

Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

- Program Analysis; logical product of abstract interpreters
- Databases; disjunctive datalog
- Programming Languages; types as formulas
- Computational Complexity; implicit complexity

- Program Analysis; logical product of abstract interpreters
- Databases; disjunctive datalog
- Programming Languages; types as formulas
- Computational Complexity; implicit complexity

- Program Analysis; logical product of abstract interpreters
- Databases; disjunctive datalog
- Programming Languages; types as formulas
- Computational Complexity; implicit complexity

- Program Analysis; logical product of abstract interpreters
- Databases; disjunctive datalog
- Programming Languages; types as formulas
- Computational Complexity; implicit complexity

Selection of Applications

- Program Analysis; logical product of abstract interpreters
- Databases; disjunctive datalog
- Programming Languages; types as formulas
- Computational Complexity; implicit complexity

Lessons Learnt

- (mathematical) logic is the science of (mathematical) reasoning
- logic has been and is very successfully used as workbench for various areas in computer science
- applications are not trivial (in both senses)

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

First-Order Logic

The Language of First-Order Logic

a first-order language is determined by specifying its constants, variables, logical symbols, auxiliary (brackets, comma)

The Language of First-Order Logic

a first-order language is determined by specifying its constants, variables, logical symbols, auxiliary (brackets, comma)

- individual constants: $k_0, k_1, \ldots, k_j, \ldots$ denoted c, d, etc.
- function constants with i arguments: f_0^i, f_1^i, \ldots denoted f, g, h etc.
- predicate constants with i arguments: R_0^i, R_1^i, \ldots denoted as P, Q, R, etc.

The Language of First-Order Logic

a first-order language is determined by specifying its constants, variables, logical symbols, auxiliary (brackets, comma)

Definition

- individual constants: $k_0, k_1, \ldots, k_j, \ldots$ denoted c, d, etc.
- function constants with i arguments: f_0^i, f_1^i, \ldots denoted f, g, h etc.
- predicate constants with i arguments: R_0^i, R_1^i, \ldots denoted as P, Q, R, etc.

Definition

• variables: $x_0, x_1, ..., x_i, ...$

denoted x, y, z, etc.

- propositional connectives: \neg , \land , \lor , \rightarrow
- quantifiers ∀, ∃
- equality sign =

- propositional connectives: ¬, ∧, ∨, →
- quantifiers ∀, ∃
- equality sign =

the equality sign = is a predicate but treated like a logical symbol

- propositional connectives: ¬, ∧, ∨, →
- quantifiers ∀, ∃
- equality sign =

the equality sign = is a predicate but treated like a logical symbol

Definition

if the cardinality of the set of constants in $\mathcal L$ is countable, we say $\mathcal L$ is countable

- propositional connectives: ¬, ∧, ∨, →
- quantifiers ∀, ∃
- equality sign =

the equality sign = is a predicate but treated like a logical symbol

Definition

if the cardinality of the set of constants in $\mathcal L$ is countable, we say $\mathcal L$ is countable

Example

the language of arithmetic $\mathcal{L}_{\text{arith}}$ contains = and consists of

- individual constant 0
- function constants s, +, ·
- predicate constant <

Definition

terms (of \mathcal{L}) are defined as follows

- ullet any individual constant c in ${\mathcal L}$ is a term
- any variable x is a term
- if t_1, \ldots, t_n are terms, f an n-ary function constant in \mathcal{L} , then $f(t_1, \ldots, t_n)$ is a term

Definition

terms (of \mathcal{L}) are defined as follows

- ullet any individual constant c in ${\mathcal L}$ is a term
- any variable x is a term
- if t_1, \ldots, t_n are terms, f an n-ary function constant in \mathcal{L} , then $f(t_1, \ldots, t_n)$ is a term

Example

• s(s(s(0))) is a term (of \mathcal{L}_{arith})

Definition

terms (of \mathcal{L}) are defined as follows

- ullet any individual constant c in ${\mathcal L}$ is a term
- any variable x is a term
- if t_1, \ldots, t_n are terms, f an n-ary function constant in \mathcal{L} , then $f(t_1, \ldots, t_n)$ is a term

Example

- s(s(s(0))) is a term (of \mathcal{L}_{arith})
- s(x) is a term (of \mathcal{L}_{arith})

