
Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

Summary

Summary of Last Lecture

Definition
C ∨ A D ∨ ¬B

(C ∨ D)σ
ORe

C ∨ A ∨ B
(C ∨ A)σ

OFc

C ∨ s = t D ∨ ¬A[s ′]

(C ∨ D ∨ ¬A[t])σ
OPm(L)

C ∨ s = t D ∨ A[s ′]

(C ∨ D ∨ A[t])σ
OPm(R)

C ∨ s = t D ∨ u[s ′] 6= v

(C ∨ D ∨ u[t] 6= v)σ
SpL

C ∨ s = t D ∨ u[s ′] = v

(C ∨ D ∨ u[t] = v)σ
SpR

C ∨ s 6= t

Cσ
ERR

C ∨ u = v ∨ s = t
(C ∨ v 6= t ∨ u = t)σ

EFc

• ORe and OFc are ordered resolution and ordered factoring

• OPm(L), OPm(R), SpL, SpR stands for ordered paramodulation and
superpostion (left or right)

• ERR means equality resolution and EFc means equality factoring

GM (Institute of Computer Science @ UIBK) Automated Reasoning 320/1

Summary

Example

re-consider C = {c 6= d, b = d, a 6= d ∨ a = c, a = b ∨ a = d} together
with the term order: a � b � c � d; without equality factoring only the
following clause is derivable:

a 6= d ∨ b = c ∨ a = d

here the atom order is the multiset extension of �: a = b ≡ {a, b} �
{a, d} ≡ a = d and the literal order �L is the multiset extenion of the
atom order: a = c �L a 6= d

Lemma

non-redundant superposition inferences are liftable

Theorem

superposition is sound and complete; let F be a sentence and C its clause
form; then F is unsatisfiable iff 2 ∈ ResSP

∗(C)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 321/1

Summary

Outline of the Lecture

Early Approaches in Automated Reasoning

short recollection of Herbrand’s theorem, Gilmore’s prover, method of
Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, ordered resolution, redundancy
and deletion

Automated Reasoning with Equality

paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebine Key Exchange Protocol, group theory Robbin’s prob-
lem

GM (Institute of Computer Science @ UIBK) Automated Reasoning 322/1

http://cl-informatik.uibk.ac.at


Summary

Application À: Issues of Security

GM (Institute of Computer Science @ UIBK) Automated Reasoning 323/1

Issues of Security

Neuman-Stubblebine Key Exchange Protocol

Description

• Neuman-Stubblebine key exchange protocol aims to establish a
secure key between two agents that already share secure keys with a
trusted third party

• principals: Alice, Bob, Server

Conventions

A, B, T identifiers of Alice, Bob, Server Kat key between A and T
Na, Nb nonce created by Alice, Bob Kbt key between B and T
Time time span of key Kab Kab key between A and B
Ekey (message) encryption of message using key

Definition

we write
A −→ B: M Alice sends Bob message M

GM (Institute of Computer Science @ UIBK) Automated Reasoning 324/1

Issues of Security

The Protocol

1 A −→ B: A,Na

Alice sends to Bob
• her identifier
• a freshly generated nonce

2 B −→ T: B,EKbt
(A,Na,Time),Nb

Bob encrypts the triple (A,Na,Time) and sends to Server
• his identity
• encryption of (A,Na,Time)
• new nonce

3 T −→ A: EKat(B,Na,Kab,Time),EKbt
(A,Kab,Time),Nb

Server generates Kab and sends to Alice
• encryption of Kab with key for Alice
• encryption of Kab with key for Bob
• Nb

4 A −→ B: EKbt
(A,Kab,Time),EKab

(Nb)
Alice encrypts Bob’s nonce with Kab and forwards part of message

GM (Institute of Computer Science @ UIBK) Automated Reasoning 325/1

Issues of Security

The Attack

Assumptions
1 intruder can intercept and record all sent messages

2 intruder can send messages and can forge the sender of a message

3 intruder can encrypt messages, when he finds out a key

4 intruder has no access to information private to Alice, Bob, or
Server the server.

