Automated Reasoning

Georg Moser
Institute of Computer Science @ UIBK

Winter 2013

Summary Last Lecture

Definition

- let A be closed and rectified
- we define the mapping rsk as follows:

$$
\operatorname{rsk}(A)= \begin{cases}A & \text { no existential quant. in } A \\ \operatorname{rsk}\left(A_{-\exists y}\right)\left\{y \mapsto f\left(x_{1}, \ldots, x_{n}\right)\right\} & \forall x_{1}, \ldots, \forall x_{n}<A \exists y\end{cases}
$$

$1 \exists y$ is the first existential quantifier in A
$2 A_{-\exists y}$ denotes A after omission of $\exists y$
3 the Skolem function symbol f is fresh

- the formula $\operatorname{rsk}(A)$ is the (refutational) structural Skolem form of A

Theorem

$1 \exists$ a set of sentences \mathcal{D}_{n} with $\mathrm{HC}\left(\mathcal{D}_{n}^{\prime}\right)=2^{2^{2^{0(n)}}}$ for the structural Skolem form $\mathcal{D}^{\prime}{ }_{n}$
2 $\mathrm{HC}\left(\mathcal{D}_{n}^{\prime \prime}\right) \geqslant \frac{1}{2} 2_{n}$ for the prenex Skolem form

Definition (Optimised Skolemisation)

- let A be a sentence in NNF and $B=\exists x_{1} \cdots x_{k}(E \wedge F)$ a subformula of A with $\mathcal{F} \mathcal{V} a r(\exists \vec{x}(E \wedge F))=\left\{y_{1}, \ldots, y_{n}\right\}$
- suppose $A=C[B]$
- suppose $A \rightarrow \forall y_{1}, \ldots, y_{n} \exists x_{1} \cdots x_{k} E$ is valid
- we define an optimised Skolemisation step as follows

$$
\operatorname{opt_ step}(A)=\forall \vec{y} E\left\{\ldots, x_{i} \mapsto f_{i}(\vec{y}), \ldots\right\} \wedge C\left[F\left\{\ldots, x_{i} \mapsto f_{i}(\vec{y}), \ldots\right\}\right]
$$

where f_{1}, \ldots, f_{k} are new Skolem function symbols

Outline of the Lecture

Early Approaches in Automated Reasoning
short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, ...

Outline of the Lecture

Early Approaches in Automated Reasoning
short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, ...

Definitions

- a proper order is a irreflexive and transitive relation

Definitions

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive

Definitions

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive
- a partial order is an anti-symmetric quasi-order

Definitions

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive
- a partial order is an anti-symmetric quasi-order
- a proper order \succ on a set A is well-founded (on A) if

$$
\neg \exists a_{1} \succ a_{2} \succ \cdots \quad a_{i} \in A
$$

Definitions

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive
- a partial order is an anti-symmetric quasi-order
- a proper order \succ on a set A is well-founded (on A) if

$$
\neg \exists a_{1} \succ a_{2} \succ \cdots \quad a_{i} \in A
$$

- a well-founded order is a well-founded proper order

Definitions

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive
- a partial order is an anti-symmetric quasi-order
- a proper order \succ on a set A is well-founded (on A) if

$$
\neg \exists a_{1} \succ a_{2} \succ \cdots \quad a_{i} \in A
$$

- a well-founded order is a well-founded proper order
- a linear (or total) order fulfills:
$\forall a, b \in A, a \neq b$, either $a \succ b$ or $b \succ a$

Definitions

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive
- a partial order is an anti-symmetric quasi-order
- a proper order \succ on a set A is well-founded (on A) if

$$
\neg \exists a_{1} \succ a_{2} \succ \cdots \quad a_{i} \in A
$$

- a well-founded order is a well-founded proper order
- a linear (or total) order fulfills:
$\forall a, b \in A, a \neq b$, either $a \succ b$ or $b \succ a$
- a well-order is a linear well-founded order

Definitions

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive
- a partial order is an anti-symmetric quasi-order
- a proper order \succ on a set A is well-founded (on A) if

$$
\neg \exists a_{1} \succ a_{2} \succ \cdots \quad a_{i} \in A
$$

- a well-founded order is a well-founded proper order
- a linear (or total) order fulfills:
$\forall a, b \in A, a \neq b$, either $a \succ b$ or $b \succ a$
- a well-order is a linear well-founded order

Example

\geqslant on \mathbb{N} is a partial order; we often write (\mathbb{N}, \geqslant) to indicate the domain; (\mathbb{N}, \geqslant) is not well-founded, but $(\mathbb{N},>)$ is a well-order

Orders on Literals

Definition

- let \succ be a well-founded and total order on ground atomic formulas

Orders on Literals

Definition

- let \succ be a well-founded and total order on ground atomic formulas
- extend \succ to a well-founded proper order \succ_{L} total on ground literals such that:
1 if $A \succ B$, then $A \succ_{\mathrm{L}} B$ and $\neg A \succ_{\mathrm{L}} \neg B$

2. $\neg A \succ_{\llcorner } A$

Orders on Literals

Definition

- let \succ be a well-founded and total order on ground atomic formulas
- extend \succ to a well-founded proper order \succ_{L} total on ground literals such that:
1 if $A \succ B$, then $A \succ_{\mathrm{L}} B$ and $\neg A \succ_{\mathrm{L}} \neg B$
2 $\neg A \succ_{\llcorner } A$

