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Summary

Summary of Last Lecture

Ordered Completion

deduction E ;R ` E ∪ {s = t};R
if s ↔E∪R w ↔E∪R t, s 6� w , t 6� w

orientation E ∪ {s = t};R ` E ;R∪ {s → t} if s � t

deletion E ∪ {s = s};R ` E ;R

simplification E ∪ {s = t};R ` E ∪ {u = t};R if s −→R u

composition E ;R∪ {s → t} ` E ;R∪ {s → u} if t −→R u

collapse E ;R∪ {s[w ]→ t} ` E ∪ {s[u] = t};R
if w −→R u and either t � u or w 6= s[w ]

Definition
• a proof of s = t wrt E ;R is . . .

• a proof of form . . . is called rewrite proof
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Outline

Outline of the Lecture

Early Approaches in Automated Reasoning

short recollection of Herbrand’s theorem, Gilmore’s prover, method of
Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution
and paramodulation as decision procedure, . . .
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Proof Order

Definition

s encompasses t if s = C [tσ] for some context C and some substitution σ

Definition

cost measure of proof steps

cost of s[u] ρ s[v ] =


({s[u]}, u, ρ, s[v ]) if s[u] � s[v ]

({s[v ]}, v , ρ, s[u]) if s[v ] � s[u]

({s[u], s[v ]},⊥,⊥,⊥) otherwise

cost measure is lexicographically compared as follows:

1 multiset extension of �
2 encompassment order

3 some order with ↔ > → and ↔ > ←
4 reduction order �

⊥ is supposed to be minimal in all orders; let �π the multiset extension
of the cost measure; then �π denotes a well-founded order on proofs
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Proof Order

Fact

each completion step decreases the cost of certain proofs

Proof Sketch.

• consider orientation that replaces an equation s = t by rule s → t

• yields proof transformation

(u[sσ]↔ u[tσ])⇒ (u[sσ]→ u[tσ])

• cost of (u[sσ]↔ u[tσ]) > cost of (u[sσ]→ u[tσ])

recall: E∞ =
⋃

i>0

⋂
j>i Ej ; R∞ =

⋃
i>0

⋂
j>i Rj

Definition

a derivation is fair if each ordered critical pair u = v ∈ E∞ ∪R∞ is an
element of some Ei
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Proof Order

Theorem

let (E0;R0), (E1;R1), . . . be a fair ordered completion derivation with
R0 = ∅; then the following is equivalent:

1 s = t is a consequence of E0

2 s = t has a rewrite proof in E�∞ ∪R∞
3 ∃ i such that s = t has a rewrite proof in E�i ∪Ri

Definitions

• let E be a set of equations and s = t an equation (possibly
containing variables); then E |= s = t is the word problem for E

• the word problem becomes a refutation theorem proving problem
once we consider the clause form of the negation of the word
problem:

1 a set of positive unit equations in E
2 a ground disequation obtained by negation and Skolemisation of s = t
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Proof Order

Completeness of Superposition

Corollary

superposition with equations is sound and complete, that is, if C is the
clause representation of the (negated) word problem E |= s = t, then the
saturation of C wrt to superposition (and equality resolution) contains 2
iff E |= s = t

Proof.

1 let C′ denote the saturation and let 2 ∈ C′

2 then E |= s = t due to soundness of superposition

3 otherwise assume 2 6∈ C′

4 then s = t does not have a proof in C′

5 with the theorem we conclude that E 6|= s = t
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Superposition for Horn Clauses

Superposition for Horn Clauses

Idea

• consider a set P of non-equational Horn clauses (= a logic program)

• define the operator:

TP : I 7→ {A | A← B1, . . . ,Bk ∈ Gr(P) and ∀ i Bi ∈ I}

• consider the least fixed point
⋃

n>0 T n
p (∅) of Tp

• then
⋃

n>0 T n
p (∅) denotes the unique minimal model of P

A← B1, . . . ,Bk produces A, if ∀ i Bi ∈ T n
p (∅) but A 6∈ T n

p (∅)

Definition

an equational Horn clause C ≡ (u1 = v1, . . . , uk = vk → s = t) is
reductive for s → t (wrt to a reduction order �) if s is strictly maximal
in C : (i) s � t, (ii) for all i : s � ui , and (iii) for all i : s � vi
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Superposition for Horn Clauses

