

# Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013



# Summary of Last Lecture

#### Definition

$$\frac{C \vee A \quad D \vee \neg B}{(C \vee D)\sigma} \text{ ORe} \qquad \qquad \frac{C \vee A \vee B}{(C \vee A)\sigma} \text{ OFc}$$

$$\frac{C \vee s = t \quad D \vee \neg A[s']}{(C \vee D \vee \neg A[t])\sigma} \text{ OPm(L)} \qquad \frac{C \vee s = t \quad D \vee A[s']}{(C \vee D \vee A[t])\sigma} \text{ OPm(R)}$$

$$\frac{C \vee s = t \quad D \vee u[s'] \neq v}{(C \vee D \vee u[t] \neq v)\sigma} \text{ SpL} \qquad \frac{C \vee s = t \quad D \vee u[s'] = v}{(C \vee D \vee u[t] = v)\sigma} \text{ SpR}$$

$$\frac{C \vee s \neq t}{C\sigma} \text{ ERR} \qquad \frac{C \vee u = v \vee s = t}{(C \vee v \neq t \vee u = t)\sigma} \text{ EFc}$$

- ORe and OFc are ordered resolution and ordered factoring
- OPm(L), OPm(R), SpL, SpR stands for ordered paramodulation and superpostion (left or right)
- ERR means equality resolution and EFc means equality factoring

# Example

re-consider  $\mathcal{C}=\{c\neq d,b=d,a\neq d\lor a=c,a=b\lor a=d\}$  together with the term order:  $a\succ b\succ c\succ d$ ; without equality factoring only the following clause is derivable:

$$\mathsf{a} \neq \mathsf{d} \vee \mathsf{b} = \mathsf{c} \vee \mathsf{a} = \mathsf{d}$$

here the atom order is the multiset extension of  $\succ$ :  $a = b \equiv \{a,b\} \succ \{a,d\} \equiv a = d$  and the literal order  $\succ_L$  is the multiset extenion of the atom order:  $a = c \succ_L a \neq d$ 

#### Lemma

non-redundant superposition inferences are liftable

#### Theorem

superposition is sound and complete; let F be a sentence and C its clause form; then F is unsatisfiable iff  $\Box \in \mathsf{Res}_{\mathsf{SP}}^*(\mathcal{C})$ 

#### Outline of the Lecture

#### Early Approaches in Automated Reasoning

short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

## Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

# Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

## Applications of Automated Reasoning

Neuman-Stubblebine Key Exchange Protocol, group theory Robbin's problem

#### Outline of the Lecture

#### Early Approaches in Automated Reasoning

short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

#### Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy and deletion

# Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

# Applications of Automated Reasoning

Neuman-Stubblebine Key Exchange Protocol, group theory Robbin's problem

# Application ①: Issues of Security



# Neuman-Stubblebine Key Exchange Protocol

# Description

- Neuman-Stubblebine key exchange protocol aims to establish a secure key between two agents that already share secure keys with a trusted third party
- principals: Alice, Bob, Server

# Neuman-Stubblebine Key Exchange Protocol

# Description

- Neuman-Stubblebine key exchange protocol aims to establish a secure key between two agents that already share secure keys with a trusted third party
- principals: Alice, Bob, Server

#### Conventions

A, B, T identifiers of Alice, Bob, Server  $K_{at}$  key between A and T  $N_a$ ,  $N_b$  nonce created by Alice, Bob  $K_{bt}$  key between B and T Time time span of key  $K_{ab}$   $K_{ab}$  key between A and B  $E_{key}(message)$  encryption of message using key

# Neuman-Stubblebine Key Exchange Protocol

# Description

- Neuman-Stubblebine key exchange protocol aims to establish a secure key between two agents that already share secure keys with a trusted third party
- principals: Alice, Bob, Server

#### Conventions

A, B, T identifiers of Alice, Bob, Server  $K_{at}$  key between A and T  $N_a$ ,  $N_b$  nonce created by Alice, Bob  $K_{bt}$  key between B and T Time time span of key  $K_{ab}$   $K_{ab}$  key between A and B

 $E_{key}(message)$  encryption of message using key

#### Definition

we write

 $A \longrightarrow B: M$ 

Alice sends Bob message M

- $\blacksquare A \longrightarrow B \colon A, N_a$ 
  - Alice sends to Bob
    - her identifier
    - a freshly generated nonce



- $\blacksquare A \longrightarrow B: A, N_a$ 
  - Alice sends to Bob
    - her identifier
    - · a freshly generated nonce
- 2 B  $\longrightarrow$  T: B,  $E_{K_{bt}}(A, N_a, Time), N_b$ Bob encrypts the triple (A,  $N_a, Time$ ) and sends to Server
  - his identity
  - encryption of (A, N<sub>a</sub>, Time)
  - new nonce

