Automated Reasoning

Georg Moser
Institute of Computer Science @ UIBK

Winter 2013

Summary Last Lecture

Selection of Applications

- Program Analysis; logical product of abstract interpreters
- Databases; disjunctive datalog
- Programming Languages; types as formulas
- Computational Complexity; implicit complexity

Summary Last Lecture

Selection of Applications

- Program Analysis; logical product of abstract interpreters
- Databases; disjunctive datalog
- Programming Languages; types as formulas
- Computational Complexity; implicit complexity

Summary Last Lecture

Selection of Applications

- Program Analysis; logical product of abstract interpreters
- Databases; disjunctive datalog
- Programming Languages; types as formulas
- Computational Complexity; implicit complexity

Summary Last Lecture

Selection of Applications

- Program Analysis; logical product of abstract interpreters
- Databases; disjunctive datalog
- Programming Languages; types as formulas
- Computational Complexity; implicit complexity

Summary Last Lecture

Selection of Applications

- Program Analysis; logical product of abstract interpreters
- Databases; disjunctive datalog
- Programming Languages; types as formulas
- Computational Complexity; implicit complexity

Lessons Learnt

- (mathematical) logic is the science of (mathematical) reasoning
- logic has been and is very successfully used as workbench for various areas in computer science
- applications are not trivial (in both senses)

Outline of the Lecture

Propositional Logic
short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic
introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic
Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Outline of the Lecture

Propositional Logic
short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic
introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
-2
-

\qquad
\qquad

The Language of First-Order Logic

a first-order language is determined by specifying its constants, variables, logical symbols, auxiliary (brackets, comma)

The Language of First-Order Logic

a first-order language is determined by specifying its constants, variables, logical symbols, auxiliary (brackets, comma)

Definition

- individual constants: $k_{0}, k_{1}, \ldots, k_{j}, \ldots$ denoted c, d, etc.
- function constants with i arguments: $f_{0}^{i}, f_{1}^{i}, \ldots$ denoted f, g, h etc.
- predicate constants with i arguments: $R_{0}^{i}, R_{1}^{i}, \ldots$ denoted as P, Q, R, etc.

The Language of First-Order Logic

a first-order language is determined by specifying its constants, variables, logical symbols, auxiliary (brackets, comma)

Definition

- individual constants: $k_{0}, k_{1}, \ldots, k_{j}, \ldots$ denoted c, d, etc.
- function constants with i arguments: $f_{0}^{i}, f_{1}^{i}, \ldots$ denoted f, g, h etc.
- predicate constants with i arguments: $R_{0}^{i}, R_{1}^{i}, \ldots$ denoted as P, Q, R, etc.

Definition

- variables: $x_{0}, x_{1}, \ldots, x_{j}, \ldots$ denoted x, y, z, etc.

Definition

- propositional connectives: $\neg, \wedge, \vee, \rightarrow$
- quantifiers \forall, \exists
- equality sign $=$

Definition

- propositional connectives: $\neg, \wedge, \vee, \rightarrow$
- quantifiers \forall, \exists
- equality sign $=$
the equality sign $=$ is a predicate but treated like a logical symbol

Definition

- propositional connectives: $\neg, \wedge, \vee, \rightarrow$
- quantifiers \forall, \exists
- equality sign $=$
the equality sign $=$ is a predicate but treated like a logical symbol
Definition
if the cardinality of the set of constants in \mathcal{L} is countable, we say \mathcal{L} is countable

Definition

- propositional connectives: $\neg, \wedge, \vee, \rightarrow$
- quantifiers \forall, \exists
- equality sign $=$
the equality sign $=$ is a predicate but treated like a logical symbol
Definition
if the cardinality of the set of constants in \mathcal{L} is countable, we say \mathcal{L} is countable

Example
the language of arithmetic $\mathcal{L}_{\text {arith }}$ contains $=$ and consists of

- individual constant 0
- function constants s, + , .
- predicate constant $<$

Terms of a Language

Definition
terms (of \mathcal{L}) are defined as follows

- any individual constant c in \mathcal{L} is a term
- any variable x is a term
- if t_{1}, \ldots, t_{n} are terms, f an n-ary function constant in \mathcal{L}, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term

Terms of a Language

Definition
terms (of \mathcal{L}) are defined as follows

- any individual constant c in \mathcal{L} is a term
- any variable x is a term
- if t_{1}, \ldots, t_{n} are terms, f an n-ary function constant in \mathcal{L}, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term

Example

- $\mathrm{s}(\mathrm{s}(\mathrm{s}(0)))$ is a term (of $\left.\mathcal{L}_{\text {arith }}\right)$

Terms of a Language

Definition
terms (of \mathcal{L}) are defined as follows

- any individual constant c in \mathcal{L} is a term
- any variable x is a term
- if t_{1}, \ldots, t_{n} are terms, f an n-ary function constant in \mathcal{L}, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term

Example

- $s(s(s(0)))$ is a term (of $\left.\mathcal{L}_{\text {arith }}\right)$
- $s(x)$ is a term (of $\left.\mathcal{L}_{\text {arith }}\right)$

Terms of a Language

Definition
terms (of \mathcal{L}) are defined as follows

- any individual constant c in \mathcal{L} is a term
- any variable x is a term
- if t_{1}, \ldots, t_{n} are terms, f an n-ary function constant in \mathcal{L}, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term

Example

- $s(s(s(0)))$ is a term (of $\left.\mathcal{L}_{\text {arith }}\right)$
- $s(x)$ is a term (of $\mathcal{L}_{\text {arith }}$)

Convention

if the language \mathcal{L} is clear from context the phrase "of \mathcal{L} " will be dropped

Formulas (of a Language)

Definition

- $P\left(t_{1}, \ldots, t_{n}\right)$ is an atomic formula; P a constant of arity n, t_{i} terms
- $t_{1}=t_{2}$ is an atomic formula, if $=$ is present

Formulas (of a Language)

Definition

- $P\left(t_{1}, \ldots, t_{n}\right)$ is an atomic formula; P a constant of arity n, t_{i} terms
- $t_{1}=t_{2}$ is an atomic formula, if $=$ is present

Definition

formulas are defined as follows

Formulas (of a Language)

Definition

- $P\left(t_{1}, \ldots, t_{n}\right)$ is an atomic formula; P a constant of arity n, t_{i} terms
- $t_{1}=t_{2}$ is an atomic formula, if $=$ is present

Definition

formulas are defined as follows

- atomic formulas are formulas

Formulas (of a Language)

Definition

- $P\left(t_{1}, \ldots, t_{n}\right)$ is an atomic formula; P a constant of arity n, t_{i} terms
- $t_{1}=t_{2}$ is an atomic formula, if $=$ is present

Definition

formulas are defined as follows

- atomic formulas are formulas
- A and B are frms: $(\neg A),(A \wedge B),(A \vee B),(A \rightarrow B)$ are formulas

Formulas (of a Language)

Definition

- $P\left(t_{1}, \ldots, t_{n}\right)$ is an atomic formula; P a constant of arity n, t_{i} terms
- $t_{1}=t_{2}$ is an atomic formula, if $=$ is present

Definition

formulas are defined as follows

- atomic formulas are formulas
- A and B are frms: $(\neg A),(A \wedge B),(A \vee B),(A \rightarrow B)$ are formulas
- if A a formula, x a variable, then

$$
\forall x A \quad \exists x A
$$

are formulas

Convention

if brackets are not necessary they are omitted:

$$
\exists, \forall>\neg>\vee, \wedge>\rightarrow \quad \text { right-associativity of } \rightarrow
$$

Convention

if brackets are not necessary they are omitted:

$$
\exists, \forall>\neg>\vee, \wedge>\rightarrow \quad \text { right-associativity of } \rightarrow
$$

Example

consider $\mathcal{L}_{\text {arith }}$, which of the following are formulas over $\mathcal{L}_{\text {arith }}$?

- $x<y \wedge \neg \exists z(x<z \wedge z<y)$
- $\forall x(x=0) \rightarrow \exists x(x=0)$
- $\forall x(x<y \wedge \exists x(y=x))$

Convention

if brackets are not necessary they are omitted:

$$
\exists, \forall>\neg>\vee, \wedge>\rightarrow \quad \text { right-associativity of } \rightarrow
$$

Example

consider $\mathcal{L}_{\text {arith }}$, which of the following are formulas over $\mathcal{L}_{\text {arith }}$?

- $x<y \wedge \neg \exists z(x<z \wedge z<y)$
- $\forall x(x=0) \rightarrow \exists x(x=0)$
- $\forall x(x<y \wedge \exists x(y=x))$

The Semantics of First-Order Logic

Definition
a structure is a pair $\mathcal{A}=(A, a)$ such that:

The Semantics of First-Order Logic

Definition
a structure is a pair $\mathcal{A}=(A, a)$ such that:

- A is a non-empty set, A is called domain

The Semantics of First-Order Logic

Definition
a structure is a pair $\mathcal{A}=(A, a)$ such that:

- A is a non-empty set, A is called domain
- mapping a associates constants with the domain:
- any individual constant c is associated with an element $a(c) \in A$.
- any n-ary function constant f is associated with $a(f): A^{n} \rightarrow A$.
- any n-ary predicate constants P is associated with a subset $a(P) \subseteq A^{n}$.

The Semantics of First-Order Logic

Definition
a structure is a pair $\mathcal{A}=(A, a)$ such that:

- A is a non-empty set, A is called domain
- mapping a associates constants with the domain:
- any individual constant c is associated with an element $a(c) \in A$.
- any n-ary function constant f is associated with $a(f): A^{n} \rightarrow A$.
- any n-ary predicate constants P is associated with a subset $a(P) \subseteq A^{n}$.
- equality sign $=$ is associated with the identity relation $a(=)$.

