
Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

http://cl-informatik.uibk.ac.at

Summary

Summary Last Lecture

Selection of Applications

• Program Analysis; logical product of abstract interpreters

• Databases; disjunctive datalog

• Programming Languages; types as formulas

• Computational Complexity; implicit complexity

Lessons Learnt

• (mathematical) logic is the science of (mathematical) reasoning

• logic has been and is very successfully used as workbench for various
areas in computer science

• applications are not trivial (in both senses)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 35/1

Summary

Summary Last Lecture

Selection of Applications

• Program Analysis; logical product of abstract interpreters

• Databases; disjunctive datalog

• Programming Languages; types as formulas

• Computational Complexity; implicit complexity

Lessons Learnt

• (mathematical) logic is the science of (mathematical) reasoning

• logic has been and is very successfully used as workbench for various
areas in computer science

• applications are not trivial (in both senses)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 35/1

Summary

Summary Last Lecture

Selection of Applications

• Program Analysis; logical product of abstract interpreters

• Databases; disjunctive datalog

• Programming Languages; types as formulas

• Computational Complexity; implicit complexity

Lessons Learnt

• (mathematical) logic is the science of (mathematical) reasoning

• logic has been and is very successfully used as workbench for various
areas in computer science

• applications are not trivial (in both senses)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 35/1

Summary

Summary Last Lecture

Selection of Applications

• Program Analysis; logical product of abstract interpreters

• Databases; disjunctive datalog

• Programming Languages; types as formulas

• Computational Complexity; implicit complexity

Lessons Learnt

• (mathematical) logic is the science of (mathematical) reasoning

• logic has been and is very successfully used as workbench for various
areas in computer science

• applications are not trivial (in both senses)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 35/1

Summary

Summary Last Lecture

Selection of Applications

• Program Analysis; logical product of abstract interpreters

• Databases; disjunctive datalog

• Programming Languages; types as formulas

• Computational Complexity; implicit complexity

Lessons Learnt

• (mathematical) logic is the science of (mathematical) reasoning

• logic has been and is very successfully used as workbench for various
areas in computer science

• applications are not trivial (in both senses)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 35/1

Summary

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model
existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 36/1

Summary

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model
existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 36/1

First-Order Logic

First-Order Logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 37/1

Syntax First-Order Logic

The Language of First-Order Logic

a first-order language is determined by specifying its constants, variables,
logical symbols, auxiliary (brackets, comma)

Definition
• individual constants: k0, k1, . . . , kj , . . . denoted c , d , etc.

• function constants with i arguments: f i
0 , f i

1 , . . . denoted f , g , h etc.

• predicate constants with i arguments: R i
0,R i

1, . . . denoted as P, Q,
R, etc.

Definition
• variables: x0, x1, . . . , xj , . . . denoted x , y , z , etc.

GM (Institute of Computer Science @ UIBK) Automated Reasoning 38/1

Syntax First-Order Logic

The Language of First-Order Logic

a first-order language is determined by specifying its constants, variables,
logical symbols, auxiliary (brackets, comma)

Definition
• individual constants: k0, k1, . . . , kj , . . . denoted c , d , etc.

• function constants with i arguments: f i
0 , f i

1 , . . . denoted f , g , h etc.

• predicate constants with i arguments: R i
0,R i

1, . . . denoted as P, Q,
R, etc.

Definition
• variables: x0, x1, . . . , xj , . . . denoted x , y , z , etc.

GM (Institute of Computer Science @ UIBK) Automated Reasoning 38/1

Syntax First-Order Logic

The Language of First-Order Logic

a first-order language is determined by specifying its constants, variables,
logical symbols, auxiliary (brackets, comma)

Definition
• individual constants: k0, k1, . . . , kj , . . . denoted c , d , etc.

• function constants with i arguments: f i
0 , f i

1 , . . . denoted f , g , h etc.

• predicate constants with i arguments: R i
0,R i

1, . . . denoted as P, Q,
R, etc.

Definition
• variables: x0, x1, . . . , xj , . . . denoted x , y , z , etc.

GM (Institute of Computer Science @ UIBK) Automated Reasoning 38/1

Syntax First-Order Logic

Definition
• propositional connectives: ¬, ∧, ∨, →
• quantifiers ∀, ∃
• equality sign =

the equality sign = is a predicate but treated like a logical symbol

Definition

if the cardinality of the set of constants in L is countable, we say L is
countable

Example

the language of arithmetic Larith contains = and consists of

• individual constant 0

• function constants s, +, ·
• predicate constant <

GM (Institute of Computer Science @ UIBK) Automated Reasoning 39/1

Syntax First-Order Logic

Definition
• propositional connectives: ¬, ∧, ∨, →
• quantifiers ∀, ∃
• equality sign =

the equality sign = is a predicate but treated like a logical symbol

Definition

if the cardinality of the set of constants in L is countable, we say L is
countable

Example

the language of arithmetic Larith contains = and consists of

• individual constant 0

• function constants s, +, ·
• predicate constant <

GM (Institute of Computer Science @ UIBK) Automated Reasoning 39/1

Syntax First-Order Logic

Definition
• propositional connectives: ¬, ∧, ∨, →
• quantifiers ∀, ∃
• equality sign =

the equality sign = is a predicate but treated like a logical symbol

Definition

if the cardinality of the set of constants in L is countable, we say L is
countable

Example

the language of arithmetic Larith contains = and consists of

• individual constant 0

• function constants s, +, ·
• predicate constant <

GM (Institute of Computer Science @ UIBK) Automated Reasoning 39/1

Syntax First-Order Logic

Definition
• propositional connectives: ¬, ∧, ∨, →
• quantifiers ∀, ∃
• equality sign =

the equality sign = is a predicate but treated like a logical symbol

Definition

if the cardinality of the set of constants in L is countable, we say L is
countable

Example

the language of arithmetic Larith contains = and consists of

• individual constant 0

• function constants s, +, ·
• predicate constant <

GM (Institute of Computer Science @ UIBK) Automated Reasoning 39/1

Syntax First-Order Logic

Terms of a Language

Definition

terms (of L) are defined as follows

• any individual constant c in L is a term

• any variable x is a term

• if t1, . . . , tn are terms, f an n-ary function constant in L, then
f (t1, . . . , tn) is a term

Example

• s(s(s(0))) is a term (of Larith)

• s(x) is a term (of Larith)

Convention

if the language L is clear from context the phrase “of L” will be dropped

GM (Institute of Computer Science @ UIBK) Automated Reasoning 40/1

Syntax First-Order Logic

Terms of a Language

Definition

terms (of L) are defined as follows

• any individual constant c in L is a term

• any variable x is a term

• if t1, . . . , tn are terms, f an n-ary function constant in L, then
f (t1, . . . , tn) is a term

Example

• s(s(s(0))) is a term (of Larith)

• s(x) is a term (of Larith)

Convention

if the language L is clear from context the phrase “of L” will be dropped

GM (Institute of Computer Science @ UIBK) Automated Reasoning 40/1

Syntax First-Order Logic

Terms of a Language

Definition

terms (of L) are defined as follows

• any individual constant c in L is a term

• any variable x is a term

• if t1, . . . , tn are terms, f an n-ary function constant in L, then
f (t1, . . . , tn) is a term

Example

• s(s(s(0))) is a term (of Larith)

• s(x) is a term (of Larith)

Convention

if the language L is clear from context the phrase “of L” will be dropped

GM (Institute of Computer Science @ UIBK) Automated Reasoning 40/1

Syntax First-Order Logic

Terms of a Language

Definition

terms (of L) are defined as follows

• any individual constant c in L is a term

• any variable x is a term

• if t1, . . . , tn are terms, f an n-ary function constant in L, then
f (t1, . . . , tn) is a term

Example

• s(s(s(0))) is a term (of Larith)

• s(x) is a term (of Larith)

Convention

if the language L is clear from context the phrase “of L” will be dropped

GM (Institute of Computer Science @ UIBK) Automated Reasoning 40/1

Syntax First-Order Logic

Formulas (of a Language)

Definition

• P(t1, . . . , tn) is an atomic formula; P a constant of arity n, ti terms

• t1 = t2 is an atomic formula, if = is present

Definition

formulas are defined as follows

• atomic formulas are formulas

• A and B are frms: (¬A), (A ∧ B), (A ∨ B), (A→ B) are formulas

• if A a formula, x a variable, then

∀xA ∃xA

are formulas

GM (Institute of Computer Science @ UIBK) Automated Reasoning 41/1

Syntax First-Order Logic

Formulas (of a Language)

Definition

• P(t1, . . . , tn) is an atomic formula; P a constant of arity n, ti terms

• t1 = t2 is an atomic formula, if = is present

Definition

formulas are defined as follows

• atomic formulas are formulas

• A and B are frms: (¬A), (A ∧ B), (A ∨ B), (A→ B) are formulas

• if A a formula, x a variable, then

∀xA ∃xA

are formulas

GM (Institute of Computer Science @ UIBK) Automated Reasoning 41/1

Syntax First-Order Logic

Formulas (of a Language)

Definition

• P(t1, . . . , tn) is an atomic formula; P a constant of arity n, ti terms

• t1 = t2 is an atomic formula, if = is present

Definition

formulas are defined as follows

• atomic formulas are formulas

• A and B are frms: (¬A), (A ∧ B), (A ∨ B), (A→ B) are formulas

• if A a formula, x a variable, then

∀xA ∃xA

are formulas

GM (Institute of Computer Science @ UIBK) Automated Reasoning 41/1

Syntax First-Order Logic

Formulas (of a Language)

Definition

• P(t1, . . . , tn) is an atomic formula; P a constant of arity n, ti terms

• t1 = t2 is an atomic formula, if = is present

Definition

formulas are defined as follows

• atomic formulas are formulas

• A and B are frms: (¬A), (A ∧ B), (A ∨ B), (A→ B) are formulas

• if A a formula, x a variable, then

∀xA ∃xA

are formulas

GM (Institute of Computer Science @ UIBK) Automated Reasoning 41/1

Syntax First-Order Logic

Formulas (of a Language)

Definition

• P(t1, . . . , tn) is an atomic formula; P a constant of arity n, ti terms

• t1 = t2 is an atomic formula, if = is present

Definition

formulas are defined as follows

• atomic formulas are formulas

• A and B are frms: (¬A), (A ∧ B), (A ∨ B), (A→ B) are formulas

• if A a formula, x a variable, then

∀xA ∃xA

are formulas

GM (Institute of Computer Science @ UIBK) Automated Reasoning 41/1

Syntax First-Order Logic

Convention

if brackets are not necessary they are omitted:

∃, ∀ > ¬ > ∨,∧ > → right-associativity of →

Example

consider Larith, which of the following are formulas over Larith?

• x < y ∧ ¬∃z(x < z ∧ z < y)

X

• ∀x(x = 0)→ ∃x(x = 0)

X

• ∀x(x < y ∧ ∃x(y = x))

X

GM (Institute of Computer Science @ UIBK) Automated Reasoning 42/1

Syntax First-Order Logic

Convention

if brackets are not necessary they are omitted:

∃, ∀ > ¬ > ∨,∧ > → right-associativity of →

Example

consider Larith, which of the following are formulas over Larith?

• x < y ∧ ¬∃z(x < z ∧ z < y)

X

• ∀x(x = 0)→ ∃x(x = 0)

X

• ∀x(x < y ∧ ∃x(y = x))

X

GM (Institute of Computer Science @ UIBK) Automated Reasoning 42/1

Syntax First-Order Logic

Convention

if brackets are not necessary they are omitted:

∃, ∀ > ¬ > ∨,∧ > → right-associativity of →

Example

consider Larith, which of the following are formulas over Larith?

• x < y ∧ ¬∃z(x < z ∧ z < y) X

• ∀x(x = 0)→ ∃x(x = 0) X

• ∀x(x < y ∧ ∃x(y = x)) X

GM (Institute of Computer Science @ UIBK) Automated Reasoning 42/1

Syntax First-Order Logic

The Semantics of First-Order Logic

Definition

a structure is a pair A = (A, a) such that:

• A is a non-empty set, A is called domain

• mapping a associates constants with the domain:
• any individual constant c is associated with an element a(c) ∈ A.
• any n-ary function constant f is associated with a(f) : An → A.
• any n-ary predicate constants P is associated with a subset

a(P) ⊆ An.

• equality sign = is associated with the identity relation a(=).

we write cA. f A, and PA, instead of a(c), a(f), and a(P); for brevity we
write = for the equality sign and the identity relation

Remark

a structure is equivalent to the definition of model in LICS �

GM (Institute of Computer Science @ UIBK) Automated Reasoning 43/1

Syntax First-Order Logic

The Semantics of First-Order Logic

Definition

a structure is a pair A = (A, a) such that:

• A is a non-empty set, A is called domain

• mapping a associates constants with the domain:
• any individual constant c is associated with an element a(c) ∈ A.
• any n-ary function constant f is associated with a(f) : An → A.
• any n-ary predicate constants P is associated with a subset

a(P) ⊆ An.