- $\blacksquare A \longrightarrow B \colon A, N_a$ 
  - Alice sends to Bob
    - her identifier
    - a freshly generated nonce
- 2 B  $\longrightarrow$  T: B,  $E_{K_{bt}}(A, N_a, Time), N_b$ Bob encrypts the triple  $(A, N_a, Time)$  and sends to Server
  - his identity
  - encryption of (A, N<sub>a</sub>, Time)
  - new nonce
- $\begin{array}{c} \textbf{3} \ \ T \longrightarrow A \colon E_{K_{at}}(B,N_a,K_{ab},Time), E_{K_{bt}}(A,K_{ab},Time), N_b \\ \textbf{Server} \ \ \text{generates} \ \ K_{ab} \ \ \text{and} \ \ \text{sends to} \ \ \textbf{Alice} \\ \end{array}$ 
  - encryption of K<sub>ab</sub> with key for Alice
  - encryption of K<sub>ab</sub> with key for Bob
  - N<sub>b</sub>

- $\blacksquare \ \mathsf{A} \longrightarrow \mathsf{B} \colon \mathsf{A}, \mathsf{N_a}$ 
  - Alice sends to Bob
    - her identifier
    - a freshly generated nonce
- 2 B  $\longrightarrow$  T: B,  $E_{K_{bt}}(A, N_a, Time), N_b$ Bob encrypts the triple  $(A, N_a, Time)$  and sends to Server
  - his identity
  - encryption of (A, N<sub>a</sub>, Time)
  - new nonce
- $T \longrightarrow A: E_{K_{at}}(B, N_a, K_{ab}, Time), E_{K_{bt}}(A, K_{ab}, Time), N_b$ Server generates  $K_{ab}$  and sends to Alice
  - encryption of K<sub>ab</sub> with key for Alice
  - encryption of K<sub>ab</sub> with key for Bob
  - N<sub>b</sub>
- A  $\longrightarrow$  B:  $E_{K_{bt}}(A, K_{ab}, Time), E_{K_{ab}}(N_b)$ Alice encrypts Bob's nonce with  $K_{ab}$  and forwards part of message

#### Assumptions

- intruder can intercept and record all sent messages
- 2 intruder can send messages and can forge the sender of a message
- intruder can encrypt messages, when he finds out a key
- Intruder has no access to information private to Alice, Bob, or Server the server.
- intruder cannot break any secure key

#### Assumptions

- intruder can intercept and record all sent messages
- 2 intruder can send messages and can forge the sender of a message
- intruder can encrypt messages, when he finds out a key
- Intruder has no access to information private to Alice, Bob, or Server the server.
- intruder cannot break any secure key

still Intruder (denoted I) can break the protocol

#### Assumptions

- intruder can intercept and record all sent messages
- 2 intruder can send messages and can forge the sender of a message
- intruder can encrypt messages, when he finds out a key
- intruder has no access to information private to Alice, Bob, or Server the server.
- intruder cannot break any secure key

still Intruder (denoted I) can break the protocol

#### Assumptions

- intruder can intercept and record all sent messages
- 2 intruder can send messages and can forge the sender of a message
- intruder can encrypt messages, when he finds out a key
- Intruder has no access to information private to Alice, Bob, or Server the server.
- 5 intruder cannot break any secure key

still Intruder (denoted I) can break the protocol

#### Assumptions

- intruder can intercept and record all sent messages
- 2 intruder can send messages and can forge the sender of a message
- intruder can encrypt messages, when he finds out a key
- intruder has no access to information private to Alice, Bob, or Server the server.
- 5 intruder cannot break any secure key

still Intruder (denoted I) can break the protocol

- $\mathbf{1} \mathsf{I}(\mathsf{A}) \longrightarrow \mathsf{B} \colon \mathsf{A}, \mathsf{N}_{\mathsf{a}}$
- $\blacksquare$  B  $\longrightarrow$  I(T): B, E<sub>K<sub>bt</sub></sub>(A, N<sub>a</sub>, Time), N<sub>b</sub>.
- $I(A) \longrightarrow B: E_{K_{bt}}(A, N_a, Time), E_{N_a}(N_b).$

#### Assumptions

- intruder can intercept and record all sent messages
- 2 intruder can send messages and can forge the sender of a message
- 3 intruder can encrypt messages, when he finds out a key
- 4 intruder has no access to information private to Alice, Bob, or Server the server.
- intruder cannot break any secure key

still Intruder (denoted I) can break the protocol

- 1  $I(A) \longrightarrow B: A, N_a$

the problem is that keys and nonces can be confused

$$E_{K_{ht}}(A, K_{ab}, Time)$$
 and  $E_{K_{ht}}(A, N_a, Time)$ 

# Formalisation in First-Order

#### Definition

definition of the language  $\ensuremath{\mathcal{L}}$  of the formalisation

## Formalisation in First-Order

#### Definition

definition of the language  ${\mathcal L}$  of the formalisation

- 1 individual constants: a, b, t, na, at, bt
  - a, b, t are to be interpreted as the identifiers A, B, and T
  - constant na refers to Alics's nonce
  - at (bt) represents the key  $K_{at}$  ( $K_{bt}$ )