Example

- consider a well-founded proper order \succ on atoms that is total on ground atomic formulas
- identify an atom A with the multiset $\{A\}$ and $\neg A$ with $\{A, A\}$
- set $\succ_{\mathrm{L}}=\succ^{\text {mul }}$
- \succ_{L} fulfills the above conditions

Ordered Resolution Calculus

Definition σ is ground if $E \sigma$ is ground

- a literal L is maximal if \exists ground σ such that for no other literal M : $M \sigma \succ_{L} L \sigma$

Ordered Resolution Calculus

Definition σ is ground if $E \sigma$ is ground

- a literal L is maximal if \exists ground σ such that for no other literal M : $M \sigma \succ_{\mathrm{L}} L \sigma$
- L is strictly maximal if \exists ground σ such that for no other literal M : $M \sigma \succcurlyeq_{\mathrm{L}} L \sigma$; here $\succcurlyeq_{\mathrm{L}}$ denotes the reflexive closure

Ordered Resolution Calculus

Definition

 σ is ground if $E \sigma$ is ground- a literal L is maximal if \exists ground σ such that for no other literal M : $M \sigma \succ_{\mathrm{L}} L \sigma$
- L is strictly maximal if \exists ground σ such that for no other literal M : $M \sigma \succcurlyeq_{\mathrm{L}} L \sigma$; here $\succcurlyeq_{\mathrm{L}}$ denotes the reflexive closure

Definition ordered resolution

$$
\frac{C \vee A \quad D \vee \neg B}{(C \vee D) \sigma}
$$

ordered factoring

$$
\frac{C \vee A \vee B}{(C \vee A) \sigma}
$$

1σ is a mgu of the atomic formulas A and B

Ordered Resolution Calculus

Definition

σ is ground if $E \sigma$ is ground

- a literal L is maximal if \exists ground σ such that for no other literal M : $M \sigma \succ_{\mathrm{L}} L \sigma$
- L is strictly maximal if \exists ground σ such that for no other literal M : $M \sigma \succcurlyeq_{\mathrm{L}} L \sigma$; here $\succcurlyeq_{\mathrm{L}}$ denotes the reflexive closure

Definition ordered resolution

$$
\frac{C \vee A \quad D \vee \neg B}{(C \vee D) \sigma}
$$

ordered factoring

$$
\frac{C \vee A \vee B}{(C \vee A) \sigma}
$$

1σ is a mgu of the atomic formulas A and B
$2 A \sigma$ is strictly maximal with respect to $C \sigma ; \neg B \sigma$ is maximal with respect to $D \sigma$
consider the clause set（constants a, b ，predicates P, Q, R, S ）

$$
\begin{array}{lll}
\mathrm{P}(x) \vee \mathrm{Q}(x) \vee \mathrm{R}(x, y) & \neg \mathrm{P}(x) & \neg \mathrm{Q}(\mathrm{a}) \\
\mathrm{S}(\mathrm{a}, y) \vee \neg \mathrm{R}(\mathrm{a}, y) \vee \mathrm{S}(x, \mathrm{~b}) & \neg \mathrm{S}(\mathrm{a}, \mathrm{~b}) \vee \neg \mathrm{R}(\mathrm{a}, \mathrm{~b}) &
\end{array}
$$

$$
\text { together with the atom order } \mathrm{P}\left(t_{1}\right) \succ \mathrm{Q}\left(t_{2}\right) \succ \mathrm{S}\left(t_{3}, t_{4}\right) \succ \mathrm{R}\left(t_{5}, t_{6}\right)
$$

together with the atom order $\mathrm{P}\left(t_{1}\right) \succ \mathrm{Q}\left(t_{2}\right) \succ \mathrm{S}\left(t_{3}, t_{4}\right) \succ \mathrm{R}\left(t_{5}, t_{6}\right)$

 \section*{order}
 \section*{order}

$$
R\left(t_{5}, t_{6}\right)
$$

\square
\square

Example

consider the clause set (constants a, b, predicates P, Q, R, S)

$$
\begin{array}{ll}
\mathrm{P}(x) \vee \mathrm{Q}(x) \vee \mathrm{R}(x, y) & \neg \mathrm{P}(x) \\
\mathrm{S}(\mathrm{a}, y) \vee \neg \mathrm{R}(\mathrm{a}, y) \vee \mathrm{S}(x, \mathrm{~b}) & \neg \mathrm{S}(\mathrm{a}, \mathrm{~b}) \vee \neg \mathrm{R}(\mathrm{a}, \mathrm{~b})
\end{array}
$$

together with the atom order $\mathrm{P}\left(t_{1}\right) \succ \mathrm{Q}\left(t_{2}\right) \succ \mathrm{S}\left(t_{3}, t_{4}\right) \succ \mathrm{R}\left(t_{5}, t_{6}\right)$
Π

$$
\frac{\mathrm{P}(x) \vee \mathrm{Q}(x) \vee \mathrm{R}(x, y) \neg \mathrm{P}(x)}{\frac{\mathrm{Q}(x) \vee \mathrm{R}(x, y)}{\mathrm{R}(\mathrm{a}, y)}} \neg \mathrm{Q}(\mathrm{a}), \sigma=\{x \mapsto \mathrm{a}\}
$$

$$
\frac{\mathrm{S}(\mathrm{a}, y) \vee \neg \mathrm{R}(\mathrm{a}, y) \vee \mathrm{S}(x, \mathrm{~b})}{\underline{\mathrm{S}(\mathrm{a}, \mathrm{~b}) \vee \neg \mathrm{R}(\mathrm{a}, \mathrm{~b})} \sigma_{1} \quad \neg \mathrm{~S}(\mathrm{a}, \mathrm{~b}) \vee \neg \mathrm{R}(\mathrm{a}, \mathrm{~b})}
$$

