Automated Reasoning

Georg Moser
Institute of Computer Science @ UIBK

Winter 2013

Happy New Year!

Summary Last Lecture

Definition

- a literal L is maximal if \exists ground σ such that for no other literal M : $M \sigma \succ_{L} L \sigma$
- L is strictly maximal if \exists ground σ such that for no other literal M : $M \sigma \succcurlyeq_{\mathrm{L}} L \sigma$; here $\succcurlyeq_{\mathrm{L}}$ denotes the reflexive closure

Definition
ordered resolution

$$
\frac{C \vee A \quad D \vee \neg B}{(C \vee D) \sigma}
$$

ordered factoring

$$
\frac{C \vee A \vee B}{(C \vee A) \sigma}
$$

1σ is a mgu of the atomic formulas A and B
$2 A \sigma$ is strictly maximal with respect to $C \sigma ; \neg B \sigma$ is maximal with respect to $D \sigma$

Definition

subsumption and resolution can be combined in the following ways
1 forward subsumption newly derived clauses subsumed by existing clauses are deleted
2 backward subsumption
existing clauses C subsumed by newly derived clauses D become inactive
inactive clauses are reactivated, if D is no ancestor of current clause
3 replacement
the set of all clauses (derived and intital) are frequently reduced under subsumption

Theorem

(ordered) resolution is complete under forward subsumption and
tautology elimination

Outline of the Lecture

Early Approaches in Automated Reasoning
short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, ...

Outline of the Lecture

Early Approaches in Automated Reasoning
short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points
resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality
paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, ...

Paramodulation Calculus

Definition

- let \square be a fresh constant; let \mathcal{L} be our basic language
- terms of $\mathcal{L} \cup\{\square\}$ such that \square occurs exactly once, are called contexts
- empty context is denoted as \square
- for context $C[\square]$ and a term t we write $C[t]$ for the replacement of \square by t

Paramodulation Calculus

Definition

- let \square be a fresh constant; let \mathcal{L} be our basic language
- terms of $\mathcal{L} \cup\{\square\}$ such that \square occurs exactly once, are called contexts
- empty context is denoted as \square
- for context $C[\square]$ and a term t we write $C[t]$ for the replacement of \square by t

Example

- let $\mathcal{L}=\{c, f, P\}$
- $P(f(\square))=: C[\square]$ is a context
- $C[f(c)]=P(f(f(c)))$

Definition

$$
\frac{C \vee A D \vee \neg B}{(C \vee D) \sigma_{1}} \quad \frac{C \vee A \vee B}{(C \vee A) \sigma_{1}}
$$

- σ_{1} is a mgu of A and $B(A, B$ atomic $)$

Definition

$$
\frac{C \vee A \quad D \vee \neg B}{(C \vee D) \sigma_{1}}
$$

$$
\begin{gathered}
\frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s=t \quad D \vee L\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{gathered}
$$

- σ_{1} is a mgu of A and $B(A, B$ atomic $)$
- σ_{2} is a mgu of s and s^{\prime}

Definition

$$
\begin{gathered}
\frac{C \vee A \vee D \vee \neg B}{(C \vee D) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s=t \quad D \vee L\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{gathered}
$$

- σ_{1} is a mgu of A and B (A, B atomic)
- σ_{2} is a mgu of s and s^{\prime}

Definition

$$
\begin{array}{lc}
\frac{C \vee A \vee D \vee \neg B}{(C \vee D) \sigma_{1}} & \frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}} & \frac{\left.C \vee s=t D \vee L s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{array}
$$

- σ_{1} is a mgu of A and B (A, B atomic)
- σ_{2} is a mgu of s and s^{\prime}

Example

consider $\mathcal{C}=\{\mathrm{c} \neq \mathrm{d}, \mathrm{b}=\mathrm{d}, \mathrm{a} \neq \mathrm{d} \vee \mathrm{a}=\mathrm{c}, \mathrm{a}=\mathrm{b} \vee \mathrm{a}=\mathrm{d}\}$

$$
\begin{aligned}
& \frac{b=d \quad a=b \vee a=d}{\frac{a=d \vee a=d}{a=d}} \quad c \neq d \\
& \frac{a \neq c}{} \quad \square
\end{aligned} \quad \frac{a=d \quad a \neq d \vee a=c}{\frac{d \neq d \vee a=c}{a=c}}
$$

Definition

- define the paramodulation operator $\operatorname{Resp}(\mathcal{C})$ as follows:
$\operatorname{Res}_{P}(\mathcal{C})=\{D \mid D$ is paramodulant, etc. with premises in $\mathcal{C}\}$

