded and total order on ground atomic formulas
- extend

 to a well-founded proper order

 L total on ground literals such that:
 - 1 if $A \succ B$, then $A \succ_{\mathsf{L}} B$ and $\neg A \succ_{\mathsf{L}} \neg B$
 - $2 \neg A \succ_{\mathsf{L}} A$

- ullet let \succ be a well-founded and total order on ground atomic formulas
- extend

 to a well-founded proper order

 total on ground literals such that:
 - 1 if $A \succ B$, then $A \succ_{\mathsf{L}} B$ and $\neg A \succ_{\mathsf{L}} \neg B$
 - $2 \neg A \succ_{\mathsf{L}} A$

Example

- identify an atom A with the multiset $\{A\}$ and $\neg A$ with $\{A, A\}$
- set $\succ_{\mathsf{I}} = \succ^{\mathrm{mul}}$
- ≻₁ fulfills the above conditions

Definition

 σ is ground if $E\sigma$ is ground

• a literal L is maximal if \exists ground σ such that for no other literal M: $M\sigma \succ_{\mathsf{L}} L\sigma$

Definition

 σ is ground if $E\sigma$ is ground

- a literal L is maximal if \exists ground σ such that for no other literal M: $M\sigma \succ_{\mathsf{L}} L\sigma$
- *L* is strictly maximal if \exists ground σ such that for no other literal *M*: $M\sigma \succcurlyeq_{L} L\sigma$; here \succcurlyeq_{L} denotes the reflexive closure

Definition

 σ is ground if $E\sigma$ is ground

- a literal L is maximal if \exists ground σ such that for no other literal M: $M\sigma \succ_{\mathsf{L}} L\sigma$
- *L* is strictly maximal if \exists ground σ such that for no other literal *M*: $M\sigma \succcurlyeq_{\mathsf{L}} L\sigma$; here $\succcurlyeq_{\mathsf{L}}$ denotes the reflexive closure

Definition

ordered resolution

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma}$$

ordered factoring

$$\frac{C \vee A \vee B}{(C \vee A)\sigma}$$

 \blacksquare σ is a mgu of the atomic formulas A and B

Definition

 σ is ground if $E\sigma$ is ground

- a literal L is maximal if \exists ground σ such that for no other literal M: $M\sigma \succ_{\mathsf{L}} L\sigma$
- *L* is strictly maximal if \exists ground σ such that for no other literal *M*: $M\sigma \succcurlyeq_{\mathsf{L}} L\sigma$; here $\succcurlyeq_{\mathsf{L}}$ denotes the reflexive closure

Definition

ordered resolution

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma}$$

ordered factoring

$$\frac{C \vee A \vee B}{(C \vee A)\sigma}$$

- \blacksquare σ is a mgu of the atomic formulas A and B
- 2 $A\sigma$ is strictly maximal with respect to $C\sigma$; $\neg B\sigma$ is maximal with respect to $D\sigma$

Example

consider the clause set (constants a, b, predicates P, Q, R, S)

$$P(x) \lor Q(x) \lor R(x,y) \qquad \neg P(x) \qquad \neg Q(a)$$

$$S(a,y) \lor \neg R(a,y) \lor S(x,b) \qquad \neg S(a,b) \lor \neg R(a,b)$$

together with the atom order $\mathsf{P}(t_1) \succ \mathsf{Q}(t_2) \succ \mathsf{S}(t_3,t_4) \succ \mathsf{R}(t_5,t_6)$