NB: if C is reductive for s → t, we write C as
u1 = v1, . . . , uk = vk ⊃ s → t

Definition
• let R be a set of reductive clauses

• R induces the rewrite relation −→R: s −→R t if

1 ∃ reductive clause C ⊃ l → r
2 ∃ substitution σ such that s = lσ, t = rσ
3 ∀ u′ = v ′ ∈ C : u′σ ↓ v ′σ

Definition (superposition of reductive conditional rewrite rules)

C ⊃ s → t D ⊃ w [u]→ v

(C ,D ⊃ w [t]→ v)σ

σ is mgu of s and u and u is not a variable
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Superposition for Horn Clauses

Definitions

• (C ,D ⊃ w [t]→ v)σ is a conditional critical pair

• (C ,D ⊃ w [t]→ v)σ converges if ∀ τ such that Cστ and Dστ
converge: w [t]στ ↓ vστ

Lemma

a reductive conditional rewrite system is confluent iff all critical pairs
converge

Theorem

let � be a reduction order and let C be a set of reductive equational Horn
clauses; then the word problem is decidable if all critical pairs converge
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Superposition Calculus

Superposition Calculus

Definition
C ∨ A D ∨ ¬B

(C ∨ D)σ
ORe

C ∨ A ∨ B
(C ∨ A)σ

OFc

C ∨ s = t D ∨ ¬A[s ′]

(C ∨ D ∨ ¬A[t])σ
OPm(L)

C ∨ s = t D ∨ A[s ′]

(C ∨ D ∨ A[t])σ
OPm(R)

C ∨ s = t D ∨ u[s ′] 6= v

(C ∨ D ∨ u[t] 6= v)σ
SpL

C ∨ s = t D ∨ u[s ′] = v

(C ∨ D ∨ u[t] = v)σ
SpR

C ∨ s 6= t

Cσ
ERR

C ∨ u = v ∨ s = t
(C ∨ v 6= t ∨ u = t)σ

EFc

• ORe and OFc are ordered resolution and ordered factoring

• OPm(L), OPm(R), SpL, SpR stands for ordered paramodulation and
superpostion (left or right)

• ERR means equality resolution and EFc means equality factoring
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Superposition Calculus

Definition (Definition (cont’d))

C ∨ A D ∨ ¬B
(C ∨ D)σ

ORe
C ∨ A ∨ B
(C ∨ A)σ

OFc
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SpL

C ∨ s = t D ∨ u[s ′] = v

(C ∨ D ∨ u[t] = v)σ
SpR

C ∨ s 6= t

Cσ
ERR

C ∨ u = v ∨ s = t
(C ∨ v 6= t ∨ u = t)σ

EFc

constraints:
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Superposition Calculus

Definition (Definition (cont’d))
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C ∨ s = t D ∨ u[s ′] = v

(C ∨ D ∨ u[t] = v)σ
SpR

C ∨ s 6= t

Cσ
ERR

C ∨ u = v ∨ s = t
(C ∨ v 6= t ∨ u = t)σ

EFc

constraints:

1 for ordered resolution: Aσ is strictly maximal with respect to Cσ
and ¬Bσ is maximal with respect to Dσ

2 for ordered factoring: Aσ is strictly maximal wrt Cσ.
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Superposition Calculus

Definition (Definition (cont’d))
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SpR

C ∨ s 6= t

Cσ
ERR

C ∨ u = v ∨ s = t
(C ∨ v 6= t ∨ u = t)σ

EFc

constraints:

1 for the superposition rules: σ is a mgu of s and s ′, s ′ not a variable,
tσ 6< sσ, vσ 6< u[s ′]σ, (s = t)σ is strictly maximal wrt Cσ

2 ¬A[s ′] and u[s ′] 6= v are maximal, while A[s ′] and u[s ′] = v are
strictly maximal wrt Dσ

3 (s = t)σ 6< (u[s ′] = v)σ
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Superposition Calculus

Definition (Definition (cont’d))
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Superposition Calculus

Definition (Definition (cont’d))
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1 for equality factoring: σ is mgu of s and u, (s = t)σ is strictly
maximal in Cσ

2 (s = t)σ 6< (u = v)σ
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Superposition Calculus

Definition

• define the superposition operator ResSP(C) as follows:

ResSP(C) = {D | D is conclusion of ORe–EFc with premises in C}

• nth (unrestricted) iteration ResnSP (Res∗SP) of the operator ResSP is
defined as above