5 intruder cannot break any secure key

still Intruder (denoted I) can break the protocol

1 I(A) −→ B: A,Na

2 B −→ I(T) : B,EKbt
(A,Na,Time),Nb.

3 I(A) −→ B: EKbt
(A,Na,Time),ENa(Nb).

the problem is that keys and nonces can be confused

EKbt
(A,Kab,Time) and EKbt

(A,Na,Time)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 326/1



Issues of Security

Formalisation in First-Order

Definition

definition of the language L of the formalisation

1 individual constants: a, b, t, na, at, bt
• a, b, t are to be interpreted as the identifiers A, B, and T

• constant na refers to Alics’s nonce

• at (bt) represents the key Kat (Kbt)

2 function constants: nb, tb, kt, key, sent, pair, triple, encr, quadr
• nb, tb, kt are unary; key, pair, encr are binary; sent, triple are ternary,

and quadr is 4-ary

• nb, tb compute Bob’s fresh nonce and the time-stamp Time

• kt computes of the new key

• the other constants act as containers as the formalisation is based on
unary predictes

GM (Institute of Computer Science @ UIBK) Automated Reasoning 327/1

Issues of Security

Definition (Definition (cont’d))

4 predicate constants: Ak, Bk, Tk, P, M, Fresh, Nonce, Storea, Storeb

• Ak, Bk, Tk assert together with key existence of keys

• P represents principals

• M represents messages using the function sent

• Fresh asserts that Bob is only interested in fresh nonces

• Nonce denotes that its argument is a nonce

• Storea, Storeb denote information that is in the store of Alice or Bob

Notation

we indicate the type of a bound variable in its name as subscript
the bound variable xna indicates that this variable plays the role of the
nonce Na

GM (Institute of Computer Science @ UIBK) Automated Reasoning 328/1

Issues of Security

Formalisation of Protocol

A −→ B: A,Na

1: Ak(key(at, t))

2 : P(a)

3: M(sent(a, b, pair(a, na))) ∧ Storea(pair(b, na))

B −→ T: B,EKbt
(A,Na,Time),Nb

4: Bk(key(bt, t))

5 : P(b)

6: Fresh(na)

7: ∀xa xna (M(sent(xa, b, pair(xa, xna))) ∧ Fresh(xna)→
→ Storeb(pair(xa, xna)) ∧M(sent(b, t,

triple(b, nb(xna), encr(triple(xa, xna, tb(xna)), bt)))))

GM (Institute of Computer Science @ UIBK) Automated Reasoning 329/1

Issues of Security

T −→ A: EKat(B,Na,Kab,Time),EKbt
(A,Kab,Time),Nb

8: Tk(key(at, a)) ∧ Tk(key(bt, b))

9 : P(t)

10: ∀xb∀xnb∀xa∀xna∀xtime∀xbt∀xat

(M(sent(xb, t, triple(xb, xnb, encr(triple(xa, xna, xtime), xbt)))) ∧
∧ Tk(key(xat, xa)) ∧ Tk(key(xbt, xb)) ∧ Nonce(xna)→ M(sent(t, xa,

triple(encr(quadr(xb, xna, kt(xna), xtime), xat),

encr(triple(xa, kt(xna), xtime), xbt), xnb))))

11: Nonce(na)

12: ∀x¬Nonce(kt(x))

13: ∀x (Nonce(tb(x)) ∧ Nonce(nb(x)))

Remark

formulas 11–13 are not part of the protocol, but prevents that the intruder
can generate arbitrarily many keys

GM (Institute of Computer Science @ UIBK) Automated Reasoning 330/1



Issues of Security

A −→ B: EKbt
(A,Kab,Time),EKab

(Nb)

14: ∀xnb∀xk∀xm∀xb∀xna∀xtime

((M(sent(t, a, triple(encr(quadr(xb, xna, xk, xtime), at), xm, xnb))) ∧
∧ Storea(pair(xb, xna)))→
→ M(sent(a, xb, pair(xm, encr(xnb, xk)))) ∧ Ak(key(xk, xb)))

