

Automated Reasoning

Georg Moser

Winter 2013

Theorem

- ∃ a set of sentences \mathcal{D}_n with $HC(\mathcal{D}'_n) = 2^{2^{2^{O(n)}}}$ for the structural Skolem form \mathcal{D}'_n
- **2** HC(\mathcal{D}''_n) $\geq \frac{1}{2}2_n$ for the prenex Skolem form

Definition (Optimised Skolemisation)

- let A be a sentence in NNF and B = ∃x₁ ··· x_k(E ∧ F) a subformula of A with FVar(∃x(E ∧ F)) = {y₁,..., y_n}
- suppose A = C[B]
- suppose $A \to \forall y_1, \ldots, y_n \exists x_1 \cdots x_k E$ is valid
- we define an optimised Skolemisation step as follows

opt_step(A) =
$$\forall \vec{y} E\{\dots, x_i \mapsto f_i(\vec{y}), \dots\} \land C[F\{\dots, x_i \mapsto f_i(\vec{y}), \dots\}$$

where f_1, \dots, f_k are new Skolem function symbols

GM (Institute of Computer Science @ UIBK) Automated Reason

264/1

Summary Last Lecture

Definition

- let A be closed and rectified
- we define the mapping rsk as follows:

$$\mathsf{rsk}(A) = \begin{cases} A & \text{no existential quant. in } A \\ \mathsf{rsk}(A_{-\exists y}) \{ y \mapsto f(x_1, \dots, x_n) \} & \forall x_1, \dots, \forall x_n <_A \exists y \end{cases}$$

- ∃y is the first existential quantifier in A
 A_{-∃y} denotes A after omission of ∃y
 the Skolem function symbol f is fresh
- the formula rsk(A) is the (refutational) structural Skolem form of A

Automated Reasonin

GM (Institute of Computer Science @ UIBK

263/1

ummary

Outline of the Lecture

Early Approaches in Automated Reasoning

short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, ...

Definitions

- a proper order is a irreflexive and transitive relation
- a quasi-order is reflexive and transitive
- a partial order is an anti-symmetric quasi-order
- a proper order \succ on a set A is well-founded (on A) if

 $\neg \exists a_1 \succ a_2 \succ \cdots \qquad a_i \in A$

- a well-founded order is a well-founded proper order
- a linear (or total) order fulfills:
 ∀ a, b ∈ A, a ≠ b, either a ≻ b or b ≻ a
- a well-order is a linear well-founded order

Example

 \geq on \mathbb{N} is a partial order; we often write (\mathbb{N}, \geq) to indicate the domain; (\mathbb{N}, \geq) is not well-founded, but $(\mathbb{N}, >)$ is a well-order

Automated Reasoning

```
GM (Institute of Computer Science @ UIBK)
```

266

Orders

Ordered Resolution Calculus

Definition

 σ is ground if $E\sigma$ is ground

- a literal *L* is maximal if \exists ground σ such that for no other literal *M*: $M\sigma \succ_{\mathsf{L}} L\sigma$
- L is strictly maximal if ∃ ground σ such that for no other literal M: Mσ ≽_L Lσ; here ≽_L denotes the reflexive closure

Definition ordered resolution

ordered factoring

 $\frac{C \lor A \quad D \lor \neg B}{(C \lor D)\sigma}$

 $\frac{C \lor A \lor B}{(C \lor A)\sigma}$

- 1 σ is a mgu of the atomic formulas A and B
- **2** $A\sigma$ is strictly maximal with respect to $C\sigma$; $\neg B\sigma$ is maximal with respect to $D\sigma$

ers

Orders on Literals

Definition

- let \succ be a well-founded and total order on ground atomic formulas
- extend \succ to a well-founded proper order \succ_{L} total on ground literals such that:

1 if $A \succ B$, then $A \succ_{\mathsf{L}} B$ and $\neg A \succ_{\mathsf{L}} \neg B$

2 ¬A ≻_L A

Example

- consider a well-founded proper order \succ on atoms that is total on ground atomic formulas

Automated Reasoning

- identify an atom A with the multiset $\{A\}$ and $\neg A$ with $\{A, A\}$
- set $\succ_L = \succ^{mul}$
- $\bullet \ \succ_{\mathsf{L}}$ fulfills the above conditions

