

Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

Happy New Year!

Summary Last Lecture

Definition

- a literal L is maximal if \exists ground σ such that for no other literal M: $M\sigma \succ_{\mathsf{L}} L\sigma$
- *L* is strictly maximal if \exists ground σ such that for no other literal *M*: $M\sigma \succcurlyeq_{\mathbb{L}} L\sigma$; here $\succcurlyeq_{\mathbb{L}}$ denotes the reflexive closure

Definition

ordered resolution

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma}$$

ordered factoring

$$\frac{C \vee A \vee B}{(C \vee A)\sigma}$$

- $oldsymbol{1}$ σ is a mgu of the atomic formulas A and B
- 2 $A\sigma$ is strictly maximal with respect to $C\sigma$; $\neg B\sigma$ is maximal with respect to $D\sigma$

subsumption and resolution can be combined in the following ways

- 1 forward subsumption newly derived clauses subsumed by existing clauses are deleted
- 2 backward subsumption existing clauses C subsumed by newly derived clauses D become inactive inactive clauses are reactivated, if D is no ancestor of current clause
- 3 replacement the set of all clauses (derived and intital) are frequently reduced under subsumption

Theorem

(ordered) resolution is complete under forward subsumption and tautology elimination

Outline of the Lecture

Early Approaches in Automated Reasoning

short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, . . .

Outline of the Lecture

Early Approaches in Automated Reasoning

short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, . . .

Paramodulation Calculus

Definition

- let \square be a fresh constant; let $\mathcal L$ be our basic language
- terms of L∪ (□) such that □ occurs exactly once, are called contexts
- empty context is denoted as □
- for context C[□] and a term t
 we write C[t] for the replacement of □ by t

Paramodulation Calculus

Definition

- ullet let \Box be a fresh constant; let ${\mathcal L}$ be our basic language
- terms of $\mathcal{L} \cup \{\Box\}$ such that \Box occurs exactly once, are called contexts
- empty context is denoted as □
- for context $C[\Box]$ and a term t we write C[t] for the replacement of \Box by t

Example

- let $\mathcal{L} = \{c, f, P\}$
- $P(f(\Box)) =: C[\Box]$ is a context
- C[f(c)] = P(f(f(c)))

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma_1}$$

$$\frac{C \vee A \vee B}{(C \vee A)\sigma_1}$$

• σ_1 is a mgu of A and B (A, B atomic)

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma_1}$$

$$\frac{C \lor A \lor B}{(C \lor A)\sigma_1}$$

$$\frac{C \lor s = t \quad D \lor L[s']}{(C \lor D \lor L[t])\sigma_2}$$

- σ_1 is a mgu of A and B (A, B atomic)
- σ_2 is a mgu of s and s'

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma_1}$$

$$\frac{C \vee s \neq s'}{C\sigma_2}$$

$$\frac{C \lor A \lor B}{(C \lor A)\sigma_{1}}$$

$$\frac{C \lor s = t \quad D \lor L[s']}{(C \lor D \lor L[t])\sigma_{2}}$$

- σ_1 is a mgu of A and B (A, B atomic)
- σ_2 is a mgu of s and s'

$$\frac{C \lor A \quad D \lor \neg B}{(C \lor D)\sigma_1}$$

$$\frac{C \lor s \neq s'}{C\sigma_2}$$

$$\frac{C \lor A \lor B}{(C \lor A)\sigma_1}$$

$$\frac{C \lor s = t \quad D \lor L[s']}{(C \lor D \lor L[t])\sigma_2}$$

- σ_1 is a mgu of A and B (A, B atomic)
- σ_2 is a mgu of s and s'

Example

$$consider \ \mathcal{C} = \{c \neq d, b = d, a \neq d \lor a = c, a = b \lor a = d\}$$

$$\begin{array}{c|c} \underline{b=d} & \underline{a=b \vee a=d} \\ \underline{a=d \vee a=d} \\ \underline{a=d} & \underline{c\neq d} \\ \underline{a\neq c} & \underline{d\neq d \vee a=c} \\ \underline{a=c} \end{array}$$

• define the paramodulation operator $Res_P(C)$ as follows:

 $\mathsf{Res}_{\mathsf{P}}(\mathcal{C}) = \{D \mid D \text{ is paramodulant, etc. with premises in } \mathcal{C}\}$