Definition

- define the paramodulation operator $\operatorname{Resp}_{p}(\mathcal{C})$ as follows:
$\operatorname{Res}_{P}(\mathcal{C})=\{D \mid D$ is paramodulant, etc. with premises in $\mathcal{C}\}$
- $n^{\text {th }}$ (unrestricted) iteration $\operatorname{Res}_{p}^{n}\left(\operatorname{Res}_{P}^{*}\right)$ of the operator Res_{p} is defined as before

Definition

- define the paramodulation operator $\operatorname{Res}_{p}(\mathcal{C})$ as follows:
$\operatorname{Res}_{P}(\mathcal{C})=\{D \mid D$ is paramodulant, etc. with premises in $\mathcal{C}\}$
- $n^{\text {th }}$ (unrestricted) iteration $\operatorname{Res}_{P}^{n}\left(\operatorname{Res}_{P}^{*}\right)$ of the operator Res_{p} is defined as before

Theorem

paramodulation is sound and complete: if F is a sentence and \mathcal{C} its clause form, then F is unsatisfiable iff $\square \in \operatorname{Res}_{\mathrm{p}}^{*}(\mathcal{C})$

Definition

- define the paramodulation operator $\operatorname{Resp}_{p}(\mathcal{C})$ as follows:

$$
\operatorname{Res}_{p}(\mathcal{C})=\{D \mid D \text { is paramodulant, etc. with premises in } \mathcal{C}\}
$$

- $n^{\text {th }}$ (unrestricted) iteration $\operatorname{Res}_{P}^{n}\left(\operatorname{Res}_{P}^{*}\right)$ of the operator Resp is defined as before

Theorem

paramodulation is sound and complete: if F is a sentence and \mathcal{C} its clause form, then F is unsatisfiable iff $\square \in \operatorname{Res}_{\mathrm{P}}^{*}(\mathcal{C})$

Proof Plan.

lemmas

Definition

- define the paramodulation operator $\operatorname{Resp}_{p}(\mathcal{C})$ as follows:
$\operatorname{Res}_{P}(\mathcal{C})=\{D \mid D$ is paramodulant, etc. with premises in $\mathcal{C}\}$
- $n^{\text {th }}$ (unrestricted) iteration $\operatorname{Res}_{P}^{n}\left(\operatorname{Res}_{P}^{*}\right)$ of the operator Resp is defined as before

Theorem

paramodulation is sound and complete: if F is a sentence and \mathcal{C} its clause form, then F is unsatisfiable iff $\square \in \operatorname{Res}_{\mathrm{P}}^{*}(\mathcal{C})$
Proof $\mathrm{P}\left[\begin{array}{l}\mathcal{C} \text { set of consistent ground clauses } \\ \Rightarrow \mathcal{C} \text { admits satisfaction properties }\end{array}\right.$

A Problem with Lifting

Claim

- let τ_{1} and τ_{2} be a ground and consider

$$
\frac{C \tau_{1} \vee(s=t) \tau_{1} \quad D \tau_{2} \vee L \tau_{2}\left[s^{\prime} \tau_{2}\right]}{C \tau_{1} \vee D \tau_{2} \vee L \tau_{2}\left[t \tau_{2}\right]}
$$

where $s \tau_{1}=s^{\prime} \tau_{2}$

- $\exists \mathrm{mgu} \sigma$ of s and s^{\prime}, such that σ is more general then τ_{1} and τ_{2} and the following paramodulation step is valid

$$
\frac{C \vee s=t \quad D \vee L\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma}
$$

A Problem with Lifting

Claim

- let τ_{1} and τ_{2} be a ground and consider

$$
\frac{C \tau_{1} \vee(s=t) \tau_{1} \quad D \tau_{2} \vee L \tau_{2}\left[s^{\prime} \tau_{2}\right]}{C \tau_{1} \vee D \tau_{2} \vee L \tau_{2}\left[t \tau_{2}\right]}
$$

where $s \tau_{1}=s^{\prime} \tau_{2}$

- $\exists \mathrm{mgu} \sigma$ of s and s^{\prime}, such that σ is more general then τ_{1} and τ_{2} and the following paramodulation step is valid

$$
\frac{C \vee s=t \quad D \vee L\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma}
$$

Fact

observe that paramodulation into variables is allowed

Example

- consider the following unit clauses

$$
\mathrm{a}=\mathrm{b} \quad \mathrm{f}(x)=\mathrm{c}
$$

the only possible (non-ground) paramodulation inference is $f(b)=c$

- consider the following ground step:

$$
\frac{a=b \quad f(f(a))=c}{f(f(b))=c}
$$

then no lifting is possible: oops $\odot \ldots$

Example
 e

- consider the following unit clauses

$$
a=b \quad f(x)=c
$$

the only possible (non-ground) paramodulation inference is $f(b)=c$

- consider the following ground step:

$$
\frac{a=b \quad f(f(a))=c}{f(f(b))=c}
$$

then no lifting is possible: oops $\odot \ldots$

- we add the functional reflexivity equation $f(x)=f(x)$ from which we
get $f(a)=f(b)$ by paramodulation into a variable