Example

П

consider the clause set (constants a, b, predicates P, Q, R, S)

$$P(x) \lor Q(x) \lor R(x,y) \qquad \neg P(x) \qquad \neg Q(a)$$

$$S(a,y) \lor \neg R(a,y) \lor S(x,b) \quad \neg S(a,b) \lor \neg R(a,b)$$

together with the atom order $P(t_1) \succ Q(t_2) \succ S(t_3, t_4) \succ R(t_5, t_6)$

$$\frac{\mathsf{P}(x) \vee \mathsf{Q}(x) \vee \mathsf{R}(x,y) \quad \neg \mathsf{P}(x)}{\mathsf{Q}(x) \vee \mathsf{R}(x,y) \qquad \neg \mathsf{Q}(\mathsf{a})} \quad \sigma = \{x \mapsto \mathsf{a}\}$$

$$\frac{S(\mathsf{a},y) \vee \neg \mathsf{R}(\mathsf{a},y) \vee S(x,\mathsf{b})}{S(\mathsf{a},\mathsf{b}) \vee \neg \mathsf{R}(\mathsf{a},\mathsf{b})} \, \sigma_1 \quad \neg \mathsf{S}(\mathsf{a},\mathsf{b}) \vee \neg \mathsf{R}(\mathsf{a},\mathsf{b})}{\frac{\neg \mathsf{R}(\mathsf{a},\mathsf{b}) \vee \neg \mathsf{R}(\mathsf{a},\mathsf{b})}{\neg \mathsf{R}(\mathsf{a},\mathsf{b})}} \\ \frac{\mathsf{R}(\mathsf{a},y)}{\mathsf{R}(\mathsf{a},y)} \, \frac{\neg \mathsf{R}(\mathsf{a},\mathsf{b}) \vee \neg \mathsf{R}(\mathsf{a},\mathsf{b})}{\neg \mathsf{R}(\mathsf{a},\mathsf{b})} \, \sigma_2}$$

• define the ordered resolution operator $Res_{OR}(C)$ as follows:

 $Res_{OR}(C) = \{D \mid D \text{ is ordered res./factor with premises in } C\}$

- define the ordered resolution operator $Res_{OR}(C)$ as follows:
 - $Res_{OR}(C) = \{D \mid D \text{ is ordered res./factor with premises in } C\}$
- nth (unrestricted) iteration Resⁿ_{OR} (Res^{*}_{OR}) of the operator Res_{OR} is defined as for unrestricted resolution

- define the ordered resolution operator $Res_{OR}(C)$ as follows:
 - $Res_{OR}(C) = \{D \mid D \text{ is ordered res./factor with premises in } C\}$
- nth (unrestricted) iteration Resⁿ_{OR} (Res^{*}_{OR}) of the operator Res_{OR} is defined as for unrestricted resolution

Theorem

ordered resolution is sound and complete; let F be a sentence and C its clause form; then F is unsatisfiable iff $\Box \in \mathsf{Res}^*_\mathsf{OR}(\mathcal{C})$

- define the ordered resolution operator $Res_{OR}(C)$ as follows:
 - $Res_{OR}(C) = \{D \mid D \text{ is ordered res./factor with premises in } C\}$
- *n*th (unrestricted) iteration Resⁿ_{OR} (Res^{*}_{OR}) of the operator Res_{OR} is defined as for unrestricted resolution

Theorem

ordered resolution is sound and complete; let F be a sentence and C its clause form; then F is unsatisfiable iff $\Box \in \mathsf{Res}^*_\mathsf{OR}(\mathcal{C})$

- define the ordered resolution operator $Res_{OR}(C)$ as follows:
 - $Res_{OR}(C) = \{D \mid D \text{ is ordered res./factor with premises in } C\}$
- nth (unrestricted) iteration Resⁿ_{OR} (Res^{*}_{OR}) of the operator Res_{OR} is defined as for unrestricted resolution

Theorem

ordered resolution is sound and complete; let F be a sentence and C its clause form; then F is unsatisfiable iff $\Box \in \mathsf{Res}^*_\mathsf{OR}(\mathcal{C})$

Proof P \mathcal{C} set of consistent ground clauses $\Rightarrow \mathcal{C}$ admits satisfaction properties + lifting lemmas + lemmas + completeness of ordered resolution