# Formalisation in First-Order

#### Definition

definition of the language  ${\mathcal L}$  of the formalisation

- 1 individual constants: a, b, t, na, at, bt
  - a, b, t are to be interpreted as the identifiers A, B, and T
  - constant na refers to Alics's nonce
  - at (bt) represents the key  $K_{at}$  ( $K_{bt}$ )
- 2 function constants: nb, tb, kt, key, sent, pair, triple, encr, quadr
  - nb, tb, kt are unary; key, pair, encr are binary; sent, triple are ternary, and quadr is 4-ary
  - nb, tb compute Bob's fresh nonce and the time-stamp Time
  - kt computes of the new key
  - the other constants act as containers as the formalisation is based on unary predictes

# Definition (Definition (cont'd))

- 4 predicate constants: Ak, Bk, Tk, P, M, Fresh, Nonce, Store<sub>a</sub>, Store<sub>b</sub>
  - Ak, Bk, Tk assert together with key existence of keys
  - P represents principals
  - M represents messages using the function sent
  - Fresh asserts that Bob is only interested in fresh nonces
  - Nonce denotes that its argument is a nonce
  - Store<sub>a</sub>, Store<sub>b</sub> denote information that is in the store of Alice or Bob

# Definition (Definition (cont'd))

- 4 predicate constants: Ak, Bk, Tk, P, M, Fresh, Nonce, Store<sub>a</sub>, Store<sub>b</sub>
  - Ak, Bk, Tk assert together with key existence of keys
  - P represents principals
  - M represents messages using the function sent
  - Fresh asserts that Bob is only interested in fresh nonces
  - Nonce denotes that its argument is a nonce
  - Store<sub>a</sub>, Store<sub>b</sub> denote information that is in the store of Alice or Bob

#### Notation

we indicate the type of a bound variable in its name as subscript the bound variable  $x_{\rm na}$  indicates that this variable plays the role of the nonce  $N_{\rm a}$ 

# Formalisation of Protocol

 $\mathsf{A} \longrightarrow \mathsf{B} \colon \mathsf{A}, \mathsf{N}_\mathsf{a}$ 

1: Ak(key(at, t))

2: P(a)

3:  $M(sent(a, b, pair(a, na))) \land Store_a(pair(b, na))$ 



# Formalisation of Protocol

 $B \longrightarrow T: B, E_{K_{bt}}(A, N_a, Time), N_b$ 

```
\begin{split} A &\longrightarrow B \colon A, N_a \\ 1 \colon Ak(key(at,t)) \\ 2 \colon P(a) \\ 3 \colon M(sent(a,b,pair(a,na))) \land Store_a(pair(b,na)) \end{split}
```

```
4: \mathsf{Bk}(\mathsf{key}(\mathsf{bt},\mathsf{t}))

5: \mathsf{P}(\mathsf{b})

6: \mathsf{Fresh}(\mathsf{na})

7: \forall x_{\mathsf{a}} \ x_{\mathsf{na}} \ (\mathsf{M}(\mathsf{sent}(x_{\mathsf{a}},\mathsf{b},\mathsf{pair}(x_{\mathsf{a}},x_{\mathsf{na}}))) \land \mathsf{Fresh}(x_{\mathsf{na}}) \rightarrow \\ \rightarrow \mathsf{Store}_{\mathsf{b}}(\mathsf{pair}(x_{\mathsf{a}},x_{\mathsf{na}})) \land \mathsf{M}(\mathsf{sent}(\mathsf{b},\mathsf{t},\\ \mathsf{triple}(\mathsf{b},\mathsf{nb}(x_{\mathsf{na}}),\mathsf{encr}(\mathsf{triple}(x_{\mathsf{a}},x_{\mathsf{na}},\mathsf{tb}(x_{\mathsf{na}})),\mathsf{bt})))))
```