GM (Institute of Computer Science @ UIBK

267/1

orders

Example

П

consider the clause set (constants a, b, predicates P, Q, R, S)

$$\begin{array}{ll} \mathsf{P}(x) \lor \mathsf{Q}(x) \lor \mathsf{R}(x,y) & \neg \mathsf{P}(x) & \neg \mathsf{Q}(\mathsf{a}) \\ \mathsf{S}(\mathsf{a},y) \lor \neg \mathsf{R}(\mathsf{a},y) \lor \mathsf{S}(x,\mathsf{b}) & \neg \mathsf{S}(\mathsf{a},\mathsf{b}) \lor \neg \mathsf{R}(\mathsf{a},\mathsf{b}) \end{array}$$

together with the atom order $\mathsf{P}(t_1) \succ \mathsf{Q}(t_2) \succ \mathsf{S}(t_3, t_4) \succ \mathsf{R}(t_5, t_6)$

$$\frac{\mathsf{P}(x) \lor \mathsf{Q}(x) \lor \mathsf{R}(x,y) \quad \neg \mathsf{P}(x)}{\frac{\mathsf{Q}(x) \lor \mathsf{R}(x,y)}{\mathsf{R}(\mathsf{a},y)}} \quad \neg \mathsf{Q}(\mathsf{a}) \quad \sigma = \{x \mapsto \mathsf{a}\}$$

$$\begin{array}{c} \frac{\mathsf{S}(\mathsf{a},y) \lor \neg \mathsf{R}(\mathsf{a},y) \lor \mathsf{S}(x,\mathsf{b})}{\mathsf{S}(\mathsf{a},\mathsf{b}) \lor \neg \mathsf{R}(\mathsf{a},\mathsf{b})} \sigma_1 & \neg \mathsf{S}(\mathsf{a},\mathsf{b}) \lor \neg \mathsf{R}(\mathsf{a},\mathsf{b})}{\frac{\mathsf{\gamma}\mathsf{R}(\mathsf{a},\mathsf{b}) \lor \neg \mathsf{R}(\mathsf{a},\mathsf{b})}{\neg \mathsf{R}(\mathsf{a},\mathsf{b})}} \sigma_2 \end{array}$$

Automated Reason

(Institute of Computer Science @ UIBK)

Definition

- define the ordered resolution operator $\mathsf{Res}_\mathsf{OR}(\mathcal{C})$ as follows:

 $\mathsf{Res}_{\mathsf{OR}}(\mathcal{C}) = \{D \mid D \text{ is ordered res./factor with premises in } \mathcal{C}\}$

 nth (unrestricted) iteration Resⁿ_{OR} (Res^{*}_{OR}) of the operator Res_{OR} is defined as for unrestricted resolution

Theorem

ordered resolution is sound and complete; let F be a sentence and C its clause form; then F is unsatisfiable iff $\Box \in \text{Res}^*_{OR}(C)$

Lock Resolution

Lock Resolution

Definition

a pair (L, i), L a literal, $i \in \mathbb{N}$ is a indexed literal; different literals are indexed with different numbers

Definition

$$\frac{C \lor (A, i) \quad D \lor (\neg B, j)}{(C \lor D)\sigma}$$

lock resolution

 $\frac{\text{lock factoring}}{(C \lor (A, i) \lor (B, j'))}$ $\frac{(C \lor (A, i)) \circ}{(C \lor (A, i)) \circ}$

272/1

- **1** σ is a mgu of the atomic formulas A and B
- **2** *i* is minimal with respect to C; *j* is minimal with respect to D

Remark

indexing represents an a priori literal order, blind on substitutions

GM (Institute of Computer Science @ UIBK) Automated Reason

lers

Recall

- let \mathcal{G} be a set of universal sentences (of \mathcal{L}) without =
- \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):
 - **1** \exists finite subset $S \subseteq Gr(\mathcal{G})$; conjunction $\bigwedge S$ is unsatisfiable
 - **2** \exists finite subset $S \subseteq Gr(\mathcal{G})$; disjunction $\bigvee \{\neg A \mid A \in S\}$ is valid

Proof of Completeness.

