
Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

Summary

Summary Last Lecture

Definition
• let A be closed and rectified

• we define the mapping rsk as follows:

rsk(A) =

{
A no existential quant. in A

rsk(A−∃y){y 7→ f (x1, . . . , xn)} ∀x1, . . . ,∀xn <A ∃y

1 ∃y is the first existential quantifier in A
2 A−∃y denotes A after omission of ∃y
3 the Skolem function symbol f is fresh

• the formula rsk(A) is the (refutational) structural Skolem form of A

GM (Institute of Computer Science @ UIBK) Automated Reasoning 263/1

Summary

Theorem

1 ∃ a set of sentences Dn with HC(D′n) = 22
2O(n)

for the structural
Skolem form D′n

2 HC(D′′n) > 1
22n for the prenex Skolem form

Definition (Optimised Skolemisation)

• let A be a sentence in NNF and B = ∃x1 · · · xk(E ∧ F) a subformula
of A with FVar(∃~x(E ∧ F)) = {y1, . . . , yn}

• suppose A = C [B]

• suppose A→ ∀y1, . . . , yn∃x1 · · · xkE is valid

• we define an optimised Skolemisation step as follows

opt step(A) = ∀~yE{. . . , xi 7→ fi (~y), . . . }∧C [F{. . . , xi 7→ fi (~y), . . . }]

where f1, . . . , fk are new Skolem function symbols

GM (Institute of Computer Science @ UIBK) Automated Reasoning 264/1

Summary

Outline of the Lecture

Early Approaches in Automated Reasoning

short recollection of Herbrand’s theorem, Gilmore’s prover, method of
Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution
and paramodulation as decision procedure, . . .

GM (Institute of Computer Science @ UIBK) Automated Reasoning 265/1

http://cl-informatik.uibk.ac.at

Orders

Definitions
• a proper order is a irreflexive and transitive relation

• a quasi-order is reflexive and transitive

• a partial order is an anti-symmetric quasi-order

• a proper order � on a set A is well-founded (on A) if

¬∃ a1 � a2 � · · · ai ∈ A

• a well-founded order is a well-founded proper order

• a linear (or total) order fulfills:
∀ a, b ∈ A, a 6= b, either a � b or b � a

• a well-order is a linear well-founded order

Example

> on N is a partial order; we often write (N,>) to indicate the domain;
(N,>) is not well-founded, but (N, >) is a well-order

GM (Institute of Computer Science @ UIBK) Automated Reasoning 266/1

Orders

Orders on Literals

Definition
• let � be a well-founded and total order on ground atomic formulas

• extend � to a well-founded proper order �L total on ground literals
such that:

1 if A � B, then A �L B and ¬A �L ¬B
2 ¬A �L A

Example

• consider a well-founded proper order � on atoms that is total on
ground atomic formulas

• identify an atom A with the multiset {A} and ¬A with {A,A}
• set �L=�mul

• �L fulfills the above conditions

GM (Institute of Computer Science @ UIBK) Automated Reasoning 267/1

Orders

Ordered Resolution Calculus

Definition
• a literal L is maximal if ∃ ground σ such that for no other literal M:

Mσ �L Lσ

• L is strictly maximal if ∃ ground σ such that for no other literal M:
Mσ <L Lσ; here <L denotes the reflexive closure

σ is ground if Eσ is ground

Definition
ordered resolution ordered factoring

C ∨ A D ∨ ¬B
(C ∨ D)σ

C ∨ A ∨ B
(C ∨ A)σ

1 σ is a mgu of the atomic formulas A and B

2 Aσ is strictly maximal with respect to Cσ; ¬Bσ is maximal with
respect to Dσ

GM (Institute of Computer Science @ UIBK) Automated Reasoning 268/1

Orders

Example

consider the clause set (constants a, b, predicates P,Q,R,S)

P(x) ∨ Q(x) ∨ R(x , y) ¬P(x) ¬Q(a)

S(a, y) ∨ ¬R(a, y) ∨ S(x , b) ¬S(a, b) ∨ ¬R(a, b)

together with the atom order P(t1) � Q(t2) � S(t3, t4) � R(t5, t6)

Π

P(x) ∨ Q(x) ∨ R(x , y) ¬P(x)

Q(x) ∨ R(x , y) ¬Q(a)

R(a, y)
σ = {x 7→ a}

Π
R(a, y)

S(a, y) ∨ ¬R(a, y) ∨ S(x , b)

S(a, b) ∨ ¬R(a, b)
σ1 ¬S(a, b) ∨ ¬R(a, b)

¬R(a, b) ∨ ¬R(a, b)