Definition

terms (of \mathcal{L}) are defined as follows

- ullet any individual constant c in ${\mathcal L}$ is a term
- any variable x is a term
- if t_1, \ldots, t_n are terms, f an n-ary function constant in \mathcal{L} , then $f(t_1, \ldots, t_n)$ is a term

Example

- s(s(s(0))) is a term (of \mathcal{L}_{arith})
- s(x) is a term (of \mathcal{L}_{arith})

Convention

if the language ${\mathcal L}$ is clear from context the phrase "of ${\mathcal L}$ " will be dropped

- $P(t_1, ..., t_n)$ is an atomic formula; P a constant of arity n, t_i terms
- $t_1 = t_2$ is an atomic formula, if = is present

Definition

- $P(t_1, ..., t_n)$ is an atomic formula; P a constant of arity n, t_i terms
- $t_1 = t_2$ is an atomic formula, if = is present

Definition

formulas are defined as follows

Definition

- $P(t_1, ..., t_n)$ is an atomic formula; P a constant of arity n, t_i terms
- $t_1 = t_2$ is an atomic formula, if = is present

Definition

formulas are defined as follows

atomic formulas are formulas

Definition

- $P(t_1, ..., t_n)$ is an atomic formula; P a constant of arity n, t_i terms
- $t_1 = t_2$ is an atomic formula, if = is present

Definition

formulas are defined as follows

- · atomic formulas are formulas
- A and B are frms: $(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \to B)$ are formulas

Definition

- $P(t_1, ..., t_n)$ is an atomic formula; P a constant of arity n, t_i terms
- $t_1 = t_2$ is an atomic formula, if = is present

Definition

formulas are defined as follows

- atomic formulas are formulas
- A and B are frms: $(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \to B)$ are formulas
- if A a formula, x a variable, then

$$\forall x A \quad \exists x A$$

are formulas

Convention

if brackets are not necessary they are omitted:

$$\exists, \forall > \neg > \lor, \land > \rightarrow$$
 right-associativity of \rightarrow

Convention

if brackets are not necessary they are omitted:

$$\exists, \forall > \neg > \lor, \land > \rightarrow$$
 right-associativity of \rightarrow

Example

consider \mathcal{L}_{arith} , which of the following are formulas over \mathcal{L}_{arith} ?

- $x < y \land \neg \exists z (x < z \land z < y)$
- $\forall x(x=0) \rightarrow \exists x(x=0)$
- $\forall x (x < y \land \exists x (y = x))$

Convention

if brackets are not necessary they are omitted:

$$\exists, \forall > \neg > \lor, \land > \rightarrow$$
 right-associativity of \rightarrow

Example

consider \mathcal{L}_{arith} , which of the following are formulas over \mathcal{L}_{arith} ?

•
$$x < y \land \neg \exists z (x < z \land z < y)$$

•
$$\forall x(x=0) \rightarrow \exists x(x=0)$$

•
$$\forall x (x < y \land \exists x (y = x))$$

Definition

a structure is a pair $\mathcal{A} = (A, a)$ such that:

- a structure is a pair A = (A, a) such that:
 - A is a non-empty set, A is called domain

- a structure is a pair A = (A, a) such that:
 - A is a non-empty set, A is called domain
 - mapping a associates constants with the domain:
 - any individual constant c is associated with an element $a(c) \in A$.
 - any *n*-ary function constant f is associated with $a(f): A^n \to A$.
 - any n-ary predicate constants P is associated with a subset a(P) ⊂ Aⁿ.

- a structure is a pair A = (A, a) such that:
 - A is a non-empty set, A is called domain
 - mapping a associates constants with the domain:
 - any individual constant c is associated with an element $a(c) \in A$.
 - any *n*-ary function constant f is associated with $a(f): A^n \to A$.
 - any *n*-ary predicate constants *P* is associated with a subset $a(P) \subseteq A^n$.
 - equality sign = is associated with the identity relation a(=).