• equality sign = is associated with the identity relation a(=).

we write cA. f A, and PA, instead of a(c), a(f), and a(P); for brevity we
write = for the equality sign and the identity relation

Remark

a structure is equivalent to the definition of model in LICS �

GM (Institute of Computer Science @ UIBK) Automated Reasoning 43/1

Syntax First-Order Logic

The Semantics of First-Order Logic

Definition

a structure is a pair A = (A, a) such that:

• A is a non-empty set, A is called domain

• mapping a associates constants with the domain:
• any individual constant c is associated with an element a(c) ∈ A.
• any n-ary function constant f is associated with a(f) : An → A.
• any n-ary predicate constants P is associated with a subset

a(P) ⊆ An.

• equality sign = is associated with the identity relation a(=).

we write cA. f A, and PA, instead of a(c), a(f), and a(P); for brevity we
write = for the equality sign and the identity relation

Remark

a structure is equivalent to the definition of model in LICS �

GM (Institute of Computer Science @ UIBK) Automated Reasoning 43/1

Syntax First-Order Logic

The Semantics of First-Order Logic

Definition

a structure is a pair A = (A, a) such that:

• A is a non-empty set, A is called domain

• mapping a associates constants with the domain:
• any individual constant c is associated with an element a(c) ∈ A.
• any n-ary function constant f is associated with a(f) : An → A.
• any n-ary predicate constants P is associated with a subset

a(P) ⊆ An.

• equality sign = is associated with the identity relation a(=).

we write cA. f A, and PA, instead of a(c), a(f), and a(P); for brevity we
write = for the equality sign and the identity relation

Remark

a structure is equivalent to the definition of model in LICS �

GM (Institute of Computer Science @ UIBK) Automated Reasoning 43/1

Syntax First-Order Logic

The Semantics of First-Order Logic

Definition

a structure is a pair A = (A, a) such that:

• A is a non-empty set, A is called domain

• mapping a associates constants with the domain:
• any individual constant c is associated with an element a(c) ∈ A.
• any n-ary function constant f is associated with a(f) : An → A.
• any n-ary predicate constants P is associated with a subset

a(P) ⊆ An.

• equality sign = is associated with the identity relation a(=).

we write cA. f A, and PA, instead of a(c), a(f), and a(P); for brevity we
write = for the equality sign and the identity relation

Remark

a structure is equivalent to the definition of model in LICS �

GM (Institute of Computer Science @ UIBK) Automated Reasoning 43/1

Syntax First-Order Logic

The Semantics of First-Order Logic

Definition

a structure is a pair A = (A, a) such that:

• A is a non-empty set, A is called domain

• mapping a associates constants with the domain:
• any individual constant c is associated with an element a(c) ∈ A.
• any n-ary function constant f is associated with a(f) : An → A.
• any n-ary predicate constants P is associated with a subset

a(P) ⊆ An.

• equality sign = is associated with the identity relation a(=).

we write cA. f A, and PA, instead of a(c), a(f), and a(P); for brevity we
write = for the equality sign and the identity relation

Remark

a structure is equivalent to the definition of model in LICS �

GM (Institute of Computer Science @ UIBK) Automated Reasoning 43/1

Syntax First-Order Logic

Definition

• an environment for A is a mapping ` : {xn | n ∈ N} → A

• `{x 7→ t} denotes the environment mapping x to t and all other
variables y 6= x to `(y)

Definition

an interpretation I is a pair (A, `) such that

• A is a structure

• ` is an environment

Definition

the value of a term t (wrt interpretation I)

tI =


`(t) if t a variable

cA if t = c

f A(tI1 , . . . , tIn) if t = f (t1, . . . , tn), n > 1

GM (Institute of Computer Science @ UIBK) Automated Reasoning 44/1

Syntax First-Order Logic

Definition

• an environment for A is a mapping ` : {xn | n ∈ N} → A

• `{x 7→ t} denotes the environment mapping x to t and all other
variables y 6= x to `(y)

Definition

an interpretation I is a pair (A, `) such that

• A is a structure

• ` is an environment

Definition

the value of a term t (wrt interpretation I)

tI =


`(t) if t a variable

cA if t = c

f A(tI1 , . . . , tIn) if t = f (t1, . . . , tn), n > 1

GM (Institute of Computer Science @ UIBK) Automated Reasoning 44/1

Syntax First-Order Logic

Definition

• an environment for A is a mapping ` : {xn | n ∈ N} → A

• `{x 7→ t} denotes the environment mapping x to t and all other
variables y 6= x to `(y)

Definition

an interpretation I is a pair (A, `) such that

• A is a structure

• ` is an environment

Definition

the value of a term t (wrt interpretation I)

tI =


`(t) if t a variable

cA if t = c

f A(tI1 , . . . , tIn) if t = f (t1, . . . , tn), n > 1

GM (Institute of Computer Science @ UIBK) Automated Reasoning 44/1

Syntax First-Order Logic

Definition (The Satisfaction Relation)

I = (A, `) an interpretation; F a formula, we define I |= F

I |= t1 = t2 :⇐⇒ if tI1 = tI2

I |= P(t1, . . . , tn) :⇐⇒ if (tI1 , . . . , tIn) ∈ PA

I |= ¬F :⇐⇒ if I 6|= F

I |= F ∧ G :⇐⇒ if I |= F and I |= G

I |= F ∨ G :⇐⇒ if I |= F or I |= G

I |= F → G :⇐⇒ if I |= F , then I |= G

I |= ∀xF :⇐⇒ if I{x 7→ a} |= F holds for all a ∈ A

I |= ∃xF :⇐⇒ if I{x 7→ a} |= F holds for some a ∈ A

let G be a set of formulas

• I |= G, if I |= F for all F ∈ G

• I models G, if I |= G

GM (Institute of Computer Science @ UIBK) Automated Reasoning 45/1

Syntax First-Order Logic

Definition (The Satisfaction Relation)

I = (A, `) an interpretation; F a formula, we define I |= F

I |= t1 = t2 :⇐⇒ if tI1 = tI2

I |= P(t1, . . . , tn) :⇐⇒ if (tI1 , . . . , tIn) ∈ PA

I |= ¬F :⇐⇒ if I 6|= F

I |= F ∧ G :⇐⇒ if I |= F and I |= G

I |= F ∨ G :⇐⇒ if I |= F or I |= G

I |= F → G :⇐⇒ if I |= F , then I |= G

I |= ∀xF :⇐⇒ if I{x 7→ a} |= F holds for all a ∈ A

I |= ∃xF :⇐⇒ if I{x 7→ a} |= F holds for some a ∈ A

let G be a set of formulas

• I |= G, if I |= F for all F ∈ G

• I models G, if I |= G

GM (Institute of Computer Science @ UIBK) Automated Reasoning 45/1

Syntax First-Order Logic

Definition (The Satisfaction Relation)

I = (A, `) an interpretation; F a formula, we define I |= F

I |= t1 = t2 :⇐⇒ if tI1 = tI2

I |= P(t1, . . . , tn) :⇐⇒ if (tI1 , . . . , tIn) ∈ PA

I |= ¬F :⇐⇒ if I 6|= F

I |= F ∧ G :⇐⇒ if I |= F and I |= G

I |= F ∨ G :⇐⇒ if I |= F or I |= G

I |= F → G :⇐⇒ if I |= F , then I |= G

I |= ∀xF :⇐⇒ if I{x 7→ a} |= F holds for all a ∈ A

I |= ∃xF :⇐⇒ if I{x 7→ a} |= F holds for some a ∈ A

let G be a set of formulas

• I |= G, if I |= F for all F ∈ G

• I models G, if I |= G

GM (Institute of Computer Science @ UIBK) Automated Reasoning 45/1

Syntax First-Order Logic

Definition (The Satisfaction Relation)

I = (A, `) an interpretation; F a formula, we define I |= F

I |= t1 = t2 :⇐⇒ if tI1 = tI2

I |= P(t1, . . . , tn) :⇐⇒ if (tI1 , . . . , tIn) ∈ PA

I |= ¬F :⇐⇒ if I 6|= F

I |= F ∧ G :⇐⇒ if I |= F and I |= G

I |= F ∨ G :⇐⇒ if I |= F or I |= G

I |= F → G :⇐⇒ if I |= F , then I |= G

I |= ∀xF :⇐⇒ if I{x 7→ a} |= F holds for all a ∈ A

I |= ∃xF :⇐⇒ if I{x 7→ a} |= F holds for some a ∈ A

let G be a set of formulas

• I |= G, if I |= F for all F ∈ G

• I models G, if I |= G

GM (Institute of Computer Science @ UIBK) Automated Reasoning 45/1

Syntax First-Order Logic

Definition (The Satisfaction Relation)

I = (A, `) an interpretation; F a formula, we define I |= F

I |= t1 = t2 :⇐⇒ if tI1 = tI2

I |= P(t1, . . . , tn) :⇐⇒ if (tI1 , . . . , tIn) ∈ PA

I |= ¬F :⇐⇒ if I 6|= F

I |= F ∧ G :⇐⇒ if I |= F and I |= G

I |= F ∨ G :⇐⇒ if I |= F or I |= G

I |= F → G :⇐⇒ if I |= F , then I |= G

I |= ∀xF :⇐⇒ if I{x 7→ a} |= F holds for all a ∈ A

I |= ∃xF :⇐⇒ if I{x 7→ a} |= F holds for some a ∈ A

let G be a set of formulas

• I |= G, if I |= F for all F ∈ G

• I models G, if I |= G

GM (Institute of Computer Science @ UIBK) Automated Reasoning 45/1

Syntax First-Order Logic

Definition (The Satisfaction Relation)

I = (A, `) an interpretation; F a formula, we define I |= F

I |= t1 = t2 :⇐⇒ if tI1 = tI2

I |= P(t1, . . . , tn) :⇐⇒ if (tI1 , . . . , tIn) ∈ PA

I |= ¬F :⇐⇒ if I 6|= F

I |= F ∧ G :⇐⇒ if I |= F and I |= G

I |= F ∨ G :⇐⇒ if I |= F or I |= G

I |= F → G :⇐⇒ if I |= F , then I |= G

I |= ∀xF :⇐⇒ if I{x 7→ a} |= F holds for all a ∈ A

I |= ∃xF :⇐⇒ if I{x 7→ a} |= F holds for some a ∈ A

let G be a set of formulas

• I |= G, if I |= F for all F ∈ G

• I models G, if I |= G

GM (Institute of Computer Science @ UIBK) Automated Reasoning 45/1

Syntax First-Order Logic

Definition (The Satisfaction Relation)

I = (A, `) an interpretation; F a formula, we define I |= F

I |= t1 = t2 :⇐⇒ if tI1 = tI2

I |= P(t1, . . . , tn) :⇐⇒ if (tI1 , . . . , tIn) ∈ PA

I |= ¬F :⇐⇒ if I 6|= F

I |= F ∧ G :⇐⇒ if I |= F and I |= G

I |= F ∨ G :⇐⇒ if I |= F or I |= G

I |= F → G :⇐⇒ if I |= F , then I |= G

I |= ∀xF :⇐⇒ if I{x 7→ a} |= F holds for all a ∈ A

I |= ∃xF :⇐⇒ if I{x 7→ a} |= F holds for some a ∈ A

let G be a set of formulas

• I |= G, if I |= F for all F ∈ G

• I models G, if I |= G

GM (Institute of Computer Science @ UIBK) Automated Reasoning 45/1

Syntax First-Order Logic

Definition (The Satisfaction Relation)

I = (A, `) an interpretation; F a formula, we define I |= F

I |= t1 = t2 :⇐⇒ if tI1 = tI2

I |= P(t1, . . . , tn) :⇐⇒ if (tI1 , . . . , tIn) ∈ PA

I |= ¬F :⇐⇒ if I 6|= F

I |= F ∧ G :⇐⇒ if I |= F and I |= G

I |= F ∨ G :⇐⇒ if I |= F or I |= G

I |= F → G :⇐⇒ if I |= F , then I |= G

I |= ∀xF :⇐⇒ if I{x 7→ a} |= F holds for all a ∈ A

I |= ∃xF :⇐⇒ if I{x 7→ a} |= F holds for some a ∈ A

let G be a set of formulas

• I |= G, if I |= F for all F ∈ G

• I models G, if I |= G

GM (Institute of Computer Science @ UIBK) Automated Reasoning 45/1

Syntax First-Order Logic

Definition (The Satisfaction Relation)