\qquad

$$
-2-2
$$

Example

- consider the following unit clauses

$$
\mathrm{a}=\mathrm{b} \quad \mathrm{f}(x)=\mathrm{c}
$$

the only possible (non-ground) paramodulation inference is $f(b)=c$

- consider the following ground step:

$$
\frac{a=b \quad f(f(a))=c}{f(f(b))=c}
$$

then no lifting is possible: oops $\oplus_{\circ} \ldots$

- we add the functional reflexivity equation $f(x)=f(x)$ from which we get $f(a)=f(b)$ by paramodulation into a variable
- then lifting becomes possible (using two steps)

$$
\frac{a=b \quad f(x)=f(x)}{\frac{f(a)=f(b)}{f(f(b))=c}} f(x)=c
$$

Definition

$f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)$ is called functional reflexivity equation

Definition

$f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)$ is called functional reflexivity equation

Lemma

- let τ_{1} and τ_{2} be a ground and consider

$$
\frac{C \tau_{1} \vee(s=t) \tau_{1} \quad D \tau_{2} \vee L \tau_{2}\left[x \tau_{2}\right]}{C \tau_{1} \vee D \tau_{2} \vee L \tau_{2}\left[f\left(t \tau_{1}\right)\right]}
$$

where $x \tau_{2}=f\left(s^{\prime} \tau_{3}\right)$ and $s \tau_{1}=s^{\prime} \tau_{3}$

- then the following paramodulation step is valid, trivially more general than the ground step

$$
\frac{C \vee s=t \quad f(x)=f(x)}{\frac{C \vee f(s)=f(t)}{C \vee D \vee L[f(t)]}} D \vee L[x]
$$

Definition

$f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)$ is called functional reflexivity equation

Lemma

- let τ_{1} and τ_{2} be a ground and consider

$$
\frac{C \tau_{1} \vee(s=t) \tau_{1} \quad D \tau_{2} \vee L \tau_{2}\left[x \tau_{2}\right]}{C \tau_{1} \vee D \tau_{2} \vee L \tau_{2}\left[f\left(t \tau_{1}\right)\right]}
$$

where $x \tau_{2}=f\left(s^{\prime} \tau_{3}\right)$ and $s \tau_{1}=s^{\prime} \tau_{3}$

- then the following paramodulation step is valid, trivially more general than the ground step

$$
\frac{C \vee s=t \quad f(x)=f(x)}{\frac{C \vee f(s)=f(t)}{C \vee D \vee L[f(t)]}} D \vee L[x]
$$

Proof.
on the whiteboard

Definition

$f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{n}\right)$ is called functional reflexivity equation

Lemma

- let τ_{1} and τ_{2} be a ground and consider

$$
\frac{C \tau_{1} \vee(s=t) \tau_{1} \quad D \tau_{2} \vee L \tau_{2}\left[x \tau_{2}\right]}{C \tau_{1} \vee D \tau_{2} \vee L \tau_{2}\left[f\left(t \tau_{1}\right)\right]}
$$

where $x \tau_{2}=f\left(s^{\prime} \tau_{3}\right)$ and $s \tau_{1}=s^{\prime} \tau_{3}$

- then the following paramodulation step is valid, trivially more general than the ground step

$$
\frac{C \vee s=t \quad f(x)=f(x)}{\frac{C \vee f(s)=f(t)}{C \vee D \vee L[f(t)]}} D \vee L[x]
$$

Proof.

on the whiteboard

Theorem

paramodulation is sound and complete: if F is a sentence and \mathcal{C} its clause form (containing all functional reflexive equations), then F is unsatisfiable iff $\square \in \operatorname{Res}_{\mathrm{P}}^{*}(\mathcal{C})$

Proof.

in proof, we follow the standard procedure of combining model existence

+ (updated) lifting lemma

Theorem

paramodulation is sound and complete: if F is a sentence and \mathcal{C} its clause form (containing all functional reflexive equations), then F is unsatisfiable iff $\square \in \operatorname{Res}_{\mathrm{P}}^{*}(\mathcal{C})$

Proof.

in proof, we follow the standard procedure of combining model existence + (updated) lifting lemma

Discussion

- alternative completenesss proof employs an adaption of the semantic tree argument
- paramodulation is inefficient
- one idea to reduce the search space is to combine ordered resolution with paramodulation: ordered paramodulation

Ordered Paramodulation Calculus

Definition

$$
\begin{gathered}
\frac{C \vee A \quad D \vee \neg B}{(C \vee D) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s=t \quad D \vee L\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{gathered}
$$

Ordered Paramodulation Calculus

Definition

$$
\begin{gathered}
\frac{C \vee A \vee D \vee \neg B}{(C \vee D) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s=t \quad D \vee L\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{gathered}
$$

