

Automated Reasoning

Georg Moser

Winter 2013

Definition

subsumption and resolution can be combined in the following ways

1 forward subsumption

newly derived clauses subsumed by existing clauses are deleted

2 backward subsumption

existing clauses ${\it C}$ subsumed by newly derived clauses ${\it D}$ become inactive

inactive clauses are reactivated, if D is no ancestor of current clause

3 replacement

the set of all clauses (derived and intital) are frequently reduced under subsumption

Theorem

(ordered) resolution is complete under forward subsumption and tautology elimination

Summary Last Lecture

Definition

- a literal L is maximal if ∃ ground σ such that for no other literal M: Mσ ≻_L Lσ
- L is strictly maximal if ∃ ground σ such that for no other literal M: Mσ ≽_L Lσ; here ≽_L denotes the reflexive closure

Definition

ordered resolution $\frac{C \lor A \quad D \lor \neg B}{(C \lor D)\sigma}$ ordered factoring

 $\frac{C \lor A \lor B}{(C \lor A)\sigma}$

- 1 σ is a mgu of the atomic formulas A and B
- **2** $A\sigma$ is strictly maximal with respect to $C\sigma$; $\neg B\sigma$ is maximal with respect to $D\sigma$

Automated Reasonii

GM (Institute of Computer Science @ UIBK)

284/

ummary

Outline of the Lecture

Early Approaches in Automated Reasoning

short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, ...

Paramodulation Calculus

Definition

- let \square be a fresh constant; let $\mathcal L$ be our basic language
- terms of $\mathcal{L} \cup \{ \Box \}$ such that \Box occurs exactly once, are called contexts
- empty context is denoted as \square
- for context C[□] and a term t we write C[t] for the replacement of □ by t

Example

- let $\mathcal{L} = \{c, f, P\}$
- $P(f(\Box)) =: C[\Box]$ is a context
- *C*[f(c)] = P(f(f(c)))

GM (Institute of Computer Science @ UIBK)

Paramodulation

Definition

- define the paramodulation operator $\operatorname{Res}_{P}(\mathcal{C})$ as follows:
 - $\mathsf{Res}_{\mathsf{P}}(\mathcal{C}) = \{ D \mid D \text{ is paramodulant, etc. with premises in } \mathcal{C} \}$
- nth (unrestricted) iteration Resⁿ_P (Res^{*}_P) of the operator Res_P is defined as before

Automated Reasoning

Theorem

ramodulation

Definition

$\frac{C \lor A D \lor \neg B}{(C \lor D)\sigma_1}$	$\frac{C \lor A \lor B}{(C \lor A)\sigma_1}$
$\frac{C \lor s \neq s'}{C\sigma_2}$	$\frac{C \lor s = t D \lor L[s']}{(C \lor D \lor L[t])\sigma_2}$

- σ_1 is a mgu of A and B (A, B atomic)
- σ_2 is a mgu of s and s'

Example

consider
$$C = \{c \neq d, b = d, a \neq d \lor a = c, a = b \lor a = d\}$$

$$\frac{b = d \quad a = b \lor a = d}{a = d \lor a = d}$$

$$\frac{a = d \quad c \neq d}{a \neq c}$$

$$\frac{a = d \quad a \neq d \lor a = c}{d \neq d \lor a = c}$$

GM (Institute of Computer Science @ UIBK)

288/1

Paramodulation

A Problem with Lifting

Claim

• let au_1 and au_2 be a ground and consider

$$\frac{C\tau_1 \vee (s=t)\tau_1 \quad D\tau_2 \vee L\tau_2[s'\tau_2]}{C\tau_1 \vee D\tau_2 \vee L\tau_2[t\tau_2]}$$

where $s\tau_1 = s'\tau_2$

• \exists mgu σ of s and s', such that σ is more general then τ_1 and τ_2 and the following paramodulation step is valid

$$\frac{C \lor s = t \quad D \lor L[s']}{(C \lor D \lor L[t])\sigma}$$

Fact

observe that paramodulation into variables is allowed

Example

• consider the following unit clauses

$$a = b$$
 $f(x) = c$

the only possible (non-ground) paramodulation inference is $f(\mathsf{b})=\mathsf{c}$

• consider the following ground step:

$$\frac{a = b \quad f(f(a)) = c}{f(f(b)) = c}$$

then no lifting is possible: oops \odot ...