$П$

$$
\neg R(a, b) \vee \neg R(a, b)
$$

$$
\underline{R(a, y)}
$$

$$
\neg \mathrm{R}(\mathrm{a}, \mathrm{~b})
$$

Definition

- define the ordered resolution operator $\operatorname{Res}(\mathcal{O R})$ as follows:
$\operatorname{Resor}_{\mathrm{OR}}(\mathcal{C})=\{D \mid D$ is ordered res./factor with premises in $\mathcal{C}\}$

Definition

- define the ordered resolution operator $\operatorname{Res}(\mathcal{O R})$ as follows:
$\operatorname{Res}_{\mathrm{OR}}(\mathcal{C})=\{D \mid D$ is ordered res./factor with premises in $\mathcal{C}\}$
- $n^{\text {th }}$ (unrestricted) iteration $\operatorname{Res}_{\mathrm{OR}}^{n}$ ($\operatorname{Res}_{\mathrm{OR}}^{*}$) of the operator $\operatorname{Res}_{\mathrm{OR}}$ is defined as for unrestricted resolution

Definition

- define the ordered resolution operator $\operatorname{Res}(\mathcal{O R})$ as follows:
$\operatorname{Res}_{\mathrm{OR}}(\mathcal{C})=\{D \mid D$ is ordered res. $/$ factor with premises in $\mathcal{C}\}$
- $n^{\text {th }}$ (unrestricted) iteration $\operatorname{Res}_{\mathrm{OR}}^{n}$ ($\operatorname{Res}_{\mathrm{OR}}^{*}$) of the operator Resor is defined as for unrestricted resolution

Theorem

ordered resolution is sound and complete; let F be a sentence and \mathcal{C} its clause form; then F is unsatisfiable iff $\square \in \operatorname{Res}_{\mathrm{OR}}^{*}(\mathcal{C})$

Definition

- define the ordered resolution operator $\operatorname{Res} \mathrm{OR}(\mathcal{C})$ as follows:
$\operatorname{Res}_{\mathrm{OR}}(\mathcal{C})=\{D \mid D$ is ordered res. $/$ factor with premises in $\mathcal{C}\}$
- $n^{\text {th }}$ (unrestricted) iteration $\operatorname{Res}_{\mathrm{OR}}^{n}$ ($\operatorname{Res}_{\mathrm{OR}}^{*}$) of the operator $\operatorname{Res}_{\mathrm{OR}}$ is defined as for unrestricted resolution

Theorem

ordered resolution is sound and complete; let F be a sentence and \mathcal{C} its clause form; then F is unsatisfiable iff $\square \in \operatorname{Res}_{\mathrm{OR}}^{*}(\mathcal{C})$

Proof Plan.

Definition

- define the ordered resolution operator $\operatorname{Res}_{\mathrm{OR}}(\mathcal{C})$ as follows:
$\operatorname{Res}_{\mathrm{OR}}(\mathcal{C})=\{D \mid D$ is ordered res. $/$ factor with premises in $\mathcal{C}\}$
- $n^{\text {th }}$ (unrestricted) iteration $\operatorname{Res}_{\mathrm{OR}}^{n}$ ($\operatorname{Res}_{\mathrm{OR}}^{*}$) of the operator $\operatorname{Res}_{\mathrm{OR}}$ is defined as for unrestricted resolution

Theorem

ordered resolution is sound and complete; let F be a sentence and \mathcal{C} its clause form; then F is unsatisfiable iff $\square \in \operatorname{Res}_{\mathrm{OR}}^{*}(\mathcal{C})$
Proof $\mathrm{P}\left[\begin{array}{l}\mathcal{C} \text { set of consistent ground clauses } \\ \Rightarrow \mathcal{C} \text { admits satisfaction properties } \\ + \text { lifting lemmas }\end{array}\right]$
lemmas
model existence
completeness of ordered resolution

Definition

- define the ordered resolution operator $\operatorname{Res}_{\mathrm{OR}}(\mathcal{C})$ as follows:
$\operatorname{Res}_{\mathrm{OR}}(\mathcal{C})=\{D \mid D$ is ordered res. $/$ factor with premises in $\mathcal{C}\}$
- $n^{\text {th }}$ (unrestricted) iteration $\operatorname{Res}_{\mathrm{OR}}^{n}\left(\operatorname{Res}_{\mathrm{OR}}^{*}\right)$ of the operator $\operatorname{Res}_{\mathrm{OR}}$ is defined as for unrestricted resolution

Theorem

ordered resolution is sound and complete; let F be a sentence and \mathcal{C} its clause form; then F is unsatisfiable iff $\square \in \operatorname{Res}_{\mathrm{OR}}^{*}(\mathcal{C})$
Proof $\mathrm{P}\left[\begin{array}{l}\mathcal{C} \text { set of consistent ground clauses } \\ \Rightarrow \mathcal{C} \text { admits satisfaction properties } \\ + \text { lifting lemmas }\end{array}\right]$
lemmas
model existence
completeness of ordered resolution

Recall

- let \mathcal{G} be a set of universal sentences (of \mathcal{L}) without $=$
- \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):
$1 \exists$ finite subset $S \subseteq \operatorname{Gr}(\mathcal{G})$; conjunction $\wedge S$ is unsatisfiable
$2 \exists$ finite subset $S \subseteq \operatorname{Gr}(\mathcal{G})$; disjunction $\bigvee\{\neg A \mid A \in S\}$ is valid