I = (A, `) an interpretation; F a formula, we define I |= F

I |= t1 = t2 :⇐⇒ if tI1 = tI2

I |= P(t1, . . . , tn) :⇐⇒ if (tI1 , . . . , tIn) ∈ PA

I |= ¬F :⇐⇒ if I 6|= F

I |= F ∧ G :⇐⇒ if I |= F and I |= G

I |= F ∨ G :⇐⇒ if I |= F or I |= G

I |= F → G :⇐⇒ if I |= F , then I |= G

I |= ∀xF :⇐⇒ if I{x 7→ a} |= F holds for all a ∈ A

I |= ∃xF :⇐⇒ if I{x 7→ a} |= F holds for some a ∈ A

let G be a set of formulas

• I |= G, if I |= F for all F ∈ G

• I models G, if I |= G

GM (Institute of Computer Science @ UIBK) Automated Reasoning 45/1

Syntax First-Order Logic

Definition (The Satisfaction Relation)

I = (A, `) an interpretation; F a formula, we define I |= F

I |= t1 = t2 :⇐⇒ if tI1 = tI2

I |= P(t1, . . . , tn) :⇐⇒ if (tI1 , . . . , tIn) ∈ PA

I |= ¬F :⇐⇒ if I 6|= F

I |= F ∧ G :⇐⇒ if I |= F and I |= G

I |= F ∨ G :⇐⇒ if I |= F or I |= G

I |= F → G :⇐⇒ if I |= F , then I |= G

I |= ∀xF :⇐⇒ if I{x 7→ a} |= F holds for all a ∈ A

I |= ∃xF :⇐⇒ if I{x 7→ a} |= F holds for some a ∈ A

let G be a set of formulas

• I |= G, if I |= F for all F ∈ G

• I models G, if I |= G

GM (Institute of Computer Science @ UIBK) Automated Reasoning 45/1

Syntax First-Order Logic

Definition (The Satisfaction Relation)

I = (A, `) an interpretation; F a formula, we define I |= F

I |= t1 = t2 :⇐⇒ if tI1 = tI2

I |= P(t1, . . . , tn) :⇐⇒ if (tI1 , . . . , tIn) ∈ PA

I |= ¬F :⇐⇒ if I 6|= F

I |= F ∧ G :⇐⇒ if I |= F and I |= G

I |= F ∨ G :⇐⇒ if I |= F or I |= G

I |= F → G :⇐⇒ if I |= F , then I |= G

I |= ∀xF :⇐⇒ if I{x 7→ a} |= F holds for all a ∈ A

I |= ∃xF :⇐⇒ if I{x 7→ a} |= F holds for some a ∈ A

let G be a set of formulas

• I |= G, if I |= F for all F ∈ G
• I models G, if I |= G

GM (Institute of Computer Science @ UIBK) Automated Reasoning 45/1

Syntax First-Order Logic

Definition

F , G1, . . . ,Gn be formulas

• G1, . . . ,Gn |= F iff
∀ interpretations I of all G1, . . . , Gn such that
I models G1, . . . , Gn, we have I models F

• F is called satisfiable
if ∃ an interpretation that is a model of F Sat(F)

• F is valid if
F is satisfiable in any interpretation |= F

Example

consider the formula A := x < y ∧ ¬∃z(x < z ∧ z < y)

• N = (N, 0, succ,+, ·, <) denote the standard structure of arithmetic

• `(x) = 1, `(y) = 2

then (N , `) |= A

GM (Institute of Computer Science @ UIBK) Automated Reasoning 46/1

Syntax First-Order Logic

Definition

F , G1, . . . ,Gn be formulas

• G1, . . . ,Gn |= F iff
∀ interpretations I of all G1, . . . , Gn such that
I models G1, . . . , Gn, we have I models F

• F is called satisfiable
if ∃ an interpretation that is a model of F Sat(F)

• F is valid if
F is satisfiable in any interpretation |= F

Example

consider the formula A := x < y ∧ ¬∃z(x < z ∧ z < y)

• N = (N, 0, succ,+, ·, <) denote the standard structure of arithmetic

• `(x) = 1, `(y) = 2

then (N , `) |= A

GM (Institute of Computer Science @ UIBK) Automated Reasoning 46/1

Syntax First-Order Logic

Definition

F , G1, . . . ,Gn be formulas

• G1, . . . ,Gn |= F iff
∀ interpretations I of all G1, . . . , Gn such that
I models G1, . . . , Gn, we have I models F

• F is called satisfiable
if ∃ an interpretation that is a model of F Sat(F)

• F is valid if
F is satisfiable in any interpretation |= F

Example

consider the formula A := x < y ∧ ¬∃z(x < z ∧ z < y)

• N = (N, 0, succ,+, ·, <) denote the standard structure of arithmetic

• `(x) = 1, `(y) = 2

then (N , `) |= A

GM (Institute of Computer Science @ UIBK) Automated Reasoning 46/1

Syntax First-Order Logic

Definition

F , G1, . . . ,Gn be formulas

• G1, . . . ,Gn |= F iff
∀ interpretations I of all G1, . . . , Gn such that
I models G1, . . . , Gn, we have I models F

• F is called satisfiable
if ∃ an interpretation that is a model of F Sat(F)

• F is valid if
F is satisfiable in any interpretation |= F

Example

consider the formula A := x < y ∧ ¬∃z(x < z ∧ z < y)

• N = (N, 0, succ,+, ·, <) denote the standard structure of arithmetic

• `(x) = 1, `(y) = 2

then (N , `) |= A

GM (Institute of Computer Science @ UIBK) Automated Reasoning 46/1

Syntax First-Order Logic

Definition

F , G1, . . . ,Gn be formulas

• G1, . . . ,Gn |= F iff
∀ interpretations I of all G1, . . . , Gn such that
I models G1, . . . , Gn, we have I models F

• F is called satisfiable
if ∃ an interpretation that is a model of F Sat(F)

• F is valid if
F is satisfiable in any interpretation |= F

Example

consider the formula A := x < y ∧ ¬∃z(x < z ∧ z < y)
• N = (N, 0, succ,+, ·, <) denote the standard structure of arithmetic

• `(x) = 1, `(y) = 2

then (N , `) |= A

GM (Institute of Computer Science @ UIBK) Automated Reasoning 46/1

Syntax First-Order Logic

Definition

F , G1, . . . ,Gn be formulas

• G1, . . . ,Gn |= F iff
∀ interpretations I of all G1, . . . , Gn such that
I models G1, . . . , Gn, we have I models F

• F is called satisfiable
if ∃ an interpretation that is a model of F Sat(F)

• F is valid if
F is satisfiable in any interpretation |= F

Example

consider the formula A := x < y ∧ ¬∃z(x < z ∧ z < y)
• N = (N, 0, succ,+, ·, <) denote the standard structure of arithmetic

• `(x) = 1, `(y) = 2

then (N , `) |= A

GM (Institute of Computer Science @ UIBK) Automated Reasoning 46/1

Syntax First-Order Logic

Definition

F , G1, . . . ,Gn be formulas

• G1, . . . ,Gn |= F iff
∀ interpretations I of all G1, . . . , Gn such that
I models G1, . . . , Gn, we have I models F

• F is called satisfiable
if ∃ an interpretation that is a model of F Sat(F)

• F is valid if
F is satisfiable in any interpretation |= F

Example

consider the formula A := x < y ∧ ¬∃z(x < z ∧ z < y)
• N = (N, 0, succ,+, ·, <) denote the standard structure of arithmetic

• `(x) = 1, `(y) = 2

then (N , `) |= A

GM (Institute of Computer Science @ UIBK) Automated Reasoning 46/1

Syntax First-Order Logic

Example

consider concatenation of lists

app(nil,Ys) = Ys app(Xs,Ys) = cons(head(Xs), app(tail(Xs),Ys))

and the language L:

nil, head(Xs), tail(Xs), cons(X ,Xs), =, and App(Xs,Ys,Zs)

then list concatenation is expressible as follows:

∀x App(nil, x , x) ∧
∧ ∀x∀y∀z (x 6= nil ∧ App(tail(x), y , z)→ App(x , y , cons(head(x), z)))

Example

define
In := ∀x1 . . . ∀xn−1∃y(x1 6= y ∧ · · · ∧ xn−1 6= y)

if I |= In, then I has at least n elements

GM (Institute of Computer Science @ UIBK) Automated Reasoning 47/1

Syntax First-Order Logic

Example

consider concatenation of lists

app(nil,Ys) = Ys app(Xs,Ys) = cons(head(Xs), app(tail(Xs),Ys))

and the language L:

nil, head(Xs), tail(Xs), cons(X ,Xs), =, and App(Xs,Ys,Zs)

then list concatenation is expressible as follows:

∀x App(nil, x , x) ∧
∧ ∀x∀y∀z (x 6= nil ∧ App(tail(x), y , z)→ App(x , y , cons(head(x), z)))

Example

define
In := ∀x1 . . . ∀xn−1∃y(x1 6= y ∧ · · · ∧ xn−1 6= y)

if I |= In, then I has at least n elements

GM (Institute of Computer Science @ UIBK) Automated Reasoning 47/1

Syntax First-Order Logic

Example

consider concatenation of lists

app(nil,Ys) = Ys app(Xs,Ys) = cons(head(Xs), app(tail(Xs),Ys))

and the language L:

nil, head(Xs), tail(Xs), cons(X ,Xs), =, and App(Xs,Ys,Zs)

then list concatenation is expressible as follows:

∀x App(nil, x , x) ∧
∧ ∀x∀y∀z (x 6= nil ∧ App(tail(x), y , z)→ App(x , y , cons(head(x), z)))

Example

define
In := ∀x1 . . . ∀xn−1∃y(x1 6= y ∧ · · · ∧ xn−1 6= y)

if I |= In, then I has at least n elements

GM (Institute of Computer Science @ UIBK) Automated Reasoning 47/1

Syntax First-Order Logic

Example

consider concatenation of lists

app(nil,Ys) = Ys app(Xs,Ys) = cons(head(Xs), app(tail(Xs),Ys))

and the language L:

nil, head(Xs), tail(Xs), cons(X ,Xs), =, and App(Xs,Ys,Zs)

then list concatenation is expressible as follows:

∀x App(nil, x , x) ∧
∧ ∀x∀y∀z (x 6= nil ∧ App(tail(x), y , z)→ App(x , y , cons(head(x), z)))

Example

define
In := ∀x1 . . . ∀xn−1∃y(x1 6= y ∧ · · · ∧ xn−1 6= y)

if I |= In, then I has at least n elements

GM (Institute of Computer Science @ UIBK) Automated Reasoning 47/1

Syntax First-Order Logic

Definition

let F be a formula such that x occurs in F

• x is bound if it occurs inside the scope of a quantifier

• otherwise x is free

• a formula without free variables is called closed or a sentence

Example

consider ∀x(P(x) ∧ Q(x , y)); then x is bound and y is free

Notation

let F be a formula, x a free variable in F , t a term

• we sometimes write F (x) instead of F to indicate x

• F (t) denotes the replacement of x by t

• F (t) is an instance of F (x)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 48/1

Syntax First-Order Logic

Definition

let F be a formula such that x occurs in F

• x is bound if it occurs inside the scope of a quantifier

• otherwise x is free

• a formula without free variables is called closed or a sentence

Example

consider ∀x(P(x) ∧ Q(x , y)); then x is bound and y is free

Notation

let F be a formula, x a free variable in F , t a term

• we sometimes write F (x) instead of F to indicate x

• F (t) denotes the replacement of x by t

• F (t) is an instance of F (x)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 48/1

Syntax First-Order Logic

Definition

let F be a formula such that x occurs in F

• x is bound if it occurs inside the scope of a quantifier

• otherwise x is free

• a formula without free variables is called closed or a sentence

Example

consider ∀x(P(x) ∧ Q(x , y)); then x is bound and y is free

Notation

let F be a formula, x a free variable in F , t a term

• we sometimes write F (x) instead of F to indicate x

• F (t) denotes the replacement of x by t

• F (t) is an instance of F (x)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 48/1

Syntax First-Order Logic

Definition

F is called unsatisfiable
if ¬ ∃ interpretation that is a model of F ¬Sat(F)

Definition

F and G are logically equivalent if F |= G and G |= F F ≡ G

Lemma

∀ formulas F and all sets of formulas G: G |= F iff ¬Sat(G ∪ {¬F})

Lemma

1 let I1 = (A1, `1) and I2 = (A2, `2) be interpretations

2 the universes of I1, I2 coincide

3 I1 and I2 coincide on the constants and variables occurring in F

then I1 |= F iff I2 |= F

GM (Institute of Computer Science @ UIBK) Automated Reasoning 49/1

Syntax First-Order Logic

Definition

F is called unsatisfiable
if ¬ ∃ interpretation that is a model of F ¬Sat(F)