The Semantics of First-Order Logic

Definition

a structure is a pair $\mathcal{A}=(A, a)$ such that:

- A is a non-empty set, A is called domain
- mapping a associates constants with the domain:
- any individual constant c is associated with an element $a(c) \in A$.
- any n-ary function constant f is associated with $a(f): A^{n} \rightarrow A$.
- any n-ary predicate constants P is associated with a subset $a(P) \subseteq A^{n}$.
- equality sign $=$ is associated with the identity relation $a(=)$.
we write $c^{\mathcal{A}} . f^{\mathcal{A}}$, and $P^{\mathcal{A}}$, instead of $a(c), a(f)$, and $a(P)$; for brevity we write $=$ for the equality sign and the identity relation

The Semantics of First-Order Logic

Definition

a structure is a pair $\mathcal{A}=(A, a)$ such that:

- A is a non-empty set, A is called domain
- mapping a associates constants with the domain:
- any individual constant c is associated with an element $a(c) \in A$.
- any n-ary function constant f is associated with $a(f): A^{n} \rightarrow A$.
- any n-ary predicate constants P is associated with a subset $a(P) \subseteq A^{n}$.
- equality sign $=$ is associated with the identity relation $a(=)$.
we write $c^{\mathcal{A}} . f^{\mathcal{A}}$, and $P^{\mathcal{A}}$, instead of $a(c), a(f)$, and $a(P)$; for brevity we write $=$ for the equality sign and the identity relation

Remark

a structure is equivalent to the definition of model in LICS

Definition

- an environment for \mathcal{A} is a mapping $\ell:\left\{x_{n} \mid n \in \mathbb{N}\right\} \rightarrow A$
- $\ell\{x \mapsto t\}$ denotes the environment mapping x to t and all other variables $y \neq x$ to $\ell(y)$

Definition

- an environment for \mathcal{A} is a mapping $\ell:\left\{x_{n} \mid n \in \mathbb{N}\right\} \rightarrow A$
- $\ell\{x \mapsto t\}$ denotes the environment mapping x to t and all other variables $y \neq x$ to $\ell(y)$

Definition

an interpretation \mathcal{I} is a pair (\mathcal{A}, ℓ) such that

- \mathcal{A} is a structure
- ℓ is an environment

Definition

- an environment for \mathcal{A} is a mapping $\ell:\left\{x_{n} \mid n \in \mathbb{N}\right\} \rightarrow A$
- $\ell\{x \mapsto t\}$ denotes the environment mapping x to t and all other variables $y \neq x$ to $\ell(y)$

Definition

an interpretation \mathcal{I} is a pair (\mathcal{A}, ℓ) such that

- \mathcal{A} is a structure
- ℓ is an environment

Definition
the value of a term t (wrt interpretation \mathcal{I})

$$
t^{\mathcal{I}}= \begin{cases}\ell(t) & \text { if } t \text { a variable } \\ c^{\mathcal{A}} & \text { if } t=c \\ f^{\mathcal{A}}\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right), n \geqslant 1\end{cases}
$$

Definition (The Satisfaction Relation)

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

Definition (The Satisfaction Relation)

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

$$
\mathcal{I} \models t_{1}=t_{2} \quad: \Longleftrightarrow \text { if } t_{1}^{\mathcal{I}}=t_{2}^{\mathcal{I}}
$$

Definition (The Satisfaction Relation)

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

$$
\begin{aligned}
\mathcal{I} \mid=t_{1}=t_{2} & : \Longleftrightarrow \text { if } t_{1}^{\mathcal{I}}=t_{2}^{\mathcal{I}} \\
\mathcal{I}=P\left(t_{1}, \ldots, t_{n}\right) & \Leftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}}
\end{aligned}
$$

Definition (The Satisfaction Relation)

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

$$
\begin{aligned}
\mathcal{I} \mid=t_{1}=t_{2} & : \Longleftrightarrow \text { if } t_{1}^{\mathcal{I}}=t_{2}^{\mathcal{I}} \\
\mathcal{I}=P\left(t_{1}, \ldots, t_{n}\right) & : \Longleftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}} \\
\mathcal{I}=\neg F & \Longleftrightarrow \text { if } \mathcal{I} \not \models F
\end{aligned}
$$

Definition (The Satisfaction Relation)

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

$$
\begin{array}{ll}
\mathcal{I} \models t_{1}=t_{2} & : \Longleftrightarrow \text { if } t_{1}^{\mathcal{I}}=t_{2}^{\mathcal{I}} \\
\mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right) & : \Longleftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}} \\
\mathcal{I} \models \neg F & : \Longleftrightarrow \text { if } \mathcal{I} \not \models F \\
\mathcal{I} \models F \wedge G & : \Longleftrightarrow \text { if } \mathcal{I} \models F \text { and } \mathcal{I} \models G
\end{array}
$$

Definition (The Satisfaction Relation)

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

$$
\begin{aligned}
& \mathcal{I} \models t_{1}=t_{2}: \Longleftrightarrow \text { if } t_{1}^{\mathcal{I}}=t_{2}^{\mathcal{I}} \\
& \mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right): \Longleftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}} \\
& \mathcal{I} \models \neg F: \Longleftrightarrow \text { if } \mathcal{I} \not \models F \\
& \mathcal{I} \models F \wedge G \\
& \mathcal{I} \models F \text { if } \mathcal{I} \models F \text { and } \mathcal{I} \models G \\
& \Longleftrightarrow \text { if } \mathcal{I} \models F \text { or } \mathcal{I} \models G
\end{aligned}
$$

Definition (The Satisfaction Relation)

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

$$
\begin{aligned}
& \mathcal{I} \models t_{1}=t_{2} \quad: \Longleftrightarrow \text { if } t_{1}^{\mathcal{I}}=t_{2}^{\mathcal{I}} \\
& \mathcal{I} \vDash P\left(t_{1}, \ldots, t_{n}\right): \Longleftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}} \\
& \mathcal{I} \models \neg F \quad: \Longleftrightarrow \text { if } \mathcal{I} \not \vDash F \\
& \mathcal{I} \models F \wedge G \quad: \Longleftrightarrow \text { if } \mathcal{I} \models F \text { and } \mathcal{I} \models G \\
& \mathcal{I} \models F \vee G \quad: \Longleftrightarrow \text { if } \mathcal{I} \models F \text { or } \mathcal{I} \models G \\
& \mathcal{I} \models F \rightarrow G \quad: \Longleftrightarrow \text { if } \mathcal{I} \models F \text {, then } \mathcal{I} \models G
\end{aligned}
$$

Definition (The Satisfaction Relation)

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

$$
\mathcal{I} \mid=t_{1}=t_{2} \quad: \Longleftrightarrow \text { if } t_{1}^{\mathcal{I}}=t_{2}^{\mathcal{I}}
$$

$$
\mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right): \Longleftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}}
$$

$$
\mathcal{I} \models \neg F \quad: \Longleftrightarrow \text { if } \mathcal{I} \not \vDash F
$$

$$
\mathcal{I} \models F \wedge G \quad: \Longleftrightarrow \text { if } \mathcal{I} \models F \text { and } \mathcal{I} \models G
$$

$$
\mathcal{I} \models F \vee G \quad: \Longleftrightarrow \text { if } \mathcal{I} \models F \text { or } \mathcal{I} \models G
$$

$$
\mathcal{I} \models F \rightarrow G \quad: \Longleftrightarrow \text { if } \mathcal{I} \models F, \text { then } \mathcal{I} \models G
$$

$$
\mathcal{I} \models \forall x F \quad: \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \mid=F \text { holds for all } a \in A
$$

Definition (The Satisfaction Relation)

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

$$
\begin{aligned}
& \mathcal{I} \mid=t_{1}=t_{2} \quad: \Longleftrightarrow \text { if } t_{1}^{\mathcal{I}}=t_{2}^{\mathcal{I}} \\
& \mathcal{I} \mid=P\left(t_{1}, \ldots, t_{n}\right): \Longleftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}} \\
& \mathcal{I} \mid=\neg F \quad: \Longleftrightarrow \text { if } \mathcal{I} \not \vDash F \\
& \mathcal{I} \models F \wedge G \quad: \Longleftrightarrow \text { if } \mathcal{I} \models F \text { and } \mathcal{I} \models G \\
& \mathcal{I} \mid=F \vee G \quad: \Longleftrightarrow \text { if } \mathcal{I} \models F \text { or } \mathcal{I} \models G \\
& \mathcal{I} \models F \rightarrow G \quad: \Longleftrightarrow \text { if } \mathcal{I} \models F \text {, then } \mathcal{I} \models G \\
& \mathcal{I} \mid=\forall x F \quad: \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \models F \text { holds for all } a \in A \\
& \mathcal{I} \vDash \exists x F \quad: \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \vDash F \text { holds for some } a \in A
\end{aligned}
$$

Definition (The Satisfaction Relation)

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

$$
\begin{aligned}
\mathcal{I} \models t_{1}=t_{2} & : \Longleftrightarrow \text { if } t_{1}^{\mathcal{I}}=t_{2}^{\mathcal{I}} \\
\mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right) & : \Longleftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}} \\
\mathcal{I} \models \neg F &
\end{aligned} \Longleftrightarrow \text { if } \mathcal{I} \not \models F,
$$

let \mathcal{G} be a set of formulas

- $\mathcal{I} \models \mathcal{G}$, if $\mathcal{I} \models F$ for all $F \in \mathcal{G}$

Definition (The Satisfaction Relation)

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

$$
\begin{aligned}
\mathcal{I} \models t_{1}=t_{2} & : \Longleftrightarrow \text { if } t_{1}^{\mathcal{I}}=t_{2}^{\mathcal{I}} \\
\mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right) & : \Longleftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}} \\
\mathcal{I} \models \neg F &
\end{aligned} \Longleftrightarrow \text { if } \mathcal{I} \not \models F,
$$

let \mathcal{G} be a set of formulas

- $\mathcal{I} \models \mathcal{G}$, if $\mathcal{I} \models F$ for all $F \in \mathcal{G}$
- \mathcal{I} models \mathcal{G}, if $\mathcal{I} \models \mathcal{G}$

Definition

F, G_{1}, \ldots, G_{n} be formulas

- $G_{1}, \ldots, G_{n} \models F$ iff
\forall interpretations \mathcal{I} of all G_{1}, \ldots, G_{n} such that \mathcal{I} models G_{1}, \ldots, G_{n}, we have \mathcal{I} models F

Definition

F, G_{1}, \ldots, G_{n} be formulas

- $G_{1}, \ldots, G_{n} \models F$ iff
\forall interpretations \mathcal{I} of all G_{1}, \ldots, G_{n} such that \mathcal{I} models G_{1}, \ldots, G_{n}, we have \mathcal{I} models F
- F is called satisfiable if \exists an interpretation that is a model of F