$$\begin{split} \mathsf{T} &\longrightarrow \mathsf{A} \colon \mathsf{E}_{\mathsf{K}_{\mathsf{a}\mathsf{t}}}(\mathsf{B}, \mathsf{N}_{\mathsf{a}}, \mathsf{K}_{\mathsf{a}\mathsf{b}}, \mathsf{Time}), \mathsf{E}_{\mathsf{K}_{\mathsf{b}\mathsf{t}}}(\mathsf{A}, \mathsf{K}_{\mathsf{a}\mathsf{b}}, \mathsf{Time}), \mathsf{N}_{\mathsf{b}} \\ 8 \colon \mathsf{Tk}(\mathsf{key}(\mathsf{at}, \mathsf{a})) \wedge \mathsf{Tk}(\mathsf{key}(\mathsf{bt}, \mathsf{b})) \\ 9 \colon \mathsf{P}(\mathsf{t}) \\ 10 \colon \forall x_{\mathsf{b}} \forall x_{\mathsf{n}\mathsf{b}} \forall x_{\mathsf{a}} \forall x_{\mathsf{n}\mathsf{a}} \forall x_{\mathsf{time}} \forall x_{\mathsf{b}\mathsf{t}} \forall x_{\mathsf{a}\mathsf{t}} \\ & (\mathsf{M}(\mathsf{sent}(x_{\mathsf{b}}, \mathsf{t}, \mathsf{triple}(x_{\mathsf{b}}, x_{\mathsf{n}\mathsf{b}}, \mathsf{encr}(\mathsf{triple}(x_{\mathsf{a}}, x_{\mathsf{n}\mathsf{a}}, x_{\mathsf{time}}), x_{\mathsf{b}\mathsf{t}})))) \wedge \\ & \wedge \mathsf{Tk}(\mathsf{key}(x_{\mathsf{a}\mathsf{t}}, x_{\mathsf{a}})) \wedge \mathsf{Tk}(\mathsf{key}(x_{\mathsf{b}\mathsf{t}}, x_{\mathsf{b}})) \wedge \mathsf{Nonce}(x_{\mathsf{n}\mathsf{a}}) \rightarrow \mathsf{M}(\mathsf{sent}(\mathsf{t}, x_{\mathsf{a}}, \mathsf{triple}(\mathsf{encr}(\mathsf{quadr}(x_{\mathsf{b}}, x_{\mathsf{n}\mathsf{a}}, \mathsf{kt}(x_{\mathsf{n}\mathsf{a}}), x_{\mathsf{time}}), x_{\mathsf{a}\mathsf{t}}), \\ & \quad \mathsf{encr}(\mathsf{triple}(x_{\mathsf{a}}, \mathsf{kt}(x_{\mathsf{n}\mathsf{a}}), x_{\mathsf{time}}), x_{\mathsf{b}\mathsf{t}}), x_{\mathsf{n}\mathsf{b}})))) \\ 11 \colon \mathsf{Nonce}(\mathsf{n}\mathsf{a}) \\ 12 \colon \forall x \neg \mathsf{Nonce}(\mathsf{kt}(x)) \end{split}$$

13:  $\forall x \, (\mathsf{Nonce}(\mathsf{tb}(x)) \land \mathsf{Nonce}(\mathsf{nb}(x)))$ 

```
T \longrightarrow A: E_{K_{ab}}(B, N_a, K_{ab}, Time), E_{K_{bb}}(A, K_{ab}, Time), N_b
8: Tk(key(at, a)) \wedge Tk(key(bt, b))
9: P(t)
10: \forall x_h \forall x_{nh} \forall x_2 \forall x_{nh} \forall x_{time} \forall x_{ht} \forall x_{2t}
          (M(sent(x_h, t, triple(x_h, x_{nh}, encr(triple(x_a, x_{na}, x_{time}), x_{ht})))) \land
          \land \mathsf{Tk}(\mathsf{key}(x_{\mathsf{at}}, x_{\mathsf{a}})) \land \mathsf{Tk}(\mathsf{key}(x_{\mathsf{bt}}, x_{\mathsf{b}})) \land \mathsf{Nonce}(x_{\mathsf{na}}) \to \mathsf{M}(\mathsf{sent}(\mathsf{t}, x_{\mathsf{a}}, x_{\mathsf{b}}))
                   triple(encr(quadr(x_h, x_{na}, kt(x_{na}), x_{time}), x_{at}),
                    encr(triple(x_a, kt(x_{na}), x_{time}), x_{ht}), x_{nh}))))
11: Nonce(na)
12: \forall x \neg Nonce(kt(x))
13: \forall x \, (\mathsf{Nonce}(\mathsf{tb}(x)) \land \mathsf{Nonce}(\mathsf{nb}(x)))
```

#### Remark

formulas 11-13 are not part of the protocol, but prevents that the intruder can generate arbitrarily many keys

$$\begin{array}{l} \mathsf{A} \longrightarrow \mathsf{B} \colon \mathsf{E}_{\mathsf{K}_{bt}}(\mathsf{A},\mathsf{K}_{ab},\mathsf{Time}), \mathsf{E}_{\mathsf{K}_{ab}}(\mathsf{N}_{b}) \\ 14 \colon \forall x_{\mathsf{nb}} \forall x_{\mathsf{k}} \forall x_{\mathsf{m}} \forall x_{\mathsf{b}} \forall x_{\mathsf{na}} \forall x_{\mathsf{time}} \\ \qquad \qquad \left( \left( \mathsf{M}(\mathsf{sent}(\mathsf{t},\mathsf{a},\mathsf{triple}(\mathsf{encr}(\mathsf{quadr}(x_{\mathsf{b}},x_{\mathsf{na}},x_{\mathsf{k}},x_{\mathsf{time}}),\mathsf{at}),x_{\mathsf{m}},x_{\mathsf{nb}}) \right) \right) \land \\ \qquad \land \mathsf{Store}_{\mathsf{a}}(\mathsf{pair}(x_{\mathsf{b}},x_{\mathsf{na}}))) \rightarrow \\ \qquad \rightarrow \mathsf{M}(\mathsf{sent}(\mathsf{a},x_{\mathsf{b}},\mathsf{pair}(x_{\mathsf{m}},\mathsf{encr}(x_{\mathsf{nb}},x_{\mathsf{k}})))) \land \mathsf{Ak}(\mathsf{key}(x_{\mathsf{k}},x_{\mathsf{b}}))) \\ 15 \colon \forall x_{\mathsf{k}} \forall x_{\mathsf{a}} \forall x_{\mathsf{na}} \\ \qquad \qquad \left( \left( \mathsf{M}(\mathsf{sent}(x_{\mathsf{a}},\mathsf{b},\mathsf{pair}(\mathsf{encr}(\mathsf{triple}(x_{\mathsf{a}},x_{\mathsf{k}},\mathsf{tb}(x_{\mathsf{na}})),\mathsf{bt}), \\ \qquad \qquad \mathsf{encr}(\mathsf{nb}(x_{\mathsf{na}}),x_{\mathsf{k}})) \right) \land \\ \land \mathsf{Store}_{\mathsf{b}}(\mathsf{pair}(x_{\mathsf{a}},x_{\mathsf{na}})) \rightarrow \mathsf{Bk}(\mathsf{key}(x_{\mathsf{k}},x_{\mathsf{a}}))) \end{array}$$