15: ∀xk∀xa∀xna

((M(sent(xa, b, pair(encr(triple(xa, xk, tb(xna)), bt),

encr(nb(xna), xk)))) ∧
∧ Storeb(pair(xa, xna)))→ Bk(key(xk, xa)))

Fact
SPASS verifies that the protocol terminates in less than a millisecond

G |= ∃x(Ak(key(x , a)) ∧ Bk(key(x , b)))

GM (Institute of Computer Science @ UIBK) Automated Reasoning 331/1

Issues of Security

Formalisation of the Intruder

extend L by predicate constants Ik and Im

Behaviour of Intruder
16: ∀xa xb xm (M(sent(xa, xb, xm))→ Im(xm))

17: ∀u v (Im(pair(u, v))→ Im(u) ∧ Im(v))
...
20 : ∀u v (Im(u) ∧ Im(v)→ Im(pair(u, v)))
...
23 : ∀x y u ((P(x) ∧ P(y) ∧ Im(u))→ M(sent(x , y , u)))

24: ∀u v ((Im(u) ∧ P(v))→ Ik(key(u, v)))

25: ∀u v w ((Im(u) ∧ Ik(key(v ,w) ∧ P(w))→ Im(encr(u, v)))

Fact
SPASS shows that the protocol insecure in less than a millisecond

H |= ∃x(Ik(key(x , b)) ∧ Bk(key(x , a)))

H extends G by 16–25

GM (Institute of Computer Science @ UIBK) Automated Reasoning 332/1

Issues of Security

Application Á: Robbin’s Problem

GM (Institute of Computer Science @ UIBK) Automated Reasoning 333/1

Huntington’s Basis

Definition

B = 〈B; +, ·, , 0, 1〉 is a Boolean algebra if

1 〈B; +, 0〉 and 〈B; ·, 1〉 are commutative monoids

2 ∀ a, b, c ∈ B:

a · (b + c) = (a · b) + (a · c) a + (b · c) = (a + b) · (a + c)

3 ∀ a ∈ B: a + a = 1 and a · a = 0

a is called complement (or negation) of a

Definition

consider the following axioms:

x + y = y + x commutativity

(x + y) + z = x + (y + z) associativity

n(n(x) + y) + n(n(x) + n(y)) = x Huntington equation

the operation n(·) is just complement

GM (Institute of Computer Science @ UIBK) Automated Reasoning 334/1



Huntington’s Basis

Theorem

the provided axioms form a minimal axiomatisation of Boolean algebras,
that is all axioms are independent from each other

Example

recall x · y = x + y , thus

x + y + x + y = x · y + x · y = x · (y + y) = x

Definition

Robbins equation:
x + y + x + y = x (R)

Example
x + y + x + y = (x + y) · (x + y) = x + (yy) = x

GM (Institute of Computer Science @ UIBK) Automated Reasoning 335/1

Robbins Question

Robbins Question

Question À

Does Huntington’s equation follow from (i) commutativity (ii) associativity
and (iii) Robbins equation?

Answer

McCune (or better EQP) says yes

Definition

a Robbins algebra is an algrebra satisfying (i) commutativity (ii)
associativity and (iii) Robbins equation

Question Á

Is any Robbins algebra a Boolean algebra?

GM (Institute of Computer Science @ UIBK) Automated Reasoning 336/1

Robbins Question

Auxiliary Lemmas

Lemma

a Robbins algebra satisfying ∃x(x + x = x) is a Boolean algebra

Proof (Sketch).

automatically provable by EQP in about 5 seconds

Lemma

a Robbins algebra satisfying ∃x∃y(x + y = x) is a Boolean algebra

Proof (Sketch).