Definition

F, G_{1}, \ldots, G_{n} be formulas

- $G_{1}, \ldots, G_{n} \models F$ iff
\forall interpretations \mathcal{I} of all G_{1}, \ldots, G_{n} such that \mathcal{I} models G_{1}, \ldots, G_{n}, we have \mathcal{I} models F
- F is called satisfiable
if \exists an interpretation that is a model of F
- F is valid if
F is satisfiable in any interpretation

Definition

F, G_{1}, \ldots, G_{n} be formulas

- $G_{1}, \ldots, G_{n} \models F$ iff
\forall interpretations \mathcal{I} of all G_{1}, \ldots, G_{n} such that
\mathcal{I} models G_{1}, \ldots, G_{n}, we have \mathcal{I} models F
- F is called satisfiable
if \exists an interpretation that is a model of F
- F is valid if
F is satisfiable in any interpretation

Example

consider the formula $A:=x<y \wedge \neg \exists z(x<z \wedge z<y)$

Definition

F, G_{1}, \ldots, G_{n} be formulas

- $G_{1}, \ldots, G_{n} \models F$ iff
\forall interpretations \mathcal{I} of all G_{1}, \ldots, G_{n} such that
\mathcal{I} models G_{1}, \ldots, G_{n}, we have \mathcal{I} models F
- F is called satisfiable
if \exists an interpretation that is a model of F
- F is valid if
F is satisfiable in any interpretation

Example

consider the formula $A:=x<y \wedge \neg \exists z(x<z \wedge z<y)$

- $\mathcal{N}=(\mathbb{N}, 0$, succ, $+, \cdot,<)$ denote the standard structure of arithmetic

Definition

F, G_{1}, \ldots, G_{n} be formulas

- $G_{1}, \ldots, G_{n} \models F$ iff
\forall interpretations \mathcal{I} of all G_{1}, \ldots, G_{n} such that
\mathcal{I} models G_{1}, \ldots, G_{n}, we have \mathcal{I} models F
- F is called satisfiable
if \exists an interpretation that is a model of F
- F is valid if
F is satisfiable in any interpretation

Example

consider the formula $A:=x<y \wedge \neg \exists z(x<z \wedge z<y)$

- $\mathcal{N}=(\mathbb{N}, 0$, succ, $+, \cdot,<)$ denote the standard structure of arithmetic
- $\ell(x)=1, \ell(y)=2$

Definition

F, G_{1}, \ldots, G_{n} be formulas

- $G_{1}, \ldots, G_{n}=F$ iff
\forall interpretations \mathcal{I} of all G_{1}, \ldots, G_{n} such that
\mathcal{I} models G_{1}, \ldots, G_{n}, we have \mathcal{I} models F
- F is called satisfiable
if \exists an interpretation that is a model of F
- F is valid if
F is satisfiable in any interpretation

Example

consider the formula $A:=x<y \wedge \neg \exists z(x<z \wedge z<y)$

- $\mathcal{N}=(\mathbb{N}, 0$, succ, $+, \cdot,<)$ denote the standard structure of arithmetic
- $\ell(x)=1, \ell(y)=2$
then $(\mathcal{N}, \ell) \models A$

Example

consider concatenation of lists

$$
\operatorname{app}\left(\operatorname{nil}, Y_{s}\right)=Y_{s} \quad \operatorname{app}(X s, Y s)=\operatorname{cons}(\operatorname{head}(X s), \operatorname{app}(\operatorname{tail}(X s), Y s))
$$

and the language \mathcal{L} :
nil, head $(X s), \operatorname{tail}(X s), \operatorname{cons}(X, X s),=$, and $\operatorname{App}(X s, Y s, Z s)$
then list concatenation is expressible as follows:

Example

consider concatenation of lists

$$
\operatorname{app}\left(\text { nil, } Y_{s}\right)=Y_{s} \quad \operatorname{app}\left(X_{s}, Y_{s}\right)=\operatorname{cons}\left(\operatorname{head}\left(X_{s}\right), \operatorname{app}\left(\operatorname{tail}\left(X_{s}\right), Y_{s}\right)\right)
$$

and the language \mathcal{L} :
nil, head $(X s), \operatorname{tail}(X s), \operatorname{cons}(X, X s),=$, and $\operatorname{App}(X s, Y s, Z s)$
then list concatenation is expressible as follows:

$$
\begin{gathered}
\forall x \operatorname{App}(\operatorname{nil}, x, x) \wedge \\
\wedge \forall x \forall y \forall z(x \neq \operatorname{nil} \wedge \operatorname{App}(\operatorname{tail}(x), y, z) \rightarrow \operatorname{App}(x, y, \operatorname{cons}(\operatorname{head}(x), z)))
\end{gathered}
$$

Example

consider concatenation of lists

$$
\operatorname{app}\left(\text { nil }, Y_{s}\right)=Y_{s} \quad \operatorname{app}\left(X s, Y_{s}\right)=\operatorname{cons}\left(\operatorname{head}(X s), \operatorname{app}\left(\operatorname{tail}(X s), Y_{s}\right)\right)
$$

and the language \mathcal{L} :
nil, head $(X s), \operatorname{tail}(X s), \operatorname{cons}(X, X s),=$, and $\operatorname{App}(X s, Y s, Z s)$
then list concatenation is expressible as follows:

$$
\begin{gathered}
\forall x \operatorname{App}(\text { nil }, x, x) \wedge \\
\wedge \forall x \forall y \forall z(x \neq \operatorname{nil} \wedge \operatorname{App}(\operatorname{tail}(x), y, z) \rightarrow \operatorname{App}(x, y, \operatorname{cons}(\operatorname{head}(x), z)))
\end{gathered}
$$

Example

define

$$
I_{n}:=\forall x_{1} \ldots \forall x_{n-1} \exists y\left(x_{1} \neq y \wedge \cdots \wedge x_{n-1} \neq y\right)
$$

if $\mathcal{I} \models I_{n}$, then \mathcal{I} has at least n elements

Definition

let F be a formula such that x occurs in F

- x is bound if it occurs inside the scope of a quantifier
- otherwise x is free
- a formula without free variables is called closed or a sentence

Definition

let F be a formula such that x occurs in F

- x is bound if it occurs inside the scope of a quantifier
- otherwise x is free
- a formula without free variables is called closed or a sentence

Example

consider $\forall x(\mathrm{P}(x) \wedge \mathrm{Q}(x, y))$; then x is bound and y is free

Definition

let F be a formula such that x occurs in F

- x is bound if it occurs inside the scope of a quantifier
- otherwise x is free
- a formula without free variables is called closed or a sentence

Example

consider $\forall x(\mathrm{P}(x) \wedge \mathrm{Q}(x, y))$; then x is bound and y is free

Notation

let F be a formula, x a free variable in F, t a term

- we sometimes write $F(x)$ instead of F to indicate x
- $F(t)$ denotes the replacement of x by t
- $F(t)$ is an instance of $F(x)$

Definition

F is called unsatisfiable
if $\neg \exists$ interpretation that is a model of F

Definition

F is called unsatisfiable
if $\neg \exists$ interpretation that is a model of F

Definition
 F and G are logically equivalent if $F \models G$ and $G \models F$
 $$
F \equiv G
$$

Definition

F is called unsatisfiable

if $\neg \exists$ interpretation that is a model of F

Definition

F and G are logically equivalent if $F \models G$ and $G \models F$

$$
F \equiv G
$$

Lemma

\forall formulas F and all sets of formulas $\mathcal{G}: \mathcal{G} \models F$ iff $\neg \operatorname{Sat}(\mathcal{G} \cup\{\neg F\})$

Definition

F is called unsatisfiable
if $\neg \exists$ interpretation that is a model of F

Definition

F and G are logically equivalent if $F \models G$ and $G \models F$ $F \equiv G$

Lemma

\forall formulas F and all sets of formulas $\mathcal{G}: \mathcal{G} \models F$ iff $\neg \operatorname{Sat}(\mathcal{G} \cup\{\neg F\})$

Lemma
1 let $\mathcal{I}_{1}=\left(\mathcal{A}_{1}, \ell_{1}\right)$ and $\mathcal{I}_{2}=\left(\mathcal{A}_{2}, \ell_{2}\right)$ be interpretations
2 the universes of $\mathcal{I}_{1}, \mathcal{I}_{2}$ coincide
$3 \mathcal{I}_{1}$ and \mathcal{I}_{2} coincide on the constants and variables occurring in F
then $\mathcal{I}_{1} \models F$ iff $\mathcal{I}_{2} \models F$

Toy Example: Logic as Modelling Language

Argument (1)
1 a mother or father of a person is an ancestor of that person
2 an ancestor of an ancestor of a person is an ancestor of a person
3 Sarah is the mother of Isaac, Isaac is the father of Jacob
4 Thus, Sarah is an ancestor of Jacob

Argument (2)

1 a square or cube of a number is a power of that number
2 a power of a power of a number is a power of that number
364 is the cube of 4 , four is the square of 2
4 Thus, 64 is a power of 2

Toy Example: Logic as Modelling Language

Argument (1)
$3 \mathrm{M}($ Sarah, Isaac $) \wedge F($ Isaac, Jacob $)$
4 Thus A(Sarah, Jacob)
$1 \mathrm{~S}(x, y) \vee \mathrm{C}(x, y) \rightarrow \mathrm{P}(x, y)$
2 $\mathrm{P}(x, y) \wedge \mathrm{P}(y, z) \rightarrow \mathrm{P}(x, z)$
$3 \mathrm{C}(64,4) \wedge \mathrm{S}(4,2)$
4 Thus $\mathrm{P}(64,2)$
$1 \mathrm{M}(x, y) \vee \mathrm{F}(x, y) \rightarrow \mathrm{A}(x, y)$
$2 \mathrm{~A}(x, y) \wedge \mathrm{A}(y, z) \rightarrow \mathrm{A}(x, z)$

Argument (2)