¬R(a, b)
2 σ2

GM (Institute of Computer Science @ UIBK) Automated Reasoning 269/1

Orders

Definition

• define the ordered resolution operator ResOR(C) as follows:

ResOR(C) = {D | D is ordered res./factor with premises in C}

• nth (unrestricted) iteration ResnOR (Res∗OR) of the operator ResOR is
defined as for unrestricted resolution

Theorem

ordered resolution is sound and complete; let F be a sentence and C its
clause form; then F is unsatisfiable iff 2 ∈ Res∗OR(C)

Proof Plan.

completeness of
ordered resolution

model existencelemmas

C set of consistent ground clauses
⇒ C admits satisfaction properties
+ lifting lemmas

GM (Institute of Computer Science @ UIBK) Automated Reasoning 270/1

Orders

Recall
• let G be a set of universal sentences (of L) without =

• G has a Herbrand model or G is unsatisfiable; in the latter case the
following statements hold (and are equivalent):

1 ∃ finite subset S ⊆ Gr(G); conjunction
∧

S is unsatisfiable
2 ∃ finite subset S ⊆ Gr(G); disjunction

∨
{¬A | A ∈ S} is valid

Proof of Completeness.
1 extend �L to an order on clauses �C

2 a clause set C is maximal if

¬∃D = D′ ∪ {D}
(
C = D′ ∪ {D1, . . . ,Dn}, ∀i D �C Di

and there is no E ∈ D′, E �C D
)

3 choose a maximal unsatisfiable clause set C
continue according to proof plan

this proves ground completeness; completeness follows by reformulation
of the lifting lemmas

GM (Institute of Computer Science @ UIBK) Automated Reasoning 271/1

Lock Resolution

Lock Resolution

Definition

a pair (L, i), L a literal, i ∈ N is a indexed literal; different literals are
indexed with different numbers

Definition
lock resolution lock factoring

C ∨ (A, i) D ∨ (¬B, j)

(C ∨ D)σ

C ∨ (A, i) ∨ (B, j ′)

(C ∨ (A, i))σ

1 σ is a mgu of the atomic formulas A and B

2 i is minimal with respect to C ; j is minimal with respect to D

Remark

indexing represents an a priori literal order, blind on substitutions

GM (Institute of Computer Science @ UIBK) Automated Reasoning 272/1

Lock Resolution

Example

consider the indexed clause set C = {
1

¬P(x),
3

¬Q(a),
5

¬S(a, b) ∨
8

¬R(a, b),
2

P(x) ∨
4

Q(x) ∨
10

R(x , y),
6

S(a, y) ∨
9

¬R(a, y) ∨
7

S(x , b)}

Π

2

P(x) ∨
4

Q(x) ∨
10

R(x , y)
1

¬P(x)
4

Q(x) ∨
10

R(x , y)
3

¬Q(a)
11

R(a, y)

σ = {x 7→ a}

Π
11

R(a, y)

6

S(a, y) ∨
9

¬R(a, y) ∨
7

S(x , b)
5

S(a, b) ∨
8

¬R(a, b)

σ1
5

¬S(a, b) ∨
8

¬R(a, b)
8

¬R(a, b) ∨
8

¬R(a, b)
8

¬R(a, b)
2 σ2

GM (Institute of Computer Science @ UIBK) Automated Reasoning 273/1

Lock Resolution

Definition

• define the lock resolution operator ResL(C) as follows:

ResL(C) = {D | D is lock res./factor with premises in C}
• nth (unrestricted) iteration ResnL (Res∗L) of the operator ResL is

defined as for unrestricted resolution

Theorem

lock resolution is sound and complete; let F be a sentence and C its
clause form; then F is unsatisfiable iff 2 ∈ Res∗L(C)

Proof.

lock resolution is a refinement, thus soundness is trivial; completeness
follows as for ordered resolution

GM (Institute of Computer Science @ UIBK) Automated Reasoning 274/1

Redundancy and Deletion

Redundancy and Deletion

Definition

define resolution operator Res(C)

• Res(C) = {D | D is resolvent or factor with premises in C}
• Res0(C) = C; Resn+1(C) := Resn(C) ∪ Res(Resn(C))

• Res∗(C) :=
⋃

n>0 Resn(C)

Definition

• let d(C) = min{n | 2 ∈ Resn(C)}
• the search complexity of Res wrt clause set C is

scomp(C) = |Resd(C)(C)|

Question

howto reduce the search complexity (of resolution refinements)?