Definition

- a structure is a pair A = (A, a) such that:
 - A is a non-empty set, A is called domain
 - mapping a associates constants with the domain:
 - any individual constant c is associated with an element $a(c) \in A$.
 - any *n*-ary function constant f is associated with $a(f): A^n \to A$.
 - any *n*-ary predicate constants *P* is associated with a subset $a(P) \subseteq A^n$.
 - equality sign = is associated with the identity relation a(=).

we write c^A . f^A , and P^A , instead of a(c), a(f), and a(P); for brevity we write = for the equality sign and the identity relation

Definition

- a structure is a pair A = (A, a) such that:
 - A is a non-empty set, A is called domain
 - mapping a associates constants with the domain:
 - any individual constant c is associated with an element $a(c) \in A$.
 - any *n*-ary function constant f is associated with $a(f): A^n \to A$.
 - any *n*-ary predicate constants P is associated with a subset $a(P) \subseteq A^n$.
- equality sign = is associated with the identity relation a(=). we write c^A . f^A , and P^A , instead of a(c), a(f), and a(P); for brevity we write = for the equality sign and the identity relation

Remark

a structure is equivalent to the definition of model in LICS

- an environment for \mathcal{A} is a mapping $\ell \colon \{x_n \mid n \in \mathbb{N}\} \to \mathcal{A}$
- $\ell\{x \mapsto t\}$ denotes the environment mapping x to t and all other variables $y \neq x$ to $\ell(y)$

- an environment for \mathcal{A} is a mapping $\ell \colon \{x_n \mid n \in \mathbb{N}\} \to \mathcal{A}$
- $\ell\{x \mapsto t\}$ denotes the environment mapping x to t and all other variables $y \neq x$ to $\ell(y)$

Definition

an interpretation \mathcal{I} is a pair (\mathcal{A}, ℓ) such that

- A is a structure
- ℓ is an environment

- an environment for \mathcal{A} is a mapping $\ell \colon \{x_n \mid n \in \mathbb{N}\} \to \mathcal{A}$
- $\ell\{x \mapsto t\}$ denotes the environment mapping x to t and all other variables $y \neq x$ to $\ell(y)$

Definition

an interpretation $\mathcal I$ is a pair $(\mathcal A,\ell)$ such that

- A is a structure
- ℓ is an environment

Definition

the value of a term t (wrt interpretation \mathcal{I})

$$t^{\mathcal{I}} = egin{cases} \ell(t) & ext{if } t ext{ a variable} \ c^{\mathcal{A}} & ext{if } t = c \ f^{\mathcal{A}}(t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) & ext{if } t = f(t_1, \dots, t_n), \ n \geqslant 1 \end{cases}$$

 $\mathcal{I} = (\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

$$\mathcal{I} = (\mathcal{A}, \ell)$$
 an interpretation; F a formula, we define $\mathcal{I} \models F$

$$\mathcal{I} \models t_1 = t_2 \qquad :\iff \mathsf{if} \ t_1^{\mathcal{I}} = t_2^{\mathcal{I}}$$

$$\mathcal{I} = (\mathcal{A}, \ell)$$
 an interpretation; F a formula, we define $\mathcal{I} \models F$

$$\mathcal{I} \models t_1 = t_2 \qquad :\iff \mathsf{if} \ t_1^{\mathcal{I}} = t_2^{\mathcal{I}}$$

$$\mathcal{I} \models P(t_1, \dots, t_n) :\iff \text{if } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$$

$$\mathcal{I} = (\mathcal{A}, \ell)$$
 an interpretation; F a formula, we define $\mathcal{I} \models F$

$$\mathcal{I} \models t_1 = t_2 \qquad :\iff \text{if } t_1^{\mathcal{I}} = t_2^{\mathcal{I}}$$

$$\mathcal{I} \models P(t_1, \dots, t_n) :\iff \text{if } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$$

$$\mathcal{I} \models \neg F \qquad :\iff \text{if } \mathcal{I} \not\models F$$

 $\mathcal{I} = (\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

$$\mathcal{I} \models t_1 = t_2 \qquad :\iff \mathsf{if} \ t_1^{\mathcal{I}} = t_2^{\mathcal{I}}$$

$$\mathcal{I} \models P(t_1, \ldots, t_n) :\iff \text{if } (t_1^{\mathcal{I}}, \ldots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$$

$$\mathcal{I} \models \neg F \qquad :\iff \text{if } \mathcal{I} \not\models F$$

$$\mathcal{I} \models F \land G \qquad :\iff \text{if } \mathcal{I} \models F \text{ and } \mathcal{I} \models G$$

$$\mathcal{I} = (\mathcal{A}, \ell)$$
 an interpretation; F a formula, we define $\mathcal{I} \models F$

$$\mathcal{I} \models t_1 = t_2 \qquad :\iff \mathsf{if} \ t_1^{\mathcal{I}} = t_2^{\mathcal{I}}$$

$$\mathcal{I} \models P(t_1, \ldots, t_n) :\iff \text{if } (t_1^{\mathcal{I}}, \ldots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$$