Toy Example: Logic as Modelling Language

Argument (1)
$1 \mathrm{R}_{1}(x, y) \vee \mathrm{R}_{2}(x, y) \rightarrow \mathrm{R}_{3}(x, y)$
$2 \mathrm{R}_{3}(x, y) \wedge \mathrm{R}_{3}(y, z) \rightarrow \mathrm{R}_{3}(x, z)$
$3 R_{1}\left(c_{1}, c_{2}\right) \wedge R_{2}\left(c_{2}, c_{3}\right)$
4 Thus $\mathrm{R}_{3}\left(\mathrm{c}_{1}, \mathrm{c}_{3}\right)$
$11 \mathrm{R}_{1}(x, y) \vee \mathrm{R}_{2}(x, y) \rightarrow \mathrm{R}_{3}(x, y)$
$2 \quad \mathrm{R}_{3}(x, y) \wedge \mathrm{R}_{3}(y, z) \rightarrow \mathrm{R}_{3}(x, z)$
3 $\mathrm{R}_{1}\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \wedge \mathrm{R}_{2}\left(\mathrm{c}_{2}, \mathrm{c}_{3}\right)$
4 Thus $\mathrm{R}_{3}\left(\mathrm{c}_{1}, \mathrm{c}_{3}\right)$

Argument (2)

$$
\left\{\begin{array}{c}
\mathrm{R}_{1}(x, y) \vee \mathrm{R}_{2}(x, y) \rightarrow \mathrm{R}_{3}(x, y) \\
\mathrm{R}_{3}(x, y) \wedge \mathrm{R}_{3}(y, z) \rightarrow \mathrm{R}_{3}(x, z) \\
\mathrm{R}_{1}\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \wedge \mathrm{R}_{2}\left(\mathrm{c}_{2}, \mathrm{c}_{3}\right)
\end{array}\right\} \vDash \mathrm{R}_{3}\left(\mathrm{c}_{1}, \mathrm{c}_{3}\right)
$$

ros

㐁

Toy Example: Logic as Modelling Language

Argument (1)= (2)?

$$
\left\{\begin{array}{c}
\mathrm{R}_{1}(x, y) \vee \mathrm{R}_{2}(x, y) \rightarrow \mathrm{R}_{3}(x, y) \\
\mathrm{R}_{3}(x, y) \wedge \mathrm{R}_{3}(y, z) \rightarrow \mathrm{R}_{3}(x, z) \\
\mathrm{R}_{1}\left(c_{1}, c_{2}\right) \wedge \mathrm{R}_{2}\left(c_{2}, c_{3}\right)
\end{array}\right\} \models \mathrm{R}_{3}\left(\mathrm{c}_{1}, \mathrm{c}_{3}\right)
$$

Structure \mathcal{A}

$c_{1}^{\mathcal{A}}$	Sarah	64
c_{2}^{A}	Isaac	4
c_{3}^{A}	Jacob	2

$R_{1}^{\mathcal{A}}(x, y) \quad x$ mother of $y \quad x$ square of y $R_{2}^{\mathcal{A}}(x, y) \quad x$ father of $y \quad x$ cube of y $R_{3}^{A}(x, y) \quad x$ ancestor of $y \quad x$ power of y

\qquad

Toy Example: Logic as Modelling Language

Argument $(1)=$ (2)

$$
\left\{\begin{array}{c}
\forall x \forall y\left(\mathrm{R}_{1}(x, y) \vee \mathrm{R}_{2}(x, y) \rightarrow \mathrm{R}_{3}(x, y)\right) \\
\forall x \forall y \forall z\left(\mathrm{R}_{3}(x, y) \wedge \mathrm{R}_{3}(y, z) \rightarrow \mathrm{R}_{3}(x, z)\right) \\
\mathrm{R}_{1}\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \wedge \mathrm{R}_{2}\left(\mathrm{c}_{2}, \mathrm{c}_{3}\right)
\end{array}\right\} \models \mathrm{R}_{3}\left(\mathrm{c}_{1}, \mathrm{c}_{3}\right)
$$

Structure \mathcal{A}

c_{1}^{A}	Sarah	64	$R_{1}^{A}(x, y)$	x mother of y	x square of y
c_{2}^{A}	Isaac	4	$R_{2}^{A}(x, y)$	x father of y	x cube of y
c_{3}^{A}	Jacob	2	$R_{3}^{A}(x, y)$	x ancestor of y	x power of y

$R_{1}^{\mathcal{A}}(x, y) \quad x$ mother of $y \quad x$ square of y $R_{2}^{\mathcal{A}}(x, y) \quad x$ father of $y \quad x$ cube of y $R_{3}^{\mathcal{A}}(x, y) \quad x$ ancestor of $y \quad x$ power of y \square

Toy Example: Logic as Modelling Language

Argument (1) $=$ (2) !

$$
\left\{\begin{array}{c}
\forall x \forall y\left(\mathrm{R}_{1}(x, y) \vee \mathrm{R}_{2}(x, y) \rightarrow \mathrm{R}_{3}(x, y)\right) \\
\forall x \forall y \forall z\left(\mathrm{R}_{3}(x, y) \wedge \mathrm{R}_{3}(y, z) \rightarrow \mathrm{R}_{3}(x, z)\right) \\
\mathrm{R}_{1}\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right) \wedge \mathrm{R}_{2}\left(\mathrm{c}_{2}, \mathrm{c}_{3}\right)
\end{array}\right\} \models \mathrm{R}_{3}\left(\mathrm{c}_{1}, \mathrm{c}_{3}\right)
$$

Structure \mathcal{A}

$c_{1}^{\mathcal{A}}$	Sarah	64
$c_{2}^{\mathcal{A}}$	Isaac	4
$c_{3}^{\mathcal{A}}$	Jacob	2

$R_{1}^{\mathcal{A}}(x, y) \quad x$ mother of $y \quad x$ square of y $R_{2}^{\mathcal{A}}(x, y) \quad x$ father of $y \quad x$ cube of y
$R_{3}^{\mathcal{A}}(x, y) \quad x$ ancestor of $y \quad x$ power of y

Question

how to automate?

A Bit of History

Fact

the idea of automated reasoning is (very) old

A Bit of History

Fact
the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646-1716) proposed the idea of

A Bit of History

Fact
the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646-1716) proposed the idea of

- lingua characteristica
a universal language, able to express all concepts

A Bit of History

Fact
the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646-1716) proposed the idea of

- lingua characteristica
a universal language, able to express all concepts
- calculus ratiocinator
a machine to "compute" whether a given argument
 is sound

A Bit of History

Fact
the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646-1716) proposed the idea of

- lingua characteristica
a universal language, able to express all concepts
- calculus ratiocinator
a machine to "compute" whether a given argument
 is sound
we already know that a 'calculus ratiocinator' cannot exist

Undecidability of First-Order Logic

Theorem
1 the decision problem for the consequence relation is undecidable 2 the set of valid first-order formulas is not recursive

Undecidability of First-Order Logic

Theorem
1 the decision problem for the consequence relation is undecidable
2 the set of valid first-order formulas is not recursive
Proof Ideas.

- encoding of TMs as first-order formulas
- reduction from Post correspondence problem

Undecidability of First-Order Logic

Theorem
1 the decision problem for the consequence relation is undecidable
2 the set of valid first-order formulas is not recursive
Proof Ideas.

- encoding of TMs as first-order formulas
- reduction from Post correspondence problem

Undecidability of First-Order Logic

Theorem
1 the decision problem for the consequence relation is undecidable
2 the set of valid first-order formulas is not recursive
Proof Ideas.

- encoding of TMs as first-order formulas
- reduction from Post correspondence problem

Theorem

the set of valid first-order formulas (over a countable language) is recursive enumerable

Undecidability of First-Order Logic

Theorem
1 the decision problem for the consequence relation is undecidable
2 the set of valid first-order formulas is not recursive
Proof Ideas.

- encoding of TMs as first-order formulas
- reduction from Post correspondence problem

Theorem

the set of valid first-order formulas (over a countable language) is recursive enumerable

Proof.

- the set of all formulas (over a countable language) is countable
- completeness yields that one can enumerate all valid formulas

Outline of the Lecture

Propositional Logic
short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic
introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic
Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Outline of the Lecture

Propositional Logic
short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic
introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic
Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic
Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Definition

\mathcal{A}, \mathcal{B} two structures over the same language; assume \exists bijection $m: A \rightarrow B$ such that

Definition

\mathcal{A}, \mathcal{B} two structures over the same language; assume \exists bijection $m: A \rightarrow B$ such that
$1 \forall$ individual constant $c: m\left(c^{\mathcal{A}}\right)=c^{\mathcal{B}}$

Definition

\mathcal{A}, \mathcal{B} two structures over the same language; assume \exists bijection $m: A \rightarrow B$ such that
$1 \forall$ individual constant $c: m\left(c^{\mathcal{A}}\right)=c^{\mathcal{B}}$
$2 \forall$ function constant $f, \forall a_{1}, \ldots, a_{n} \in A$:

$$
m\left(f^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathcal{B}}\left(m\left(a_{1}\right), \ldots, m\left(a_{n}\right)\right) \quad \text { and }
$$

Definition

\mathcal{A}, \mathcal{B} two structures over the same language; assume \exists bijection $m: A \rightarrow B$ such that
$1 \forall$ individual constant $c: m\left(c^{\mathcal{A}}\right)=c^{\mathcal{B}}$
$2 \forall$ function constant $f, \forall a_{1}, \ldots, a_{n} \in A$:

$$
m\left(f^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathcal{B}}\left(m\left(a_{1}\right), \ldots, m\left(a_{n}\right)\right) \quad \text { and }
$$

$3 \forall$ predicate constant $P, \forall a_{1}, \ldots, a_{n} \in A$:

$$
P^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow P^{\mathcal{B}}\left(m\left(a_{1}\right), \ldots, m\left(a_{n}\right)\right)
$$

Definition

\mathcal{A}, \mathcal{B} two structures over the same language; assume \exists bijection $m: A \rightarrow B$ such that
$1 \forall$ individual constant $c: m\left(c^{\mathcal{A}}\right)=c^{\mathcal{B}}$
$2 \forall$ function constant $f, \forall a_{1}, \ldots, a_{n} \in A$:

$$
m\left(f^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathcal{B}}\left(m\left(a_{1}\right), \ldots, m\left(a_{n}\right)\right) \quad \text { and }
$$