GM (Institute of Computer Science @ UIBK) Automated Reasoning 275/1

Redundancy and Deletion

Answer

three answers:

1 refinements
consider refutational complete restrictions of resolution

2 redundancy tests
redundancy can appear in the form of circular derivations or in that
of tautology clauses

3 heuristics
. . .

Remarks

• refinements reduce the search space as fewer derivations are
possible, however the minimal proof length may be increased

• redundancy tests cannot increase the proof length, but may be costly
call a clause D redundant in C if ∃C1, . . . ,Ck with C1, . . . ,Ck |= D

GM (Institute of Computer Science @ UIBK) Automated Reasoning 276/1

Subsumption and Tautology Elimination

Lemma

application of subsumption and tautology elimination as pre-procession
steps preserves completeness

Definition

subsumption and resolution can be combined in the following ways

1 forward subsumption
newly derived clauses subsumed by existing clauses are deleted

2 backward subsumption
existing clauses C subsumed by newly derived clauses D become
inactive
inactive clauses are reactivated, if D is no ancestor of current clause

3 replacement
the set of all clauses (derived and intital) are frequently reduced
under subsumption

GM (Institute of Computer Science @ UIBK) Automated Reasoning 277/1

Subsumption and Tautology Elimination

Tautology Elimination

Definition
• a clause C containing complementary literals is a tautology

• tautology elimination is the process of removing newly derived
tautological clauses (that is, we assume the initial clause set is
taut-reduced)

Example

consider the clause

P(f(a, b)) ∨ ¬P(f(x , b)) ∨ ¬P(f(a, y))

factoring yields the tautology P(f(a, b)) ∨ ¬P(f(a, b))

GM (Institute of Computer Science @ UIBK) Automated Reasoning 278/1

Subsumption and Tautology Elimination

Example

consider the following (tautology free) clause set C

P(x) ∨ R(x) R(x) ∨ ¬P(x) P(x) ∨ ¬R(x) ¬P(x) ∨ ¬R(x)

we have scomp(C) = 15 for unrestricted resolution; however the following
resolution steps derive tautologies

P(x) ∨ R(x) ¬P(x) ∨ ¬R(x)

P(x) ∨ ¬P(x)

P(x) ∨ R(x) ¬P(x) ∨ ¬R(x)

R(x) ∨ ¬R(x)

Lemma

1 tautology elimination is incomplete for lock resolution

2 tautology elimination is complete for unrestricted and ordered
resolution

GM (Institute of Computer Science @ UIBK) Automated Reasoning 279/1

Subsumption and Tautology Elimination

Theorem

1 (ordered) resolution (for any admissible atom order) is complete
under forward subsumption

2 forward subsumption does not increase the search complexity of
(ordered) resolution

Proof Sketch.

1 let C ′, C , D ′, D be clauses such that C ′ subsumes C and D ′

subsumes D

2 one shows that if E is a resolvent of C and D, then one of the
following cases happens:

• C ′ subsumes E
• D ′ subsumes E
• ∃ resolvent E ′ of C ′ and D ′ such that E ′ subsumes E

3 using this observation in an inductive argument, completeness
follows

GM (Institute of Computer Science @ UIBK) Automated Reasoning 280/1

Subsumption and Tautology Elimination

Lemma

lock resolution is not complete under forward subsumption

Proof.

1 let C , D be indexed clauses; we say an C subsumes D if the the
clause part of C subsumes the clause part of D

2 consider the following clause set C
5

P(x) ∨
1

R(x)
6

R(x) ∨
3

¬P(x)
4

P(x) ∨
7

¬R(x)
8

¬P(x) ∨
2

¬R(x)

3 the following clauses are derivable by lock resolution and essential to
derive 2

6

R(x) ∨
8

¬P(x)
8

¬P(x) ∨
7

¬R(x)

4 however these are subsumed by
6

R(x) ∨
3

¬P(x) and
8

¬P(x) ∨
2

¬R(x)
respectively

GM (Institute of Computer Science @ UIBK) Automated Reasoning 281/1

Subsumption and Tautology Elimination

Example

consider the following set of clauses

C1 : P(f(x)) ∨ R(x) ∨ ¬P(f(x)) C2 : P(x) ∨ Q(x)

C3 : R(f(x)) C4 : Q(x) ∨ ¬R(x)

C5 : ¬Q(f(x))

C1 can be resolved with C2, C4 and itself

Lemma

let C and D be clauses and C a tautology; any resolvent of C and D is
either a tautology or subsumed by D

Theorem

(ordered) resolution is complete under forward subsumption and
tautology elimination

GM (Institute of Computer Science @ UIBK) Automated Reasoning 282/1