$$\mathcal{I} \models \neg F \qquad :\iff \text{if } \mathcal{I} \not\models F$$

$$\mathcal{I} \models F \land G \qquad :\iff \text{if } \mathcal{I} \models F \text{ and } \mathcal{I} \models G$$

$$\mathcal{I} \models F \lor G \qquad :\iff \text{if } \mathcal{I} \models F \text{ or } \mathcal{I} \models G$$

$$\mathcal{I} = (\mathcal{A}, \ell)$$
 an interpretation; F a formula, we define $\mathcal{I} \models F$

$$\mathcal{I} \models t_1 = t_2 \qquad :\iff \mathsf{if} \ t_1^{\mathcal{I}} = t_2^{\mathcal{I}}$$

$$\mathcal{I} \models P(t_1, \dots, t_n) :\iff \text{if } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$$

$$\mathcal{I} \models \neg F \qquad :\iff \text{if } \mathcal{I} \not\models F$$

$$\mathcal{I} \models F \land G \qquad :\iff \text{if } \mathcal{I} \models F \text{ and } \mathcal{I} \models G$$

$$\mathcal{I} \models F \lor G \qquad :\iff \text{if } \mathcal{I} \models F \text{ or } \mathcal{I} \models G$$

$$\mathcal{I} \models F \rightarrow G$$
 : \iff if $\mathcal{I} \models F$, then $\mathcal{I} \models G$

$$\mathcal{I} = (\mathcal{A}, \ell)$$
 an interpretation; F a formula, we define $\mathcal{I} \models F$

$$\mathcal{I} \models t_1 = t_2 \qquad :\iff \mathsf{if} \ t_1^{\mathcal{I}} = t_2^{\mathcal{I}}$$

$$\mathcal{I} \models P(t_1, \dots, t_n) :\iff \text{if } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$$

$$\mathcal{I} \models \neg F \qquad :\iff \text{if } \mathcal{I} \not\models F$$

$$\mathcal{I} \models F \land G \qquad :\iff \text{if } \mathcal{I} \models F \text{ and } \mathcal{I} \models G$$

$$\mathcal{I} \models F \lor G \qquad :\iff \text{if } \mathcal{I} \models F \text{ or } \mathcal{I} \models G$$

$$\mathcal{I} \models F \rightarrow G$$
 : \iff if $\mathcal{I} \models F$, then $\mathcal{I} \models G$

$$\mathcal{I} \models \forall x F \qquad :\iff \text{if } \mathcal{I}\{x \mapsto a\} \models F \text{ holds for all } a \in A$$

$$\mathcal{I} = (\mathcal{A}, \ell)$$
 an interpretation; F a formula, we define $\mathcal{I} \models F$

$$\mathcal{I} \models t_1 = t_2 \qquad :\iff \mathsf{if} \ t_1^{\mathcal{I}} = t_2^{\mathcal{I}}$$

$$\mathcal{I} \models P(t_1, \dots, t_n) :\iff \text{if } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$$

$$\mathcal{I} \models \neg F \qquad :\iff \text{if } \mathcal{I} \not\models F$$

$$\mathcal{I} \models F \land G \qquad :\iff \text{if } \mathcal{I} \models F \text{ and } \mathcal{I} \models G$$

$$\mathcal{I} \models F \lor G \qquad :\iff \text{if } \mathcal{I} \models F \text{ or } \mathcal{I} \models G$$

$$\mathcal{I} \models F \rightarrow G$$
 : \iff if $\mathcal{I} \models F$, then $\mathcal{I} \models G$

$$\mathcal{L} \models I \rightarrow G$$
 . \longleftrightarrow if $\mathcal{L} \models I$, then $\mathcal{L} \models G$

$$\mathcal{I} \models \forall x F \qquad :\iff \text{if } \mathcal{I}\{x \mapsto a\} \models F \text{ holds for all } a \in A$$

$$\mathcal{I} \models \exists x F \qquad :\iff \text{if } \mathcal{I}\{x \mapsto a\} \models F \text{ holds for some } a \in A$$

$$\mathcal{I} = (\mathcal{A}, \ell)$$
 an interpretation; F a formula, we define $\mathcal{I} \models F$

$$\mathcal{I} \models t_1 = t_2 \qquad :\iff \text{if } t_1^{\mathcal{I}} = t_2^{\mathcal{I}}$$