$3 \forall$ predicate constant $P, \forall a_{1}, \ldots, a_{n} \in A$:

$$
P^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow P^{\mathcal{B}}\left(m\left(a_{1}\right), \ldots, m\left(a_{n}\right)\right)
$$

then m is called an isomorphism between \mathcal{A} and \mathcal{B} denoted $m: \mathcal{A} \cong \mathcal{B}$

Definition

\mathcal{A}, \mathcal{B} two structures over the same language; assume \exists bijection $m: A \rightarrow B$ such that
$1 \forall$ individual constant $c: m\left(c^{\mathcal{A}}\right)=c^{\mathcal{B}}$
$2 \forall$ function constant $f, \forall a_{1}, \ldots, a_{n} \in A$:

$$
m\left(f^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=f^{\mathcal{B}}\left(m\left(a_{1}\right), \ldots, m\left(a_{n}\right)\right) \quad \text { and }
$$

$3 \forall$ predicate constant $P, \forall a_{1}, \ldots, a_{n} \in A$:

$$
P^{\mathcal{A}}\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow P^{\mathcal{B}}\left(m\left(a_{1}\right), \ldots, m\left(a_{n}\right)\right)
$$

then m is called an isomorphism between \mathcal{A} and \mathcal{B} denoted $m: \mathcal{A} \cong \mathcal{B}$

Lemma

let A, B be sets; $m: A \rightarrow B$ be a bijection; if \mathcal{A} is a structure with domain A, then \exists structure \mathcal{B} with $\mathcal{A} \cong \mathcal{B}$

Isomorphism Theorem
let \mathcal{A}, \mathcal{B} be structures such that $m: \mathcal{A} \cong \mathcal{B}$, then for all sentences F : $\mathcal{A} \equiv F$ iff $\mathcal{B} \models F$

Isomorphism Theorem
let \mathcal{A}, \mathcal{B} be structures such that $m: \mathcal{A} \cong \mathcal{B}$, then for all sentences F : $\mathcal{A} \models F$ iff $\mathcal{B} \models F$

Proof.

Isomorphism Theorem
let \mathcal{A}, \mathcal{B} be structures such that $m: \mathcal{A} \cong \mathcal{B}$, then for all sentences F : $\mathcal{A} \models F$ iff $\mathcal{B} \models F$

Proof.

1 let $\mathcal{I}=(\mathcal{A}, \ell)$, define $\ell^{m}=m \circ \ell$, set $\mathcal{J}=\left(\mathcal{B}, \ell^{m}\right)$

Isomorphism Theorem
let \mathcal{A}, \mathcal{B} be structures such that $m: \mathcal{A} \cong \mathcal{B}$, then for all sentences F : $\mathcal{A} \equiv F$ iff $\mathcal{B} \models F$

Proof.

1 let $\mathcal{I}=(\mathcal{A}, \ell)$, define $\ell^{m}=m \circ \ell$, set $\mathcal{J}=\left(\mathcal{B}, \ell^{m}\right)$
$2 \forall$ terms $t: m\left(t^{\mathcal{I}}\right)=t^{\mathcal{J}}$
(follows by induction on t)

Isomorphism Theorem
let \mathcal{A}, \mathcal{B} be structures such that $m: \mathcal{A} \cong \mathcal{B}$, then for all sentences F : $\mathcal{A} \equiv F$ iff $\mathcal{B} \models F$

Proof.

1 let $\mathcal{I}=(\mathcal{A}, \ell)$, define $\ell^{m}=m \circ \ell$, set $\mathcal{J}=\left(\mathcal{B}, \ell^{m}\right)$
$2 \forall$ terms $t: m\left(t^{\mathcal{I}}\right)=t^{\mathcal{J}}$
(follows by induction on t)
$3 \forall$ formulas $F: \mathcal{I} \models F \Longleftrightarrow \mathcal{J} \models F$

Isomorphism Theorem
let \mathcal{A}, \mathcal{B} be structures such that $m: \mathcal{A} \cong \mathcal{B}$, then for all sentences F : $\mathcal{A} \models F$ iff $\mathcal{B} \models F$

Proof.

1 let $\mathcal{I}=(\mathcal{A}, \ell)$, define $\ell^{m}=m \circ \ell$, set $\mathcal{J}=\left(\mathcal{B}, \ell^{m}\right)$
$2 \forall$ terms $t: m\left(t^{\mathcal{I}}\right)=t^{\mathcal{J}}$
(follows by induction on t)
$3 \forall$ formulas $F: \mathcal{I} \models F \Longleftrightarrow \mathcal{J} \models F$

- base case $F=(s=t)$

$$
\mathcal{I} \models s=t \Longleftrightarrow s^{\mathcal{I}}=t^{\mathcal{I}} \Longleftrightarrow m\left(s^{\mathcal{I}}\right)=m\left(t^{\mathcal{I}}\right) \Longleftrightarrow \mathcal{J} \models s=t
$$

Isomorphism Theorem
let \mathcal{A}, \mathcal{B} be structures such that $m: \mathcal{A} \cong \mathcal{B}$, then for all sentences F : $\mathcal{A} \equiv F$ iff $\mathcal{B} \models F$

Proof.

1 let $\mathcal{I}=(\mathcal{A}, \ell)$, define $\ell^{m}=m \circ \ell$, set $\mathcal{J}=\left(\mathcal{B}, \ell^{m}\right)$
$2 \forall$ terms $t: m\left(t^{\mathcal{I}}\right)=t^{\mathcal{J}}$
(follows by induction on t)
$3 \forall$ formulas $F: \mathcal{I} \models F \Longleftrightarrow \mathcal{J} \models F$

- base case $F=(s=t)$

$$
\mathcal{I} \models s=t \Longleftrightarrow s^{\mathcal{I}}=t^{\mathcal{I}} \Longleftrightarrow m\left(s^{\mathcal{I}}\right)=m\left(t^{\mathcal{I}}\right) \Longleftrightarrow \mathcal{J} \models s=t
$$

- step case $F=\exists x G$

$$
\begin{aligned}
\mathcal{I} \models \exists x G & \Longleftrightarrow \quad \text { there exists } a \in A, \mathcal{I}\{x \mapsto a\} \models G \\
& \Longleftrightarrow \text { there exists } a \in A, \mathcal{J}\{x \mapsto m(a)\} \models G \\
& \Longleftrightarrow \text { there exists } b \in B, \mathcal{J}\{x \mapsto b\} \models G \\
& \Longleftrightarrow \mathcal{J} \models \exists x G
\end{aligned}
$$

Isomorphism Theorem
let \mathcal{A}, \mathcal{B} be structures such that $m: \mathcal{A} \cong \mathcal{B}$, then for all sentences F : $\mathcal{A} \equiv F$ iff $\mathcal{B} \models F$

Proof.

1 let $\mathcal{I}=(\mathcal{A}, \ell)$, define $\ell^{m}=m \circ \ell$, set $\mathcal{J}=\left(\mathcal{B}, \ell^{m}\right)$
$2 \forall$ terms $t: m\left(t^{\mathcal{I}}\right)=t^{\mathcal{J}}$
(follows by induction on t)
$3 \forall$ formulas F : $\mathcal{I} \models F \Longleftrightarrow \mathcal{J} \models F$

- base case $F=(s=t)$

$$
\mathcal{I} \models s=t \Longleftrightarrow s^{\mathcal{I}}=t^{\mathcal{I}} \Longleftrightarrow m\left(s^{\mathcal{I}}\right)=m\left(t^{\mathcal{I}}\right) \Longleftrightarrow \mathcal{J} \models s=t
$$

- step case $F=\exists x G$

$$
\begin{aligned}
\mathcal{I} \models \exists x G & \Longleftrightarrow \quad \text { there exists } a \in A, \mathcal{I}\{x \mapsto a\} \models G \\
& \Longleftrightarrow \text { there exists } a \in A, \mathcal{J}\{x \mapsto m(a)\} \models G \\
& \Longleftrightarrow \text { there exists } b \in B, \mathcal{J}\{x \mapsto b\} \models G \\
& \Longleftrightarrow \mathcal{J} \models \exists x G
\end{aligned}
$$

Corollary
$1 \forall$ formula F that has a finite model has a model in the domain $\{0,1,2, \ldots, n\}$
$2 \forall$ formula F that has a countable infinite model has a model whose domain is \mathbb{N}

Corollary

$1 \forall$ formula F that has a finite model has a model in the domain $\{0,1,2, \ldots, n\}$
$2 \forall$ formula F that has a countable infinite model has a model whose domain is \mathbb{N}

Proof.

combination of both lemmas

Corollary
$1 \forall$ formula F that has a finite model has a model in the domain $\{0,1,2, \ldots, n\}$
$2 \forall$ formula F that has a countable infinite model has a model whose domain is \mathbb{N}

Proof.

combination of both lemmas

Example

consider $\mathcal{L}=\{\leftrightharpoons\}$ and $E: \Longleftrightarrow \forall x x \leftrightharpoons x \wedge \forall x \forall y(x \leftrightharpoons y \wedge y \leftrightharpoons x) \wedge$ $\forall x \forall y \forall z((x \leftrightharpoons y \wedge y \leftrightharpoons z) \rightarrow x \leftrightharpoons z)$ $F: \Longleftrightarrow \forall x \forall y x \leftrightharpoons y$

Corollary
$1 \forall$ formula F that has a finite model has a model in the domain $\{0,1,2, \ldots, n\}$
$2 \forall$ formula F that has a countable infinite model has a model whose domain is \mathbb{N}

Proof.

combination of both lemmas

Example

consider $\mathcal{L}=\{\leftrightharpoons\}$ and

$$
\begin{aligned}
E: \Longleftrightarrow & \forall x x \leftrightharpoons x \wedge \forall x \forall y(x \leftrightharpoons y \wedge y \leftrightharpoons x) \wedge \\
& \forall x \forall y \forall z((x \leftrightharpoons y \wedge y \leftrightharpoons z) \rightarrow x \leftrightharpoons z) \\
F: \Longleftrightarrow & \forall x \forall y x \leftrightharpoons y
\end{aligned}
$$

if \mathcal{M} and \mathbb{N} are countable infinite and $\mathcal{M} \models E \wedge F, \mathcal{N} \models E \wedge F$, then $\mathcal{M} \cong \mathcal{N}$