#### Fact

SPASS verifies that the protocol terminates in less than a millisecond

$$\mathcal{G} \models \exists x (\mathsf{Ak}(\mathsf{key}(x,\mathsf{a})) \land \mathsf{Bk}(\mathsf{key}(x,\mathsf{b})))$$

#### Formalisation of the Intruder

extend  $\mathcal L$  by predicate constants lk and lm

#### Behaviour of Intruder

```
16: \forall x_a \ x_b \ x_m \ (\mathsf{M}(\mathsf{sent}(x_a, x_b, x_m)) \to \mathsf{Im}(x_m))

17: \forall u \ v \ (\mathsf{Im}(\mathsf{pair}(u, v)) \to \mathsf{Im}(u) \land \mathsf{Im}(v))

:

20: \forall u \ v \ (\mathsf{Im}(u) \land \mathsf{Im}(v) \to \mathsf{Im}(\mathsf{pair}(u, v)))

:

23: \forall x \ y \ u \ ((\mathsf{P}(x) \land \mathsf{P}(y) \land \mathsf{Im}(u)) \to \mathsf{M}(\mathsf{sent}(x, y, u)))

24: \forall u \ v \ ((\mathsf{Im}(u) \land \mathsf{P}(v)) \to \mathsf{Ik}(\mathsf{key}(u, v)))

25: \forall u \ v \ w \ ((\mathsf{Im}(u) \land \mathsf{Ik}(\mathsf{key}(v, w) \land \mathsf{P}(w)) \to \mathsf{Im}(\mathsf{encr}(u, v)))
```

#### Formalisation of the Intruder

extend  $\mathcal L$  by predicate constants  $\mathsf{lk}$  and  $\mathsf{lm}$ 

#### Behaviour of Intruder

```
16: \forall x_a \ x_b \ x_m \ (\mathsf{M}(\mathsf{sent}(x_a, x_b, x_m)) \to \mathsf{Im}(x_m))

17: \forall u \ v \ (\mathsf{Im}(\mathsf{pair}(u, v)) \to \mathsf{Im}(u) \land \mathsf{Im}(v))

:

20: \forall u \ v \ (\mathsf{Im}(u) \land \mathsf{Im}(v) \to \mathsf{Im}(\mathsf{pair}(u, v)))

:

23: \forall x \ y \ u \ ((\mathsf{P}(x) \land \mathsf{P}(y) \land \mathsf{Im}(u)) \to \mathsf{M}(\mathsf{sent}(x, y, u)))

24: \forall u \ v \ ((\mathsf{Im}(u) \land \mathsf{P}(v)) \to \mathsf{Ik}(\mathsf{key}(u, v)))

25: \forall u \ v \ w \ ((\mathsf{Im}(u) \land \mathsf{Ik}(\mathsf{key}(v, w) \land \mathsf{P}(w)) \to \mathsf{Im}(\mathsf{encr}(u, v)))
```

#### Fact

SPASS shows that the protocol insecure in less than a millisecond

$$\mathcal{H} \models \exists x (\mathsf{lk}(\mathsf{key}(x,\mathsf{b})) \land \mathsf{Bk}(\mathsf{key}(x,\mathsf{a})))$$

#### Formalisation of the Intruder

extend  $\mathcal L$  by predicate constants  $\mathsf{lk}$  and  $\mathsf{lm}$ 

#### Behaviour of Intruder

```
16: \forall x_a \ x_b \ x_m \ (\mathsf{M}(\mathsf{sent}(x_a, x_b, x_m)) \to \mathsf{Im}(x_m))

17: \forall u \ v \ (\mathsf{Im}(\mathsf{pair}(u, v)) \to \mathsf{Im}(u) \land \mathsf{Im}(v))

:

20: \forall u \ v \ (\mathsf{Im}(u) \land \mathsf{Im}(v) \to \mathsf{Im}(\mathsf{pair}(u, v)))

:

23: \forall x \ y \ u \ ((\mathsf{P}(x) \land \mathsf{P}(y) \land \mathsf{Im}(u)) \to \mathsf{M}(\mathsf{sent}(x, y, u)))

24: \forall u \ v \ ((\mathsf{Im}(u) \land \mathsf{P}(v)) \to \mathsf{Ik}(\mathsf{key}(u, v)))

25: \forall u \ v \ w \ ((\mathsf{Im}(u) \land \mathsf{Ik}(\mathsf{key}(v, w) \land \mathsf{P}(w)) \to \mathsf{Im}(\mathsf{encr}(u, v)))
```