1 originally the Lemma was manually proven by Steve Winker

2 based on the above lemma EQP can find a proof in about 40
minutes

GM (Institute of Computer Science @ UIBK) Automated Reasoning 337/1

Robbins Question

Lemma

a Robbins algebra satisfying ∃x∃y(x + y = x) is a Boolean algebra

Proof (Sketch).

originally the Lemma was manually proven by Steve Winker

Lemma

all Robbin algebras satisfy ∃x∃y(x + y = x)

Proof (Sketch).

by EQP, dedicated (incomplete) heuristics are essential

Theorem

commutativity, associativity, and Robinns equation minimally axiomatise
Boolean algebra

GM (Institute of Computer Science @ UIBK) Automated Reasoning 338/1



Robbins Question

Proof (of last lemma).

n(n(n(x) + y) + n(x + y)) = y 7, (R)

n(n(n(x + y) + n(x) + y) + y) = n(x + y) 10, [7 → 7]

n(n(n(n(x) + y) + x + y) + y) = n(n(x) + y) 11, [7 → 7]

n(n(n(n(x) + y) + x + 2y) + n(n(x) + y)) = y 29, [11 → 7]

n(n(n(n(n(x) + y) + x + 2y) + n(n(x) + y) + z) +

+ n(y + z)) = z 54, [29 → 7]

n(n(n(n(n(x) + y) + x + 2y) + n(n(x) + y) +

+ n(y + z) + z) + z) = n(y + z) 217, [54 → 7]

n(n(n(n(n(n(x) + y) + x + 2y) + n(n(x) + y) +

+ n(y + z) + z) + z + u) + n(n(y + z) + u)) = u 674, [217 → 7]

n(n(n(n(3x) + x) + n(3x)) + n(n(n(3x) + x) + 5x)) =

= n(n(3x) + x) 6736, [10 → 674]

GM (Institute of Computer Science @ UIBK) Automated Reasoning 339/1

Robbins Question

Proof.

n(n(n(3x) + x) + 5x) = n(3x) 8855, [6736 → 7]

n(n(n(n(3x) + x) + n(3x) + 2x)) = n(n(3x) + x) + 2x 8865, [8855 → 7]

n(n(n(3x) + x) + n(3x)) = x 8866, [8855 → 7]

n(n(n(n(3x) + x) + n(3x) + y) + n(x + y)) = y 8870, [8866 → 7]

n(n(3x) + x) + 2x = 2x 8871, [8865]

• last line asserts: ∃x∃y(x + y = x)

• also derived: ∃x∃y(x + y = x)

Remarks

• SPASS could not find proof in 12 hours

• mkbtt cannot parse the problem ,

GM (Institute of Computer Science @ UIBK) Automated Reasoning 340/1

Equational Prover EQP

Equational Prover EQP

Definition
• EQP is restricted to equational logic and performs AC unification

and matching

• based on basic superposition, that is, paramodulation into
substitution parts of terms are forbidded

• incomplete heuristics

Definition
• AC unifiers are found by finding a basis of a linear Diophantine

equation

• the complete set of unifiers is given as linear combinations of
(members of) the basis

GM (Institute of Computer Science @ UIBK) Automated Reasoning 341/1

Equational Prover EQP

Definition
• a subset yields potential unifier if all unification conditions except

unification of subterms are fulfilled

• the super-0 strategy restricts the number of AC unifiers by ignoring
supersets if a potential unifier is found

NB: the super-0 strategy yields incompleteness

Definition

for AC matching a dedicated algorithm based on backtracking is used

Definitions
• the weight of a pair of equations be the sum of the size of its

members

• the age of a pair is the sum of the ages of its members

GM (Institute of Computer Science @ UIBK) Automated Reasoning 342/1



Equational Prover EQP

Definition

a pairing algorithm used to select the next equation:

1 either the lightest or the oldest pair (not yet selected) is chosen

2 pair selection ratio specifies the ratio lightest
oldest

3 default ratio is 1
0

Use of EQP

• successful attack took place over the course of five weeks

• the following search parameters were varied

1 limit on the size of retained equations
2 with or without super-0 heuristics
3 with or without basic restriction
4 pair selection ratio 1

0 or 1
1

• subsequent experiments searched for shorter proofs

• yielded direct proof without the use of Winker’s lemmas

GM (Institute of Computer Science @ UIBK) Automated Reasoning 343/1

Equational Prover EQP

Thank You for Your Attention!

GM (Institute of Computer Science @ UIBK) Automated Reasoning 344/1