- define the ordered resolution operator $Res_{OR}(C)$ as follows:
 - $\mathsf{Res}_\mathsf{OR}(\mathcal{C}) = \{D \mid D \text{ is ordered res./factor with premises in } \mathcal{C}\}$
- *n*th (unrestricted) iteration Resⁿ_{OR} (Res^{*}_{OR}) of the operator Res_{OR} is defined as for unrestricted resolution

Theorem

ordered resolution is sound and complete; let F be a sentence and C its clause form; then F is unsatisfiable iff $\Box \in \mathsf{Res}^*_\mathsf{OR}(\mathcal{C})$

- let \mathcal{G} be a set of universal sentences (of \mathcal{L}) without =
- \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):
 - **1** ∃ finite subset $S \subseteq Gr(\mathcal{G})$; conjunction $\bigwedge S$ is unsatisfiable
 - \supseteq \exists finite subset $S \subseteq Gr(\mathcal{G})$; disjunction $\bigvee \{ \neg A \mid A \in S \}$ is valid

- let \mathcal{G} be a set of universal sentences (of \mathcal{L}) without =
- \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):
 - **1** ∃ finite subset $S \subseteq Gr(\mathcal{G})$; conjunction $\bigwedge S$ is unsatisfiable
 - **2** \exists finite subset $S \subseteq Gr(\mathcal{G})$; disjunction $\bigvee \{ \neg A \mid A \in S \}$ is valid

Proof of Completeness.

1 extend \succ_L to an order on clauses \succ_C

- let $\mathcal G$ be a set of universal sentences (of $\mathcal L$) without =
- \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):
 - **1** ∃ finite subset $S \subseteq Gr(\mathcal{G})$; conjunction $\bigwedge S$ is unsatisfiable
 - **2** \exists finite subset $S \subseteq Gr(\mathcal{G})$; disjunction $\bigvee \{ \neg A \mid A \in S \}$ is valid

Proof of Completeness.

- **1** extend \succ_{L} to an order on clauses \succ_{C}
- 2 a clause set C is maximal if

$$\neg \exists \mathcal{D} = \mathcal{D}' \cup \{D\} \ (\mathcal{C} = \mathcal{D}' \cup \{D_1, \dots, D_n\}, \forall i \ D \succ_{\mathsf{C}} D_i$$
 and there is no $E \in \mathcal{D}', E \succ_{\mathsf{C}} D)$

- let $\mathcal G$ be a set of universal sentences (of $\mathcal L$) without =
- \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):
 - **1** \exists finite subset $S \subseteq Gr(\mathcal{G})$; conjunction $\bigwedge S$ is unsatisfiable
 - **2** \exists finite subset $S \subseteq Gr(\mathcal{G})$; disjunction $\bigvee \{ \neg A \mid A \in S \}$ is valid

Proof of Completeness.

- **1** extend \succ_L to an order on clauses \succ_C
- 2 a clause set C is maximal if

$$\neg \exists \mathcal{D} = \mathcal{D}' \cup \{D\} \ (\mathcal{C} = \mathcal{D}' \cup \{D_1, \dots, D_n\}, \forall i \ D \succ_{\mathsf{C}} D_i$$
 and there is no $E \in \mathcal{D}', E \succ_{\mathsf{C}} D)$

 ${f 3}$ choose a maximal unsatisfiable clause set ${\cal C}$ continue according to proof plan

- let $\mathcal G$ be a set of universal sentences (of $\mathcal L$) without =
- \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):
 - **1** \exists finite subset *S* ⊆ Gr(\mathcal{G}); conjunction $\bigwedge S$ is unsatisfiable
 - **2** \exists finite subset $S \subseteq Gr(\mathcal{G})$; disjunction $\bigvee \{ \neg A \mid A \in S \}$ is valid

Proof of Completeness.