- 1 extend \succ_L to an order on clauses \succ_C
- **2** a clause set C is maximal if

$$\neg \exists \mathcal{D} = \mathcal{D}' \cup \{D\} \left(\mathcal{C} = \mathcal{D}' \cup \{D_1, \dots, D_n\}, \forall i \ D \succ_{\mathsf{C}} D_i \right)$$

and there is no $E \in \mathcal{D}', E \succ_{\mathsf{C}} D \right)$

choose a maximal unsatisfiable clause set C continue according to proof plan

this proves ground completeness; completeness follows by reformulation of the lifting lemmas

Automated Reason

GM (Institute of Computer Science @ UIBK

Lock Resolution

Example

П

consider the indexed clause set
$$C = \{\neg P(x), \neg Q(a), \neg S(a, b) \lor \neg R(a, b), P(x) \lor Q(x) \lor R(x, y), S(a, y) \lor \neg R(a, y) \lor S(x, b)\}$$

$$\frac{P(x) \lor Q(x) \lor R(x, y), S(a, y) \lor \neg P(x)}{P(x) \lor Q(x) \lor Q(x) \lor R(x, y) \lor P(x)}$$

$$\frac{\mathsf{Q}(x)^{4} \vee \mathsf{R}(x, y)^{10}}{\mathsf{R}(a, y)^{11}} \sigma = \{x \mapsto \mathsf{a}\}$$

$$\frac{\frac{S(a, y) \lor \neg R(a, y) \lor S(x, b)}{\overset{5}{S(a, b) \lor \neg R(a, b)}{\sigma_1}} \sigma_1}{\frac{S(a, b) \lor \neg R(a, b)}{\overset{5}{(a, b) \lor \neg R(a, b)}{\sigma_1}} \frac{\neg S(a, b) \lor \neg R(a, b)}{\overset{\gamma}{(a, b) \lor \neg R(a, b)}{\sigma_2}}$$

Automated Reason

GM (Institute of Computer Science @ UIBK)

Definition

• define the lock resolution operator $\text{Res}_{L}(\mathcal{C})$ as follows:

 $\mathsf{Res}_{\mathsf{L}}(\mathcal{C}) = \{ D \mid D \text{ is lock res./factor with premises in } \mathcal{C} \}$

 nth (unrestricted) iteration Resⁿ_L (Res^{*}_L) of the operator Res_L is defined as for unrestricted resolution

Theorem

lock resolution is sound and complete; let F be a sentence and C its clause form; then F is unsatisfiable iff $\Box \in \text{Res}^*_L(C)$

Proof.

lock resolution is a refinement, thus soundness is trivial; completeness follows as for ordered resolution

```
GM (Institute of Computer Science @ UIBK) Automated Reasoning
```

274/1

Redundancy and Deletion

Answer

three answers:

1 refinements

consider refutational complete restrictions of resolution

2 redundancy tests

redundancy can appear in the form of circular derivations or in that of tautology clauses

3 heuristics

...

Remarks

- refinements reduce the search space as fewer derivations are possible, however the minimal proof length may be increased
- redundancy tests cannot increase the proof length, but may be costly call a clause D redundant in C if $\exists C_1, \ldots, C_k$ with $C_1, \ldots, C_k \models D$

Redundancy and Deletion

Definition

define resolution operator Res(C)

- $\mathsf{Res}(\mathcal{C}) = \{D \mid D \text{ is resolvent or factor with premises in } \mathcal{C}\}$
- $\operatorname{Res}^{0}(\mathcal{C}) = \mathcal{C}$; $\operatorname{Res}^{n+1}(\mathcal{C}) := \operatorname{Res}^{n}(\mathcal{C}) \cup \operatorname{Res}(\operatorname{Res}^{n}(\mathcal{C}))$
- $\operatorname{Res}^*(\mathcal{C}) := \bigcup_{n \ge 0} \operatorname{Res}^n(\mathcal{C})$

Definition

- let $d(\mathcal{C}) = \min\{n \mid \Box \in \operatorname{Res}^n(\mathcal{C})\}$
- the search complexity of Res wrt clause set C is scomp(C) = |Res^{d(C)}(C)|

Question

howto reduce the search complexity (of resolution refinements)?