Recall

- let \mathcal{G} be a set of universal sentences (of \mathcal{L}) without $=$
- \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):
$1 \exists$ finite subset $S \subseteq \operatorname{Gr}(\mathcal{G})$; conjunction $\wedge S$ is unsatisfiable
$2 \exists$ finite subset $S \subseteq \operatorname{Gr}(\mathcal{G})$; disjunction $\bigvee\{\neg A \mid A \in S\}$ is valid
Proof of Completeness.
1 extend \succ_{L} to an order on clauses \succ_{C}

Recall

- let \mathcal{G} be a set of universal sentences (of \mathcal{L}) without $=$
- \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):
$1 \exists$ finite subset $S \subseteq \operatorname{Gr}(\mathcal{G})$; conjunction $\wedge S$ is unsatisfiable
$2 \exists$ finite subset $S \subseteq \operatorname{Gr}(\mathcal{G})$; disjunction $\bigvee\{\neg A \mid A \in S\}$ is valid
Proof of Completeness.
1 extend \succ_{L} to an order on clauses \succ_{C}
2 a clause set \mathcal{C} is maximal if

$$
\begin{gathered}
\neg \exists \mathcal{D}=\mathcal{D}^{\prime} \cup\{D\}\left(\mathcal{C}=\mathcal{D}^{\prime} \cup\left\{D_{1}, \ldots, D_{n}\right\}, \forall i D \succ_{\mathrm{c}} D_{i}\right. \\
\text { and there is no } \left.E \in \mathcal{D}^{\prime}, E \succ_{\mathrm{C}} D\right)
\end{gathered}
$$

Recall

- let \mathcal{G} be a set of universal sentences (of \mathcal{L}) without $=$
- \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):
$1 \exists$ finite subset $S \subseteq \operatorname{Gr}(\mathcal{G})$; conjunction $\bigwedge S$ is unsatisfiable
$2 \exists$ finite subset $S \subseteq \operatorname{Gr}(\mathcal{G})$; disjunction $\bigvee\{\neg A \mid A \in S\}$ is valid
Proof of Completeness.
1 extend \succ_{L} to an order on clauses \succ_{C}
2 a clause set \mathcal{C} is maximal if

$$
\begin{gathered}
\neg \exists \mathcal{D}=\mathcal{D}^{\prime} \cup\{D\}\left(\mathcal{C}=\mathcal{D}^{\prime} \cup\left\{D_{1}, \ldots, D_{n}\right\}, \forall i D \succ_{\mathrm{C}} D_{i}\right. \\
\text { and there is no } \left.E \in \mathcal{D}^{\prime}, E \succ_{\mathrm{C}} D\right)
\end{gathered}
$$

3 choose a maximal unsatisfiable clause set \mathcal{C} continue according to proof plan

Recall

- let \mathcal{G} be a set of universal sentences (of \mathcal{L}) without $=$
- \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):
$1 \exists$ finite subset $S \subseteq \operatorname{Gr}(\mathcal{G})$; conjunction $\wedge S$ is unsatisfiable
$2 \exists$ finite subset $S \subseteq \operatorname{Gr}(\mathcal{G})$; disjunction $\bigvee\{\neg A \mid A \in S\}$ is valid

Proof of Completeness.

1 extend \succ_{L} to an order on clauses \succ_{C}
2 a clause set \mathcal{C} is maximal if

$$
\begin{gathered}
\neg \exists \mathcal{D}=\mathcal{D}^{\prime} \cup\{D\}\left(\mathcal{C}=\mathcal{D}^{\prime} \cup\left\{D_{1}, \ldots, D_{n}\right\}, \forall i D \succ_{\mathrm{c}} D_{i}\right. \\
\text { and there is no } \left.E \in \mathcal{D}^{\prime}, E \succ_{\mathrm{c}} D\right)
\end{gathered}
$$

3 choose a maximal unsatisfiable clause set \mathcal{C} continue according to proof plan
this proves ground completeness; completeness follows by reformulation of the lifting lemmas

Lock Resolution

Definition

a pair $(L, i), L$ a literal, $i \in \mathbb{N}$ is a indexed literal; different literals are indexed with different numbers

Lock Resolution

Definition

a pair $(L, i), L$ a literal, $i \in \mathbb{N}$ is a indexed literal; different literals are indexed with different numbers

Definition
lock resolution

$$
\frac{C \vee(A, i) \quad D \vee(\neg B, j)}{(C \vee D) \sigma}
$$

lock factoring

$$
\frac{C \vee(A, i) \vee\left(B, j^{\prime}\right)}{(C \vee(A, i)) \sigma}
$$

Lock Resolution

Definition

a pair $(L, i), L$ a literal, $i \in \mathbb{N}$ is a indexed literal; different literals are indexed with different numbers

Definition
lock resolution
lock factoring

$$
\frac{C \vee(A, i) \quad D \vee(\neg B, j)}{(C \vee D) \sigma}
$$

$$
\frac{C \vee(A, i) \vee\left(B, j^{\prime}\right)}{(C \vee(A, i)) \sigma}
$$

1σ is a mgu of the atomic formulas A and B

Lock Resolution

Definition

a pair $(L, i), L$ a literal, $i \in \mathbb{N}$ is a indexed literal; different literals are indexed with different numbers