- same conditions on σ_{1}, σ_{2} as before

Ordered Paramodulation Calculus

Definition

$$
\begin{gathered}
\frac{C \vee A D \vee \neg B}{(C \vee D) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s=t \quad D \vee L\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{gathered}
$$

- same conditions on σ_{1}, σ_{2} as before
- $A \sigma_{1}$ is strictly maximal with respect to $C \sigma_{1} ; \neg B \sigma_{1}$ is maximal with respect to $D \sigma_{1}$

Ordered Paramodulation Calculus

Definition

$$
\begin{gathered}
\frac{C \vee A \quad D \vee \neg B}{(C \vee D) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s=t \quad D \vee\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{gathered}
$$

- same conditions on σ_{1}, σ_{2} as before
- $A \sigma_{1}$ is strictly maximal with respect to $C \sigma_{1} ; \neg B \sigma_{1}$ is maximal with respect to $D \sigma_{1}$
- the equation $(s=t) \sigma_{2}$ and the literal $L\left[s^{\prime}\right] \sigma_{2}$ are maximal with respect to $D \sigma_{2}$

Ordered Paramodulation Calculus

Definition

$$
\begin{gathered}
\frac{C \vee A \quad D \vee \neg B}{(C \vee D) \sigma_{1}} \\
\frac{C \vee s \neq s^{\prime}}{C \sigma_{2}}
\end{gathered}
$$

$$
\begin{gathered}
\frac{C \vee A \vee B}{(C \vee A) \sigma_{1}} \\
\frac{C \vee s=t \quad D \vee\left[s^{\prime}\right]}{(C \vee D \vee L[t]) \sigma_{2}}
\end{gathered}
$$

- same conditions on σ_{1}, σ_{2} as before
- $A \sigma_{1}$ is strictly maximal with respect to $C \sigma_{1} ; \neg B \sigma_{1}$ is maximal with respect to $D \sigma_{1}$
- the equation $(s=t) \sigma_{2}$ and the literal $L\left[s^{\prime}\right] \sigma_{2}$ are maximal with respect to $D \sigma_{2}$

Theorem
ordered paramodulation is sound and complete

$$
\int
$$

$$
c \neq d \quad b=d \quad a \neq d \vee a=c \quad a=b \vee a=d
$$

together with the literal order:

$$
\begin{gathered}
\mathrm{a} \neq \mathrm{b} \succ \mathrm{a}=\mathrm{b} \succ \mathrm{a} \neq \mathrm{c} \succ \mathrm{a}=\mathrm{c} \succ \mathrm{a} \neq \mathrm{d} \succ \mathrm{a}=\mathrm{d} \\
\succ \mathrm{~b} \neq \mathrm{d} \succ \mathrm{~b}=\mathrm{d} \succ \mathrm{c} \neq \mathrm{d} \succ \mathrm{c}=\mathrm{d}
\end{gathered}
$$

the following derivation is no longer admissible

$$
\frac{b=d \quad a=b \vee a=d}{\frac{a=d \vee a=d}{a=d}} \quad c \neq d \quad \frac{a \neq d \quad a \neq d \vee a=c}{\frac{d \neq c}{a=c}}
$$

Ordered Paramoduation Calculus

保

Example re-consider \mathcal{C}
 Example re-consider \mathcal{C}

$\frac{b=d \quad a=b \vee a=d}{\frac{a=d \vee a=d}{a=d}}$
$\frac{a \neq c}{} \quad c \neq d$$\quad \frac{\square=d \quad a \neq d \vee a=c}{\frac{d \neq d \vee a=c}{a=c}}$

$$
c \neq d \quad b=d \quad a \neq d \vee a=c \quad a=b \vee a=d
$$

together with the literal order:

$$
\begin{gathered}
\mathrm{a} \neq \mathrm{b} \succ \mathrm{a}=\mathrm{b} \succ \mathrm{a} \neq \mathrm{c} \succ \mathrm{a}=\mathrm{c} \succ \mathrm{a} \neq \mathrm{d} \succ \mathrm{a}=\mathrm{d} \\
\succ \mathrm{~b} \neq \mathrm{d} \succ \mathrm{~b}=\mathrm{d} \succ \mathrm{c} \neq \mathrm{d} \succ \mathrm{c}=\mathrm{d}
\end{gathered}
$$

the following derivation is no longer admissible

$$
\begin{array}{r}
\frac{b=d \quad a=b \vee a=d}{\frac{a=d \vee a=d}{a=d}} \quad c \neq d \\
\frac{a \neq c}{}
\end{array} \quad \frac{\square=d \quad a \neq d \vee a=c}{\frac{d \neq d \vee a=c}{a=c}}
$$