- **1** extend \succ_L to an order on clauses \succ_C
- 2 a clause set $\mathcal C$ is maximal if

$$\neg \exists \mathcal{D} = \mathcal{D}' \cup \{D\} \ (\mathcal{C} = \mathcal{D}' \cup \{D_1, \dots, D_n\}, \forall i \ D \succ_{\mathsf{C}} D_i$$
 and there is no $E \in \mathcal{D}', E \succ_{\mathsf{C}} D)$

- f 3 choose a maximal unsatisfiable clause set $\cal C$ continue according to proof plan
- this proves ground completeness; completeness follows by reformulation of the lifting lemmas

Lock Resolution

Definition

a pair (L, i), L a literal, $i \in \mathbb{N}$ is a indexed literal; different literals are indexed with different numbers

Lock Resolution

Definition

a pair (L, i), L a literal, $i \in \mathbb{N}$ is a indexed literal; different literals are indexed with different numbers

Definition

lock resolution

$$\frac{C \vee (A,i) \quad D \vee (\neg B,j)}{(C \vee D)\sigma}$$

lock factoring

$$\frac{C \vee (A,i) \vee (B,j')}{(C \vee (A,i))\sigma}$$

Lock Resolution

Definition

a pair (L, i), L a literal, $i \in \mathbb{N}$ is a indexed literal; different literals are indexed with different numbers

Definition

lock resolution

$$\frac{C \vee (A,i) \quad D \vee (\neg B,j)}{(C \vee D)\sigma}$$

lock factoring

$$\frac{C \vee (A,i) \vee (B,j')}{(C \vee (A,i))\sigma}$$

11 σ is a mgu of the atomic formulas A and B

Lock Resolution

Definition

a pair (L, i), L a literal, $i \in \mathbb{N}$ is a indexed literal; different literals are indexed with different numbers

Definition

lock resolution

$$\frac{C \vee (A,i) \quad D \vee (\neg B,j)}{(C \vee D)\sigma}$$

lock factoring

$$\frac{C \vee (A,i) \vee (B,j')}{(C \vee (A,i))\sigma}$$

- $oldsymbol{1}$ σ is a mgu of the atomic formulas A and B
- 2 *i* is minimal with respect to C; *j* is minimal with respect to D

Lock Resolution

Definition

a pair (L, i), L a literal, $i \in \mathbb{N}$ is a indexed literal; different literals are indexed with different numbers

Definition

lock resolution

$$\frac{C \vee (A,i) \quad D \vee (\neg B,j)}{(C \vee D)\sigma}$$

lock factoring

$$\frac{C \vee (A,i) \vee (B,j')}{(C \vee (A,i))\sigma}$$

- $oxed{1} \sigma$ is a mgu of the atomic formulas A and B
- 2 i is minimal with respect to C; j is minimal with respect to D

Remark

indexing represents an a priori literal order, blind on substitutions

consider the indexed clause set
$$\mathcal{C} = \{\neg P(x), \neg Q(a), \neg S(a, b) \lor \neg R(a, b), P(x) \lor Q(x) \lor R(x, y), S(a, y) \lor \neg R(a, y) \lor S(x, b)\}$$

П

consider the indexed clause set
$$\mathcal{C} = \{ \neg P(x), \neg Q(a), \neg S(a, b) \lor \neg R(a, b), P(x) \lor Q(x) \lor R(x, y), S(a, y) \lor \neg R(a, y) \lor S(x, b) \}$$

$$\frac{P(x) \vee Q(x) \vee R(x,y) - P(x)}{Q(x) \vee R(x,y)} \frac{Q(x) \vee R(x,y) - P(x)}{Q(x) \vee R(x,y)} \sigma = \{x \mapsto a\}$$

$$\frac{S(\overset{6}{a},y)\vee\neg R(\overset{9}{a},y)\vee S(\overset{7}{x},b)}{S(\overset{5}{a},b)\vee\neg R(\overset{8}{a},b)}\sigma_{1}} \underbrace{\sigma_{1}}_{S(\overset{5}{a},b)\vee\neg R(\overset{8}{a},b)}\underbrace{\sigma_{2}}_{S(\overset{6}{a},b)}\sigma_{2}}$$