- define the paramodulation operator $\mathsf{Res}_\mathsf{P}(\mathcal{C})$ as follows:
 - $\mathsf{Resp}(\mathcal{C}) = \{D \mid D \text{ is paramodulant, etc. with premises in } \mathcal{C}\}$
- n^{th} (unrestricted) iteration $\operatorname{Res}_{P}^{n}$ ($\operatorname{Res}_{P}^{*}$) of the operator Res_{P} is defined as before

- define the paramodulation operator $Res_P(C)$ as follows:
 - $\mathsf{Res}_{\mathsf{P}}(\mathcal{C}) = \{D \mid D \text{ is paramodulant, etc. with premises in } \mathcal{C}\}$
- nth (unrestricted) iteration Resⁿ_P (Res^{*}_P) of the operator Res_P is defined as before

Theorem

paramodulation is sound and complete: if F is a sentence and C its clause form, then F is unsatisfiable iff $\Box \in \mathsf{Res}^*_{\mathsf{P}}(\mathcal{C})$

- define the paramodulation operator $\operatorname{Res}_{\mathsf{P}}(\mathcal{C})$ as follows: $\operatorname{Res}_{\mathsf{P}}(\mathcal{C}) = \{D \mid D \text{ is paramodulant, etc. with premises in } \mathcal{C}\}$
- nth (unrestricted) iteration Resⁿ_P (Res^{*}_P) of the operator Res_P is defined as before

Theorem

paramodulation is sound and complete: if F is a sentence and C its clause form, then F is unsatisfiable iff $\Box \in \mathsf{Res}^*_{\mathsf{P}}(\mathcal{C})$

- define the paramodulation operator $Res_P(C)$ as follows:
 - $\mathsf{Res}_\mathsf{P}(\mathcal{C}) = \{D \mid D \text{ is paramodulant, etc. with premises in } \mathcal{C}\}$
- nth (unrestricted) iteration Resⁿ_P (Res^{*}_P) of the operator Res_P is defined as before

Theorem

paramodulation is sound and complete: if F is a sentence and C its clause form, then F is unsatisfiable iff $\Box \in \mathsf{Res}^*_{\mathsf{P}}(\mathcal{C})$

A Problem with Lifting

Claim

• let τ_1 and τ_2 be a ground and consider

$$\frac{C\tau_1 \vee (s=t)\tau_1 \quad D\tau_2 \vee L\tau_2[s'\tau_2]}{C\tau_1 \vee D\tau_2 \vee L\tau_2[t\tau_2]}$$

where $s\tau_1 = s'\tau_2$

• \exists mgu σ of s and s', such that σ is more general then τ_1 and τ_2 and the following paramodulation step is valid

$$\frac{C \vee s = t \quad D \vee L[s']}{(C \vee D \vee L[t])\sigma}$$

A Problem with Lifting

Claim

• let τ_1 and τ_2 be a ground and consider

$$\frac{C\tau_1 \vee (s=t)\tau_1 \quad D\tau_2 \vee L\tau_2[s'\tau_2]}{C\tau_1 \vee D\tau_2 \vee L\tau_2[t\tau_2]}$$

where $s\tau_1 = s'\tau_2$

• \exists mgu σ of s and s', such that σ is more general then τ_1 and τ_2 and the following paramodulation step is valid

$$\frac{C \vee s = t \quad D \vee L[s']}{(C \vee D \vee L[t])\sigma}$$

Fact

observe that paramodulation into variables is allowed

• consider the following unit clauses

$$a = b$$
 $f(x) = c$

the only possible (non-ground) paramodulation inference is f(b) = c

consider the following unit clauses

$$a = b$$
 $f(x) = c$

the only possible (non-ground) paramodulation inference is $f(\boldsymbol{b}) = \boldsymbol{c}$

consider the following ground step:

$$\frac{a = b \quad f(f(a)) = c}{f(f(b)) = c}$$

then no lifting is possible: oops ©...

consider the following unit clauses

$$a = b$$
 $f(x) = c$

the only possible (non-ground) paramodulation inference is f(b) = c

consider the following ground step:

$$\frac{a = b \quad f(f(a)) = c}{f(f(b)) = c}$$

then no lifting is possible: oops ©...