Definition

F and G are logically equivalent if F |= G and G |= F F ≡ G

Lemma

∀ formulas F and all sets of formulas G: G |= F iff ¬Sat(G ∪ {¬F})

Lemma

1 let I1 = (A1, `1) and I2 = (A2, `2) be interpretations

2 the universes of I1, I2 coincide

3 I1 and I2 coincide on the constants and variables occurring in F

then I1 |= F iff I2 |= F

GM (Institute of Computer Science @ UIBK) Automated Reasoning 49/1

Syntax First-Order Logic

Definition

F is called unsatisfiable
if ¬ ∃ interpretation that is a model of F ¬Sat(F)

Definition

F and G are logically equivalent if F |= G and G |= F F ≡ G

Lemma

∀ formulas F and all sets of formulas G: G |= F iff ¬Sat(G ∪ {¬F})

Lemma

1 let I1 = (A1, `1) and I2 = (A2, `2) be interpretations

2 the universes of I1, I2 coincide

3 I1 and I2 coincide on the constants and variables occurring in F

then I1 |= F iff I2 |= F

GM (Institute of Computer Science @ UIBK) Automated Reasoning 49/1

Syntax First-Order Logic

Definition

F is called unsatisfiable
if ¬ ∃ interpretation that is a model of F ¬Sat(F)

Definition

F and G are logically equivalent if F |= G and G |= F F ≡ G

Lemma

∀ formulas F and all sets of formulas G: G |= F iff ¬Sat(G ∪ {¬F})

Lemma

1 let I1 = (A1, `1) and I2 = (A2, `2) be interpretations

2 the universes of I1, I2 coincide

3 I1 and I2 coincide on the constants and variables occurring in F

then I1 |= F iff I2 |= F

GM (Institute of Computer Science @ UIBK) Automated Reasoning 49/1

Syntax First-Order Logic

Toy Example: Logic as Modelling Language

Argument À

1 a mother or father of a person is an ancestor of that person

2 an ancestor of an ancestor of a person is an ancestor of a person

3 Sarah is the mother of Isaac, Isaac is the father of Jacob

4 Thus, Sarah is an ancestor of Jacob

Argument Á

1 a square or cube of a number is a power of that number

2 a power of a power of a number is a power of that number

3 64 is the cube of 4, four is the square of 2

4 Thus, 64 is a power of 2

Question

how to automate?

GM (Institute of Computer Science @ UIBK) Automated Reasoning 50/1

Syntax First-Order Logic

Toy Example: Logic as Modelling Language

Argument À

1 M(x , y) ∨ F(x , y)→ A(x , y)

2 A(x , y) ∧ A(y , z)→ A(x , z)

3 M(Sarah, Isaac) ∧ F(Isaac, Jacob)

4 Thus A(Sarah, Jacob)

Argument Á

1 S(x , y) ∨ C(x , y)→ P(x , y)

2 P(x , y) ∧ P(y , z)→ P(x , z)

3 C(64, 4) ∧ S(4, 2)

4 Thus P(64, 2)

Question

how to automate?

GM (Institute of Computer Science @ UIBK) Automated Reasoning 50/1

Syntax First-Order Logic

Toy Example: Logic as Modelling Language

Argument À

1 R1(x , y) ∨ R2(x , y)→ R3(x , y)

2 R3(x , y) ∧ R3(y , z)→ R3(x , z)

3 R1(c1, c2) ∧ R2(c2, c3)

4 Thus R3(c1, c3)

Argument Á

1 R1(x , y) ∨ R2(x , y)→ R3(x , y)

2 R3(x , y) ∧ R3(y , z)→ R3(x , z)

3 R1(c1, c2) ∧ R2(c2, c3)

4 Thus R3(c1, c3)

Question

how to automate?

GM (Institute of Computer Science @ UIBK) Automated Reasoning 50/1

Syntax First-Order Logic

Toy Example: Logic as Modelling Language

Argument À= Á?
R1(x , y) ∨ R2(x , y)→ R3(x , y)
R3(x , y) ∧ R3(y , z)→ R3(x , z)

R1(c1, c2) ∧ R2(c2, c3)

 |= R3(c1, c3)

Structure A
cA1 Sarah 64 RA1 (x , y) x mother of y x square of y
cA2 Isaac 4 RA2 (x , y) x father of y x cube of y
cA3 Jacob 2 RA3 (x , y) x ancestor of y x power of y

Question

how to automate?

GM (Institute of Computer Science @ UIBK) Automated Reasoning 50/1

Syntax First-Order Logic

Toy Example: Logic as Modelling Language

Argument À= Á?
R1(x , y) ∨ R2(x , y)→ R3(x , y)
R3(x , y) ∧ R3(y , z)→ R3(x , z)

R1(c1, c2) ∧ R2(c2, c3)

 |= R3(c1, c3)

Structure A
cA1 Sarah 64 RA1 (x , y) x mother of y x square of y
cA2 Isaac 4 RA2 (x , y) x father of y x cube of y
cA3 Jacob 2 RA3 (x , y) x ancestor of y x power of y

Question

how to automate?

GM (Institute of Computer Science @ UIBK) Automated Reasoning 50/1

Syntax First-Order Logic

Toy Example: Logic as Modelling Language

Argument À= Á!
∀x∀y(R1(x , y) ∨ R2(x , y)→ R3(x , y))
∀x∀y∀z(R3(x , y) ∧ R3(y , z)→ R3(x , z))

R1(c1, c2) ∧ R2(c2, c3)

 |= R3(c1, c3)

Structure A
cA1 Sarah 64 RA1 (x , y) x mother of y x square of y
cA2 Isaac 4 RA2 (x , y) x father of y x cube of y
cA3 Jacob 2 RA3 (x , y) x ancestor of y x power of y

Question

how to automate?

GM (Institute of Computer Science @ UIBK) Automated Reasoning 50/1

Syntax First-Order Logic

Toy Example: Logic as Modelling Language

Argument À= Á!
∀x∀y(R1(x , y) ∨ R2(x , y)→ R3(x , y))
∀x∀y∀z(R3(x , y) ∧ R3(y , z)→ R3(x , z))

R1(c1, c2) ∧ R2(c2, c3)

 |= R3(c1, c3)

Structure A
cA1 Sarah 64 RA1 (x , y) x mother of y x square of y
cA2 Isaac 4 RA2 (x , y) x father of y x cube of y
cA3 Jacob 2 RA3 (x , y) x ancestor of y x power of y

Question

how to automate?

GM (Institute of Computer Science @ UIBK) Automated Reasoning 50/1

Syntax First-Order Logic

A Bit of History

Fact

the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646–1716)
proposed the idea of

• lingua characteristica
a universal language, able
to express all concepts

• calculus ratiocinator
a machine to “compute”
whether a given argument
is sound

we already know that a ’calculus ratiocinator’ cannot exist

GM (Institute of Computer Science @ UIBK) Automated Reasoning 51/1

Syntax First-Order Logic

A Bit of History

Fact

the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646–1716)
proposed the idea of

• lingua characteristica
a universal language, able
to express all concepts

• calculus ratiocinator
a machine to “compute”
whether a given argument
is sound

we already know that a ’calculus ratiocinator’ cannot exist

GM (Institute of Computer Science @ UIBK) Automated Reasoning 51/1

Syntax First-Order Logic

A Bit of History

Fact

the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646–1716)
proposed the idea of

• lingua characteristica
a universal language, able
to express all concepts

• calculus ratiocinator
a machine to “compute”
whether a given argument
is sound

we already know that a ’calculus ratiocinator’ cannot exist

GM (Institute of Computer Science @ UIBK) Automated Reasoning 51/1

Syntax First-Order Logic

A Bit of History

Fact

the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646–1716)
proposed the idea of

• lingua characteristica
a universal language, able
to express all concepts

• calculus ratiocinator
a machine to “compute”
whether a given argument
is sound

we already know that a ’calculus ratiocinator’ cannot exist

GM (Institute of Computer Science @ UIBK) Automated Reasoning 51/1

Syntax First-Order Logic

A Bit of History

Fact

the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646–1716)
proposed the idea of

• lingua characteristica
a universal language, able
to express all concepts

• calculus ratiocinator
a machine to “compute”
whether a given argument
is sound

we already know that a ’calculus ratiocinator’ cannot exist

GM (Institute of Computer Science @ UIBK) Automated Reasoning 51/1

Syntax First-Order Logic

Undecidability of First-Order Logic

Theorem

1 the decision problem for the consequence relation is undecidable

2 the set of valid first-order formulas is not recursive

Proof Ideas.
• encoding of TMs as first-order formulas

• reduction from Post correspondence problem

Theorem

the set of valid first-order formulas (over a countable language) is
recursive enumerable

Proof.
• the set of all formulas (over a countable language) is countable

• completeness yields that one can enumerate all valid formulas

GM (Institute of Computer Science @ UIBK) Automated Reasoning 52/1

Syntax First-Order Logic

Undecidability of First-Order Logic

Theorem

1 the decision problem for the consequence relation is undecidable

2 the set of valid first-order formulas is not recursive

Proof Ideas.
• encoding of TMs as first-order formulas

• reduction from Post correspondence problem

Theorem

the set of valid first-order formulas (over a countable language) is
recursive enumerable

Proof.
• the set of all formulas (over a countable language) is countable

• completeness yields that one can enumerate all valid formulas

GM (Institute of Computer Science @ UIBK) Automated Reasoning 52/1

Syntax First-Order Logic

Undecidability of First-Order Logic

Theorem

1 the decision problem for the consequence relation is undecidable

2 the set of valid first-order formulas is not recursive

Proof Ideas.
• encoding of TMs as first-order formulas

• reduction from Post correspondence problem

Theorem

the set of valid first-order formulas (over a countable language) is
recursive enumerable

Proof.
• the set of all formulas (over a countable language) is countable

• completeness yields that one can enumerate all valid formulas

GM (Institute of Computer Science @ UIBK) Automated Reasoning 52/1

Syntax First-Order Logic

Undecidability of First-Order Logic

Theorem

1 the decision problem for the consequence relation is undecidable

2 the set of valid first-order formulas is not recursive

Proof Ideas.
• encoding of TMs as first-order formulas

• reduction from Post correspondence problem

Theorem

the set of valid first-order formulas (over a countable language) is
recursive enumerable

Proof.
• the set of all formulas (over a countable language) is countable

• completeness yields that one can enumerate all valid formulas

GM (Institute of Computer Science @ UIBK) Automated Reasoning 52/1

Syntax First-Order Logic

Undecidability of First-Order Logic

Theorem

1 the decision problem for the consequence relation is undecidable

2 the set of valid first-order formulas is not recursive

Proof Ideas.
• encoding of TMs as first-order formulas

• reduction from Post correspondence problem

Theorem

the set of valid first-order formulas (over a countable language) is
recursive enumerable

Proof.
• the set of all formulas (over a countable language) is countable

• completeness yields that one can enumerate all valid formulas

GM (Institute of Computer Science @ UIBK) Automated Reasoning 52/1

Outline

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model
existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 53/1

Outline

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model
existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 53/1

Outline

Definition

A, B two structures over the same language; assume ∃ bijection
m : A→ B such that

1 ∀ individual constant c : m(cA) = cB

2 ∀ function constant f , ∀ a1, . . . , an ∈ A:

m(f A(a1, . . . , an)) = f B(m(a1), . . . ,m(an)) and

3 ∀ predicate constant P, ∀ a1, . . . , an ∈ A:

PA(a1, . . . , an)⇐⇒ PB(m(a1), . . . ,m(an))

then m is called an isomorphism between A and B denoted m : A ∼= B

Lemma

let A, B be sets; m : A→ B be a bijection; if A is a structure with
domain A, then ∃ structure B with A ∼= B

GM (Institute of Computer Science @ UIBK) Automated Reasoning 54/1

Outline

Definition

A, B two structures over the same language; assume ∃ bijection
m : A→ B such that

1 ∀ individual constant c : m(cA) = cB

2 ∀ function constant f , ∀ a1, . . . , an ∈ A:

m(f A(a1, . . . , an)) = f B(m(a1), . . . ,m(an)) and

3 ∀ predicate constant P, ∀ a1, . . . , an ∈ A:

PA(a1, . . . , an)⇐⇒ PB(m(a1), . . . ,m(an))

then m is called an isomorphism between A and B denoted m : A ∼= B

Lemma

let A, B be sets; m : A→ B be a bijection; if A is a structure with
domain A, then ∃ structure B with A ∼= B

GM (Institute of Computer Science @ UIBK) Automated Reasoning 54/1

Outline

Definition

A, B two structures over the same language; assume ∃ bijection
m : A→ B such that