Fact  $\mathcal{H}$  extends

 $\mathcal{H}$  extends  $\mathcal{G}$  by 16–25

SPASS shows that the protocol insecure in less than a millisecond

$$\mathcal{H} \models \exists x (\mathsf{Ik}(\mathsf{key}(x,\mathsf{b})) \land \mathsf{Bk}(\mathsf{key}(x,\mathsf{a})))$$

# Application 2: Robbin's Problem



#### Definition

$$\mathcal{B} = \langle B; +, \cdot, ^-, 0, 1 \rangle$$
 is a Boolean algebra if

- **1**  $\langle B; +, 0 \rangle$  and  $\langle B; \cdot, 1 \rangle$  are commutative monoids
- 2  $\forall$   $a, b, c \in B$ :

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
  $a + (b \cdot c) = (a+b) \cdot (a+c)$ 

- $\exists \forall a \in B: a + \overline{a} = 1 \text{ and } a \cdot \overline{a} = 0$
- $\overline{a}$  is called complement (or negation) of a

#### Definition

$$\mathcal{B} = \langle B; +, \cdot, \overline{\phantom{0}}, 0, 1 \rangle$$
 is a Boolean algebra if

- (B; +, 0) and  $(B; \cdot, 1)$  are commutative monoids
- $\begin{array}{l}
  \textbf{2} \ \forall \ a,b,c \in B: \\
  a \cdot (b+c) = (a \cdot b) + (a \cdot c) & a + (b \cdot c) = (a+b) \cdot (a+c)
  \end{array}$
- $\forall a \in B: a + \overline{a} = 1 \text{ and } a \cdot \overline{a} = 0$

 $\overline{a}$  is called complement (or negation) of a

#### Definition

consider the following axioms:

$$x + y = y + x$$
 commutativity 
$$(x + y) + z = x + (y + z)$$
 associativity 
$$n(n(x) + y) + n(n(x) + n(y)) = x$$
 Huntington equation

the operation  $n(\cdot)$  is just complement

$$\mathcal{B} = \langle B; +, \cdot, ^-, 0, 1 \rangle$$
 is a Boolean algebra if

- (B; +, 0) and  $(B; \cdot, 1)$  are commutative monoids

$$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$
  $a + (b \cdot c) = (a+b) \cdot (a+c)$ 

 $\exists \forall a \in B: a + \overline{a} = 1 \text{ and } a \cdot \overline{a} = 0$ 

 $\overline{a}$  is called complement (or negation) of a

### Definition

consider the following axioms:

$$x + y = y + x$$

$$(x + y) + z = x + (y + z)$$

$$\overline{x} + y + \overline{x} + \overline{y} = x$$

commutativity associativity

Huntington equation

the operation  $n(\cdot)$  is just complement

the provided axioms form a minimal axiomatisation of Boolean algebras, that is all axioms are independent from each other



the provided axioms form a minimal axiomatisation of Boolean algebras, that is all axioms are independent from each other

## Example

recall 
$$x \cdot y = \overline{\overline{x} + \overline{y}}$$
, thus

$$\overline{\overline{x} + y} + \overline{\overline{x} + \overline{y}} = x \cdot \overline{y} + x \cdot y = x \cdot (\overline{y} + y) = x$$

the provided axioms form a minimal axiomatisation of Boolean algebras, that is all axioms are independent from each other

## Example

recall 
$$x \cdot y = \overline{\overline{x} + \overline{y}}$$
, thus

$$\overline{\overline{x} + y} + \overline{\overline{x} + \overline{y}} = x \cdot \overline{y} + x \cdot y = x \cdot (\overline{y} + y) = x$$

### Definition

### Robbins equation:

$$\overline{\overline{x+y} + \overline{x+\overline{y}}} = x \tag{R}$$

the provided axioms form a minimal axiomatisation of Boolean algebras, that is all axioms are independent from each other

## Example

recall 
$$x \cdot y = \overline{\overline{x} + \overline{y}}$$
, thus 
$$\overline{\overline{x} + y} + \overline{\overline{x} + \overline{y}} = x \cdot \overline{y} + x \cdot y = x \cdot (\overline{y} + y) = x$$

### Definition

### Robbins equation:

$$\overline{\overline{x+y} + \overline{x+\overline{y}}} = x \tag{R}$$

$$\overline{\overline{x+y}+\overline{x+\overline{y}}} = (x+y)\cdot(x+\overline{y}) = x+(y\overline{y}) = x$$

### Question ①

Does Huntington's equation follow from (i) commutativity (ii) associativity and (iii) Robbins equation?



### Question 1

Does Huntington's equation follow from (i) commutativity (ii) associativity and (iii) Robbins equation?

### Answer

McCune (or better EQP) says yes

### Question ①

Does Huntington's equation follow from (i) commutativity (ii) associativity and (iii) Robbins equation?