$$\mathcal{I} \models P(t_1, \dots, t_n) \implies \text{if } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$$

$$\mathcal{I} \models \neg F \qquad :\iff \text{if } \mathcal{I} \not\models F$$

$$\mathcal{I} \models F \land G \qquad :\iff \text{if } \mathcal{I} \models F \text{ and } \mathcal{I} \models G$$

$$\mathcal{I} \models F \lor G \qquad :\iff \text{if } \mathcal{I} \models F \text{ or } \mathcal{I} \models G$$

$$\mathcal{I} \models F \to G \qquad :\iff \text{if } \mathcal{I} \models F, \text{ then } \mathcal{I} \models G$$

$$\mathcal{I} \models \forall xF \qquad :\iff \text{if } \mathcal{I}\{x \mapsto a\} \models F \text{ holds for all } a \in A$$

let \mathcal{G} be a set of formulas

 $\mathcal{I} \models \exists x F$

•
$$\mathcal{I} \models \mathcal{G}$$
, if $\mathcal{I} \models F$ for all $F \in \mathcal{G}$

 $:\iff$ if $\mathcal{I}\{x\mapsto a\}\models F$ holds for some $a\in A$

$$\mathcal{I} = (\mathcal{A}, \ell)$$
 an interpretation; F a formula, we define $\mathcal{I} \models F$

$$\mathcal{I} \models t_1 = t_2 \qquad :\iff \mathsf{if} \ t_1^{\mathcal{I}} = t_2^{\mathcal{I}}$$

$$\mathcal{I} \models P(t_1,\ldots,t_n) :\iff \text{if } (t_1^{\mathcal{I}},\ldots,t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$$

$$\mathcal{I} \models \neg F \qquad :\iff \text{if } \mathcal{I} \not\models F$$

$$\mathcal{I} \models F \land G \qquad :\iff \text{if } \mathcal{I} \models F \text{ and } \mathcal{I} \models G$$

$$\mathcal{I} \models F \lor G \qquad :\iff \text{if } \mathcal{I} \models F \text{ or } \mathcal{I} \models G$$

$$\mathcal{I} \models F \rightarrow G$$
 : \iff if $\mathcal{I} \models F$, then $\mathcal{I} \models G$

$$\mathcal{I} \models \forall xF$$
 : \iff if $\mathcal{I}\{x \mapsto a\} \models F$ holds for all $a \in A$

$$\mathcal{I} \models \exists x F \qquad :\iff \text{if } \mathcal{I}\{x \mapsto a\} \models F \text{ holds for some } a \in A$$

let \mathcal{G} be a set of formulas

- $\mathcal{I} \models \mathcal{G}$, if $\mathcal{I} \models F$ for all $F \in \mathcal{G}$
- \mathcal{I} models \mathcal{G} , if $\mathcal{I} \models \mathcal{G}$

F, G_1, \ldots, G_n be formulas

• $G_1, \ldots, G_n \models F$ iff \forall interpretations \mathcal{I} of all G_1, \ldots, G_n such that \mathcal{I} models G_1, \ldots, G_n , we have \mathcal{I} models F

 F, G_1, \ldots, G_n be formulas

- $G_1, \ldots, G_n \models F$ iff \forall interpretations \mathcal{I} of all G_1, \ldots, G_n such that \mathcal{I} models G_1, \ldots, G_n , we have \mathcal{I} models F
- F is called satisfiable
 if ∃ an interpretation that is a model of F

Sat(F)

 F, G_1, \ldots, G_n be formulas

- $G_1, \ldots, G_n \models F$ iff \forall interpretations \mathcal{I} of all G_1, \ldots, G_n such that \mathcal{I} models G_1, \ldots, G_n , we have \mathcal{I} models F
- F is called satisfiable if \exists an interpretation that is a model of F
- F is valid if F is satisfiable in any interpretation

Sat(F)

 F, G_1, \ldots, G_n be formulas

- $G_1, \ldots, G_n \models F$ iff \forall interpretations \mathcal{I} of all G_1, \ldots, G_n such that \mathcal{I} models G_1, \ldots, G_n , we have \mathcal{I} models F
- F is called satisfiable
 if ∃ an interpretation that is a model of F
- F is valid if
 F is satisfiable in any interpretation

Sat(F)

. .