- we add the functional reflexivity equation f(x) = f(x) from which we get f(a) = f(b) by paramodulation into a variable
- then lifting becomes possible (using two steps)

$$\frac{\mathbf{a} = \mathbf{b} \quad \mathbf{f}(x) = \mathbf{f}(x)}{\frac{\mathbf{f}(\mathbf{a}) = \mathbf{f}(\mathbf{b})}{\mathbf{f}(\mathbf{f}(\mathbf{b})) = \mathbf{c}}} \mathbf{f}(x) = \mathbf{c}$$

Automated Reasoning

GM (Institute of Computer Science @ UIBK)

Paramodulation

Theorem

paramodulation is sound and complete: if F is a sentence and C its clause form (containing all functional reflexive equations), then F is unsatisfiable iff $\Box \in \operatorname{Res}_{P}^{*}(C)$

Proof.

in proof, we follow the standard procedure of combining model existence + (updated) lifting lemma $\hfill\blacksquare$

Discussion

- alternative completenesss proof employs an adaption of the semantic tree argument
- paramodulation is inefficient
- one idea to reduce the search space is to combine ordered resolution with paramodulation: ordered paramodulation

amodulation

Definition

$$f(x_1, \ldots, x_n) = f(x_1, \ldots, x_n)$$
 is called functional reflexivity equation

Lemma

• let au_1 and au_2 be a ground and consider

$$\frac{C\tau_1 \vee (s=t)\tau_1 \quad D\tau_2 \vee L\tau_2[x\tau_2]}{C\tau_1 \vee D\tau_2 \vee L\tau_2[f(t\tau_1)]}$$

where $x\tau_2 = f(s'\tau_3)$ and $s\tau_1 = s'\tau_3$

• then the following paramodulation step is valid, trivially more general than the ground step

$$\frac{C \lor s = t \quad f(x) = f(x)}{\frac{C \lor f(s) = f(t)}{C \lor D \lor L[f(t)]}} \frac{D \lor L[x]}{D \lor L[f(t)]}$$

Proof.

on the whiteboard		■J
GM (Institute of Computer Science @ UIBK)	Automated Reasoning	292/1

Ordered Paramodulation Calculus

Ordered Paramodulation Calculus

Definition

$$\frac{C \lor A \quad D \lor \neg B}{(C \lor D)\sigma_1} \qquad \qquad \frac{C \lor A \lor B}{(C \lor A)\sigma_1} \\
\frac{C \lor s \neq s'}{C\sigma_2} \qquad \qquad \frac{C \lor s = t \quad D \lor L[s']}{(C \lor D \lor L[t])\sigma_2}$$

- same conditions on σ_1 , σ_2 as before
- Aσ₁ is strictly maximal with respect to Cσ₁; ¬Bσ₁ is maximal with respect to Dσ₁
- the equation $(s = t)\sigma_2$ and the literal $L[s']\sigma_2$ are maximal with respect to $D\sigma_2$

Theorem

ordered paramodulation is sound and complete

Example

re-consider \mathcal{C}

 $\mathsf{c} \neq \mathsf{d} \quad \mathsf{b} = \mathsf{d} \quad \mathsf{a} \neq \mathsf{d} \lor \mathsf{a} = \mathsf{c} \quad \mathsf{a} = \mathsf{b} \lor \mathsf{a} = \mathsf{d}$

together with the literal order:

$$a \neq b \succ a = b \succ a \neq c \succ a = c \succ a \neq d \succ a = d$$
$$\succ b \neq d \succ b = d \succ c \neq d \succ c = d$$

the following derivation is no longer admissible

$$\frac{b = d \quad a = b \lor a = d}{a = d \lor a = d} \qquad \qquad \frac{\prod_{a = d \quad a \neq d \lor a = c}}{\frac{a \neq c}{a \neq c}} \qquad \qquad \frac{a = d \quad a \neq d \lor a = c}{\frac{d \neq d \lor a = c}{a = c}}$$