### Answer

McCune (or better EQP) says yes

### Definition

a Robbins algebra is an algrebra satisfying (i) commutativity (ii) associativity and (iii) Robbins equation

### Question ①

Does Huntington's equation follow from (i) commutativity (ii) associativity and (iii) Robbins equation?

### **Answer**

McCune (or better EQP) says yes

### Definition

a Robbins algebra is an algrebra satisfying (i) commutativity (ii) associativity and (iii) Robbins equation

### Question 2

Is any Robbins algebra a Boolean algebra?

# **Auxiliary Lemmas**

### Lemma

a Robbins algebra satisfying  $\exists x(x+x=x)$  is a Boolean algebra

Proof (Sketch).

automatically provable by EQP in about 5 seconds



# **Auxiliary Lemmas**

### Lemma

a Robbins algebra satisfying  $\exists x(x+x=x)$  is a Boolean algebra

# Proof (Sketch).

automatically provable by EQP in about 5 seconds

### Lemma

a Robbins algebra satisfying  $\exists x \exists y (x + y = x)$  is a Boolean algebra

# Proof (Sketch).

- originally the Lemma was manually proven by Steve Winker
- 2 based on the above lemma EQP can find a proof in about 40 minutes

### Lemma

a Robbins algebra satisfying  $\exists x \exists y (\overline{x+y} = \overline{x})$  is a Boolean algebra

Proof (Sketch).

originally the Lemma was manually proven by Steve Winker



### Lemma

a Robbins algebra satisfying  $\exists x \exists y (\overline{x+y} = \overline{x})$  is a Boolean algebra

Proof (Sketch).

originally the Lemma was manually proven by Steve Winker

### Lemma

all Robbin algebras satisfy  $\exists x \exists y (x + y = x)$ 

Proof (Sketch).

by EQP, dedicated (incomplete) heuristics are essential

#### Lemma

a Robbins algebra satisfying  $\exists x \exists y (\overline{x+y} = \overline{x})$  is a Boolean algebra

# Proof (Sketch).

originally the Lemma was manually proven by Steve Winker

### Lemma

all Robbin algebras satisfy  $\exists x \exists y (x + y = x)$ 

# Proof (Sketch).

by EQP, dedicated (incomplete) heuristics are essential

### Theorem

commutativity, associativity, and Robinns equation minimally axiomatise Boolean algebra

### Proof (of last lemma).

$$n(n(n(3x) + x) + 5x) = n(3x)$$
 8855, [6736  $\rightarrow$  7]  
 $n(n(n(n(3x) + x) + n(3x) + 2x)) = n(n(3x) + x) + 2x$  8865, [8855  $\rightarrow$  7]  
 $n(n(n(3x) + x) + n(3x)) = x$  8866, [8855  $\rightarrow$  7]  
 $n(n(n(3x) + x) + n(3x) + y) + n(x + y)) = y$  8870, [8866  $\rightarrow$  7]  
 $n(n(3x) + x) + 2x = 2x$  8871, [8865]

$$\begin{array}{ll} \mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+5x) = \mathsf{n}(3x) & 8855, \ [6736 \to 7] \\ \mathsf{n}(\mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+\mathsf{n}(3x)+2x)) = \mathsf{n}(\mathsf{n}(3x)+x)+2x & 8865, \ [8855 \to 7] \\ \mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+\mathsf{n}(3x)) = x & 8866, \ [8855 \to 7] \\ \mathsf{n}(\mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+\mathsf{n}(3x)+y)+\mathsf{n}(x+y)) = y & 8870, \ [8866 \to 7] \\ \mathsf{n}(\mathsf{n}(3x)+x)+2x = 2x & 8871, \ [8865] \end{array}$$

• last line asserts:  $\exists x \exists y (x + y = x)$ 

$$\begin{array}{ll} \mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+5x) = \mathsf{n}(3x) & 8855, \, [6736 \to 7] \\ \mathsf{n}(\mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+\mathsf{n}(3x)+2x)) = \mathsf{n}(\mathsf{n}(3x)+x)+2x & 8865, \, [8855 \to 7] \\ \mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+\mathsf{n}(3x)) = x & 8866, \, [8855 \to 7] \\ \mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+\mathsf{n}(3x)+y)+\mathsf{n}(x+y)) = y & 8870, \, [8866 \to 7] \\ \mathsf{n}(\mathsf{n}(3x)+x)+2x = 2x & 8871, \, [8865] \end{array}$$

- last line asserts:  $\exists x \exists y (x + y = x)$
- also derived:  $\exists x \exists y (\overline{x+y} = \overline{x})$

$$\begin{array}{ll} \mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+5x) = \mathsf{n}(3x) & 8855, \ [6736 \to 7] \\ \mathsf{n}(\mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+\mathsf{n}(3x)+2x)) = \mathsf{n}(\mathsf{n}(3x)+x)+2x & 8865, \ [8855 \to 7] \\ \mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+\mathsf{n}(3x)) = x & 8866, \ [8855 \to 7] \\ \mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+\mathsf{n}(3x)+y)+\mathsf{n}(x+y)) = y & 8870, \ [8866 \to 7] \\ \mathsf{n}(\mathsf{n}(3x)+x)+2x = 2x & 8871, \ [8865] \end{array}$$