1 ∀ individual constant c : m(cA) = cB

2 ∀ function constant f , ∀ a1, . . . , an ∈ A:

m(f A(a1, . . . , an)) = f B(m(a1), . . . ,m(an)) and

3 ∀ predicate constant P, ∀ a1, . . . , an ∈ A:

PA(a1, . . . , an)⇐⇒ PB(m(a1), . . . ,m(an))

then m is called an isomorphism between A and B denoted m : A ∼= B

Lemma

let A, B be sets; m : A→ B be a bijection; if A is a structure with
domain A, then ∃ structure B with A ∼= B

GM (Institute of Computer Science @ UIBK) Automated Reasoning 54/1

Outline

Definition

A, B two structures over the same language; assume ∃ bijection
m : A→ B such that

1 ∀ individual constant c : m(cA) = cB

2 ∀ function constant f , ∀ a1, . . . , an ∈ A:

m(f A(a1, . . . , an)) = f B(m(a1), . . . ,m(an)) and

3 ∀ predicate constant P, ∀ a1, . . . , an ∈ A:

PA(a1, . . . , an)⇐⇒ PB(m(a1), . . . ,m(an))

then m is called an isomorphism between A and B denoted m : A ∼= B

Lemma

let A, B be sets; m : A→ B be a bijection; if A is a structure with
domain A, then ∃ structure B with A ∼= B

GM (Institute of Computer Science @ UIBK) Automated Reasoning 54/1

Outline

Definition

A, B two structures over the same language; assume ∃ bijection
m : A→ B such that

1 ∀ individual constant c : m(cA) = cB

2 ∀ function constant f , ∀ a1, . . . , an ∈ A:

m(f A(a1, . . . , an)) = f B(m(a1), . . . ,m(an)) and

3 ∀ predicate constant P, ∀ a1, . . . , an ∈ A:

PA(a1, . . . , an)⇐⇒ PB(m(a1), . . . ,m(an))

then m is called an isomorphism between A and B denoted m : A ∼= B

Lemma

let A, B be sets; m : A→ B be a bijection; if A is a structure with
domain A, then ∃ structure B with A ∼= B

GM (Institute of Computer Science @ UIBK) Automated Reasoning 54/1

Outline

Definition

A, B two structures over the same language; assume ∃ bijection
m : A→ B such that

1 ∀ individual constant c : m(cA) = cB

2 ∀ function constant f , ∀ a1, . . . , an ∈ A:

m(f A(a1, . . . , an)) = f B(m(a1), . . . ,m(an)) and

3 ∀ predicate constant P, ∀ a1, . . . , an ∈ A:

PA(a1, . . . , an)⇐⇒ PB(m(a1), . . . ,m(an))

then m is called an isomorphism between A and B denoted m : A ∼= B

Lemma

let A, B be sets; m : A→ B be a bijection; if A is a structure with
domain A, then ∃ structure B with A ∼= B

GM (Institute of Computer Science @ UIBK) Automated Reasoning 54/1

Isomorphism Theorem

Isomorphism Theorem

let A, B be structures such that m : A ∼= B, then for all sentences F :
A |= F iff B |= F

Proof.

1 let I = (A, `), define `m = m ◦ `, set J = (B, `m)

2 ∀ terms t: m(tI) = tJ (follows by induction on t)

3 ∀ formulas F : I |= F ⇐⇒ J |= F

• base case F = (s = t)

I |= s = t ⇐⇒ sI = tI ⇐⇒ m(sI) = m(tI)⇐⇒ J |= s = t

• step case F = ∃xG

I |= ∃xG ⇐⇒ there exists a ∈ A, I{x 7→ a} |= G

⇐⇒ there exists a ∈ A, J {x 7→ m(a)} |= G

⇐⇒ there exists b ∈ B, J {x 7→ b} |= G

⇐⇒ J |= ∃xG

GM (Institute of Computer Science @ UIBK) Automated Reasoning 55/1

Isomorphism Theorem

Isomorphism Theorem

let A, B be structures such that m : A ∼= B, then for all sentences F :
A |= F iff B |= F

Proof.

1 let I = (A, `), define `m = m ◦ `, set J = (B, `m)

2 ∀ terms t: m(tI) = tJ (follows by induction on t)

3 ∀ formulas F : I |= F ⇐⇒ J |= F

• base case F = (s = t)

I |= s = t ⇐⇒ sI = tI ⇐⇒ m(sI) = m(tI)⇐⇒ J |= s = t

• step case F = ∃xG

I |= ∃xG ⇐⇒ there exists a ∈ A, I{x 7→ a} |= G

⇐⇒ there exists a ∈ A, J {x 7→ m(a)} |= G

⇐⇒ there exists b ∈ B, J {x 7→ b} |= G

⇐⇒ J |= ∃xG

GM (Institute of Computer Science @ UIBK) Automated Reasoning 55/1

Isomorphism Theorem

Isomorphism Theorem

let A, B be structures such that m : A ∼= B, then for all sentences F :
A |= F iff B |= F

Proof.

1 let I = (A, `), define `m = m ◦ `, set J = (B, `m)

2 ∀ terms t: m(tI) = tJ (follows by induction on t)

3 ∀ formulas F : I |= F ⇐⇒ J |= F

• base case F = (s = t)

I |= s = t ⇐⇒ sI = tI ⇐⇒ m(sI) = m(tI)⇐⇒ J |= s = t

• step case F = ∃xG

I |= ∃xG ⇐⇒ there exists a ∈ A, I{x 7→ a} |= G

⇐⇒ there exists a ∈ A, J {x 7→ m(a)} |= G

⇐⇒ there exists b ∈ B, J {x 7→ b} |= G

⇐⇒ J |= ∃xG

GM (Institute of Computer Science @ UIBK) Automated Reasoning 55/1

Isomorphism Theorem

Isomorphism Theorem

let A, B be structures such that m : A ∼= B, then for all sentences F :
A |= F iff B |= F

Proof.

1 let I = (A, `), define `m = m ◦ `, set J = (B, `m)

2 ∀ terms t: m(tI) = tJ (follows by induction on t)

3 ∀ formulas F : I |= F ⇐⇒ J |= F

• base case F = (s = t)

I |= s = t ⇐⇒ sI = tI ⇐⇒ m(sI) = m(tI)⇐⇒ J |= s = t

• step case F = ∃xG

I |= ∃xG ⇐⇒ there exists a ∈ A, I{x 7→ a} |= G

⇐⇒ there exists a ∈ A, J {x 7→ m(a)} |= G

⇐⇒ there exists b ∈ B, J {x 7→ b} |= G

⇐⇒ J |= ∃xG

GM (Institute of Computer Science @ UIBK) Automated Reasoning 55/1

Isomorphism Theorem

Isomorphism Theorem

let A, B be structures such that m : A ∼= B, then for all sentences F :
A |= F iff B |= F

Proof.

1 let I = (A, `), define `m = m ◦ `, set J = (B, `m)

2 ∀ terms t: m(tI) = tJ (follows by induction on t)

3 ∀ formulas F : I |= F ⇐⇒ J |= F

• base case F = (s = t)

I |= s = t ⇐⇒ sI = tI ⇐⇒ m(sI) = m(tI)⇐⇒ J |= s = t

• step case F = ∃xG

I |= ∃xG ⇐⇒ there exists a ∈ A, I{x 7→ a} |= G

⇐⇒ there exists a ∈ A, J {x 7→ m(a)} |= G

⇐⇒ there exists b ∈ B, J {x 7→ b} |= G

⇐⇒ J |= ∃xG

GM (Institute of Computer Science @ UIBK) Automated Reasoning 55/1

Isomorphism Theorem

Isomorphism Theorem

let A, B be structures such that m : A ∼= B, then for all sentences F :
A |= F iff B |= F

Proof.

1 let I = (A, `), define `m = m ◦ `, set J = (B, `m)

2 ∀ terms t: m(tI) = tJ (follows by induction on t)

3 ∀ formulas F : I |= F ⇐⇒ J |= F
• base case F = (s = t)

I |= s = t ⇐⇒ sI = tI ⇐⇒ m(sI) = m(tI)⇐⇒ J |= s = t

• step case F = ∃xG

I |= ∃xG ⇐⇒ there exists a ∈ A, I{x 7→ a} |= G

⇐⇒ there exists a ∈ A, J {x 7→ m(a)} |= G

⇐⇒ there exists b ∈ B, J {x 7→ b} |= G

⇐⇒ J |= ∃xG

GM (Institute of Computer Science @ UIBK) Automated Reasoning 55/1

Isomorphism Theorem

Isomorphism Theorem

let A, B be structures such that m : A ∼= B, then for all sentences F :
A |= F iff B |= F

Proof.

1 let I = (A, `), define `m = m ◦ `, set J = (B, `m)

2 ∀ terms t: m(tI) = tJ (follows by induction on t)

3 ∀ formulas F : I |= F ⇐⇒ J |= F
• base case F = (s = t)

I |= s = t ⇐⇒ sI = tI ⇐⇒ m(sI) = m(tI)⇐⇒ J |= s = t

• step case F = ∃xG

I |= ∃xG ⇐⇒ there exists a ∈ A, I{x 7→ a} |= G

⇐⇒ there exists a ∈ A, J {x 7→ m(a)} |= G

⇐⇒ there exists b ∈ B, J {x 7→ b} |= G

⇐⇒ J |= ∃xG

GM (Institute of Computer Science @ UIBK) Automated Reasoning 55/1

Isomorphism Theorem

Isomorphism Theorem

let A, B be structures such that m : A ∼= B, then for all sentences F :
A |= F iff B |= F

Proof.

1 let I = (A, `), define `m = m ◦ `, set J = (B, `m)

2 ∀ terms t: m(tI) = tJ (follows by induction on t)

3 ∀ formulas F : I |= F ⇐⇒ J |= F
• base case F = (s = t)

I |= s = t ⇐⇒ sI = tI ⇐⇒ m(sI) = m(tI)⇐⇒ J |= s = t

• step case F = ∃xG

I |= ∃xG ⇐⇒ there exists a ∈ A, I{x 7→ a} |= G

⇐⇒ there exists a ∈ A, J {x 7→ m(a)} |= G

⇐⇒ there exists b ∈ B, J {x 7→ b} |= G

⇐⇒ J |= ∃xG

GM (Institute of Computer Science @ UIBK) Automated Reasoning 55/1

Isomorphism Theorem

Corollary

1 ∀ formula F that has a finite model has a model in the domain
{0, 1, 2, . . . , n}

2 ∀ formula F that has a countable infinite model has a model whose
domain is N

Proof.

combination of both lemmas

Example

consider L = {�} and

E :⇐⇒∀x x � x ∧ ∀x∀y (x � y ∧ y � x) ∧
∀x∀y∀z ((x � y ∧ y � z)→ x � z)

F :⇐⇒∀x∀y x � y

if M and N are countable infinite and M |= E ∧ F , N |= E ∧ F , then
M∼= N

GM (Institute of Computer Science @ UIBK) Automated Reasoning 56/1

Isomorphism Theorem

Corollary

1 ∀ formula F that has a finite model has a model in the domain
{0, 1, 2, . . . , n}

2 ∀ formula F that has a countable infinite model has a model whose
domain is N

Proof.

combination of both lemmas

Example

consider L = {�} and

E :⇐⇒∀x x � x ∧ ∀x∀y (x � y ∧ y � x) ∧
∀x∀y∀z ((x � y ∧ y � z)→ x � z)

F :⇐⇒∀x∀y x � y

if M and N are countable infinite and M |= E ∧ F , N |= E ∧ F , then
M∼= N

GM (Institute of Computer Science @ UIBK) Automated Reasoning 56/1

Isomorphism Theorem

Corollary

1 ∀ formula F that has a finite model has a model in the domain
{0, 1, 2, . . . , n}

2 ∀ formula F that has a countable infinite model has a model whose
domain is N

Proof.

combination of both lemmas

Example

consider L = {�} and

E :⇐⇒∀x x � x ∧ ∀x∀y (x � y ∧ y � x) ∧
∀x∀y∀z ((x � y ∧ y � z)→ x � z)

F :⇐⇒∀x∀y x � y

if M and N are countable infinite and M |= E ∧ F , N |= E ∧ F , then
M∼= N

GM (Institute of Computer Science @ UIBK) Automated Reasoning 56/1

Isomorphism Theorem

Corollary

1 ∀ formula F that has a finite model has a model in the domain
{0, 1, 2, . . . , n}

2 ∀ formula F that has a countable infinite model has a model whose
domain is N

Proof.

combination of both lemmas

Example

consider L = {�} and

E :⇐⇒∀x x � x ∧ ∀x∀y (x � y ∧ y � x) ∧
∀x∀y∀z ((x � y ∧ y � z)→ x � z)