Compactness and Löwenheim-Skolem

Theorem (Compactness Theorem)
if every finite subset of a set of formulas \mathcal{G} has a model, then \mathcal{G} has a model

Compactness and Löwenheim-Skolem

Theorem (Compactness Theorem)
if every finite subset of a set of formulas \mathcal{G} has a model, then \mathcal{G} has a model

Theorem (Löwenheim-Skolem Theorem)
if a set of formulas \mathcal{G} has a model, then \mathcal{G} has a countable model

Compactness and Löwenheim-Skolem

Theorem (Compactness Theorem)
if every finite subset of a set of formulas \mathcal{G} has a model, then \mathcal{G} has a model

Theorem (Löwenheim-Skolem Theorem)
if a set of formulas \mathcal{G} has a model, then \mathcal{G} has a countable model

Corollary
if a set of formulas \mathcal{G} has arbitrarily large finite models, then it has a countable infinite model

Compactness and Löwenheim-Skolem

Theorem (Compactness Theorem)
if every finite subset of a set of formulas \mathcal{G} has a model, then \mathcal{G} has a model

Theorem (Löwenheim-Skolem Theorem)
if a set of formulas \mathcal{G} has a model, then \mathcal{G} has a countable model

Corollary

if a set of formulas \mathcal{G} has arbitrarily large finite models, then it has a countable infinite model

Proof Idea.
employ compactness to show that \mathcal{G} has an infinite model and LöwenheimSkolem to show that this model is countable

Corollary

1 any satisfiable set of formulas \mathcal{G} has a model whose domain is either the set of natural numbers $<n$ or \mathbb{N}

Corollary

1 any satisfiable set of formulas \mathcal{G} has a model whose domain is either the set of natural numbers $<n$ or \mathbb{N}
$\boxed{2}$ if \mathcal{G} is a satisfiable set of formulas, no function symbols, no identity in language, then \mathcal{G} has a model whose domain is \mathbb{N}

Corollary

1 any satisfiable set of formulas \mathcal{G} has a model whose domain is either the set of natural numbers $<n$ or \mathbb{N}
2 if \mathcal{G} is a satisfiable set of formulas, no function symbols, no identity in language, then \mathcal{G} has a model whose domain is \mathbb{N}

Proof (of second item).
1 suppose \mathcal{G} has a model \mathcal{I} with domain $\{0, \ldots, n-1\}$

Corollary

1 any satisfiable set of formulas \mathcal{G} has a model whose domain is either the set of natural numbers $<n$ or \mathbb{N}
2 if \mathcal{G} is a satisfiable set of formulas, no function symbols, no identity in language, then \mathcal{G} has a model whose domain is \mathbb{N}

Proof (of second item).
1 suppose \mathcal{G} has a model \mathcal{I} with domain $\{0, \ldots, n-1\}$
2 define $f: \mathbb{N} \rightarrow\{0,1, \ldots, n-1\}$ as:

$$
f(m)=\min \{m, n-1\}
$$

Corollary

1 any satisfiable set of formulas \mathcal{G} has a model whose domain is either the set of natural numbers $<n$ or \mathbb{N}
$\mathbf{2}$ if \mathcal{G} is a satisfiable set of formulas, no function symbols, no identity in language, then \mathcal{G} has a model whose domain is \mathbb{N}

Proof (of second item).
1 suppose \mathcal{G} has a model \mathcal{I} with domain $\{0, \ldots, n-1\}$
2 define $f: \mathbb{N} \rightarrow\{0,1, \ldots, n-1\}$ as:

$$
f(m)=\min \{m, n-1\}
$$

3 define \mathcal{J} with domain \mathbb{N} and look-up table ℓ

Corollary

1 any satisfiable set of formulas \mathcal{G} has a model whose domain is either the set of natural numbers $<n$ or \mathbb{N}
2 if \mathcal{G} is a satisfiable set of formulas, no function symbols, no identity in language, then \mathcal{G} has a model whose domain is \mathbb{N}

Proof (of second item).
1 suppose \mathcal{G} has a model \mathcal{I} with domain $\{0, \ldots, n-1\}$
2 define $f: \mathbb{N} \rightarrow\{0,1, \ldots, n-1\}$ as:

$$
f(m)=\min \{m, n-1\}
$$

3 define \mathcal{J} with domain \mathbb{N} and look-up table ℓ

- $f\left(c^{\mathcal{J}}\right)=c^{\mathcal{I}}$

Corollary

1 any satisfiable set of formulas \mathcal{G} has a model whose domain is either the set of natural numbers $<n$ or \mathbb{N}
2 if \mathcal{G} is a satisfiable set of formulas, no function symbols, no identity in language, then \mathcal{G} has a model whose domain is \mathbb{N}

Proof (of second item).

1 suppose \mathcal{G} has a model \mathcal{I} with domain $\{0, \ldots, n-1\}$
2 define $f: \mathbb{N} \rightarrow\{0,1, \ldots, n-1\}$ as:

$$
f(m)=\min \{m, n-1\}
$$

3 define \mathcal{J} with domain \mathbb{N} and look-up table ℓ

- $f\left(c^{\mathcal{J}}\right)=c^{\mathcal{I}}$
- \forall predicate constants $P, \forall n_{1}, \ldots, n_{k}$

$$
\left(n_{1}, \ldots, n_{k}\right) \in P^{\mathcal{J}} \text { iff }\left(f\left(n_{1}\right), \ldots, f\left(n_{k}\right)\right) \in P^{\mathcal{I}}
$$

Corollary

1 any satisfiable set of formulas \mathcal{G} has a model whose domain is either the set of natural numbers $<n$ or \mathbb{N}
2 if \mathcal{G} is a satisfiable set of formulas, no function symbols, no identity in language, then \mathcal{G} has a model whose domain is \mathbb{N}

Proof (of second item).

1 suppose \mathcal{G} has a model \mathcal{I} with domain $\{0, \ldots, n-1\}$
2 define $f: \mathbb{N} \rightarrow\{0,1, \ldots, n-1\}$ as:

$$
f(m)=\min \{m, n-1\}
$$

3 define \mathcal{J} with domain \mathbb{N} and look-up table ℓ

- $f\left(c^{\mathcal{J}}\right)=c^{\mathcal{I}}$
- \forall predicate constants $P, \forall n_{1}, \ldots, n_{k}$

$$
\left(n_{1}, \ldots, n_{k}\right) \in P^{\mathcal{J}} \text { iff }\left(f\left(n_{1}\right), \ldots, f\left(n_{k}\right)\right) \in P^{\mathcal{I}}
$$

$4 f$ is a surjective homomorphism, the proof of the isomorphism lemma holds

Proof Plan for Completeness

first-order logic features the following three theorems
1 (soundness and) completeness
2 compactness
3 Löwenheim-Skolem

Proof Plan for Completeness

first-order logic features the following three theorems
1 (soundness and) completeness
2 compactness
3 Löwenheim-Skolem
Observations

- any proof of completeness is indirect: suppose \exists a consistent set \mathcal{G}, then \mathcal{G} is satisfiable

Proof Plan for Completeness

first-order logic features the following three theorems
1 (soundness and) completeness
2 compactness
3 Löwenheim-Skolem
Observations
\perp is not derivable

- any proof of completeness 15 indirect: suppose \exists a consistent set \mathcal{G}, then \mathcal{G} is satisfiable

Proof Plan for Completeness

first-order logic features the following three theorems
1 (soundness and) completeness
2 compactness
3 Löwenheim-Skolem
Observations
\perp is not derivable

- any proof of completeness 15 indirect: suppose \exists a consistent set \mathcal{G}, then \mathcal{G} is satisfiable
- to show \mathcal{G} is satisfiable one constructs a countable model \mathcal{M}

Proof Plan for Completeness

first-order logic features the following three theorems
1 (soundness and) completeness
2 compactness
3 Löwenheim-Skolem
Observations
\perp is not derivable

- any proof of completeness 15 indirect: suppose \exists a consistent set \mathcal{G}, then \mathcal{G} is satisfiable
- to show \mathcal{G} is satisfiable one constructs a countable model \mathcal{M}
- Löwenheim-Skolem and compactness follow

Proof Plan for Completeness

first-order logic features the following three theorems
1 (soundness and) completeness
2 compactness
3 Löwenheim-Skolem
Observations
\perp is not derivable

- any proof of completeness 75 indirect: suppose \exists a consistent set \mathcal{G}, then \mathcal{G} is satisfiable
- to show \mathcal{G} is satisfiable one constructs a countable model \mathcal{M}
- Löwenheim-Skolem and compactness follow
- the central piece of work is the construction of \mathcal{M}; this is independent on the proof system

Proof Plan for Completeness

first-order logic features the following three theorems
1 (soundness and) completeness
2 compactness
3 Löwenheim-Skolem
Observations
\perp is not derivable

- any proof of completeness 75 indirect: suppose \exists a consistent set \mathcal{G}, then \mathcal{G} is satisfiable
- to show \mathcal{G} is satisfiable one constructs a countable model \mathcal{M}
- Löwenheim-Skolem and compactness follow
- the central piece of work is the construction of \mathcal{M}; this is independent on the proof system
in proof, we restrict the logical symbols to \neg, \vee, \exists, and $=$

Howto Prove Compactness and Löwenheim-Skolem

Lemma (1)
let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$

Lemma (1)

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$
1 if $\mathcal{G}_{0} \subseteq \mathcal{G}$, then $\mathcal{G}_{0} \in S$

Lemma (1)

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$
1 if $\mathcal{G}_{0} \subseteq \mathcal{G}$, then $\mathcal{G}_{0} \in S$
2 no formula F and $\neg F$ in \mathcal{G}

Lemma (1)

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$
1 if $\mathcal{G}_{0} \subseteq \mathcal{G}$, then $\mathcal{G}_{0} \in S$
2 no formula F and $\neg F$ in \mathcal{G}
3 if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup\{F\} \in S$

Lemma (1)