Definition
lock resolution
lock factoring

$$
\frac{C \vee(A, i) \quad D \vee(\neg B, j)}{(C \vee D) \sigma}
$$

1σ is a mgu of the atomic formulas A and B
$2 i$ is minimal with respect to $C ; j$ is minimal with respect to D

Lock Resolution

Definition

a pair $(L, i), L$ a literal, $i \in \mathbb{N}$ is a indexed literal; different literals are indexed with different numbers

Definition

lock resolution

$$
\frac{C \vee(A, i) \quad D \vee(\neg B, j)}{(C \vee D) \sigma}
$$

lock factoring
$\frac{C \vee(A, i) \vee\left(B, j^{\prime}\right)}{(C \vee(A, i)) \sigma}$
1σ is a mgu of the atomic formulas A and B
$2 i$ is minimal with respect to $C ; j$ is minimal with respect to D

Remark

indexing represents an a priori literal order, blind on substitutions

Example

$$
\begin{aligned}
& \text { consider the indexed clause set } \mathcal{C}=\left\{\neg \mathrm{P}^{1}(x), \neg{ }^{3} \mathrm{Q}^{3}(\mathrm{a}), \neg \mathrm{S}^{5}(\mathrm{a}, \mathrm{~b}) \vee\right. \\
& { }_{8}^{8} \\
& \left.\neg \mathrm{R}(\mathrm{a}, \mathrm{~b}), \mathrm{P}^{2}(x) \vee \mathrm{Q}^{4}(x) \vee \mathrm{R}^{10}(x, y), \mathrm{S}\left(\mathrm{a}^{6}, y\right) \vee{ }_{9}^{9}(\mathrm{a}, y) \vee \mathrm{S}\left(x^{\prime}, \mathrm{b}\right)\right\}
\end{aligned}
$$

Example

consider the indexed clause set $\mathcal{C}=\left\{\neg P^{1}(x), \neg Q^{3}(a), \neg S^{5}(a, b) \vee\right.$ $\left.\neg R\left({ }^{8}, b\right), P^{2}(x) \vee Q^{4}(x) \vee R(x, y), S\left(a^{6}, y\right) \vee \neg R\left({ }^{9}, y\right) \vee S(x, b)\right\}$
Π

$$
\begin{aligned}
& \frac{P^{2}(x) \vee \stackrel{4}{Q}(x) \vee R^{10}(x, y) \quad \neg P^{1}(x)}{4} \\
& Q(x) \vee R(x, y) \\
& \neg Q^{3}(\mathrm{a}) \quad \sigma=\{x \mapsto \mathrm{a}\} \\
& R(a, y)
\end{aligned}
$$

Definition

- define the lock resolution operator $\operatorname{Res}_{\mathrm{L}}(\mathcal{C})$ as follows:

$$
\operatorname{Res}_{\mathrm{L}}(\mathcal{C})=\{D \mid D \text { is lock res./factor with premises in } \mathcal{C}\}
$$

Definition

- define the lock resolution operator $\operatorname{Res}_{\mathrm{L}}(\mathcal{C})$ as follows:
$\operatorname{Res}_{\mathrm{L}}(\mathcal{C})=\{D \mid D$ is lock res./factor with premises in $\mathcal{C}\}$
- $n^{\text {th }}$ (unrestricted) iteration $\operatorname{Res}_{\mathrm{L}}^{n}\left(\operatorname{Res}_{\mathrm{L}}^{*}\right)$ of the operator $\operatorname{Res}_{\mathrm{L}}$ is defined as for unrestricted resolution

Definition

- define the lock resolution operator $\operatorname{Res}_{\mathrm{L}}(\mathcal{C})$ as follows:
$\operatorname{Res}_{\mathrm{L}}(\mathcal{C})=\{D \mid D$ is lock res./factor with premises in $\mathcal{C}\}$
- $n^{\text {th }}$ (unrestricted) iteration $\operatorname{Res}_{\mathrm{L}}^{n}\left(\operatorname{Res}_{\mathrm{L}}^{*}\right)$ of the operator $\operatorname{Res}_{\mathrm{L}}$ is defined as for unrestricted resolution

Theorem
lock resolution is sound and complete; let F be a sentence and \mathcal{C} its clause form; then F is unsatisfiable iff $\square \in \operatorname{Res}_{\mathrm{L}}^{*}(\mathcal{C})$

Definition

- define the lock resolution operator $\operatorname{Res}_{\mathrm{L}}(\mathcal{C})$ as follows:
$\operatorname{Res}_{\mathrm{L}}(\mathcal{C})=\{D \mid D$ is lock res./factor with premises in $\mathcal{C}\}$
- $n^{\text {th }}$ (unrestricted) iteration $\operatorname{Res}_{\mathrm{L}}^{n}\left(\operatorname{Res}_{\mathrm{L}}^{*}\right)$ of the operator $\operatorname{Res}_{\mathrm{L}}$ is defined as for unrestricted resolution

Theorem
lock resolution is sound and complete; let F be a sentence and \mathcal{C} its clause form; then F is unsatisfiable iff $\square \in \operatorname{Res}_{\mathrm{L}}^{*}(\mathcal{C})$

Proof.

lock resolution is a refinement, thus soundness is trivial; completeness follows as for ordered resolution