Example re-consider \mathcal{C}
 Example re-consider \mathcal{C}

$\frac{b=d \quad a=b \vee a=d}{\frac{a=d \vee a=d}{a=d}}$
$\frac{a \neq c}{} \quad c \neq d$
$\frac{a=d \quad a \neq d \vee a=c}{a=c}$
\square

$$
\begin{aligned}
& \text { cont' } \mathrm{d}) \\
& \qquad \begin{aligned}
\mathrm{a} \neq \mathrm{b} & \succ \mathrm{a}=\mathrm{b} \succ \mathrm{a} \neq \mathrm{c} \succ \mathrm{a}=\mathrm{c} \succ \mathrm{a} \neq \mathrm{d} \succ \mathrm{a}=\mathrm{d} \\
& \succ \mathrm{~b} \neq \mathrm{d} \succ \mathrm{~b}=\mathrm{d} \succ \mathrm{c} \neq \mathrm{d} \succ \mathrm{c}=\mathrm{d}
\end{aligned}
\end{aligned}
$$

the following derivation is admissible

$$
\begin{gathered}
\quad \frac{b=d \quad a=b \vee a=d}{\frac{a=d \vee a=d}{a=d}} \quad \frac{\square}{a=d \quad a \neq d \vee a=c} \\
\frac{c \neq d}{} \quad \frac{d \neq d \vee c=d}{c=d} \\
\square
\end{gathered}
$$

Example (cont'd)

-

\square

[^0]

Cot

Example (cont'd)

$$
\begin{gathered}
\mathrm{a} \neq \mathrm{b} \succ \mathrm{a}=\mathrm{b} \succ \mathrm{a} \neq \mathrm{c} \succ \mathrm{a}=\mathrm{c} \succ \mathrm{a} \neq \mathrm{d} \succ \mathrm{a}=\mathrm{d} \\
\succ \mathrm{~b} \neq \mathrm{d} \succ \mathrm{~b}=\mathrm{d} \succ \mathrm{c} \neq \mathrm{d} \succ \mathrm{c}=\mathrm{d}
\end{gathered}
$$

the following derivation is admissible

$$
\begin{array}{ll}
& \frac{b=d \quad a=b \vee a=d}{\frac{a=d \vee a=d}{a=d}} \quad \frac{\square}{a=d \quad a \neq d \vee a=c} \\
& \frac{d \neq d \vee c=d}{c=d} \\
& \square
\end{array}
$$

Discussion

- ordered paramodulation is still too ineffienct
- various refinements have been introduced, one is the superposition calculus

Employ Rewriting Techniques

Definitions

- rewrite relation...

Employ Rewriting Techniques

Definitions

- rewrite relation...
- normal form ...

Employ Rewriting Techniques

Definitions

- rewrite relation...
- normal form ...
- reduction order ...

Employ Rewriting Techniques

Definitions

- rewrite relation...
- normal form ...
- reduction order ...
- lexicographic path order (LPO), reduction order ...

Employ Rewriting Techniques

Definitions

- rewrite relation...
- normal form ...
- reduction order ...
- lexicographic path order (LPO), reduction order ...
- confluent ...

Employ Rewriting Techniques

Definitions

- rewrite relation...
- normal form ...
- reduction order ...
- lexicographic path order (LPO), reduction order ...
- confluent ...
- an equation $s=t$ converges (or has a rewrite proof) in \mathcal{R} if s and t are joinable: $s \downarrow t$

Employ Rewriting Techniques

Definitions

- rewrite relation...
- normal form ...
- reduction order ...
- lexicographic path order (LPO), reduction order ...
- confluent ...
- an equation $s=t$ converges (or has a rewrite proof) in \mathcal{R} if s and t are joinable: $s \downarrow t$

Facts

1 a convergent (confluent \& terminating) TRS forms a decision procedure for the underlying equational theory: $s \leftrightarrow^{*} t$ iff $s \downarrow t$

Employ Rewriting Techniques

Definitions

- rewrite relation...
- normal form ...
- reduction order ...
- lexicographic path order (LPO), reduction order ...
- confluent ...
- an equation $s=t$ converges (or has a rewrite proof) in \mathcal{R} if s and t are joinable: $s \downarrow t$

Facts
1 a convergent (confluent \& terminating) TRS forms a decision procedure for the underlying equational theory: $s \leftrightarrow^{*} t$ iff $s \downarrow t$
2 normalisation in a convergent TRS amounts to a don't care nondeterminism

Completion

Definition (superposition of rewrite rules)

$$
\frac{s \rightarrow t \quad w[u] \rightarrow v}{(w[t]=v) \sigma}
$$

σ mgu of s and u and u not a variable; then $(w[t]=v) \sigma$ is a critical pair

Completion

Definition (superposition of rewrite rules)

$$
\frac{s \rightarrow t \quad w[u] \rightarrow v}{(w[t]=v) \sigma}
$$

σ mgu of s and u and u not a variable; then $(w[t]=v) \sigma$ is a critical pair

Theorem
a terminating TRS \mathcal{R} is confluent iff all critical pairs between rules in \mathcal{R} converge