• we add the functional reflexivity equation f(x) = f(x) from which we get f(a) = f(b) by paramodulation into a variable

consider the following unit clauses

$$a = b$$
 $f(x) = c$

the only possible (non-ground) paramodulation inference is f(b) = c

consider the following ground step:

$$\frac{a = b \quad f(f(a)) = c}{f(f(b)) = c}$$

then no lifting is possible: oops @...

- we add the functional reflexivity equation f(x) = f(x) from which we get f(a) = f(b) by paramodulation into a variable
- then lifting becomes possible (using two steps)

$$\frac{\mathsf{a} = \mathsf{b} \quad \mathsf{f}(x) = \mathsf{f}(x)}{\frac{\mathsf{f}(\mathsf{a}) = \mathsf{f}(\mathsf{b})}{\mathsf{f}(\mathsf{f}(\mathsf{b})) = \mathsf{c}}}$$

 $f(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)$ is called functional reflexivity equation

$$f(x_1,\ldots,x_n)=f(x_1,\ldots,x_n)$$
 is called functional reflexivity equation

Lemma

• let au_1 and au_2 be a ground and consider

$$\frac{C\tau_1 \vee (s=t)\tau_1 \quad D\tau_2 \vee L\tau_2[x\tau_2]}{C\tau_1 \vee D\tau_2 \vee L\tau_2[f(t\tau_1)]}$$

where
$$x\tau_2 = f(s'\tau_3)$$
 and $s\tau_1 = s'\tau_3$

• then the following paramodulation step is valid, trivially more general than the ground step

$$\frac{C \lor s = t \quad f(x) = f(x)}{C \lor f(s) = f(t)} \quad D \lor L[x]$$
$$C \lor D \lor L[f(t)]$$

$$f(x_1,\ldots,x_n)=f(x_1,\ldots,x_n)$$
 is called functional reflexivity equation

Lemma

• let τ_1 and τ_2 be a ground and consider

$$\frac{C\tau_1 \vee (s=t)\tau_1 \quad D\tau_2 \vee L\tau_2[x\tau_2]}{C\tau_1 \vee D\tau_2 \vee L\tau_2[f(t\tau_1)]}$$

where
$$x\tau_2 = f(s'\tau_3)$$
 and $s\tau_1 = s'\tau_3$

 then the following paramodulation step is valid, trivially more general than the ground step

$$\frac{C \lor s = t \quad f(x) = f(x)}{C \lor f(s) = f(t)} \quad D \lor L[x]$$

$$C \lor D \lor L[f(t)]$$

Proof.

on the whiteboard

 $f(x_1,\ldots,x_n)=f(x_1,\ldots,x_n)$ is called functional reflexivity equation

Lemma

• let τ_1 and τ_2 be a ground and consider

$$\frac{C\tau_1 \vee (s=t)\tau_1 \quad D\tau_2 \vee L\tau_2[x\tau_2]}{C\tau_1 \vee D\tau_2 \vee L\tau_2[f(t\tau_1)]}$$

where
$$x\tau_2 = f(s'\tau_3)$$
 and $s\tau_1 = s'\tau_3$

• then the following paramodulation step is valid, trivially more general than the ground step

$$\frac{C \lor s = t \quad f(x) = f(x)}{C \lor f(s) = f(t)} \quad D \lor L[x]$$

$$C \lor D \lor L[f(t)]$$

Proof.

on the whiteboard

Theorem

paramodulation is sound and complete: if F is a sentence and C its clause form (containing all functional reflexive equations), then F is unsatisfiable iff $\Box \in \mathsf{Res}^*_\mathsf{P}(\mathcal{C})$

Proof.

in proof, we follow the standard procedure of combining model existence + (updated) lifting lemma

Theorem

paramodulation is sound and complete: if F is a sentence and C its clause form (containing all functional reflexive equations), then F is unsatisfiable iff $\Box \in \mathsf{Res}^*_\mathsf{P}(C)$

Proof.

in proof, we follow the standard procedure of combining model existence + (updated) lifting lemma

Discussion

- alternative completenesss proof employs an adaption of the semantic tree argument
- paramodulation is inefficient
- one idea to reduce the search space is to combine ordered resolution with paramodulation: ordered paramodulation