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$
1 if $\mathcal{G}_{0} \subseteq \mathcal{G}$, then $\mathcal{G}_{0} \in S$
2 no formula F and $\neg F$ in \mathcal{G}
3 if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup\{F\} \in S$
4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{E\} \in S$ or $\mathcal{G} \cup\{F\} \in S$

Lemma (1)

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$
1 if $\mathcal{G}_{0} \subseteq \mathcal{G}$, then $\mathcal{G}_{0} \in S$
2 no formula F and $\neg F$ in \mathcal{G}
3 if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup\{F\} \in S$
4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{E\} \in S$ or $\mathcal{G} \cup\{F\} \in S$

Lemma (1)

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$
1 if $\mathcal{G}_{0} \subseteq \mathcal{G}$, then $\mathcal{G}_{0} \in S$
2 no formula F and $\neg F$ in \mathcal{G}
3 if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup\{F\} \in S$
4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{E\} \in S$ or $\mathcal{G} \cup\{F\} \in S$
5 if $\neg(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{\neg E\} \in S$ and $\mathcal{G} \cup\{\neg F\} \in S$

Lemma (1)

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$
1 if $\mathcal{G}_{0} \subseteq \mathcal{G}$, then $\mathcal{G}_{0} \in S$
2 no formula F and $\neg F$ in \mathcal{G}
3 if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup\{F\} \in S$
4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{E\} \in S$ or $\mathcal{G} \cup\{F\} \in S$
5 if $\neg(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{\neg E\} \in S$ and $\mathcal{G} \cup\{\neg F\} \in S$

Lemma (1)

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$
1 if $\mathcal{G}_{0} \subseteq \mathcal{G}$, then $\mathcal{G}_{0} \in S$
2 no formula F and $\neg F$ in \mathcal{G}
3 if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup\{F\} \in S$
4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{E\} \in S$ or $\mathcal{G} \cup\{F\} \in S$
5 if $\neg(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{\neg E\} \in S$ and $\mathcal{G} \cup\{\neg F\} \in S$
6 if $\exists x F(x) \in \mathcal{G}$, the constant c doesn't occur in \mathcal{G}, then $\mathcal{G} \cup\{F(c)\} \in S$

Lemma (1)

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$
1 if $\mathcal{G}_{0} \subseteq \mathcal{G}$, then $\mathcal{G}_{0} \in S$
2 no formula F and $\neg F$ in \mathcal{G}
3 if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup\{F\} \in S$
4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{E\} \in S$ or $\mathcal{G} \cup\{F\} \in S$
5 if $\neg(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{\neg E\} \in S$ and $\mathcal{G} \cup\{\neg F\} \in S$
6 if $\exists x F(x) \in \mathcal{G}$, the constant c doesn't occur in \mathcal{G}, then $\mathcal{G} \cup\{F(c)\} \in S$
7 if $\neg \exists x F(x) \in \mathcal{G}$, then \forall terms $t, \mathcal{G} \cup\{\neg F(t)\} \in S$

Lemma (1)

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$
1 if $\mathcal{G}_{0} \subseteq \mathcal{G}$, then $\mathcal{G}_{0} \in S$
2 no formula F and $\neg F$ in \mathcal{G}
3 if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup\{F\} \in S$
4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{E\} \in S$ or $\mathcal{G} \cup\{F\} \in S$
5 if $\neg(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{\neg E\} \in S$ and $\mathcal{G} \cup\{\neg F\} \in S$
6 if $\exists x F(x) \in \mathcal{G}$, the constant c doesn't occur in \mathcal{G}, then $\mathcal{G} \cup\{F(c)\} \in S$
7 if $\neg \exists x F(x) \in \mathcal{G}$, then \forall terms $t, \mathcal{G} \cup\{\neg F(t)\} \in S$
8 for any term $t, \mathcal{G} \cup\{t=t\} \in S$

Lemma (1)

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$
1 if $\mathcal{G}_{0} \subseteq \mathcal{G}$, then $\mathcal{G}_{0} \in S$
2 no formula F and $\neg F$ in \mathcal{G}
3 if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup\{F\} \in S$
4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{E\} \in S$ or $\mathcal{G} \cup\{F\} \in S$
5 if $\neg(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{\neg E\} \in S$ and $\mathcal{G} \cup\{\neg F\} \in S$
6 if $\exists x F(x) \in \mathcal{G}$, the constant c doesn't occur in \mathcal{G}, then $\mathcal{G} \cup\{F(c)\} \in S$
7 if $\neg \exists x F(x) \in \mathcal{G}$, then \forall terms $t, \mathcal{G} \cup\{\neg F(t)\} \in S$
8 for any term $t, \mathcal{G} \cup\{t=t\} \in S$
9 if $\{F(s), s=t\} \subseteq \mathcal{G}$, then $\mathcal{G} \cup\{F(t)\} \in S$

Lemma (1)

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$
1 if $\mathcal{G}_{0} \subseteq \mathcal{G}$, then $\mathcal{G}_{0} \in S$
2 no formula F and $\neg F$ in \mathcal{G}
3 if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup\{F\} \in S$
4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{E\} \in S$ or $\mathcal{G} \cup\{F\} \in S$
5 if $\neg(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup\{\neg E\} \in S$ and $\mathcal{G} \cup\{\neg F\} \in S$
6 if $\exists x F(x) \in \mathcal{G}$, the constant c doesn't occur in \mathcal{G}, then $\mathcal{G} \cup\{F(c)\} \in S$
7 if $\neg \exists x F(x) \in \mathcal{G}$, then \forall terms $t, \mathcal{G} \cup\{\neg F(t)\} \in S$
8 for any term $t, \mathcal{G} \cup\{t=t\} \in S$
9 if $\{F(s), s=t\} \subseteq \mathcal{G}$, then $\mathcal{G} \cup\{F(t)\} \in S$

Definition

we call the properties (of S) in the lemma satisfaction properties

Lemma (2)
1 assume S is a set of formula sets and S has the satisfaction properties

Lemma (2)
1 assume S is a set of formula sets and S has the satisfaction properties
2 let S^{*} be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$

Lemma (2)
1 assume S is a set of formula sets and S has the satisfaction properties
2 let S^{*} be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$
3 then S^{*} has the satisfaction properties

Lemma (2)

1 assume S is a set of formula sets and S has the satisfaction properties

2 let S^{*} be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$
3 then S^{*} has the satisfaction properties

Proof.

we treat the case of disjunction

Lemma (2)
1 assume S is a set of formula sets and S has the satisfaction properties
2 let S^{*} be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$
3 then S^{*} has the satisfaction properties

Proof.

we treat the case of disjunction

- assume $\mathcal{G} \in S^{*},(E \vee F) \in \mathcal{G}, \mathcal{G} \cup\{E\} \notin S^{*}$ and $\mathcal{G} \cup\{F\} \notin S^{*}$

Lemma (2)
1 assume S is a set of formula sets and S has the satisfaction properties
2 let S^{*} be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$
3 then S^{*} has the satisfaction properties

Proof.

we treat the case of disjunction

- assume $\mathcal{G} \in S^{*},(E \vee F) \in \mathcal{G}, \mathcal{G} \cup\{E\} \notin S^{*}$ and $\mathcal{G} \cup\{F\} \notin S^{*}$
- \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$,

Lemma (2)
1 assume S is a set of formula sets and S has the satisfaction properties
2 let S^{*} be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$
3 then S^{*} has the satisfaction properties

Proof.

we treat the case of disjunction

- assume $\mathcal{G} \in S^{*},(E \vee F) \in \mathcal{G}, \mathcal{G} \cup\{E\} \notin S^{*}$ and $\mathcal{G} \cup\{F\} \notin S^{*}$
- \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$,
- \exists finite $\mathcal{G}_{1} \subseteq \mathcal{G} \cup\{E\}, \mathcal{G}_{1} \notin S, \exists$ finite $\mathcal{G}_{2} \subseteq \mathcal{G} \cup\{F\}, \mathcal{G}_{2} \notin S$

Lemma
 (2)

1 assume S is a set of formula sets and S has the satisfaction properties
2 let S^{*} be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$
3 then S^{*} has the satisfaction properties
Proof.
we treat the case of disjunction

- assume $\mathcal{G} \in S^{*},(E \vee F) \in \mathcal{G}, \mathcal{G} \cup\{E\} \notin S^{*}$ and $\mathcal{G} \cup\{F\} \notin S^{*}$
- \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$,
- \exists finite $\mathcal{G}_{1} \subseteq \mathcal{G} \cup\{E\}, \mathcal{G}_{1} \notin S, \exists$ finite $\mathcal{G}_{2} \subseteq \mathcal{G} \cup\{F\}, \mathcal{G}_{2} \notin S$
- wlog $\mathcal{G}_{1}=\mathcal{G}_{1}^{\prime} \cup\{E\}, \mathcal{G}_{2}=\mathcal{G}_{2}^{\prime} \cup\{F\}$, and $\mathcal{G}_{1}^{\prime}, \mathcal{G}_{2}^{\prime} \subseteq \mathcal{G}$ finite

Lemma
 (2)

1 assume S is a set of formula sets and S has the satisfaction properties
2 let S^{*} be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$
3 then S^{*} has the satisfaction properties

Proof.

we treat the case of disjunction

- assume $\mathcal{G} \in S^{*},(E \vee F) \in \mathcal{G}, \mathcal{G} \cup\{E\} \notin S^{*}$ and $\mathcal{G} \cup\{F\} \notin S^{*}$
- \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$,
- \exists finite $\mathcal{G}_{1} \subseteq \mathcal{G} \cup\{E\}, \mathcal{G}_{1} \notin S, \exists$ finite $\mathcal{G}_{2} \subseteq \mathcal{G} \cup\{F\}, \mathcal{G}_{2} \notin S$
- wlog $\mathcal{G}_{1}=\mathcal{G}_{1}^{\prime} \cup\{E\}, \mathcal{G}_{2}=\mathcal{G}_{2}^{\prime} \cup\{F\}$, and $\mathcal{G}_{1}^{\prime}, \mathcal{G}_{2}^{\prime} \subseteq \mathcal{G}$ finite
- $\mathcal{G}_{1}^{\prime} \cup \mathcal{G}_{2}^{\prime} \cup\{(E \vee F)\} \subseteq \mathcal{G}$, hence $\mathcal{G}_{1}^{\prime} \cup \mathcal{G}_{2}^{\prime} \cup\{(E \vee F)\} \in S$