Automated Reasoning

295

Ordered Paramodulation Calculus

Employ Rewriting Techniques

Definitions

- rewrite relation
- normal form . . .
- reduction order ...
- lexicographic path order (LPO), reduction order ...
- confluent . . .
- an equation s = t converges (or has a rewrite proof) in R if s and t are joinable: s↓ t

Facts

- **1** a convergent (confluent & terminating) TRS forms a decision procedure for the underlying equational theory: $s \leftrightarrow^* t$ iff $s \downarrow t$
- 2 normalisation in a convergent TRS amounts to a don't care nondeterminism

297/1

Example (cont'd)

$$a \neq b \succ a = b \succ a \neq c \succ a = c \succ a \neq d \succ a = d$$
$$\succ b \neq d \succ b = d \succ c \neq d \succ c = d$$

the following derivation is admissible

$$\frac{b = d \quad a = b \lor a = d}{a = d \lor a = d} \quad \frac{a = d \quad a \neq d \lor a = c}{a \neq d \lor c = d}$$

$$\frac{d \neq d \lor c = d}{c = d}$$

Discussion

- ordered paramodulation is still too ineffienct
- various refinements have been introduced, one is the superposition calculus

Automated Reasoning

GM (Institute of Computer Science @ UIBK)

296/

Completion

Completion

Definition (superposition of rewrite rules)

$$\frac{s \to t \quad w[u] \to v}{(w[t] = v)\sigma}$$

 σ mgu of s and u and u not a variable; then $(w[t] = v)\sigma$ is a critical pair

Theorem

a terminating TRS ${\cal R}$ is confluent iff all critical pairs between rules in ${\cal R}$ converge

Example

LPO is not total; x, y, u, v variables:

 $f(x,y) \not\succ_{Ipo} f(u,w) \qquad f(u,w) \not\succ_{Ipo} f(x,y)$

Ordered Rewriting

Definitions

- reduction orders that are total on ground terms are called complete
- \succ a reduction order; $\mathcal E$ a set of equations; consider

 $\mathcal{E}^{\succ} = \{ s\sigma \to t\sigma \mid s = t \in \mathcal{E}, s\sigma \succ t\sigma \}$

- rules in \mathcal{E}^\succ are called reductive instances of equations in \mathcal{E}
- rewrite relation $\rightarrow_{\mathcal{E}^{\succ}}$ represents ordered rewriting

Example

- let \succ_{Ipo} be a LPO induced by the precedence $+\succ$ a \succ b \succ c
- $b + c \succ_{Ipo} c + b \succ_{Ipo} c$
- commutativity x + y = y + x yields the ordered rewrite derivation:

 $(b+c)+c \rightarrow (c+b)+c \rightarrow c+(c+b)$

GM (Institute of Computer Science @ UIBK) Automated Reasoning

Ordered Completion

Ordered Complet	ion	
deduction	$\mathcal{E}; \mathcal{R} dash \mathcal{E} \cup \{ m{s} = t \}; \mathcal{R}$	
	$ \text{ if } s \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} w \leftrightarrow_{\mathcal{E} \cup \mathcal{R}} t \text{, } s \nsucceq w \text{, } t \nsucceq w \\$	
orientation	$\mathcal{E} \cup \{ s = t \}; \mathcal{R} dash \mathcal{E}; \mathcal{R} \cup \{ s ightarrow t \}$	if $s \succ t$
deletion	$\mathcal{E} \cup \{s=s\}; \mathcal{R} \vdash \mathcal{E}; \mathcal{R}$	
simplification	$\mathcal{E} \cup \{s = t\}; \mathcal{R} \vdash \mathcal{E} \cup \{u = t\}; \mathcal{R}$	$\text{if } s \to_{\mathcal{R}} u$
composition	$\mathcal{E}; \mathcal{R} \cup \{s ightarrow t\} \vdash \mathcal{E}; \mathcal{R} \cup \{s ightarrow u\}$	$\text{if } r \to_{\mathcal{R}} u$
collapse	$\mathcal{E}; \mathcal{R} \cup \{s[w] o t\} \vdash \mathcal{E} \cup \{s[u] = t\}; \mathcal{R}$	
	$ \text{if } w \to_{\mathcal{R}} u \text{ and either } t \succ u \text{ or } w \neq s[w] \\$	

Definition

- a sequence $(\mathcal{E}_0; \mathcal{R}_0) \vdash (\mathcal{E}_1; \mathcal{R}_1) \vdash \cdots$ is called a derivation usually \mathcal{E}_0 is the set of initial equations and $\mathcal{R}_0 = \emptyset$
- its limit is $(\mathcal{E}_{\infty}; \mathcal{R}_{\infty})$; here $\mathcal{E}_{\infty} = \bigcup_{i \ge 0} \bigcap_{j \ge i} \mathcal{E}_j$; $\mathcal{R}_{\infty} = \bigcup_{i \ge 0} \bigcap_{j \ge i} \mathcal{R}_j$

Ordered Completion

Definition

equations ${\mathcal E}$ are ground convergent wrt \succ if ${\mathcal E}^\succ$ is ground convergent

Definition (superposition with equations)

$$\frac{s=t \quad w[u]=v}{(w[t]=v)\sigma}$$

- σ is mgu of s and u; $t\sigma \not\geq s\sigma$, $v\sigma \not\geq w[u]\sigma$ and u is not a variable
- $(w[t] = v)\sigma$ is an ordered critical pair

Theorem

 \succ a complete reduction order; a set of equations E is ground convergent wrt \succ iff \forall ordered critical pairs (w[t] = v) σ (with overlapping term $w[u]\sigma$) and \forall ground substitutions τ : if $w[u]\sigma\tau \succ w[t]\sigma\tau$ and $w[u]\sigma\tau \succ v\sigma\tau$ then $w[t]\sigma\tau \downarrow v\sigma\tau$

Automated Reasonin

GM (Institute of Computer Science @ UIBK)

300/1

rdered Completion

Definition

• a proof of
$$s = t$$
 wrt \mathcal{E} ; \mathcal{R} is
 $s = s_0 \ \rho_0 \ s_1 \ \rho_1 \ s_2 \cdots s_{n-1} \ \rho_{n-1} \ s_n = t \qquad n \ge 0$
1 $(s_i \ \rho_i \ s_{i+1}) = (w[u\sigma] \leftrightarrow w[v\sigma])$ with $u = v \in \mathcal{E}$
2 $(s_i \ \rho_i \ s_{i+1}) = (w[u\sigma] \rightarrow w[v\sigma])$ with $u \rightarrow v \in \mathcal{E}^{\succ} \cup \mathcal{R}$
3 $(s_i \ \rho_i \ s_{i+1}) = (w[u\sigma] \leftarrow w[v\sigma])$ with $v \rightarrow u \in \mathcal{E}^{\succ} \cup \mathcal{R}$
• a proof of form
 $s = s_0 \rightarrow s_1 \rightarrow s_2 \cdots \rightarrow s_m \leftarrow \cdots s_{n-1} \leftarrow s_n = t$

is called rewrite proof

Fact

- **1** \exists rewrite proof iff the equations converge wrt $\mathcal{R} \cup \mathcal{E}^{\succ}$
- 2 whenever £; R ⊢ E'; R' then the same equations are provable in £; R as in E'; R'; however proofs may become simpler