Definition

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma_1}$$

$$\frac{C \vee s \neq s'}{C\sigma_2}$$

$$\frac{C \lor A \lor B}{(C \lor A)\sigma_1}$$

$$\frac{C \lor s = t \quad D \lor L[s']}{(C \lor D \lor L[t])\sigma_2}$$

Definition

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma_1}$$

$$\frac{C \vee s \neq s'}{C\sigma_2}$$

$$\frac{C \lor A \lor B}{(C \lor A)\sigma_1}$$

$$\frac{C \lor s = t \quad D \lor L[s']}{(C \lor D \lor L[t])\sigma_2}$$

• same conditions on σ_1 , σ_2 as before

Definition

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma_1}$$

$$\frac{C \vee s \neq s'}{C\sigma_2}$$

$$\frac{C \lor A \lor B}{(C \lor A)\sigma_1}$$

$$\frac{C \lor s = t \quad D \lor L[s']}{(C \lor D \lor L[t])\sigma_2}$$

- same conditions on σ_1 , σ_2 as before
- $A\sigma_1$ is strictly maximal with respect to $C\sigma_1$; $\neg B\sigma_1$ is maximal with respect to $D\sigma_1$

Definition

$$\frac{C \lor A \quad D \lor \neg B}{(C \lor D)\sigma_{1}} \qquad \qquad \frac{C \lor A \lor B}{(C \lor A)\sigma_{1}}
\underline{C \lor s \neq s'} \qquad \qquad \underline{C \lor s = t \quad D \lor L[s']}
\underline{C \lor S = t \quad D \lor L[t])\sigma_{2}}$$

- same conditions on σ_1 , σ_2 as before
- $A\sigma_1$ is strictly maximal with respect to $C\sigma_1$; $\neg B\sigma_1$ is maximal with respect to $D\sigma_1$
- the equation $(s=t)\sigma_2$ and the literal $L[s']\sigma_2$ are maximal with respect to $D\sigma_2$

Definition

$$\frac{C \lor A \quad D \lor \neg B}{(C \lor D)\sigma_{1}} \qquad \qquad \frac{C \lor A \lor B}{(C \lor A)\sigma_{1}}
\underline{C \lor s \neq s'} \qquad \qquad \underline{C \lor s = t \quad D \lor L[s']}
\underline{C \lor s = t \quad D \lor L[t])\sigma_{2}}$$

- same conditions on σ_1 , σ_2 as before
- $A\sigma_1$ is strictly maximal with respect to $C\sigma_1$; $\neg B\sigma_1$ is maximal with respect to $D\sigma_1$
- the equation $(s=t)\sigma_2$ and the literal $L[s']\sigma_2$ are maximal with respect to $D\sigma_2$

Theorem

ordered paramodulation is sound and complete

re-consider $\mathcal C$

$$c \neq d$$
 $b = d$ $a \neq d \lor a = c$ $a = b \lor a = d$

together with the literal order:

re-consider $\mathcal C$

$$c \neq d$$
 $b = d$ $a \neq d \lor a = c$ $a = b \lor a = d$

together with the literal order:

$$a\neq b\succ a=b\succ a\neq c\succ a=c\succ a\neq d\succ a=d$$

$$\succ b\neq d\succ b=d\succ c\neq d\succ c=d$$

the following derivation is no longer admissible

$$\begin{array}{c|c} \underline{b=d} & \underline{a=b \vee a=d} \\ \underline{a=d \vee a=d} \\ \underline{a=d} & \underline{c\neq d} \\ \underline{a\neq c} & \underline{d\neq d \vee a=c} \\ \underline{a=c} \end{array}$$

Example

re-consider $\mathcal C$

$$c \neq d$$
 $b = d$ $a \neq d \lor a = c$ $a = b \lor a = d$

together with the literal order:

$$a\neq b\succ a=b\succ a\neq c\succ a=c\succ a\neq d\succ a=d$$

$$\succ b\neq d\succ b=d\succ c\neq d\succ c=d$$

the following derivation is no longer admissible

$$\begin{array}{c|c} \underline{b=d} & \underline{a=b \vee a=d} \\ \underline{a=d \vee a=d} \\ \underline{a=d} & \underline{c\neq d} \\ \underline{a\neq c} & \underline{d\neq d \vee a=c} \\ \underline{a=c} \end{array}$$