GM (Institute of Computer Science @ UIBK)

275/2

Subsumption and Tautology Elimination

Lemma

application of subsumption and tautology elimination as pre-procession steps preserves completeness

Automated Reasoning

Definition

subsumption and resolution can be combined in the following ways

1 forward subsumption

newly derived clauses subsumed by existing clauses are deleted

2 backward subsumption

existing clauses C subsumed by newly derived clauses D become inactive

inactive clauses are reactivated, if D is no ancestor of current clause

3 replacement

the set of all clauses (derived and intital) are frequently reduced under subsumption

Tautology Elimination

Definition

- a clause C containing complementary literals is a tautology
- tautology elimination is the process of removing newly derived tautological clauses (that is, we assume the initial clause set is taut-reduced)

Example

consider the clause

$$\mathsf{P}(\mathsf{f}(\mathsf{a},\mathsf{b})) \lor \neg \mathsf{P}(\mathsf{f}(x,\mathsf{b})) \lor \neg \mathsf{P}(\mathsf{f}(\mathsf{a},y))$$

Automated Reasoning

factoring yields the tautology $\mathsf{P}(f(a,b)) \vee \neg \mathsf{P}(f(a,b))$

GM (Institute of Computer Science @ UIBK)

278/1

Subsumption and Tautology Elimination

Theorem

- **1** (ordered) resolution (for any admissible atom order) is complete under forward subsumption
- 2 forward subsumption does not increase the search complexity of (ordered) resolution

Proof Sketch.

- let C', C, D', D be clauses such that C' subsumes C and D' subsumes D
- 2 one shows that if *E* is a resolvent of *C* and *D*, then one of the following cases happens:
 - C' subsumes E
 - D' subsumes E
 - \exists resolvent E' of C' and D' such that E' subsumes E
- **3** using this observation in an inductive argument, completeness follows

Subsumption and Tautology Elimination

Example

consider the following (tautology free) clause set $\ensuremath{\mathcal{C}}$

$$\mathsf{P}(x) \lor \mathsf{R}(x) \quad \mathsf{R}(x) \lor \neg \mathsf{P}(x) \quad \mathsf{P}(x) \lor \neg \mathsf{R}(x) \quad \neg \mathsf{P}(x) \lor \neg \mathsf{R}(x)$$

we have scomp(C) = 15 for unrestricted resolution; however the following resolution steps derive tautologies

$$\frac{\mathsf{P}(x) \lor \mathsf{R}(x) \quad \neg \mathsf{P}(x) \lor \neg \mathsf{R}(x)}{\mathsf{P}(x) \lor \neg \mathsf{P}(x)} \qquad \frac{\mathsf{P}(x) \lor \mathsf{R}(x) \quad \neg \mathsf{P}(x) \lor \neg \mathsf{R}(x)}{\mathsf{R}(x) \lor \neg \mathsf{R}(x)}$$

Lemma

- **1** *tautology elimination is incomplete for lock resolution*
- **2** *tautology elimination is complete for unrestricted and ordered resolution*

GM (Institute of Computer Science @ UIBK) Automated Reasoning

279/

Subsumption and Tautology Elimination

Lemma

lock resolution is not complete under forward subsumption

Proof.

- I let C, D be indexed clauses; we say an C subsumes D if the the clause part of C subsumes the clause part of D
- **2** consider the following clause set \mathcal{C}

$$\mathsf{P}(x)^{5} \lor \mathsf{R}(x)^{1} \quad \mathsf{R}(x)^{6} \lor \neg \mathsf{P}(x)^{3} \quad \mathsf{P}(x)^{4} \lor \neg \mathsf{R}(x)^{7} \quad \neg \mathsf{P}(x)^{8} \lor \neg \mathsf{R}(x)^{2}$$

3 the following clauses are derivable by lock resolution and essential to derive □

$$\mathsf{R}(x)^{6} \lor \neg \mathsf{P}(x) \qquad \neg \mathsf{P}(x)^{7} \lor \neg \mathsf{R}(x)$$

4 however these are subsumed by $R(x) \vee \neg P(x)$ and $\neg P(x) \vee \neg R(x)$ respectively Example

consider the following set of clauses

$$\begin{array}{ll} C_1: \ \mathsf{P}(\mathsf{f}(x)) \lor \mathsf{R}(x) \lor \neg \mathsf{P}(\mathsf{f}(x)) & C_2: \ \mathsf{P}(x) \lor \mathsf{Q}(x) \\ C_3: \ \mathsf{R}(\mathsf{f}(x)) & C_4: \ \mathsf{Q}(x) \lor \neg \mathsf{R}(x) \\ C_5: \ \neg \mathsf{Q}(\mathsf{f}(x)) & \end{array}$$

 C_1 can be resolved with C_2 , C_4 and itself

Lemma

let C and D be clauses and C a tautology; any resolvent of C and D is either a tautology or subsumed by D

Theorem

(ordered) resolution is complete under forward subsumption and tautology elimination

GM (Institute of Computer Science @ UIBK) Automated Reasoning

282/1