GM (Institute of Computer Science @ UIBK)

R(a, y)

• define the lock resolution operator $Res_L(C)$ as follows:

 $Res_L(C) = \{D \mid D \text{ is lock res./factor with premises in } C\}$

- define the lock resolution operator $Res_L(\mathcal{C})$ as follows:
 - $Res_L(\mathcal{C}) = \{D \mid D \text{ is lock res./factor with premises in } \mathcal{C}\}$
- n^{th} (unrestricted) iteration $\operatorname{Res}_{1}^{n}$ ($\operatorname{Res}_{1}^{*}$) of the operator Res_{L} is defined as for unrestricted resolution

- define the lock resolution operator $Res_L(C)$ as follows:
 - $\mathsf{Res}_{\mathsf{L}}(\mathcal{C}) = \{D \mid D \text{ is lock res./factor with premises in } \mathcal{C}\}$
- nth (unrestricted) iteration Resⁿ_L (Res^{*}_L) of the operator Res_L is defined as for unrestricted resolution

Theorem

lock resolution is sound and complete; let F be a sentence and C its clause form; then F is unsatisfiable iff $\Box \in \mathsf{Res}^*_\mathsf{L}(C)$

- define the lock resolution operator $Res_L(C)$ as follows:
 - $\mathsf{Res}_\mathsf{L}(\mathcal{C}) = \{D \mid D \text{ is lock res./factor with premises in } \mathcal{C}\}$
- nth (unrestricted) iteration Resⁿ_L (Res^{*}_L) of the operator Res_L is defined as for unrestricted resolution

Theorem

lock resolution is sound and complete; let F be a sentence and C its clause form; then F is unsatisfiable iff $\square \in \mathsf{Res}^*_\mathsf{L}(C)$

Proof.

lock resolution is a refinement, thus soundness is trivial; completeness follows as for ordered resolution

Redundancy and Deletion

Definition

define resolution operator Res(C)

- $Res(C) = \{D \mid D \text{ is resolvent or factor with premises in } C\}$
- $\operatorname{\mathsf{Res}}^0(\mathcal{C}) = \mathcal{C}$; $\operatorname{\mathsf{Res}}^{n+1}(\mathcal{C}) := \operatorname{\mathsf{Res}}^n(\mathcal{C}) \cup \operatorname{\mathsf{Res}}(\operatorname{\mathsf{Res}}^n(\mathcal{C}))$
- $\operatorname{Res}^*(\mathcal{C}) := \bigcup_{n \geq 0} \operatorname{Res}^n(\mathcal{C})$

Redundancy and Deletion

Definition

define resolution operator Res(C)

- $Res(C) = \{D \mid D \text{ is resolvent or factor with premises in } C\}$
- $\operatorname{\mathsf{Res}}^0(\mathcal{C}) = \mathcal{C}$; $\operatorname{\mathsf{Res}}^{n+1}(\mathcal{C}) := \operatorname{\mathsf{Res}}^n(\mathcal{C}) \cup \operatorname{\mathsf{Res}}(\operatorname{\mathsf{Res}}^n(\mathcal{C}))$
- $\operatorname{\mathsf{Res}}^*(\mathcal{C}) := \bigcup_{n \geqslant 0} \operatorname{\mathsf{Res}}^n(\mathcal{C})$

Definition

- let $d(C) = \min\{n \mid \Box \in \operatorname{Res}^n(C)\}\$
- the search complexity of Res wrt clause set \mathcal{C} is $\mathsf{scomp}(\mathcal{C}) = |\mathsf{Res}^{\mathsf{d}(\mathcal{C})}(\mathcal{C})|$

Redundancy and Deletion

Definition

define resolution operator Res(C)