Example (cont'd)

the following derivation is admissible

$$\begin{array}{c|c} \underline{b=d \quad a=b \vee a=d} \\ \underline{a=d \vee a=d} \\ \underline{a=d} & \underline{a=d \quad a\neq d \vee a=c} \\ \underline{d\neq d \vee c=d} \\ \underline{c\neq d} & \underline{c=d} \end{array}$$

Example (cont'd)

the following derivation is admissible

$$\begin{array}{c|c} \underline{b=d \quad a=b \vee a=d} \\ \underline{a=d \vee a=d} \\ \underline{a=d} \\ \underline{a=d \quad a\neq d \vee c=d} \\ \underline{c\neq d} \\ \underline{c\neq d} \\ \end{array}$$

Discussion

- ordered paramodulation is still too ineffienct
- various refinements have been introduced, one is the superposition calculus

Definitions

rewrite relation . . .

- rewrite relation . . .
- normal form . . .

- rewrite relation . . .
- normal form . . .
- reduction order . . .

- rewrite relation . . .
- normal form
- reduction order . . .
- lexicographic path order (LPO), reduction order . . .

- rewrite relation . . .
- normal form
- reduction order
- lexicographic path order (LPO), reduction order . . .
- confluent . . .

- rewrite relation . . .
- normal form . . .
- reduction order . . .
- lexicographic path order (LPO), reduction order . . .
- confluent . . .
- an equation s=t converges (or has a rewrite proof) in $\mathcal R$ if s and t are joinable: $s\downarrow t$

Definitions

- rewrite relation . . .
- normal form . . .
- reduction order . . .
- lexicographic path order (LPO), reduction order . . .
- confluent . . .
- an equation s=t converges (or has a rewrite proof) in $\mathcal R$ if s and t are joinable: $s\downarrow t$

Facts

1 a convergent (confluent & terminating) TRS forms a decision procedure for the underlying equational theory: $s \leftrightarrow^* t$ iff $s \downarrow t$

Definitions

- rewrite relation . . .
- normal form . . .
- reduction order ...
- lexicographic path order (LPO), reduction order . . .
- confluent . . .
- an equation s=t converges (or has a rewrite proof) in $\mathcal R$ if s and t are joinable: $s\downarrow t$

Facts

- **1** a convergent (confluent & terminating) TRS forms a decision procedure for the underlying equational theory: $s \leftrightarrow^* t$ iff $s \downarrow t$
- 2 normalisation in a convergent TRS amounts to a don't care nondeterminism

Completion

Definition (superposition of rewrite rules)

$$\frac{s \to t \quad w[u] \to v}{(w[t] = v)\sigma}$$

 σ mgu of s and u and u not a variable; then $(w[t] = v)\sigma$ is a critical pair

Completion

Definition (superposition of rewrite rules)

$$\frac{s \to t \quad w[u] \to v}{(w[t] = v)\sigma}$$

 σ mgu of s and u and u not a variable; then $(w[t] = v)\sigma$ is a critical pair

Theorem

a terminating TRS $\mathcal R$ is confluent iff all critical pairs between rules in $\mathcal R$ converge

Completion

Definition (superposition of rewrite rules)

$$\frac{s \to t \quad w[u] \to v}{(w[t] = v)\sigma}$$

 σ mgu of s and u and u not a variable; then $(w[t] = v)\sigma$ is a critical pair

Theorem

a terminating TRS $\mathcal R$ is confluent iff all critical pairs between rules in $\mathcal R$ converge

Example

LPO is not total; x, y, u, v variables:

$$f(x, y) \not\succ_{lpo} f(u, w)$$
 $f(u, w) \not\succ_{lpo} f(x, y)$

Ordered Rewriting

- reduction orders that are total on ground terms are called complete
- \succ a reduction order; \mathcal{E} a set of equations; consider

$$\mathcal{E}^{\succ} = \{ s\sigma \to t\sigma \mid s = t \in \mathcal{E}, s\sigma \succ t\sigma \}$$

- rules in \mathcal{E}^{\succ} are called reductive instances of equations in \mathcal{E}
- rewrite relation $\rightarrow_{\mathcal{E}^{\succ}}$ represents ordered rewriting