- last line asserts:  $\exists x \exists y (x + y = x)$
- also derived:  $\exists x \exists y (\overline{x+y} = \overline{x})$



$$\begin{array}{ll} \mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+5x) = \mathsf{n}(3x) & 8855, \, [6736 \to 7] \\ \mathsf{n}(\mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+\mathsf{n}(3x)+2x)) = \mathsf{n}(\mathsf{n}(3x)+x)+2x & 8865, \, [8855 \to 7] \\ \mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+\mathsf{n}(3x)) = x & 8866, \, [8855 \to 7] \\ \mathsf{n}(\mathsf{n}(\mathsf{n}(3x)+x)+\mathsf{n}(3x)+y)+\mathsf{n}(x+y)) = y & 8870, \, [8866 \to 7] \\ \mathsf{n}(\mathsf{n}(3x)+x)+2x = 2x & 8871, \, [8865] \end{array}$$

- last line asserts:  $\exists x \exists y (x + y = x)$
- also derived:  $\exists x \exists y (\overline{x+y} = \overline{x})$

### Remarks

- SPASS could not find proof in 12 hours
- mkbtt cannot parse the problem ©

# Equational Prover EQP

- EQP is restricted to equational logic and performs AC unification and matching
- based on basic superposition, that is, paramodulation into substitution parts of terms are forbidded
- incomplete heuristics

# Equational Prover EQP

### Definition

- EQP is restricted to equational logic and performs AC unification and matching
- based on basic superposition, that is, paramodulation into substitution parts of terms are forbidded
- incomplete heuristics

- AC unifiers are found by finding a basis of a linear Diophantine equation
- the complete set of unifiers is given as linear combinations of (members of) the basis

- a subset yields potential unifier if all unification conditions except unification of subterms are fulfilled
- the super-0 strategy restricts the number of AC unifiers by ignoring supersets if a potential unifier is found



- a subset yields potential unifier if all unification conditions except unification of subterms are fulfilled
- the super-0 strategy restricts the number of AC unifiers by ignoring supersets if a potential unifier is found

NB: the super-0 strategy yields incompleteness



- a subset yields potential unifier if all unification conditions except unification of subterms are fulfilled
- the super-0 strategy restricts the number of AC unifiers by ignoring supersets if a potential unifier is found

NB: the super-0 strategy yields incompleteness

### Definition

for AC matching a dedicated algorithm based on backtracking is used

- a subset yields potential unifier if all unification conditions except unification of subterms are fulfilled
- the super-0 strategy restricts the number of AC unifiers by ignoring supersets if a potential unifier is found

NB: the super-0 strategy yields incompleteness

### Definition

for AC matching a dedicated algorithm based on backtracking is used

- the weight of a pair of equations be the sum of the size of its members
- the age of a pair is the sum of the ages of its members

- a pairing algorithm used to select the next equation:
  - 1 either the lightest or the oldest pair (not yet selected) is chosen
  - pair selection ratio specifies the ratio <u>lightest</u> oldest
  - 3 default ratio is  $\frac{1}{0}$

- a pairing algorithm used to select the next equation:
  - 1 either the lightest or the oldest pair (not yet selected) is chosen
  - 2 pair selection ratio specifies the ratio <u>lightest</u> oldest
  - 3 default ratio is  $\frac{1}{0}$

Use of EQP

- a pairing algorithm used to select the next equation:
  - either the lightest or the oldest pair (not yet selected) is chosen
  - 2 pair selection ratio specifies the ratio <u>lightest</u> oldest
  - 3 default ratio is  $\frac{1}{0}$

### Use of EQP

successful attack took place over the course of five weeks

- a pairing algorithm used to select the next equation:
  - **I** either the lightest or the oldest pair (not yet selected) is chosen
  - 2 pair selection ratio specifies the ratio <u>lightest</u> oldest
  - 3 default ratio is  $\frac{1}{0}$

### Use of EQP

- successful attack took place over the course of five weeks
- the following search parameters were varied
  - 1 limit on the size of retained equations
  - with or without super-0 heuristics
  - 3 with or without basic restriction
  - main colortion ratio 1 or 1
  - 4 pair selection ratio  $\frac{1}{0}$  or  $\frac{1}{1}$

- a pairing algorithm used to select the next equation:
  - either the lightest or the oldest pair (not yet selected) is chosen
  - 2 pair selection ratio specifies the ratio <u>lightest</u> oldest
  - 3 default ratio is  $\frac{1}{0}$

### Use of EQP

- successful attack took place over the course of five weeks
- the following search parameters were varied
  - 1 limit on the size of retained equations
  - with or without super-0 heuristics
  - with or without basic restriction
  - with or without basic restriction
  - 4 pair selection ratio  $\frac{1}{0}$  or  $\frac{1}{1}$
- subsequent experiments searched for shorter proofs
- yielded direct proof without the use of Winker's lemmas

# Thank You for Your Attention!