Completion

Definition (superposition of rewrite rules)

$$
\frac{s \rightarrow t \quad w[u] \rightarrow v}{(w[t]=v) \sigma}
$$

σ mgu of s and u and u not a variable; then $(w[t]=v) \sigma$ is a critical pair

Theorem
a terminating TRS \mathcal{R} is confluent iff all critical pairs between rules in \mathcal{R} converge

Example

LPO is not total; x, y, u, v variables:

$$
\mathrm{f}(x, y) \nsucc_{\mathrm{Ipo}} \mathrm{f}(u, w) \quad \mathrm{f}(u, w) \nsucc_{\mathrm{Ipo}} \mathrm{f}(x, y)
$$

Ordered Rewriting

Definitions

- reduction orders that are total on ground terms are called complete
- \succ a reduction order; \mathcal{E} a set of equations; consider

$$
\mathcal{E}^{\succ}=\{s \sigma \rightarrow t \sigma \mid s=t \in \mathcal{E}, s \sigma \succ t \sigma\}
$$

- rules in \mathcal{E}^{\succ} are called reductive instances of equations in \mathcal{E}
- rewrite relation $\rightarrow_{\mathcal{E} \succ}$ represents ordered rewriting

Ordered Rewriting

Definitions

- reduction orders that are total on ground terms are called complete
- \succ a reduction order; \mathcal{E} a set of equations; consider

$$
\mathcal{E}^{\succ}=\{s \sigma \rightarrow t \sigma \mid s=t \in \mathcal{E}, s \sigma \succ t \sigma\}
$$

- rules in \mathcal{E}^{\succ} are called reductive instances of equations in \mathcal{E}
- rewrite relation $\rightarrow_{\mathcal{E} \succ}$ represents ordered rewriting

Example

- let $\succ_{\text {lpo }}$ be a LPO induced by the precedence $+\succ \mathrm{a} \succ \mathrm{b} \succ \mathrm{c}$
- $\mathrm{b}+\mathrm{c} \succ_{\text {Ipo }} \mathrm{c}+\mathrm{b} \succ_{\text {Ipo }} \mathrm{c}$
- commutativity $x+y=y+x$ yields the ordered rewrite derivation:

$$
(\mathrm{b}+\mathrm{c})+\mathrm{c} \rightarrow(\mathrm{c}+\mathrm{b})+\mathrm{c} \rightarrow \mathrm{c}+(\mathrm{c}+\mathrm{b})
$$

Definition
equations \mathcal{E} are ground convergent wrt \succ if \mathcal{E}^{\succ} is ground convergent

Definition
equations \mathcal{E} are ground convergent wrt \succ if $\mathcal{E} \succ$ is ground convergent

Definition (superposition with equations)

$$
\frac{s=t \quad w[u]=v}{(w[t]=v) \sigma}
$$

- σ is mgu of s and u; $t \sigma \nsucceq s \sigma, v \sigma \nsucceq w[u] \sigma$ and u is not a variable - $(w[t]=v) \sigma$ is an ordered critical pair

Definition

equations \mathcal{E} are ground convergent wrt \succ if $\mathcal{E} \succ$ is ground convergent

Definition (superposition with equations)

$$
\frac{s=t \quad w[u]=v}{(w[t]=v) \sigma}
$$

- σ is mgu of s and u; $t \sigma \nsucceq s \sigma, v \sigma \nsucceq w[u] \sigma$ and u is not a variable
- $(w[t]=v) \sigma$ is an ordered critical pair

Theorem

\succ a complete reduction order; a set of equations E is ground convergent wrt \succ iff \forall ordered critical pairs $(w[t]=v) \sigma$ (with overlapping term $w[u] \sigma$) and \forall ground substitutions τ : if $w[u] \sigma \tau \succ w[t] \sigma \tau$ and $w[u] \sigma \tau \succ v \sigma \tau$ then $w[t] \sigma \tau \downarrow v \sigma \tau$

Ordered Completion

 deduction$$
\begin{array}{r}
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R} \\
\text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \leftrightarrow \mathcal{E} \cup \mathcal{R} t, s \nsucceq w, t \nsucceq w
\end{array}
$$

Ordered Completion

deduction
orientation

$$
\begin{array}{r}
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R} \\
\text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \leftrightarrow \mathcal{E} \cup \mathcal{R} t, s \nsucceq w, t \nsucceq w
\end{array}
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \quad \text { if } s \succ t
$$

Ordered Completion

deduction
orientation
deletion

$$
\begin{aligned}
& \mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R} \\
& \text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \leftrightarrow \mathcal{E} \cup \mathcal{R} t, s \nsucceq w, t \nsucceq w \\
& \mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \\
& \mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
\end{aligned} \quad \text { if } s \succ t
$$