- $Res(C) = \{D \mid D \text{ is resolvent or factor with premises in } C\}$
- $\operatorname{\mathsf{Res}}^0(\mathcal{C}) = \mathcal{C}$; $\operatorname{\mathsf{Res}}^{n+1}(\mathcal{C}) := \operatorname{\mathsf{Res}}^n(\mathcal{C}) \cup \operatorname{\mathsf{Res}}(\operatorname{\mathsf{Res}}^n(\mathcal{C}))$
- $\operatorname{\mathsf{Res}}^*(\mathcal{C}) := \bigcup_{n \geqslant 0} \operatorname{\mathsf{Res}}^n(\mathcal{C})$

Definition

- let $d(C) = \min\{n \mid \Box \in \operatorname{Res}^n(C)\}\$
- the search complexity of Res wrt clause set \mathcal{C} is $\mathsf{scomp}(\mathcal{C}) = |\mathsf{Res}^{\mathsf{d}(\mathcal{C})}(\mathcal{C})|$

Question

howto reduce the search complexity (of resolution refinements)?

three answers:

refinements consider refutational complete restrictions of resolution

three answers:

- refinements consider refutational complete restrictions of resolution
- redundancy tests redundancy can appear in the form of circular derivations or in that of tautology clauses

three answers:

- refinements consider refutational complete restrictions of resolution
- redundancy tests redundancy can appear in the form of circular derivations or in that of tautology clauses
- 3 heuristics

. .

three answers:

- refinements consider refutational complete restrictions of resolution
- redundancy tests redundancy can appear in the form of circular derivations or in that of tautology clauses
- 3 heuristics

Remarks

 refinements reduce the search space as fewer derivations are possible, however the minimal proof length may be increased

three answers:

- refinements consider refutational complete restrictions of resolution
- redundancy tests redundancy can appear in the form of circular derivations or in that of tautology clauses
- 3 heuristics

Remarks

- refinements reduce the search space as fewer derivations are possible, however the minimal proof length may be increased
- redundancy tests cannot increase the proof length, but may be costly call a clause D redundant in C if $\exists C_1, \ldots, C_k$ with $C_1, \ldots, C_k \models D$

application of subsumption and tautology elimination as pre-procession steps preserves completeness

application of subsumption and tautology elimination as pre-procession steps preserves completeness

Definition

subsumption and resolution can be combined in the following ways

1 forward subsumption newly derived clauses subsumed by existing clauses are deleted

application of subsumption and tautology elimination as pre-procession steps preserves completeness

Definition

subsumption and resolution can be combined in the following ways

- forward subsumption newly derived clauses subsumed by existing clauses are deleted
- backward subsumption existing clauses C subsumed by newly derived clauses D become inactive inactive clauses are reactivated, if D is no ancestor of current clause

application of subsumption and tautology elimination as pre-procession steps preserves completeness

Definition

subsumption and resolution can be combined in the following ways

- forward subsumption newly derived clauses subsumed by existing clauses are deleted
- 2 backward subsumption existing clauses C subsumed by newly derived clauses D become inactive inactive clauses are reactivated, if D is no ancestor of current clause
- replacement the set of all clauses (derived and intital) are frequently reduced under subsumption

application of subsumption and tautology elimination as pre-procession steps preserves completeness

Definition

subsumption and resolution can be combined in the following ways

- forward subsumption newly derived clauses subsumed by existing clauses are deleted
- 2 backward subsumption existing clauses C subsumed by newly derived clauses D become inactive inactive clauses are reactivated, if D is no ancestor of current clause
- 3 replacement the set of all clauses (derived and intital) are frequently reduced under subsumption

Tautology Elimination

Definition

- a clause C containing complementary literals is a tautology
- tautology elimination is the process of removing newly derived tautological clauses (that is, we assume the initial clause set is taut-reduced)

Tautology Elimination

Definition

- a clause C containing complementary literals is a tautology
- tautology elimination is the process of removing newly derived tautological clauses (that is, we assume the initial clause set is taut-reduced)