Ordered Rewriting

Definitions

- reduction orders that are total on ground terms are called complete
- ullet \succ a reduction order; ${\cal E}$ a set of equations; consider

$$\mathcal{E}^{\succ} = \{s\sigma \to t\sigma \mid s = t \in \mathcal{E}, s\sigma \succ t\sigma\}$$

- rules in \mathcal{E}^{\succ} are called reductive instances of equations in \mathcal{E}
- rewrite relation $\rightarrow_{\mathcal{E}^{\succ}}$ represents ordered rewriting

Example

- let \succ_{Ipo} be a LPO induced by the precedence $+ \succ a \succ b \succ c$
- $b + c \succ_{lpo} c + b \succ_{lpo} c$
- commutativity x + y = y + x yields the ordered rewrite derivation:

$$(b + c) + c \rightarrow (c + b) + c \rightarrow c + (c + b)$$

equations \mathcal{E} are ground convergent wrt \succ if \mathcal{E}^{\succ} is ground convergent

equations $\mathcal E$ are ground convergent wrt \succ if $\mathcal E^{\succ}$ is ground convergent

Definition (superposition with equations)

$$\frac{s=t \quad w[u]=v}{(w[t]=v)\sigma}$$

- σ is mgu of s and u; $t\sigma \not\succeq s\sigma$, $v\sigma \not\succeq w[u]\sigma$ and u is not a variable
- $(w[t] = v)\sigma$ is an ordered critical pair

equations $\mathcal E$ are ground convergent wrt \succ if $\mathcal E^{\succ}$ is ground convergent

Definition (superposition with equations)

$$\frac{s=t \quad w[u]=v}{(w[t]=v)\sigma}$$

- σ is mgu of s and u; $t\sigma \not\succeq s\sigma$, $v\sigma \not\succeq w[u]\sigma$ and u is not a variable
- $(w[t] = v)\sigma$ is an ordered critical pair

Theorem

 \succ a complete reduction order; a set of equations E is ground convergent $wrt \succ iff \ \forall$ ordered critical pairs $(w[t] = v)\sigma$ (with overlapping term $w[u]\sigma$) and $\ \forall$ ground substitutions τ : if $w[u]\sigma\tau \succ w[t]\sigma\tau$ and $w[u]\sigma\tau \succ v\sigma\tau$ then $w[t]\sigma\tau \downarrow v\sigma\tau$

deduction

$$\mathcal{E}; \mathcal{R} \vdash \mathcal{E} \cup \{s = t\}; \mathcal{R}$$

if
$$s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t$$
, $s \not\succeq w$, $t \not\succeq w$

deduction

$$\mathcal{E}$$
; $\mathcal{R} \vdash \mathcal{E} \cup \{s = t\}$; \mathcal{R}

if
$$s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t$$
, $s \not\succeq w$, $t \not\succeq w$

orientation

$$\mathcal{E} \cup \{s=t\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\}$$

if
$$s > t$$

deduction

$$\mathcal{E}; \mathcal{R} \vdash \mathcal{E} \cup \{s = t\}; \mathcal{R}$$

if
$$s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t$$
, $s \not\succeq w$, $t \not\succeq w$

orientation

deletion

$$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\}$$

 $\mathcal{E} \cup \{s = s\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R}$

if
$$s \succ t$$

$$\mathcal{E}$$
; $\mathcal{R} \vdash \mathcal{E} \cup \{s = t\}$; \mathcal{R}

if
$$s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t$$
, $s \not\succeq w$, $t \not\succeq w$

$$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\}$$

$$\mathcal{E} \cup \{s=s\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R}$$

$$\mathcal{E} \cup \{s=t\}; \mathcal{R} \vdash \mathcal{E} \cup \{u=t\}; \mathcal{R} \quad \text{ if } s \rightarrow_{\mathcal{R}} u$$

if $s \succ t$

$$\mathcal{E}; \mathcal{R} \vdash \mathcal{E} \cup \{s = t\}; \mathcal{R}$$

if
$$s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t$$
, $s \not\succeq w$, $t \not\succeq w$

$$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\}$$

$$\mathcal{E} \cup \{s = s\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R}$$

$$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E} \cup \{u = t\}; \mathcal{R} \quad \text{if } s \rightarrow_{\mathcal{R}} u$$