F :⇐⇒∀x∀y x � y

if M and N are countable infinite and M |= E ∧ F , N |= E ∧ F , then
M∼= N

GM (Institute of Computer Science @ UIBK) Automated Reasoning 56/1

Compactness and Löwenheim-Skolem

Compactness and Löwenheim-Skolem

Theorem (Compactness Theorem)

if every finite subset of a set of formulas G has a model, then G has a
model

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Corollary

if a set of formulas G has arbitrarily large finite models, then it has a
countable infinite model

Proof Idea.

employ compactness to show that G has an infinite model and Löwenheim-
Skolem to show that this model is countable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 57/1

Compactness and Löwenheim-Skolem

Compactness and Löwenheim-Skolem

Theorem (Compactness Theorem)

if every finite subset of a set of formulas G has a model, then G has a
model

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Corollary

if a set of formulas G has arbitrarily large finite models, then it has a
countable infinite model

Proof Idea.

employ compactness to show that G has an infinite model and Löwenheim-
Skolem to show that this model is countable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 57/1

Compactness and Löwenheim-Skolem

Compactness and Löwenheim-Skolem

Theorem (Compactness Theorem)

if every finite subset of a set of formulas G has a model, then G has a
model

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Corollary

if a set of formulas G has arbitrarily large finite models, then it has a
countable infinite model

Proof Idea.

employ compactness to show that G has an infinite model and Löwenheim-
Skolem to show that this model is countable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 57/1

Compactness and Löwenheim-Skolem

Compactness and Löwenheim-Skolem

Theorem (Compactness Theorem)

if every finite subset of a set of formulas G has a model, then G has a
model

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Corollary

if a set of formulas G has arbitrarily large finite models, then it has a
countable infinite model

Proof Idea.

employ compactness to show that G has an infinite model and Löwenheim-
Skolem to show that this model is countable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 57/1

Compactness and Löwenheim-Skolem

Corollary

1 any satisfiable set of formulas G has a model whose domain is either
the set of natural numbers < n or N

2 if G is a satisfiable set of formulas, no function symbols, no identity
in language, then G has a model whose domain is N

Proof (of second item).

1 suppose G has a model I with domain {0, . . . , n − 1}
2 define f : N→ {0, 1, . . . , n − 1} as:

f (m) = min{m, n − 1}
3 define J with domain N and look-up table `

• f (cJ) = cI

• ∀ predicate constants P, ∀ n1, . . . , nk

(n1, . . . , nk) ∈ PJ iff (f (n1), . . . , f (nk)) ∈ PI

4 f is a surjective homomorphism, the proof of the isomorphism
lemma holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 58/1

Compactness and Löwenheim-Skolem

Corollary

1 any satisfiable set of formulas G has a model whose domain is either
the set of natural numbers < n or N

2 if G is a satisfiable set of formulas, no function symbols, no identity
in language, then G has a model whose domain is N

Proof (of second item).

1 suppose G has a model I with domain {0, . . . , n − 1}
2 define f : N→ {0, 1, . . . , n − 1} as:

f (m) = min{m, n − 1}
3 define J with domain N and look-up table `

• f (cJ) = cI

• ∀ predicate constants P, ∀ n1, . . . , nk

(n1, . . . , nk) ∈ PJ iff (f (n1), . . . , f (nk)) ∈ PI

4 f is a surjective homomorphism, the proof of the isomorphism
lemma holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 58/1

Compactness and Löwenheim-Skolem

Corollary

1 any satisfiable set of formulas G has a model whose domain is either
the set of natural numbers < n or N

2 if G is a satisfiable set of formulas, no function symbols, no identity
in language, then G has a model whose domain is N

Proof (of second item).
1 suppose G has a model I with domain {0, . . . , n − 1}

2 define f : N→ {0, 1, . . . , n − 1} as:

f (m) = min{m, n − 1}
3 define J with domain N and look-up table `

• f (cJ) = cI

• ∀ predicate constants P, ∀ n1, . . . , nk

(n1, . . . , nk) ∈ PJ iff (f (n1), . . . , f (nk)) ∈ PI

4 f is a surjective homomorphism, the proof of the isomorphism
lemma holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 58/1

Compactness and Löwenheim-Skolem

Corollary

1 any satisfiable set of formulas G has a model whose domain is either
the set of natural numbers < n or N

2 if G is a satisfiable set of formulas, no function symbols, no identity
in language, then G has a model whose domain is N

Proof (of second item).
1 suppose G has a model I with domain {0, . . . , n − 1}
2 define f : N→ {0, 1, . . . , n − 1} as:

f (m) = min{m, n − 1}

3 define J with domain N and look-up table `

• f (cJ) = cI

• ∀ predicate constants P, ∀ n1, . . . , nk

(n1, . . . , nk) ∈ PJ iff (f (n1), . . . , f (nk)) ∈ PI

4 f is a surjective homomorphism, the proof of the isomorphism
lemma holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 58/1

Compactness and Löwenheim-Skolem

Corollary

1 any satisfiable set of formulas G has a model whose domain is either
the set of natural numbers < n or N

2 if G is a satisfiable set of formulas, no function symbols, no identity
in language, then G has a model whose domain is N

Proof (of second item).
1 suppose G has a model I with domain {0, . . . , n − 1}
2 define f : N→ {0, 1, . . . , n − 1} as:

f (m) = min{m, n − 1}
3 define J with domain N and look-up table `

• f (cJ) = cI

• ∀ predicate constants P, ∀ n1, . . . , nk

(n1, . . . , nk) ∈ PJ iff (f (n1), . . . , f (nk)) ∈ PI

4 f is a surjective homomorphism, the proof of the isomorphism
lemma holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 58/1

Compactness and Löwenheim-Skolem

Corollary

1 any satisfiable set of formulas G has a model whose domain is either
the set of natural numbers < n or N

2 if G is a satisfiable set of formulas, no function symbols, no identity
in language, then G has a model whose domain is N

Proof (of second item).
1 suppose G has a model I with domain {0, . . . , n − 1}
2 define f : N→ {0, 1, . . . , n − 1} as:

f (m) = min{m, n − 1}
3 define J with domain N and look-up table `

• f (cJ) = cI

• ∀ predicate constants P, ∀ n1, . . . , nk

(n1, . . . , nk) ∈ PJ iff (f (n1), . . . , f (nk)) ∈ PI

4 f is a surjective homomorphism, the proof of the isomorphism
lemma holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 58/1

Compactness and Löwenheim-Skolem

Corollary

1 any satisfiable set of formulas G has a model whose domain is either
the set of natural numbers < n or N

2 if G is a satisfiable set of formulas, no function symbols, no identity
in language, then G has a model whose domain is N

Proof (of second item).
1 suppose G has a model I with domain {0, . . . , n − 1}
2 define f : N→ {0, 1, . . . , n − 1} as:

f (m) = min{m, n − 1}
3 define J with domain N and look-up table `

• f (cJ) = cI

• ∀ predicate constants P, ∀ n1, . . . , nk

(n1, . . . , nk) ∈ PJ iff (f (n1), . . . , f (nk)) ∈ PI

4 f is a surjective homomorphism, the proof of the isomorphism
lemma holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 58/1

Compactness and Löwenheim-Skolem

Corollary

1 any satisfiable set of formulas G has a model whose domain is either
the set of natural numbers < n or N

2 if G is a satisfiable set of formulas, no function symbols, no identity
in language, then G has a model whose domain is N

Proof (of second item).
1 suppose G has a model I with domain {0, . . . , n − 1}
2 define f : N→ {0, 1, . . . , n − 1} as:

f (m) = min{m, n − 1}
3 define J with domain N and look-up table `

• f (cJ) = cI

• ∀ predicate constants P, ∀ n1, . . . , nk

(n1, . . . , nk) ∈ PJ iff (f (n1), . . . , f (nk)) ∈ PI

4 f is a surjective homomorphism, the proof of the isomorphism
lemma holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 58/1

Model Existence Lemma

Proof Plan for Completeness

first-order logic features the following three theorems

1 (soundness and) completeness

2 compactness

3 Löwenheim-Skolem

Observations

• any proof of completeness is indirect:
suppose ∃ a consistent set G, then G is satisfiable

• to show G is satisfiable one constructs a countable model M
• Löwenheim-Skolem and compactness follow

• the central piece of work is the construction of M; this is
independent on the proof system

⊥ is not derivable

in proof, we restrict the logical symbols to ¬, ∨, ∃, and =

GM (Institute of Computer Science @ UIBK) Automated Reasoning 59/1

Model Existence Lemma

Proof Plan for Completeness

first-order logic features the following three theorems

1 (soundness and) completeness

2 compactness

3 Löwenheim-Skolem

Observations

• any proof of completeness is indirect:
suppose ∃ a consistent set G, then G is satisfiable

• to show G is satisfiable one constructs a countable model M
• Löwenheim-Skolem and compactness follow

• the central piece of work is the construction of M; this is
independent on the proof system

⊥ is not derivable

in proof, we restrict the logical symbols to ¬, ∨, ∃, and =

GM (Institute of Computer Science @ UIBK) Automated Reasoning 59/1

Model Existence Lemma

Proof Plan for Completeness

first-order logic features the following three theorems

1 (soundness and) completeness

2 compactness

3 Löwenheim-Skolem

Observations

• any proof of completeness is indirect:
suppose ∃ a consistent set G, then G is satisfiable

• to show G is satisfiable one constructs a countable model M
• Löwenheim-Skolem and compactness follow

• the central piece of work is the construction of M; this is
independent on the proof system

⊥ is not derivable

in proof, we restrict the logical symbols to ¬, ∨, ∃, and =

GM (Institute of Computer Science @ UIBK) Automated Reasoning 59/1

Model Existence Lemma

Proof Plan for Completeness

first-order logic features the following three theorems

1 (soundness and) completeness

2 compactness

3 Löwenheim-Skolem

Observations

• any proof of completeness is indirect:
suppose ∃ a consistent set G, then G is satisfiable

• to show G is satisfiable one constructs a countable model M

• Löwenheim-Skolem and compactness follow

• the central piece of work is the construction of M; this is
independent on the proof system

⊥ is not derivable

in proof, we restrict the logical symbols to ¬, ∨, ∃, and =

GM (Institute of Computer Science @ UIBK) Automated Reasoning 59/1

Model Existence Lemma

Proof Plan for Completeness

first-order logic features the following three theorems

1 (soundness and) completeness

2 compactness

3 Löwenheim-Skolem

Observations

• any proof of completeness is indirect:
suppose ∃ a consistent set G, then G is satisfiable

• to show G is satisfiable one constructs a countable model M
• Löwenheim-Skolem and compactness follow

• the central piece of work is the construction of M; this is
independent on the proof system

⊥ is not derivable

in proof, we restrict the logical symbols to ¬, ∨, ∃, and =

GM (Institute of Computer Science @ UIBK) Automated Reasoning 59/1

Model Existence Lemma

Proof Plan for Completeness

first-order logic features the following three theorems

1 (soundness and) completeness

2 compactness

3 Löwenheim-Skolem

Observations

• any proof of completeness is indirect:
suppose ∃ a consistent set G, then G is satisfiable

• to show G is satisfiable one constructs a countable model M
• Löwenheim-Skolem and compactness follow

• the central piece of work is the construction of M; this is
independent on the proof system

⊥ is not derivable

in proof, we restrict the logical symbols to ¬, ∨, ∃, and =

GM (Institute of Computer Science @ UIBK) Automated Reasoning 59/1

Model Existence Lemma

Proof Plan for Completeness

first-order logic features the following three theorems

1 (soundness and) completeness

2 compactness

3 Löwenheim-Skolem

Observations

• any proof of completeness is indirect:
suppose ∃ a consistent set G, then G is satisfiable

• to show G is satisfiable one constructs a countable model M
• Löwenheim-Skolem and compactness follow

• the central piece of work is the construction of M; this is
independent on the proof system

⊥ is not derivable

in proof, we restrict the logical symbols to ¬, ∨, ∃, and =

GM (Institute of Computer Science @ UIBK) Automated Reasoning 59/1

Model Existence Lemma

Howto Prove Compactness and Löwenheim-Skolem

model existenceLemma Â Lemma Ã

compactness

Löwenheim-Skolem

Lemma À Lemma Á

GM (Institute of Computer Science @ UIBK) Automated Reasoning 60/1

Satisfaction Properties

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 61/1

Satisfaction Properties

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 61/1

Satisfaction Properties

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G

3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 61/1

Satisfaction Properties

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 61/1

Satisfaction Properties

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 61/1

Satisfaction Properties

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 61/1

Satisfaction Properties

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 61/1

Satisfaction Properties

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 61/1

Satisfaction Properties

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 61/1

Satisfaction Properties

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 61/1

Satisfaction Properties

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 61/1

Satisfaction Properties

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 61/1

Satisfaction Properties

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 61/1

Satisfaction Properties

Lemma Á
1 assume S is a set of formula sets and S has the satisfaction

properties

2 let S∗ be the set of all formula sets G such that
∀ finite G0 ⊆ G, G0 ∈ S

3 then S∗ has the satisfaction properties

Proof.