Ordered Completion

deduction
orientation
deletion simplification

$$
\begin{array}{r}
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R} \\
\text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t, s \nsucceq w, t \nsucceq w
\end{array}
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \quad \text { if } s \succ t
$$

$$
\mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} \cup\{u=t\} ; \mathcal{R} \quad \text { if } s \rightarrow_{\mathcal{R}} u
$$

Ordered Completion

deduction
orientation
deletion simplification composition

$$
\begin{array}{r}
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R} \\
\text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t, s \nsucceq w, t \nsucceq w
\end{array}
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \quad \text { if } s \succ t
$$

$$
\mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} \cup\{u=t\} ; \mathcal{R} \quad \text { if } s \rightarrow_{\mathcal{R}} u
$$

$$
\mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow u\} \quad \text { if } r \rightarrow_{\mathcal{R}} u
$$

Ordered Completion

deduction
orientation
deletion
simplification
composition

$$
\begin{array}{r}
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R} \\
\text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \leftrightarrow \mathcal{E} \cup \mathcal{R} t, s \nsucceq w, t \nsucceq w
\end{array}
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \quad \text { if } s \succ t
$$

$$
\mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
$$

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} \cup\{u=t\} ; \mathcal{R} \quad \text { if } s \rightarrow_{\mathcal{R}} u
$$

$$
\mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow u\} \quad \text { if } r \rightarrow_{\mathcal{R}} u
$$

collapse
$\mathcal{E} ; \mathcal{R} \cup\{s[w] \rightarrow t\} \vdash \mathcal{E} \cup\{s[u]=t\} ; \mathcal{R}$ if $w \rightarrow_{\mathcal{R}} u$ and either $t \succ u$ or $w \neq s[w]$

Ordered Completion

deduction

$$
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R}
$$

$$
\text { if } s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t, s \nsucceq w, t \nsucceq w
$$

orientation

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \quad \text { if } s \succ t
$$

deletion

$$
\mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
$$

simplification

$$
\begin{aligned}
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} \cup\{u=t\} ; \mathcal{R} & \text { if } s \rightarrow_{\mathcal{R}} u \\
\mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow u\} & \text { if } r \rightarrow_{\mathcal{R}} u
\end{aligned}
$$

collapse

$$
\mathcal{E} ; \mathcal{R} \cup\{s[w] \rightarrow t\} \vdash \mathcal{E} \cup\{s[u]=t\} ; \mathcal{R}
$$

if $w \rightarrow_{\mathcal{R}} u$ and either $t \succ u$ or $w \neq s[w]$

Definition

- a sequence $\left(\mathcal{E}_{0} ; \mathcal{R}_{0}\right) \vdash\left(\mathcal{E}_{1} ; \mathcal{R}_{1}\right) \vdash \ldots$ is called a derivation usually \mathcal{E}_{0} is the set of initial equations and $\mathcal{R}_{0}=\varnothing$

Ordered Completion

deduction

$$
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R}
$$

$$
\text { if } s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t, s \nsucceq w, t \nsucceq w
$$

orientation

$$
\begin{array}{r}
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \\
\mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
\end{array}
$$

simplification

$$
\begin{aligned}
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} \cup\{u=t\} ; \mathcal{R} & \text { if } s \rightarrow_{\mathcal{R}} u \\
\mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow u\} & \text { if } r \rightarrow_{\mathcal{R}} u
\end{aligned}
$$

collapse

$$
\mathcal{E} ; \mathcal{R} \cup\{s[w] \rightarrow t\} \vdash \mathcal{E} \cup\{s[u]=t\} ; \mathcal{R}
$$

$$
\text { if } w \rightarrow_{\mathcal{R}} u \text { and either } t \succ u \text { or } w \neq s[w]
$$

Definition

- a sequence $\left(\mathcal{E}_{0} ; \mathcal{R}_{0}\right) \vdash\left(\mathcal{E}_{1} ; \mathcal{R}_{1}\right) \vdash \ldots$ is called a derivation usually \mathcal{E}_{0} is the set of initial equations and $\mathcal{R}_{0}=\varnothing$
- its limit is $\left(\mathcal{E}_{\infty} ; \mathcal{R}_{\infty}\right)$; here $\mathcal{E}_{\infty}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j} ; \mathcal{R}_{\infty}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{R}_{j}$