Redundancy and Deletion

Definition
define resolution operator $\operatorname{Res}(\mathcal{C})$

- $\operatorname{Res}(\mathcal{C})=\{D \mid D$ is resolvent or factor with premises in $\mathcal{C}\}$
- $\operatorname{Res}^{0}(\mathcal{C})=\mathcal{C} ; \operatorname{Res}^{n+1}(\mathcal{C}):=\operatorname{Res}^{n}(\mathcal{C}) \cup \operatorname{Res}\left(\operatorname{Res}^{n}(\mathcal{C})\right)$
- $\operatorname{Res}^{*}(\mathcal{C}):=\bigcup_{n \geqslant 0} \operatorname{Res}^{n}(\mathcal{C})$

Redundancy and Deletion

Definition
define resolution operator $\operatorname{Res}(\mathcal{C})$

- $\operatorname{Res}(\mathcal{C})=\{D \mid D$ is resolvent or factor with premises in $\mathcal{C}\}$
- $\operatorname{Res}^{0}(\mathcal{C})=\mathcal{C} ; \operatorname{Res}^{n+1}(\mathcal{C}):=\operatorname{Res}^{n}(\mathcal{C}) \cup \operatorname{Res}\left(\operatorname{Res}^{n}(\mathcal{C})\right)$
- $\operatorname{Res}^{*}(\mathcal{C}):=\bigcup_{n \geqslant 0} \operatorname{Res}^{n}(\mathcal{C})$

Definition

- let $\mathrm{d}(\mathcal{C})=\min \left\{n \mid \square \in \operatorname{Res}^{n}(\mathcal{C})\right\}$
- the search complexity of Res wrt clause set \mathcal{C} is $\operatorname{scomp}(\mathcal{C})=\left|\operatorname{Res}^{\mathrm{d}(\mathcal{C})}(\mathcal{C})\right|$

Redundancy and Deletion

Definition
define resolution operator $\operatorname{Res}(\mathcal{C})$

- $\operatorname{Res}(\mathcal{C})=\{D \mid D$ is resolvent or factor with premises in $\mathcal{C}\}$
- $\operatorname{Res}^{0}(\mathcal{C})=\mathcal{C} ; \operatorname{Res}^{n+1}(\mathcal{C}):=\operatorname{Res}^{n}(\mathcal{C}) \cup \operatorname{Res}\left(\operatorname{Res}^{n}(\mathcal{C})\right)$
- $\operatorname{Res}^{*}(\mathcal{C}):=\bigcup_{n \geqslant 0} \operatorname{Res}^{n}(\mathcal{C})$

Definition

- let $\mathrm{d}(\mathcal{C})=\min \left\{n \mid \square \in \operatorname{Res}^{n}(\mathcal{C})\right\}$
- the search complexity of Res wrt clause set \mathcal{C} is $\operatorname{scomp}(\mathcal{C})=\left|\operatorname{Res}^{\mathrm{d}(\mathcal{C})}(\mathcal{C})\right|$

Question

howto reduce the search complexity (of resolution refinements)?

Answer
three answers:
1 refinements
consider refutational complete restrictions of resolution

Answer

three answers:
1 refinements
consider refutational complete restrictions of resolution
2 redundancy tests
redundancy can appear in the form of circular derivations or in that of tautology clauses

Answer

three answers:
1 refinements
consider refutational complete restrictions of resolution
2 redundancy tests
redundancy can appear in the form of circular derivations or in that of tautology clauses
3 heuristics

Answer

three answers:

1 refinements
consider refutational complete restrictions of resolution
2 redundancy tests
redundancy can appear in the form of circular derivations or in that of tautology clauses

3 heuristics

Remarks

- refinements reduce the search space as fewer derivations are possible, however the minimal proof length may be increased

Answer

three answers:
1 refinements
consider refutational complete restrictions of resolution
2 redundancy tests
redundancy can appear in the form of circular derivations or in that of tautology clauses
3 heuristics

Remarks

- refinements reduce the search space as fewer derivations are possible, however the minimal proof length may be increased
- redundancy tests cannot increase the proof length, but may be costly call a clause D redundant in \mathcal{C} if $\exists C_{1}, \ldots, C_{k}$ with $C_{1}, \ldots, C_{k} \models D$

Lemma

application of subsumption and tautology elimination as pre-procession steps preserves completeness

Lemma

application of subsumption and tautology elimination as pre-procession steps preserves completeness

Definition

subsumption and resolution can be combined in the following ways
1 forward subsumption newly derived clauses subsumed by existing clauses are deleted

Lemma

application of subsumption and tautology elimination as pre-procession steps preserves completeness

Definition

subsumption and resolution can be combined in the following ways
1 forward subsumption newly derived clauses subsumed by existing clauses are deleted
2 backward subsumption
existing clauses C subsumed by newly derived clauses D become inactive
inactive clauses are reactivated, if D is no ancestor of current clause

Lemma

application of subsumption and tautology elimination as pre-procession steps preserves completeness

Definition

subsumption and resolution can be combined in the following ways
1 forward subsumption newly derived clauses subsumed by existing clauses are deleted
2 backward subsumption
existing clauses C subsumed by newly derived clauses D become inactive
inactive clauses are reactivated, if D is no ancestor of current clause
3 replacement
the set of all clauses (derived and intital) are frequently reduced under subsumption

Lemma

application of subsumption and tautology elimination as pre-procession steps preserves completeness

Definition

subsumption and resolution can be combined in the following ways
1 forward subsumption newly derived clauses subsumed by existing clauses are deleted
2 backward subsumption
existing clauses C subsumed by newly derived clauses D become inactive
inactive clauses are reactivated, if D is no ancestor of current clause
3 replacement
the set of all clauses (derived and intital) are frequently reduced under subsumption