we treat the case of disjunction

• assume G ∈ S∗, (E ∨ F) ∈ G, G ∪ {E} 6∈ S∗ and G ∪ {F} 6∈ S∗

• ∀ finite G0 ⊆ G, G0 ∈ S ,

• ∃ finite G1 ⊆ G ∪ {E}, G1 6∈ S , ∃ finite G2 ⊆ G ∪ {F}, G2 6∈ S

• wlog G1 = G′1 ∪ {E}, G2 = G′2 ∪ {F}, and G′1,G′2 ⊆ G finite

• G′1 ∪ G′2 ∪ {(E ∨ F)} ⊆ G, hence G′1 ∪ G′2 ∪ {(E ∨ F)} ∈ S

• hence G′1 ∪ G′2 ∪ {E} ∈ S or G′1 ∪ G′2 ∪ {F} ∈ S

• contradiction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 62/1

Satisfaction Properties

Lemma Á
1 assume S is a set of formula sets and S has the satisfaction

properties

2 let S∗ be the set of all formula sets G such that
∀ finite G0 ⊆ G, G0 ∈ S

3 then S∗ has the satisfaction properties

Proof.

we treat the case of disjunction

• assume G ∈ S∗, (E ∨ F) ∈ G, G ∪ {E} 6∈ S∗ and G ∪ {F} 6∈ S∗

• ∀ finite G0 ⊆ G, G0 ∈ S ,

• ∃ finite G1 ⊆ G ∪ {E}, G1 6∈ S , ∃ finite G2 ⊆ G ∪ {F}, G2 6∈ S

• wlog G1 = G′1 ∪ {E}, G2 = G′2 ∪ {F}, and G′1,G′2 ⊆ G finite

• G′1 ∪ G′2 ∪ {(E ∨ F)} ⊆ G, hence G′1 ∪ G′2 ∪ {(E ∨ F)} ∈ S

• hence G′1 ∪ G′2 ∪ {E} ∈ S or G′1 ∪ G′2 ∪ {F} ∈ S

• contradiction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 62/1

Satisfaction Properties

Lemma Á
1 assume S is a set of formula sets and S has the satisfaction

properties

2 let S∗ be the set of all formula sets G such that
∀ finite G0 ⊆ G, G0 ∈ S

3 then S∗ has the satisfaction properties

Proof.

we treat the case of disjunction

• assume G ∈ S∗, (E ∨ F) ∈ G, G ∪ {E} 6∈ S∗ and G ∪ {F} 6∈ S∗

• ∀ finite G0 ⊆ G, G0 ∈ S ,

• ∃ finite G1 ⊆ G ∪ {E}, G1 6∈ S , ∃ finite G2 ⊆ G ∪ {F}, G2 6∈ S

• wlog G1 = G′1 ∪ {E}, G2 = G′2 ∪ {F}, and G′1,G′2 ⊆ G finite

• G′1 ∪ G′2 ∪ {(E ∨ F)} ⊆ G, hence G′1 ∪ G′2 ∪ {(E ∨ F)} ∈ S

• hence G′1 ∪ G′2 ∪ {E} ∈ S or G′1 ∪ G′2 ∪ {F} ∈ S

• contradiction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 62/1

Satisfaction Properties

Lemma Á
1 assume S is a set of formula sets and S has the satisfaction

properties

2 let S∗ be the set of all formula sets G such that
∀ finite G0 ⊆ G, G0 ∈ S

3 then S∗ has the satisfaction properties

Proof.

we treat the case of disjunction

• assume G ∈ S∗, (E ∨ F) ∈ G, G ∪ {E} 6∈ S∗ and G ∪ {F} 6∈ S∗

• ∀ finite G0 ⊆ G, G0 ∈ S ,

• ∃ finite G1 ⊆ G ∪ {E}, G1 6∈ S , ∃ finite G2 ⊆ G ∪ {F}, G2 6∈ S

• wlog G1 = G′1 ∪ {E}, G2 = G′2 ∪ {F}, and G′1,G′2 ⊆ G finite

• G′1 ∪ G′2 ∪ {(E ∨ F)} ⊆ G, hence G′1 ∪ G′2 ∪ {(E ∨ F)} ∈ S

• hence G′1 ∪ G′2 ∪ {E} ∈ S or G′1 ∪ G′2 ∪ {F} ∈ S

• contradiction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 62/1

Satisfaction Properties

Lemma Á
1 assume S is a set of formula sets and S has the satisfaction

properties

2 let S∗ be the set of all formula sets G such that
∀ finite G0 ⊆ G, G0 ∈ S

3 then S∗ has the satisfaction properties

Proof.

we treat the case of disjunction

• assume G ∈ S∗, (E ∨ F) ∈ G, G ∪ {E} 6∈ S∗ and G ∪ {F} 6∈ S∗

• ∀ finite G0 ⊆ G, G0 ∈ S ,

• ∃ finite G1 ⊆ G ∪ {E}, G1 6∈ S , ∃ finite G2 ⊆ G ∪ {F}, G2 6∈ S

• wlog G1 = G′1 ∪ {E}, G2 = G′2 ∪ {F}, and G′1,G′2 ⊆ G finite

• G′1 ∪ G′2 ∪ {(E ∨ F)} ⊆ G, hence G′1 ∪ G′2 ∪ {(E ∨ F)} ∈ S

• hence G′1 ∪ G′2 ∪ {E} ∈ S or G′1 ∪ G′2 ∪ {F} ∈ S

• contradiction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 62/1

Satisfaction Properties

Lemma Á
1 assume S is a set of formula sets and S has the satisfaction

properties

2 let S∗ be the set of all formula sets G such that
∀ finite G0 ⊆ G, G0 ∈ S

3 then S∗ has the satisfaction properties

Proof.

we treat the case of disjunction

• assume G ∈ S∗, (E ∨ F) ∈ G, G ∪ {E} 6∈ S∗ and G ∪ {F} 6∈ S∗

• ∀ finite G0 ⊆ G, G0 ∈ S ,

• ∃ finite G1 ⊆ G ∪ {E}, G1 6∈ S , ∃ finite G2 ⊆ G ∪ {F}, G2 6∈ S

• wlog G1 = G′1 ∪ {E}, G2 = G′2 ∪ {F}, and G′1,G′2 ⊆ G finite

• G′1 ∪ G′2 ∪ {(E ∨ F)} ⊆ G, hence G′1 ∪ G′2 ∪ {(E ∨ F)} ∈ S

• hence G′1 ∪ G′2 ∪ {E} ∈ S or G′1 ∪ G′2 ∪ {F} ∈ S

• contradiction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 62/1

Satisfaction Properties

Lemma Á
1 assume S is a set of formula sets and S has the satisfaction

properties

2 let S∗ be the set of all formula sets G such that
∀ finite G0 ⊆ G, G0 ∈ S

3 then S∗ has the satisfaction properties

Proof.

we treat the case of disjunction

• assume G ∈ S∗, (E ∨ F) ∈ G, G ∪ {E} 6∈ S∗ and G ∪ {F} 6∈ S∗

• ∀ finite G0 ⊆ G, G0 ∈ S ,

• ∃ finite G1 ⊆ G ∪ {E}, G1 6∈ S , ∃ finite G2 ⊆ G ∪ {F}, G2 6∈ S

• wlog G1 = G′1 ∪ {E}, G2 = G′2 ∪ {F}, and G′1,G′2 ⊆ G finite

• G′1 ∪ G′2 ∪ {(E ∨ F)} ⊆ G, hence G′1 ∪ G′2 ∪ {(E ∨ F)} ∈ S

• hence G′1 ∪ G′2 ∪ {E} ∈ S or G′1 ∪ G′2 ∪ {F} ∈ S

• contradiction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 62/1

Satisfaction Properties

Lemma Á
1 assume S is a set of formula sets and S has the satisfaction

properties

2 let S∗ be the set of all formula sets G such that
∀ finite G0 ⊆ G, G0 ∈ S

3 then S∗ has the satisfaction properties

Proof.

we treat the case of disjunction

• assume G ∈ S∗, (E ∨ F) ∈ G, G ∪ {E} 6∈ S∗ and G ∪ {F} 6∈ S∗

• ∀ finite G0 ⊆ G, G0 ∈ S ,

• ∃ finite G1 ⊆ G ∪ {E}, G1 6∈ S , ∃ finite G2 ⊆ G ∪ {F}, G2 6∈ S

• wlog G1 = G′1 ∪ {E}, G2 = G′2 ∪ {F}, and G′1,G′2 ⊆ G finite

• G′1 ∪ G′2 ∪ {(E ∨ F)} ⊆ G, hence G′1 ∪ G′2 ∪ {(E ∨ F)} ∈ S

• hence G′1 ∪ G′2 ∪ {E} ∈ S or G′1 ∪ G′2 ∪ {F} ∈ S

• contradiction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 62/1

Satisfaction Properties

Lemma Á
1 assume S is a set of formula sets and S has the satisfaction

properties

2 let S∗ be the set of all formula sets G such that
∀ finite G0 ⊆ G, G0 ∈ S

3 then S∗ has the satisfaction properties

Proof.

we treat the case of disjunction

• assume G ∈ S∗, (E ∨ F) ∈ G, G ∪ {E} 6∈ S∗ and G ∪ {F} 6∈ S∗

• ∀ finite G0 ⊆ G, G0 ∈ S ,

• ∃ finite G1 ⊆ G ∪ {E}, G1 6∈ S , ∃ finite G2 ⊆ G ∪ {F}, G2 6∈ S

• wlog G1 = G′1 ∪ {E}, G2 = G′2 ∪ {F}, and G′1,G′2 ⊆ G finite

• G′1 ∪ G′2 ∪ {(E ∨ F)} ⊆ G, hence G′1 ∪ G′2 ∪ {(E ∨ F)} ∈ S

• hence G′1 ∪ G′2 ∪ {E} ∈ S or G′1 ∪ G′2 ∪ {F} ∈ S

• contradiction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 62/1

Satisfaction Properties

Lemma Á
1 assume S is a set of formula sets and S has the satisfaction

properties

2 let S∗ be the set of all formula sets G such that
∀ finite G0 ⊆ G, G0 ∈ S

3 then S∗ has the satisfaction properties

Proof.

we treat the case of disjunction

• assume G ∈ S∗, (E ∨ F) ∈ G, G ∪ {E} 6∈ S∗ and G ∪ {F} 6∈ S∗

• ∀ finite G0 ⊆ G, G0 ∈ S ,

• ∃ finite G1 ⊆ G ∪ {E}, G1 6∈ S , ∃ finite G2 ⊆ G ∪ {F}, G2 6∈ S

• wlog G1 = G′1 ∪ {E}, G2 = G′2 ∪ {F}, and G′1,G′2 ⊆ G finite

• G′1 ∪ G′2 ∪ {(E ∨ F)} ⊆ G, hence G′1 ∪ G′2 ∪ {(E ∨ F)} ∈ S

• hence G′1 ∪ G′2 ∪ {E} ∈ S or G′1 ∪ G′2 ∪ {F} ∈ S

• contradiction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 62/1

Satisfaction Properties

Lemma Á
1 assume S is a set of formula sets and S has the satisfaction

properties

2 let S∗ be the set of all formula sets G such that
∀ finite G0 ⊆ G, G0 ∈ S

3 then S∗ has the satisfaction properties

Proof.

we treat the case of disjunction

• assume G ∈ S∗, (E ∨ F) ∈ G, G ∪ {E} 6∈ S∗ and G ∪ {F} 6∈ S∗

• ∀ finite G0 ⊆ G, G0 ∈ S ,

• ∃ finite G1 ⊆ G ∪ {E}, G1 6∈ S , ∃ finite G2 ⊆ G ∪ {F}, G2 6∈ S

• wlog G1 = G′1 ∪ {E}, G2 = G′2 ∪ {F}, and G′1,G′2 ⊆ G finite

• G′1 ∪ G′2 ∪ {(E ∨ F)} ⊆ G, hence G′1 ∪ G′2 ∪ {(E ∨ F)} ∈ S

• hence G′1 ∪ G′2 ∪ {E} ∈ S or G′1 ∪ G′2 ∪ {F} ∈ S

• contradiction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 62/1

Compactness and Löwenheim-Skolem Theorem

Compactness and Löwenheim-Skolem Theorem

L base language; L+ ⊇ L infinitely many new individual constants

Theorem (Model Existence Theorem)

1 if S∗ is a set of formula sets of L+ having the satisfaction
properties, then ∀ formula sets G ∈ S∗ of L, ∃ M, M |= G