Example

consider the clause

$$P(f(a,b)) \vee \neg P(f(x,b)) \vee \neg P(f(a,y))$$

factoring yields the tautology $P(f(a,b)) \vee \neg P(f(a,b))$

consider the following (tautology free) clause set ${\mathcal C}$

$$P(x) \vee R(x) \quad R(x) \vee \neg P(x) \quad P(x) \vee \neg R(x) \quad \neg P(x) \vee \neg R(x)$$

we have $\mathsf{scomp}(\mathcal{C})=15$ for unrestricted resolution; however the following resolution steps derive tautologies

$$\frac{\mathsf{P}(x) \vee \mathsf{R}(x) \quad \neg \mathsf{P}(x) \vee \neg \mathsf{R}(x)}{\mathsf{P}(x) \vee \neg \mathsf{P}(x)} \qquad \frac{\mathsf{P}(x) \vee \mathsf{R}(x) \quad \neg \mathsf{P}(x) \vee \neg \mathsf{R}(x)}{\mathsf{R}(x) \vee \neg \mathsf{R}(x)}$$

consider the following (tautology free) clause set ${\mathcal C}$

$$P(x) \lor R(x) \quad R(x) \lor \neg P(x) \quad P(x) \lor \neg R(x) \quad \neg P(x) \lor \neg R(x)$$

we have $\mathsf{scomp}(\mathcal{C})=15$ for unrestricted resolution; however the following resolution steps derive tautologies

$$\frac{\mathsf{P}(x) \vee \mathsf{R}(x) \quad \neg \mathsf{P}(x) \vee \neg \mathsf{R}(x)}{\mathsf{P}(x) \vee \neg \mathsf{P}(x)} \qquad \frac{\mathsf{P}(x) \vee \mathsf{R}(x) \quad \neg \mathsf{P}(x) \vee \neg \mathsf{R}(x)}{\mathsf{R}(x) \vee \neg \mathsf{R}(x)}$$

Lemma

- 1 tautology elimination is incomplete for lock resolution
- 2 tautology elimination is complete for unrestricted and ordered resolution

- (ordered) resolution (for any admissible atom order) is complete under forward subsumption
- 2 forward subsumption does not increase the search complexity of (ordered) resolution

- (ordered) resolution (for any admissible atom order) is complete under forward subsumption
- 2 forward subsumption does not increase the search complexity of (ordered) resolution

Proof Sketch.

I let C', C, D', D be clauses such that C' subsumes C and D' subsumes D

- (ordered) resolution (for any admissible atom order) is complete under forward subsumption
- 2 forward subsumption does not increase the search complexity of (ordered) resolution

Proof Sketch.

- 1 let C', C, D', D be clauses such that C' subsumes C and D' subsumes D
- 2 one shows that if E is a resolvent of C and D, then one of the following cases happens:
 - C' subsumes E
 - D' subsumes E
 - \exists resolvent E' of C' and D' such that E' subsumes E

- (ordered) resolution (for any admissible atom order) is complete under forward subsumption
- 2 forward subsumption does not increase the search complexity of (ordered) resolution

Proof Sketch.

- 1 let C', C, D', D be clauses such that C' subsumes C and D' subsumes D
- 2 one shows that if E is a resolvent of C and D, then one of the following cases happens:
 - C' subsumes E
 - D' subsumes E
 - \exists resolvent E' of C' and D' such that E' subsumes E
- **3** using this observation in an inductive argument, completeness follows

- (ordered) resolution (for any admissible atom order) is complete under forward subsumption
- 2 forward subsumption does not increase the search complexity of (ordered) resolution

Proof Sketch.

- 1 let C', C, D', D be clauses such that C' subsumes C and D' subsumes D
- 2 one shows that if E is a resolvent of C and D, then one of the following cases happens:
 - C' subsumes E
 - D' subsumes E
 - \exists resolvent E' of C' and D' such that E' subsumes E
- using this observation in an inductive argument, completeness follows

lock resolution is not complete under forward subsumption

lock resolution is not complete under forward subsumption

Proof.