$$\mathcal{E}; \mathcal{R} \cup \{s \to t\} \vdash \mathcal{E}; \mathcal{R} \cup \{s \to u\}$$

if s > t

if $r \rightarrow_{\mathcal{R}} u$

$$\mathcal{E}; \mathcal{R} \vdash \mathcal{E} \cup \{s = t\}; \mathcal{R}$$
 if $s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t, s \not\succeq w, t \not\succeq w$ orientation
$$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\}$$
 if $s \succ t$ deletion
$$\mathcal{E} \cup \{s = s\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R}$$
 simplification
$$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E} \cup \{u = t\}; \mathcal{R}$$
 if $s \rightarrow_{\mathcal{R}} u$ composition
$$\mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\} \vdash \mathcal{E}; \mathcal{R} \cup \{s \rightarrow u\}$$
 if $r \rightarrow_{\mathcal{R}} u$ collapse
$$\mathcal{E}; \mathcal{R} \cup \{s[w] \rightarrow t\} \vdash \mathcal{E} \cup \{s[u] = t\}; \mathcal{R}$$
 if $w \rightarrow_{\mathcal{R}} u$ and either $t \succ u$ or $w \neq s[w]$

$$\mathcal{E}; \mathcal{R} \vdash \mathcal{E} \cup \{s = t\}; \mathcal{R}$$
 if $s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t, s \not\succeq w, t \not\succeq w$ orientation
$$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\}$$
 if $s \succ t$ deletion
$$\mathcal{E} \cup \{s = s\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R}$$
 simplification
$$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E} \cup \{u = t\}; \mathcal{R}$$
 if $s \rightarrow_{\mathcal{R}} u$ composition
$$\mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\} \vdash \mathcal{E}; \mathcal{R} \cup \{s \rightarrow u\}$$
 if $r \rightarrow_{\mathcal{R}} u$ collapse
$$\mathcal{E}; \mathcal{R} \cup \{s[w] \rightarrow t\} \vdash \mathcal{E} \cup \{s[u] = t\}; \mathcal{R}$$
 if $w \rightarrow_{\mathcal{R}} u$ and either $t \succ u$ or $w \neq s[w]$

Definition

• a sequence $(\mathcal{E}_0; \mathcal{R}_0) \vdash (\mathcal{E}_1; \mathcal{R}_1) \vdash \cdots$ is called a derivation usually \mathcal{E}_0 is the set of initial equations and $\mathcal{R}_0 = \emptyset$

$$\mathcal{E}; \mathcal{R} \vdash \mathcal{E} \cup \{s = t\}; \mathcal{R}$$
 if $s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t, s \not\succeq w, t \not\succeq w$ orientation
$$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\}$$
 if $s \succ t$ deletion
$$\mathcal{E} \cup \{s = s\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R}$$
 simplification
$$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E} \cup \{u = t\}; \mathcal{R}$$
 if $s \rightarrow_{\mathcal{R}} u$ composition
$$\mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\} \vdash \mathcal{E}; \mathcal{R} \cup \{s \rightarrow u\}$$
 if $r \rightarrow_{\mathcal{R}} u$ collapse
$$\mathcal{E}; \mathcal{R} \cup \{s[w] \rightarrow t\} \vdash \mathcal{E} \cup \{s[u] = t\}; \mathcal{R}$$
 if $w \rightarrow_{\mathcal{R}} u$ and either $t \succ u$ or $w \neq s[w]$

- a sequence $(\mathcal{E}_0; \mathcal{R}_0) \vdash (\mathcal{E}_1; \mathcal{R}_1) \vdash \cdots$ is called a derivation usually \mathcal{E}_0 is the set of initial equations and $\mathcal{R}_0 = \emptyset$
- its limit is $(\mathcal{E}_{\infty}; \mathcal{R}_{\infty})$; here $\mathcal{E}_{\infty} = \bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j}$; $\mathcal{R}_{\infty} = \bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{R}_{j}$

$$\mathcal{E}; \mathcal{R} \vdash \mathcal{E} \cup \{s = t\}; \mathcal{R}$$
 if $s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t, s \not\succeq w, t \not\succeq w$ orientation
$$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\}$$
 if $s \succ t$ deletion
$$\mathcal{E} \cup \{s = s\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R}$$
 simplification
$$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E} \cup \{u = t\}; \mathcal{R}$$
 if $s \rightarrow_{\mathcal{R}} u$ composition
$$\mathcal{E}; \mathcal{R} \cup \{s \rightarrow t\} \vdash \mathcal{E}; \mathcal{R} \cup \{s \rightarrow u\}$$
 if $r \rightarrow_{\mathcal{R}} u$ collapse
$$\mathcal{E}; \mathcal{R} \cup \{s[w] \rightarrow t\} \vdash \mathcal{E} \cup \{s[u] = t\}; \mathcal{R}$$
 if $w \rightarrow_{\mathcal{R}} u$ and either $t \succ u$ or $w \neq s[w]$