Lemma
 (2)

1 assume S is a set of formula sets and S has the satisfaction properties
2 let S^{*} be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$
3 then S^{*} has the satisfaction properties
Proof.
we treat the case of disjunction

- assume $\mathcal{G} \in S^{*},(E \vee F) \in \mathcal{G}, \mathcal{G} \cup\{E\} \notin S^{*}$ and $\mathcal{G} \cup\{F\} \notin S^{*}$
- \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$,
- \exists finite $\mathcal{G}_{1} \subseteq \mathcal{G} \cup\{E\}, \mathcal{G}_{1} \notin S, \exists$ finite $\mathcal{G}_{2} \subseteq \mathcal{G} \cup\{F\}, \mathcal{G}_{2} \notin S$
- wlog $\mathcal{G}_{1}=\mathcal{G}_{1}^{\prime} \cup\{E\}, \mathcal{G}_{2}=\mathcal{G}_{2}^{\prime} \cup\{F\}$, and $\mathcal{G}_{1}^{\prime}, \mathcal{G}_{2}^{\prime} \subseteq \mathcal{G}$ finite
- $\mathcal{G}_{1}^{\prime} \cup \mathcal{G}_{2}^{\prime} \cup\{(E \vee F)\} \subseteq \mathcal{G}$, hence $\mathcal{G}_{1}^{\prime} \cup \mathcal{G}_{2}^{\prime} \cup\{(E \vee F)\} \in S$
- hence $\mathcal{G}_{1}^{\prime} \cup \mathcal{G}_{2}^{\prime} \cup\{E\} \in S$ or $\mathcal{G}_{1}^{\prime} \cup \mathcal{G}_{2}^{\prime} \cup\{F\} \in S$

Lemma
 (2)

1 assume S is a set of formula sets and S has the satisfaction properties
2 let S^{*} be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$
3 then S^{*} has the satisfaction properties
Proof.
we treat the case of disjunction

- assume $\mathcal{G} \in S^{*},(E \vee F) \in \mathcal{G}, \mathcal{G} \cup\{E\} \notin S^{*}$ and $\mathcal{G} \cup\{F\} \notin S^{*}$
- \forall finite $\mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0} \in S$,
- \exists finite $\mathcal{G}_{1} \subseteq \mathcal{G} \cup\{E\}, \mathcal{G}_{1} \notin S, \exists$ finite $\mathcal{G}_{2} \subseteq \mathcal{G} \cup\{F\}, \mathcal{G}_{2} \notin S$
- wlog $\mathcal{G}_{1}=\mathcal{G}_{1}^{\prime} \cup\{E\}, \mathcal{G}_{2}=\mathcal{G}_{2}^{\prime} \cup\{F\}$, and $\mathcal{G}_{1}^{\prime}, \mathcal{G}_{2}^{\prime} \subseteq \mathcal{G}$ finite
- $\mathcal{G}_{1}^{\prime} \cup \mathcal{G}_{2}^{\prime} \cup\{(E \vee F)\} \subseteq \mathcal{G}$, hence $\mathcal{G}_{1}^{\prime} \cup \mathcal{G}_{2}^{\prime} \cup\{(E \vee F)\} \in S$
- hence $\mathcal{G}_{1}^{\prime} \cup \mathcal{G}_{2}^{\prime} \cup\{E\} \in S$ or $\mathcal{G}_{1}^{\prime} \cup \mathcal{G}_{2}^{\prime} \cup\{F\} \in S$
- contradiction

Compactness and Löwenheim-Skolem Theorem

\mathcal{L} base language; $\mathcal{L}^{+} \supseteq \mathcal{L}$ infinitely many new individual constants

Compactness and Löwenheim-Skolem Theorem

\mathcal{L} base language; $\mathcal{L}^{+} \supseteq \mathcal{L}$ infinitely many new individual constants
Theorem (Model Existence Theorem)
1 if S^{*} is a set of formula sets of \mathcal{L}^{+}having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^{*}$ of $\mathcal{L}, \exists \mathcal{M}, \mathcal{M} \models \mathcal{G}$
$2 \forall$ elements m of \mathcal{M} : m denotes term in \mathcal{L}^{+}

Compactness and Löwenheim-Skolem Theorem

\mathcal{L} base language; $\mathcal{L}^{+} \supseteq \mathcal{L}$ infinitely many new individual constants
Theorem (Model Existence Theorem)
1 if S^{*} is a set of formula sets of \mathcal{L}^{+}having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^{*}$ of $\mathcal{L}, \exists \mathcal{M}, \mathcal{M} \models \mathcal{G}$
$2 \forall$ elements m of \mathcal{M} : m denotes term in \mathcal{L}^{+}

Compactness Theorem
if every finite subset of a set of formulas \mathcal{G} has a model, then \mathcal{G} has a model

Compactness and Löwenheim-Skolem Theorem

\mathcal{L} base language; $\mathcal{L}^{+} \supseteq \mathcal{L}$ infinitely many new individual constants
Theorem (Model Existence Theorem)
11 if S^{*} is a set of formula sets of \mathcal{L}^{+}having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^{*}$ of $\mathcal{L}, \exists \mathcal{M}, \mathcal{M} \vDash \mathcal{G}$
2. \forall elements m of \mathcal{M} : m denotes term in \mathcal{L}^{+}

Compactness Theorem
if every finite subset of a set of formulas \mathcal{G} has a model, then \mathcal{G} has a model

Remark

the statement and the proof of the compactness theorem do not refer to provability; compactness is extensible to non-enumerable language

Proof (of compactness).

- consider the set S of satisfiable formula sets (over \mathcal{L})

Proof (of compactness).

- consider the set S of satisfiable formula sets (over \mathcal{L})
- consider the set S^{*} of all formulas set $\mathcal{G}, \forall \mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0}$ finite, $\mathcal{G}_{0} \in S$

Proof (of compactness).

- consider the set S of satisfiable formula sets (over \mathcal{L}) (as in Lemma (1))
- consider the set S^{*} of all formulas set $\mathcal{G}, \forall \mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0}$ finite, $\mathcal{G}_{0} \in S$ (as in Lemma (2))

Proof (of compactness).

- consider the set S of satisfiable formula sets (over \mathcal{L}) (as in Lemma (1))
- consider the set S^{*} of all formulas set $\mathcal{G}, \forall \mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0}$ finite, $\mathcal{G}_{0} \in S$ (as in Lemma (2))
- Lemma (1) yields that S admits the satisfaction properties
- Lemma (2) yields that S^{*} admits the satisfaction properties

Proof (of compactness).

- consider the set S of satisfiable formula sets (over \mathcal{L}) (as in Lemma (1))
- consider the set S^{*} of all formulas set $\mathcal{G}, \forall \mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0}$ finite, $\mathcal{G}_{0} \in S$ (as in Lemma (2))
- Lemma (1) yields that S admits the satisfaction properties
- Lemma (2) yields that S^{*} admits the satisfaction properties
- by assumption \mathcal{G} is in S^{*}

Proof (of compactness).

- consider the set S of satisfiable formula sets (over \mathcal{L}) (as in Lemma (1))
- consider the set S^{*} of all formulas set $\mathcal{G}, \forall \mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0}$ finite, $\mathcal{G}_{0} \in S$ (as in Lemma (2))
- Lemma (1) yields that S admits the satisfaction properties
- Lemma (2) yields that S^{*} admits the satisfaction properties
- by assumption \mathcal{G} is in S^{*}
- by model existence \mathcal{G} has a model \mathcal{M}

Proof (of compactness).

- consider the set S of satisfiable formula sets (over \mathcal{L}) (as in Lemma (1))
- consider the set S^{*} of all formulas set $\mathcal{G}, \forall \mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0}$ finite, $\mathcal{G}_{0} \in S$ (as in Lemma (2))
- Lemma (1) yields that S admits the satisfaction properties
- Lemma (2) yields that S^{*} admits the satisfaction properties
- by assumption \mathcal{G} is in S^{*}
- by model existence \mathcal{G} has a model \mathcal{M}

Proof (of compactness).

- consider the set S of satisfiable formula sets (over \mathcal{L}) (as in Lemma (1))
- consider the set S^{*} of all formulas set $\mathcal{G}, \forall \mathcal{G}_{0} \subseteq \mathcal{G}, \mathcal{G}_{0}$ finite, $\mathcal{G}_{0} \in S$ (as in Lemma (2))
- Lemma (1) yields that S admits the satisfaction properties
- Lemma (2) yields that S^{*} admits the satisfaction properties
- by assumption \mathcal{G} is in S^{*}
- by model existence \mathcal{G} has a model \mathcal{M}

Theorem (Löwenheim-Skolem Theorem)
if a set of formulas \mathcal{G} has a model, then \mathcal{G} has a countable model

Proof.

the model \mathcal{M} constructed is countable

\qquad

\qquad
\qquad

> ．

\qquad
\qquad

How to Prove Completeness

model existence

How to Prove Completeness

How to Prove Completeness

S admits satisfaction properties \Rightarrow
$\mathcal{G} \in S$ admits closure properties
model existence

How to Prove Completeness

How to Prove Completeness

Definition

for any formal system; if $\neg \exists$ proof of \perp from a formula set \mathcal{G}, we say \mathcal{G} is consistent

How to Prove Completeness

Definition

for any formal system; if $\neg \exists$ proof of \perp from a formula set \mathcal{G}, we say \mathcal{G} is consistent

completeness

How to Prove Completeness

Definition

for any formal system; if $\neg \exists$ proof of \perp from a formula set \mathcal{G}, we say \mathcal{G} is consistent
S set of consistent sets $\Rightarrow S$ admits
satisfaction properties
Lemma (6)
model existence
completeness

How to Prove Completeness

Definition

for any formal system; if $\neg \exists$ proof of \perp from a formula set \mathcal{G}, we say \mathcal{G} is consistent

Lemma (6)

completeness

Later We Exploit the Proof

completeness of resolution

Later We Exploit the Proof

> completeness of resolution

Later We Exploit the Proof

Lemma