2 ∀ elements m of M: m denotes term in L+

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Remark

the statement and the proof of the compactness theorem do not refer to
provability; compactness is extensible to non-enumerable language

GM (Institute of Computer Science @ UIBK) Automated Reasoning 63/1

Compactness and Löwenheim-Skolem Theorem

Compactness and Löwenheim-Skolem Theorem

L base language; L+ ⊇ L infinitely many new individual constants

Theorem (Model Existence Theorem)

1 if S∗ is a set of formula sets of L+ having the satisfaction
properties, then ∀ formula sets G ∈ S∗ of L, ∃ M, M |= G

2 ∀ elements m of M: m denotes term in L+

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Remark

the statement and the proof of the compactness theorem do not refer to
provability; compactness is extensible to non-enumerable language

GM (Institute of Computer Science @ UIBK) Automated Reasoning 63/1

Compactness and Löwenheim-Skolem Theorem

Compactness and Löwenheim-Skolem Theorem

L base language; L+ ⊇ L infinitely many new individual constants

Theorem (Model Existence Theorem)

1 if S∗ is a set of formula sets of L+ having the satisfaction
properties, then ∀ formula sets G ∈ S∗ of L, ∃ M, M |= G

2 ∀ elements m of M: m denotes term in L+

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Remark

the statement and the proof of the compactness theorem do not refer to
provability; compactness is extensible to non-enumerable language

GM (Institute of Computer Science @ UIBK) Automated Reasoning 63/1

Compactness and Löwenheim-Skolem Theorem

Compactness and Löwenheim-Skolem Theorem

L base language; L+ ⊇ L infinitely many new individual constants

Theorem (Model Existence Theorem)

1 if S∗ is a set of formula sets of L+ having the satisfaction
properties, then ∀ formula sets G ∈ S∗ of L, ∃ M, M |= G

2 ∀ elements m of M: m denotes term in L+

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Remark

the statement and the proof of the compactness theorem do not refer to
provability; compactness is extensible to non-enumerable language

GM (Institute of Computer Science @ UIBK) Automated Reasoning 63/1

Compactness and Löwenheim-Skolem Theorem

Proof (of compactness).

• consider the set S of satisfiable formula sets (over L)

(as in Lemma À)

• consider the set S∗ of all formulas set G, ∀ G0 ⊆ G, G0 finite, G0 ∈ S

(as in Lemma Á)

• Lemma À yields that S admits the satisfaction properties

• Lemma Á yields that S∗ admits the satisfaction properties

• by assumption G is in S∗

• by model existence G has a model M

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Proof.

the model M constructed is countable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 64/1

Compactness and Löwenheim-Skolem Theorem

Proof (of compactness).

• consider the set S of satisfiable formula sets (over L)

(as in Lemma À)

• consider the set S∗ of all formulas set G, ∀ G0 ⊆ G, G0 finite, G0 ∈ S

(as in Lemma Á)

• Lemma À yields that S admits the satisfaction properties

• Lemma Á yields that S∗ admits the satisfaction properties

• by assumption G is in S∗

• by model existence G has a model M

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Proof.

the model M constructed is countable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 64/1

Compactness and Löwenheim-Skolem Theorem

Proof (of compactness).

• consider the set S of satisfiable formula sets (over L)
(as in Lemma À)

• consider the set S∗ of all formulas set G, ∀ G0 ⊆ G, G0 finite, G0 ∈ S
(as in Lemma Á)

• Lemma À yields that S admits the satisfaction properties

• Lemma Á yields that S∗ admits the satisfaction properties

• by assumption G is in S∗

• by model existence G has a model M

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Proof.

the model M constructed is countable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 64/1

Compactness and Löwenheim-Skolem Theorem

Proof (of compactness).

• consider the set S of satisfiable formula sets (over L)
(as in Lemma À)

• consider the set S∗ of all formulas set G, ∀ G0 ⊆ G, G0 finite, G0 ∈ S
(as in Lemma Á)

• Lemma À yields that S admits the satisfaction properties

• Lemma Á yields that S∗ admits the satisfaction properties

• by assumption G is in S∗

• by model existence G has a model M

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Proof.

the model M constructed is countable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 64/1

Compactness and Löwenheim-Skolem Theorem

Proof (of compactness).

• consider the set S of satisfiable formula sets (over L)
(as in Lemma À)

• consider the set S∗ of all formulas set G, ∀ G0 ⊆ G, G0 finite, G0 ∈ S
(as in Lemma Á)

• Lemma À yields that S admits the satisfaction properties

• Lemma Á yields that S∗ admits the satisfaction properties

• by assumption G is in S∗

• by model existence G has a model M

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Proof.

the model M constructed is countable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 64/1

Compactness and Löwenheim-Skolem Theorem

Proof (of compactness).

• consider the set S of satisfiable formula sets (over L)
(as in Lemma À)

• consider the set S∗ of all formulas set G, ∀ G0 ⊆ G, G0 finite, G0 ∈ S
(as in Lemma Á)

• Lemma À yields that S admits the satisfaction properties

• Lemma Á yields that S∗ admits the satisfaction properties

• by assumption G is in S∗

• by model existence G has a model M

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Proof.

the model M constructed is countable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 64/1

Compactness and Löwenheim-Skolem Theorem

Proof (of compactness).

• consider the set S of satisfiable formula sets (over L)
(as in Lemma À)

• consider the set S∗ of all formulas set G, ∀ G0 ⊆ G, G0 finite, G0 ∈ S
(as in Lemma Á)

• Lemma À yields that S admits the satisfaction properties

• Lemma Á yields that S∗ admits the satisfaction properties

• by assumption G is in S∗

• by model existence G has a model M

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Proof.

the model M constructed is countable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 64/1

Compactness and Löwenheim-Skolem Theorem

Proof (of compactness).

• consider the set S of satisfiable formula sets (over L)
(as in Lemma À)

• consider the set S∗ of all formulas set G, ∀ G0 ⊆ G, G0 finite, G0 ∈ S
(as in Lemma Á)

• Lemma À yields that S admits the satisfaction properties

• Lemma Á yields that S∗ admits the satisfaction properties

• by assumption G is in S∗

• by model existence G has a model M

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Proof.

the model M constructed is countable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 64/1

Compactness and Löwenheim-Skolem Theorem

How to Prove Completeness

model existence

Lemma Â Lemma Ã

G has closure properties⇒ ∃ model
M, M |= G

S admits satisfaction properties ⇒
G ∈ S admits closure properties

Definition

for any formal system; if ¬ ∃ proof of ⊥ from a formula set G, we say G
is consistent

completenessmodel existenceLemma Å

S set of consistent sets⇒ S admits
satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 65/1

Compactness and Löwenheim-Skolem Theorem

How to Prove Completeness

model existenceLemma Â Lemma Ã

G has closure properties⇒ ∃ model
M, M |= G

S admits satisfaction properties ⇒
G ∈ S admits closure properties

Definition

for any formal system; if ¬ ∃ proof of ⊥ from a formula set G, we say G
is consistent

completenessmodel existenceLemma Å

S set of consistent sets⇒ S admits
satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 65/1

Compactness and Löwenheim-Skolem Theorem

How to Prove Completeness

model existenceLemma Â Lemma Ã

G has closure properties⇒ ∃ model
M, M |= G

S admits satisfaction properties ⇒
G ∈ S admits closure properties

Definition

for any formal system; if ¬ ∃ proof of ⊥ from a formula set G, we say G
is consistent

completenessmodel existenceLemma Å

S set of consistent sets⇒ S admits
satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 65/1

Compactness and Löwenheim-Skolem Theorem

How to Prove Completeness

model existenceLemma Â Lemma Ã

G has closure properties⇒ ∃ model
M, M |= G

S admits satisfaction properties ⇒
G ∈ S admits closure properties

Definition

for any formal system; if ¬ ∃ proof of ⊥ from a formula set G, we say G
is consistent

completenessmodel existenceLemma Å

S set of consistent sets⇒ S admits
satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 65/1

Compactness and Löwenheim-Skolem Theorem

How to Prove Completeness

model existenceLemma Â Lemma Ã

G has closure properties⇒ ∃ model
M, M |= G

S admits satisfaction properties ⇒
G ∈ S admits closure properties

Definition

for any formal system; if ¬ ∃ proof of ⊥ from a formula set G, we say G
is consistent

completenessmodel existenceLemma Å

S set of consistent sets⇒ S admits
satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 65/1

Compactness and Löwenheim-Skolem Theorem

How to Prove Completeness

model existenceLemma Â Lemma Ã

G has closure properties⇒ ∃ model
M, M |= G

S admits satisfaction properties ⇒
G ∈ S admits closure properties

Definition

for any formal system; if ¬ ∃ proof of ⊥ from a formula set G, we say G
is consistent

completenessmodel existenceLemma Å

S set of consistent sets⇒ S admits
satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 65/1

Compactness and Löwenheim-Skolem Theorem

How to Prove Completeness

model existenceLemma Â Lemma Ã

G has closure properties⇒ ∃ model
M, M |= G

S admits satisfaction properties ⇒
G ∈ S admits closure properties

Definition

for any formal system; if ¬ ∃ proof of ⊥ from a formula set G, we say G
is consistent

completenessmodel existenceLemma Å

S set of consistent sets⇒ S admits
satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 65/1

Compactness and Löwenheim-Skolem Theorem

How to Prove Completeness

model existenceLemma Â Lemma Ã

G has closure properties⇒ ∃ model
M, M |= G

S admits satisfaction properties ⇒
G ∈ S admits closure properties

Definition

for any formal system; if ¬ ∃ proof of ⊥ from a formula set G, we say G
is consistent

completenessmodel existenceLemma Å

S set of consistent sets⇒ S admits
satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 65/1

Compactness and Löwenheim-Skolem Theorem

How to Prove Completeness

model existenceLemma Â Lemma Ã

G has closure properties⇒ ∃ model
M, M |= G

S admits satisfaction properties ⇒
G ∈ S admits closure properties

Definition

for any formal system; if ¬ ∃ proof of ⊥ from a formula set G, we say G
is consistent

completenessmodel existenceLemma Å

S set of consistent sets⇒ S admits
satisfaction properties

GM (Institute of Computer Science @ UIBK) Automated Reasoning 65/1

Compactness and Löwenheim-Skolem Theorem

Later We Exploit the Proof

completeness of
resolution

model existenceLemma

S set of consistent sets⇒ S admits
satisfaction properties

completeness of
ordered resolution

model existenceLemma

completeness of
paramodulation

model existenceLemma

GM (Institute of Computer Science @ UIBK) Automated Reasoning 66/1

Compactness and Löwenheim-Skolem Theorem

Later We Exploit the Proof

completeness of
resolution

model existenceLemma

S set of consistent sets⇒ S admits
satisfaction properties

completeness of
ordered resolution

model existenceLemma

completeness of
paramodulation

model existenceLemma

GM (Institute of Computer Science @ UIBK) Automated Reasoning 66/1

Compactness and Löwenheim-Skolem Theorem

Later We Exploit the Proof

completeness of
resolution

model existenceLemma

S set of consistent sets⇒ S admits
satisfaction properties

completeness of
ordered resolution

model existenceLemma

completeness of
paramodulation

model existenceLemma

GM (Institute of Computer Science @ UIBK) Automated Reasoning 66/1

Compactness and Löwenheim-Skolem Theorem

Later We Exploit the Proof

completeness of
resolution

model existenceLemma

S set of consistent sets⇒ S admits
satisfaction properties

completeness of
ordered resolution

model existenceLemma

completeness of
paramodulation

model existenceLemma

GM (Institute of Computer Science @ UIBK) Automated Reasoning 66/1

Compactness and Löwenheim-Skolem Theorem

Later We Exploit the Proof

completeness of
resolution

model existenceLemma

S set of consistent sets⇒ S admits
satisfaction properties

completeness of
ordered resolution

model existenceLemma

completeness of
paramodulation

model existenceLemma

GM (Institute of Computer Science @ UIBK) Automated Reasoning 66/1

Compactness and Löwenheim-Skolem Theorem

Later We Exploit the Proof

completeness of
resolution

model existenceLemma

S set of consistent sets⇒ S admits
satisfaction properties

completeness of
ordered resolution

model existenceLemma

completeness of
paramodulation

model existenceLemma

GM (Institute of Computer Science @ UIBK) Automated Reasoning 66/1

Compactness and Löwenheim-Skolem Theorem

Later We Exploit the Proof

completeness of
resolution

model existenceLemma

S set of consistent sets⇒ S admits
satisfaction properties

completeness of
ordered resolution

model existenceLemma

completeness of
paramodulation

model existenceLemma

GM (Institute of Computer Science @ UIBK) Automated Reasoning 66/1