Ordered Completion

deduction

$$
\begin{array}{r}
\mathcal{E} ; \mathcal{R} \vdash \mathcal{E} \cup\{s=t\} ; \mathcal{R} \\
\text { if } s \leftrightarrow \mathcal{E} \cup \mathcal{R} w \leftrightarrow \mathcal{E} \cup \mathcal{R} t, s \nsucceq w, t \nsucceq w
\end{array}
$$

orientation

$$
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \quad \text { if } s \succ t
$$

deletion

$$
\mathcal{E} \cup\{s=s\} ; \mathcal{R} \vdash \mathcal{E} ; \mathcal{R}
$$

simplification

$$
\begin{aligned}
\mathcal{E} \cup\{s=t\} ; \mathcal{R} \vdash \mathcal{E} \cup\{u=t\} ; \mathcal{R} & \text { if } s \rightarrow_{\mathcal{R}} u \\
\mathcal{E} ; \mathcal{R} \cup\{s \rightarrow t\} \vdash \mathcal{E} ; \mathcal{R} \cup\{s \rightarrow u\} & \text { if } r \rightarrow_{\mathcal{R}} u
\end{aligned}
$$

collapse

$$
\mathcal{E} ; \mathcal{R} \cup\{s[w] \rightarrow t\} \vdash \mathcal{E} \cup\{s[u]=t\} ; \mathcal{R}
$$

$$
\text { if } w \rightarrow_{\mathcal{R}} u \text { and either } t \succ u \text { or } w \neq s[w]
$$

Definition

- a sequence $\left(\mathcal{E}_{0} ; \mathcal{R}_{0}\right) \vdash\left(\mathcal{E}_{1} ; \mathcal{R}_{1}\right) \vdash \cdots$ is called a derivation usually \mathcal{E}_{0} is the set of initial equations and $\mathcal{R}_{0}=\varnothing$
- its limit is $\left(\mathcal{E}_{\infty} ; \mathcal{R}_{\infty}\right)$; here $\mathcal{E}_{\infty}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{E}_{j} ; \mathcal{R}_{\infty}=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} \mathcal{R}_{j}$

Definition

- a proof of $s=t$ wrt $\mathcal{E} ; \mathcal{R}$ is

$$
s=s_{0} \rho_{0} s_{1} \rho_{1} s_{2} \cdots s_{n-1} \rho_{n-1} s_{n}=t \quad n \geqslant 0
$$

$1\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \leftrightarrow w[v \sigma])$ with $u=v \in \mathcal{E}$
2 $\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \rightarrow w[v \sigma])$ with $u \rightarrow v \in \mathcal{E}^{\succ} \cup \mathcal{R}$
$3\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \leftarrow w[v \sigma])$ with $v \rightarrow u \in \mathcal{E}^{\succ} \cup \mathcal{R}$

Definition

- a proof of $s=t$ wrt $\mathcal{E} ; \mathcal{R}$ is

$$
s=s_{0} \rho_{0} s_{1} \rho_{1} s_{2} \cdots s_{n-1} \rho_{n-1} s_{n}=t \quad n \geqslant 0
$$

$1\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \leftrightarrow w[v \sigma])$ with $u=v \in \mathcal{E}$
2. $\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \rightarrow w[v \sigma])$ with $u \rightarrow v \in \mathcal{E}^{\succ} \cup \mathcal{R}$
$3\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \leftarrow w[v \sigma])$ with $v \rightarrow u \in \mathcal{E}^{\succ} \cup \mathcal{R}$

- a proof of form

$$
s=s_{0} \rightarrow s_{1} \rightarrow s_{2} \cdots \rightarrow s_{m} \leftarrow \cdots s_{n-1} \leftarrow s_{n}=t
$$

is called rewrite proof

Definition

- a proof of $s=t$ wrt $\mathcal{E} ; \mathcal{R}$ is

$$
s=s_{0} \rho_{0} s_{1} \rho_{1} s_{2} \cdots s_{n-1} \rho_{n-1} s_{n}=t \quad n \geqslant 0
$$

$1\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \leftrightarrow w[v \sigma])$ with $u=v \in \mathcal{E}$
$2\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \rightarrow w[v \sigma])$ with $u \rightarrow v \in \mathcal{E}^{\succ} \cup \mathcal{R}$
$3\left(s_{i} \rho_{i} s_{i+1}\right)=(w[u \sigma] \leftarrow w[v \sigma])$ with $v \rightarrow u \in \mathcal{E}^{\succ} \cup \mathcal{R}$

- a proof of form

$$
s=s_{0} \rightarrow s_{1} \rightarrow s_{2} \cdots \rightarrow s_{m} \leftarrow \cdots s_{n-1} \leftarrow s_{n}=t
$$

is called rewrite proof

Fact

$1 \exists$ rewrite proof iff the equations converge wrt $\mathcal{R} \cup \mathcal{E}^{\succ}$
2 whenever $\mathcal{E} ; \mathcal{R} \vdash \mathcal{E}^{\prime} ; \mathcal{R}^{\prime}$ then the same equations are provable in $\mathcal{E} ; \mathcal{R}$ as in $\mathcal{E}^{\prime} ; \mathcal{R}^{\prime} ;$ however proofs may become simpler

[^0]: \square