1 let *C*, *D* be indexed clauses; we say an *C* subsumes *D* if the the clause part of *C* subsumes the clause part of *D*

lock resolution is not complete under forward subsumption

Proof.

- let *C*, *D* be indexed clauses; we say an *C* subsumes *D* if the the clause part of *C* subsumes the clause part of *D*
- $oldsymbol{2}$ consider the following clause set $\mathcal C$

$$P(x) \vee R(x) = R(x) \vee P(x) = P(x) \vee P(x) = P(x) \vee P(x) \vee P(x) = P(x) \vee P(x) \vee P(x)$$

lock resolution is not complete under forward subsumption

Proof.

- let *C*, *D* be indexed clauses; we say an *C* subsumes *D* if the the clause part of *C* subsumes the clause part of *D*
- $oldsymbol{2}$ consider the following clause set $\mathcal C$

$$P(x) \vee R(x) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \vee \neg P(x) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \vee \neg P(x) \vee$$

 $lacksquare{3}$ the following clauses are derivable by lock resolution and essential to derive \Box

$$R(x) \vee \neg P(x)$$
 $\neg P(x) \vee \neg R(x)$

lock resolution is not complete under forward subsumption

Proof.

- let *C*, *D* be indexed clauses; we say an *C* subsumes *D* if the the clause part of *C* subsumes the clause part of *D*
- ${f 2}$ consider the following clause set ${\cal C}$

$$P(x) \vee R(x) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 1 &$$

 $lacksquare{3}$ the following clauses are derivable by lock resolution and essential to derive \Box

$$R(x) \vee \neg P(x)$$
 $\neg P(x) \vee \neg R(x)$

4 however these are subsumed by $R(x) \vee \neg P(x)$ and $\neg P(x) \vee \neg R(x)$ respectively

lock resolution is not complete under forward subsumption

Proof.

- I let C, D be indexed clauses; we say an C subsumes D if the the clause part of C subsumes the clause part of D
- ${f 2}$ consider the following clause set ${\cal C}$

$$P(x) \vee R(x) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 1 & 1 &$$

 $\ \ \,$ the following clauses are derivable by lock resolution and essential to derive \square

$$R(x) \vee \neg P(x)$$
 $\neg P(x) \vee \neg R(x)$

4 however these are subsumed by $R(x) \vee \neg P(x)$ and $\neg P(x) \vee \neg R(x)$ respectively

consider the following set of clauses

 C_1 : $P(f(x)) \vee R(x) \vee \neg P(f(x))$

 C_2 : $P(x) \vee Q(x)$

 C_3 : R(f(x))

 C_4 : $Q(x) \vee \neg R(x)$

 C_5 : $\neg Q(f(x))$

 C_1 can be resolved with C_2 , C_4 and itself

consider the following set of clauses

 C_1 : $P(f(x)) \vee R(x) \vee \neg P(f(x))$ C_2 : $P(x) \vee Q(x)$

 C_3 : R(f(x)) C_4 : $Q(x) \lor \neg R(x)$

 C_5 : $\neg Q(f(x))$

 C_1 can be resolved with C_2 , C_4 and itself

Lemma

let C and D be clauses and C a tautology; any resolvent of C and D is either a tautology or subsumed by D

consider the following set of clauses

 C_1 : $P(f(x)) \vee R(x) \vee \neg P(f(x))$ C_2 : $P(x) \vee Q(x)$

 C_3 : R(f(x)) C_4 : $Q(x) \lor \neg R(x)$

 C_5 : $\neg Q(f(x))$

 C_1 can be resolved with C_2 , C_4 and itself

Lemma

let C and D be clauses and C a tautology; any resolvent of C and D is either a tautology or subsumed by D

Theorem

(ordered) resolution is complete under forward subsumption and tautology elimination