Example

re-consider C = {c 6= d, b = d, a 6= d ∨ a = c, a = b ∨ a = d} together
with the term order: a � b � c � d; without equality factoring only the
following clause is derivable:

a 6= d ∨ b = c ∨ a = d

here the atom order is the multiset extension of �: a = b ≡ {a, b} �
{a, d} ≡ a = d and the literal order �L is the multiset extenion of the
atom order: a = c �L a 6= d
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Candidate Models

Candidate Models

Definitions
• let O be a clause inference operator

• let I denote a mapping that assigns to each ground clause set C an
equality Herbrand interpretation, the candidate model IC

• if IC 6|= C there ∃ minimal counter-example C

• O has reduction property if

1 ∀ C
2 ∀ minimal counter-examples C for IC
3 ∃ inference from C in O

C1 . . . Cn C

D

where IC |= Ci , IC 6|= D and C � D
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Candidate Models

Theorem

let O be sound and have the reduction property and let C be saturated
wrt O, then C is unsatisfiable iff C contains the empty clause

Assumption

in the following we assume a language that contains = as only predicate;
for now we restrict to ground clauses

equality Herbrand interpretations are respresentable
by a convergent (wrt �) ground TRS

Definition

a clause C ∨ s = t is reductive if (i) s � t and (ii) s = t is strictly
maximal wrt C

NB: a reductive clause may be viewed as a conditional rewrite rule, where
negation is interpreted as non-derivability
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Candidate Models

let CC = {D ∈ C | C � D}

Definition

we define a mapping I that assigns to ∀ CC a convergent TRS IC
IC is the set of all ground rewrite rules s → t such that

1 ∃ D = C ′ ∨ s = t ∈ C with C � D

2 D is reductive for s = t

3 D is counter-example for ID
4 s is in normal form wrt ID
5 C ′ is counter-example for ID ∪ {s = t}
6 we call D productive

Theorem

let C be a ground clause set; C a minimal counter-example to IC ;
∃ D ∈ ResSP(C) such that C � D and D is also a counter-example
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Redundancy and Saturation

Redundancy and Saturation

Definitions
• a ground clause C is redundant wrt a ground clause set C if ∃ C1,

. . . , Ck in C such that

C1, . . . ,Ck |= C C � Ci

• a ground inference
C1 . . . Cn C

D

is redundant (wrt C) if

1 C main premise
2 D < C , or
3 ∃ D1, . . . ,Dk with Di ∈ CC such that D1, . . . ,Dk ,C1, . . . ,Cn |= D

• C is saturated upto redundancy if all inferences from non-redundant
premises are redundant
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Redundancy and Saturation

Soundness and Completeness of Superposition

Theorem

let O be sound and have the reduction property and let C be saturated
upto redundancy wrt O, then C is unsatisfiable iff C contains the empty
clause

Lemma

non-redundant superposition inferences are liftable

Proof.

on the whiteboard

Theorem

superposition is sound and complete; let F be a sentence and C its clause
form; then F is unsatisfiable iff 2 ∈ ResSP

∗(C)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 319/1



Redundancy and Saturation

Soundness and Completeness of Superposition

Theorem

let O be sound and have the reduction property and let C be saturated
upto redundancy wrt O, then C is unsatisfiable iff C contains the empty
clause

Lemma

non-redundant superposition inferences are liftable

Proof.

on the whiteboard

Theorem

superposition is sound and complete; let F be a sentence and C its clause
form; then F is unsatisfiable iff 2 ∈ ResSP

∗(C)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 319/1



Redundancy and Saturation

Soundness and Completeness of Superposition

Theorem

let O be sound and have the reduction property and let C be saturated
upto redundancy wrt O, then C is unsatisfiable iff C contains the empty
clause

Lemma

non-redundant superposition inferences are liftable

Proof.

on the whiteboard

Theorem

superposition is sound and complete; let F be a sentence and C its clause
form; then F is unsatisfiable iff 2 ∈ ResSP

∗(C)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 319/1



Redundancy and Saturation

Soundness and Completeness of Superposition

Theorem

let O be sound and have the reduction property and let C be saturated
upto redundancy wrt O, then C is unsatisfiable iff C contains the empty
clause

Lemma

non-redundant superposition inferences are liftable

Proof.

on the whiteboard

Theorem

superposition is sound and complete; let F be a sentence and C its clause
form; then F is unsatisfiable iff 2 ∈ ResSP

∗(C)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 319/1