Tautology Elimination

Definition

- a clause Containing complementary literals is a tautology
- tautology elimination is the process of removing newly derived tautological clauses (that is, we assume the initial clause set is taut-reduced)

Tautology Elimination

Definition

- a clause Containing complementary literals is a tautology
- tautology elimination is the process of removing newly derived tautological clauses (that is, we assume the initial clause set is taut-reduced)

Example

consider the clause

$$
\mathrm{P}(\mathrm{f}(\mathrm{a}, \mathrm{~b})) \vee \neg \mathrm{P}(\mathrm{f}(x, \mathrm{~b})) \vee \neg \mathrm{P}(\mathrm{f}(\mathrm{a}, y))
$$

factoring yields the tautology $P(f(a, b)) \vee \neg P(f(a, b))$

Example

consider the following (tautology free) clause set \mathcal{C}

$$
\mathrm{P}(x) \vee \mathrm{R}(x) \quad \mathrm{R}(x) \vee \neg \mathrm{P}(x) \quad \mathrm{P}(x) \vee \neg \mathrm{R}(x) \quad \neg \mathrm{P}(x) \vee \neg \mathrm{R}(x)
$$

we have $\operatorname{scomp}(\mathcal{C})=15$ for unrestricted resolution; however the following resolution steps derive tautologies

$$
\frac{\mathrm{P}(x) \vee \mathrm{R}(x) \neg \mathrm{P}(x) \vee \neg \mathrm{R}(x)}{\mathrm{P}(x) \vee \neg \mathrm{P}(x)} \quad \frac{\mathrm{P}(x) \vee \mathrm{R}(x) \neg \mathrm{P}(x) \vee \neg \mathrm{R}(x)}{\mathrm{R}(x) \vee \neg \mathrm{R}(x)}
$$

Example

consider the following (tautology free) clause set \mathcal{C}

$$
\mathrm{P}(x) \vee \mathrm{R}(x) \quad \mathrm{R}(x) \vee \neg \mathrm{P}(x) \quad \mathrm{P}(x) \vee \neg \mathrm{R}(x) \quad \neg \mathrm{P}(x) \vee \neg \mathrm{R}(x)
$$

we have $\operatorname{scomp}(\mathcal{C})=15$ for unrestricted resolution; however the following resolution steps derive tautologies

$$
\frac{\mathrm{P}(x) \vee \mathrm{R}(x) \neg \mathrm{P}(x) \vee \neg \mathrm{R}(x)}{\mathrm{P}(x) \vee \neg \mathrm{P}(x)} \quad \frac{\mathrm{P}(x) \vee \mathrm{R}(x) \neg \neg \mathrm{P}(x) \vee \neg \mathrm{R}(x)}{\mathrm{R}(x) \vee \neg \mathrm{R}(x)}
$$

Lemma

1 tautology elimination is incomplete for lock resolution
2 tautology elimination is complete for unrestricted and ordered resolution

Theorem
1 (ordered) resolution (for any admissible atom order) is complete under forward subsumption
2 forward subsumption does not increase the search complexity of (ordered) resolution

Theorem

1 (ordered) resolution (for any admissible atom order) is complete under forward subsumption
2 forward subsumption does not increase the search complexity of (ordered) resolution

Proof Sketch.
1 let $C^{\prime}, C, D^{\prime}, D$ be clauses such that C^{\prime} subsumes C and D^{\prime} subsumes D

Theorem

1 (ordered) resolution (for any admissible atom order) is complete under forward subsumption
2 forward subsumption does not increase the search complexity of (ordered) resolution

Proof Sketch.

1 let $C^{\prime}, C, D^{\prime}, D$ be clauses such that C^{\prime} subsumes C and D^{\prime} subsumes D
2 one shows that if E is a resolvent of C and D, then one of the following cases happens:

- C^{\prime} subsumes E
- D^{\prime} subsumes E
- \exists resolvent E^{\prime} of C^{\prime} and D^{\prime} such that E^{\prime} subsumes E

Theorem

1 (ordered) resolution (for any admissible atom order) is complete under forward subsumption
2 forward subsumption does not increase the search complexity of (ordered) resolution

Proof Sketch.

1 let $C^{\prime}, C, D^{\prime}, D$ be clauses such that C^{\prime} subsumes C and D^{\prime} subsumes D
2 one shows that if E is a resolvent of C and D, then one of the following cases happens:

- C^{\prime} subsumes E
- D^{\prime} subsumes E
- \exists resolvent E^{\prime} of C^{\prime} and D^{\prime} such that E^{\prime} subsumes E

3 using this observation in an inductive argument, completeness follows

Theorem

1 (ordered) resolution (for any admissible atom order) is complete under forward subsumption
2 forward subsumption does not increase the search complexity of (ordered) resolution

Proof Sketch.

1 let $C^{\prime}, C, D^{\prime}, D$ be clauses such that C^{\prime} subsumes C and D^{\prime} subsumes D
2 one shows that if E is a resolvent of C and D, then one of the following cases happens:

- C^{\prime} subsumes E
- D^{\prime} subsumes E
- \exists resolvent E^{\prime} of C^{\prime} and D^{\prime} such that E^{\prime} subsumes E

3 using this observation in an inductive argument, completeness follows

Lemma

lock resolution is not complete under forward subsumption

Lemma

lock resolution is not complete under forward subsumption
Proof.
1 let C, D be indexed clauses; we say an C subsumes D if the the clause part of C subsumes the clause part of D

Lemma

lock resolution is not complete under forward subsumption

Proof.