- a sequence $(\mathcal{E}_0; \mathcal{R}_0) \vdash (\mathcal{E}_1; \mathcal{R}_1) \vdash \cdots$ is called a derivation usually \mathcal{E}_0 is the set of initial equations and $\mathcal{R}_0 = \emptyset$
- its limit is $(\mathcal{E}_{\infty}; \mathcal{R}_{\infty})$; here $\mathcal{E}_{\infty} = \bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j}$; $\mathcal{R}_{\infty} = \bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{R}_{j}$

• a proof of s = t wrt \mathcal{E} ; \mathcal{R} is

$$s = s_0 \ \rho_0 \ s_1 \ \rho_1 \ s_2 \cdots s_{n-1} \ \rho_{n-1} \ s_n = t \qquad n \geqslant 0$$

- **1** $(s_i \ \rho_i \ s_{i+1}) = (w[u\sigma] \leftrightarrow w[v\sigma])$ with $u = v \in \mathcal{E}$
- $(s_i \ \rho_i \ s_{i+1}) = (w[u\sigma] \to w[v\sigma]) \text{ with } u \to v \in \mathcal{E}^{\succ} \cup \mathcal{R}$
- $(s_i \ \rho_i \ s_{i+1}) = (w[u\sigma] \leftarrow w[v\sigma]) \text{ with } v \rightarrow u \in \mathcal{E}^{\succ} \cup \mathcal{R}$

• a proof of s = t wrt \mathcal{E} ; \mathcal{R} is

$$s = s_0 \ \rho_0 \ s_1 \ \rho_1 \ s_2 \cdots s_{n-1} \ \rho_{n-1} \ s_n = t \qquad n \geqslant 0$$

- 1 $(s_i \ \rho_i \ s_{i+1}) = (w[u\sigma] \leftrightarrow w[v\sigma])$ with $u = v \in \mathcal{E}$
- $(s_i \ \rho_i \ s_{i+1}) = (w[u\sigma] \leftarrow w[v\sigma]) \text{ with } v \rightarrow u \in \mathcal{E}^{\succ} \cup \mathcal{R}$
- a proof of form

$$s = s_0 \rightarrow s_1 \rightarrow s_2 \cdots \rightarrow s_m \leftarrow \cdots s_{n-1} \leftarrow s_n = t$$

is called rewrite proof

• a proof of s = t wrt \mathcal{E} ; \mathcal{R} is

$$s = s_0 \ \rho_0 \ s_1 \ \rho_1 \ s_2 \cdots s_{n-1} \ \rho_{n-1} \ s_n = t \qquad n \geqslant 0$$

- 1 $(s_i \ \rho_i \ s_{i+1}) = (w[u\sigma] \leftrightarrow w[v\sigma])$ with $u = v \in \mathcal{E}$
- $(s_i \ \rho_i \ s_{i+1}) = (w[u\sigma] \leftarrow w[v\sigma]) \ \text{with} \ v \rightarrow u \in \mathcal{E}^{\succ} \cup \mathcal{R}$
- a proof of form

$$s = s_0 \rightarrow s_1 \rightarrow s_2 \cdots \rightarrow s_m \leftarrow \cdots s_{n-1} \leftarrow s_n = t$$

is called rewrite proof

Fact

- **1** \exists rewrite proof iff the equations converge wrt $\mathcal{R} \cup \mathcal{E}^{\succ}$
- whenever \mathcal{E} ; $\mathcal{R} \vdash \mathcal{E}'$; \mathcal{R}' then the same equations are provable in \mathcal{E} ; \mathcal{R} as in \mathcal{E}' ; \mathcal{R}' ; however proofs may become simpler