1 let C, D be indexed clauses; we say an C subsumes D if the the clause part of C subsumes the clause part of D
2 consider the following clause set \mathcal{C}

$$
\mathrm{P}^{5}(x) \vee \mathrm{R}^{\left.\frac{1}{(} x\right)} \quad \mathrm{R}^{6}(x) \vee \neg \mathrm{P}^{3}(x) \quad \mathrm{P}^{4}(x) \vee \neg \mathrm{R}^{7}(x) \quad \neg \mathrm{P}^{8}(x) \vee \neg \mathrm{R}^{2}(x)
$$

Lemma

lock resolution is not complete under forward subsumption

Proof.

1 let C, D be indexed clauses; we say an C subsumes D if the the clause part of C subsumes the clause part of D
2 consider the following clause set \mathcal{C}

$$
\mathrm{P}^{5}(x) \vee \mathrm{R}^{\left.\frac{1}{(} x\right)} \quad \mathrm{R}^{6}(x) \vee \neg \mathrm{P}^{3}(x) \quad \mathrm{P}^{4}(x) \vee \neg \mathrm{R}^{7}(x) \quad \neg \mathrm{P}^{8}(x) \vee \neg \mathrm{R}^{2}(x)
$$

3 the following clauses are derivable by lock resolution and essential to derive \square

$$
\mathrm{R}^{6}(x) \vee \neg \mathrm{P}^{8}(x) \quad \neg \mathrm{P}^{8}(x) \vee \neg \mathrm{R}^{7}(x)
$$

Lemma

lock resolution is not complete under forward subsumption

Proof.

1 let C, D be indexed clauses; we say an C subsumes D if the the clause part of C subsumes the clause part of D
2 consider the following clause set \mathcal{C}

$$
\mathrm{P}^{5}(x) \vee \mathrm{R}^{\left.\frac{1}{(} x\right)} \quad \mathrm{R}^{6}(x) \vee \neg \mathrm{P}^{3}(x) \quad \mathrm{P}^{4}(x) \vee \neg \mathrm{R}^{7}(x) \quad \neg \mathrm{P}^{8}(x) \vee \neg \mathrm{R}^{2}(x)
$$

3 the following clauses are derivable by lock resolution and essential to derive \square

$$
R(x) \vee \neg P^{8}(x) \quad \neg P^{8}(x) \vee \neg R^{7}(x)
$$

4 however these are subsumed by $\mathrm{R}^{6}(x) \vee \neg \mathrm{P}^{3}(x)$ and $\neg \mathrm{P}^{8}(x) \vee \neg \mathrm{R}^{2}(x)$ respectively

Lemma

lock resolution is not complete under forward subsumption

Proof.

1 let C, D be indexed clauses; we say an C subsumes D if the the clause part of C subsumes the clause part of D
2 consider the following clause set \mathcal{C}

$$
\mathrm{P}^{5}(x) \vee \mathrm{R}^{\left.\frac{1}{(} x\right)} \quad \mathrm{R}^{6}(x) \vee \neg \mathrm{P}^{3}(x) \quad \mathrm{P}^{4}(x) \vee \neg \mathrm{R}^{7}(x) \quad \neg \mathrm{P}^{8}(x) \vee \neg \mathrm{R}^{2}(x)
$$

3 the following clauses are derivable by lock resolution and essential to derive \square

$$
R^{6}(x) \vee \neg P^{8}(x) \quad \neg P^{8}(x) \vee \neg R^{7}(x)
$$

4 however these are subsumed by $\mathrm{R}^{6}(x) \vee \neg \mathrm{P}^{3}(x)$ and $\neg \mathrm{P}^{8}(x) \vee \neg \mathrm{R}^{2}(x)$ respectively

Example

 consider the following set of clauses$$
\begin{array}{ll}
C_{1}: P(f(x)) \vee R(x) \vee \neg P(f(x)) & C_{2}: P(x) \vee Q(x) \\
C_{3}: R(f(x)) & C_{4}: Q(x) \vee \neg R(x) \\
C_{5}: \neg Q(f(x)) &
\end{array}
$$

C_{1} can be resolved with C_{2}, C_{4} and itself

Example

consider the following set of clauses

$$
\begin{array}{ll}
C_{1}: P(f(x)) \vee R(x) \vee \neg P(f(x)) & C_{2}: P(x) \vee Q(x) \\
C_{3}: R(f(x)) & C_{4}: Q(x) \vee \neg R(x) \\
C_{5}: \neg Q(f(x)) &
\end{array}
$$

C_{1} can be resolved with C_{2}, C_{4} and itself

Lemma

let C and D be clauses and C a tautology; any resolvent of C and D is either a tautology or subsumed by D

Example

consider the following set of clauses

$$
\begin{array}{ll}
C_{1}: \mathrm{P}(\mathrm{f}(x)) \vee \mathrm{R}(x) \vee \neg \mathrm{P}(\mathrm{f}(x)) & C_{2}: \mathrm{P}(x) \vee \mathrm{Q}(x) \\
C_{3}: \mathrm{R}(\mathrm{f}(x)) & C_{4}: \mathrm{Q}(x) \vee \neg \mathrm{R}(x) \\
C_{5}: \neg \mathrm{Q}(\mathrm{f}(x)) &
\end{array}
$$

C_{1} can be resolved with C_{2}, C_{4} and itself

Lemma
let C and D be clauses and C a tautology; any resolvent of C and D is either a tautology or subsumed by D

Theorem

(ordered) resolution is complete under forward subsumption and tautology elimination