|= *F*

Example

consider the formula $A := x < y \land \neg \exists z (x < z \land z < y)$

 F, G_1, \ldots, G_n be formulas

- $G_1, \ldots, G_n \models F$ iff \forall interpretations \mathcal{I} of all G_1, \ldots, G_n such that \mathcal{I} models G_1, \ldots, G_n , we have \mathcal{I} models F
- F is called satisfiable
 if ∃ an interpretation that is a model of F
- F is valid if
 F is satisfiable in any interpretation

Sat(F)

⊨ F

is satisfiable in any interpretation

Example

consider the formula $A := x < y \land \neg \exists z (x < z \land z < y)$

• $\mathcal{N} = (\mathbb{N}, 0, \mathsf{succ}, +, \cdot, <)$ denote the standard structure of arithmetic

F, G_1, \ldots, G_n be formulas

- $G_1, \ldots, G_n \models F$ iff \forall interpretations \mathcal{I} of all G_1, \ldots, G_n such that \mathcal{I} models G_1, \ldots, G_n , we have \mathcal{I} models F
- F is called satisfiable
 if ∃ an interpretation that is a model of F
- if \exists an interpretation that is a model of F Sat(F)

 F is valid if
 - F is satisfiable in any interpretation

|= *F*

Example

consider the formula $A := x < y \land \neg \exists z (x < z \land z < y)$

- $\mathcal{N} = (\mathbb{N}, 0, \text{succ}, +, \cdot, <)$ denote the standard structure of arithmetic
- $\ell(x) = 1, \ell(y) = 2$

 F, G_1, \ldots, G_n be formulas

- $G_1, \ldots, G_n \models F$ iff \forall interpretations \mathcal{I} of all G_1, \ldots, G_n such that \mathcal{I} models G_1, \ldots, G_n , we have \mathcal{I} models F
- F is called satisfiable
 if ∃ an interpretation that is a model of F
- F is valid if
 F is satisfiable in any interpretation

Sat(F)

⊨ F

 $\models F$

Example

consider the formula $A := x < y \land \neg \exists z (x < z \land z < y)$

- $\mathcal{N} = (\mathbb{N}, 0, \text{succ}, +, \cdot, <)$ denote the standard structure of arithmetic
- $\ell(x) = 1, \ell(y) = 2$

then $(\mathcal{N}, \ell) \models A$

consider concatenation of lists

$$app(nil, Ys) = Ys$$
 $app(Xs, Ys) = cons(head(Xs), app(tail(Xs), Ys))$

consider concatenation of lists

$$app(nil, Ys) = Ys$$
 $app(Xs, Ys) = cons(head(Xs), app(tail(Xs), Ys))$ and the language \mathcal{L} :

nil, head(
$$Xs$$
), tail(Xs), cons(X, Xs), =, and App(Xs, Ys, Zs)

then list concatenation is expressible as follows:

consider concatenation of lists

$$app(nil, Ys) = Ys$$
 $app(Xs, Ys) = cons(head(Xs), app(tail(Xs), Ys))$ and the language \mathcal{L} :

nil, head(
$$Xs$$
), tail(Xs), cons(X, Xs), =, and App(Xs, Ys, Zs) then list concatenation is expressible as follows:

$$\forall x \; \mathsf{App}(\mathsf{nil}, x, x) \land$$

$$\wedge \, \forall x \forall y \forall z \, (x \neq \mathsf{nil} \, \wedge \, \mathsf{App}(\mathsf{tail}(x), y, z) \rightarrow \mathsf{App}(x, y, \mathsf{cons}(\mathsf{head}(x), z)))$$

consider concatenation of lists

$$app(nil, Ys) = Ys$$
 $app(Xs, Ys) = cons(head(Xs), app(tail(Xs), Ys))$ and the language \mathcal{L} :

nil, head(Xs), tail(Xs), cons(X, Xs), =, and App(Xs, Ys, Zs)

then list concatenation is expressible as follows:

$$\forall x \; \mathsf{App}(\mathsf{nil}, x, x) \land$$

 $\wedge \, \forall x \forall y \forall z \, (x \neq \mathsf{nil} \, \wedge \, \mathsf{App}(\mathsf{tail}(x), y, z) \rightarrow \mathsf{App}(x, y, \mathsf{cons}(\mathsf{head}(x), z)))$

Example

define

$$I_n := \forall x_1 \dots \forall x_{n-1} \exists y (x_1 \neq y \wedge \dots \wedge x_{n-1} \neq y)$$

if $\mathcal{I} \models I_n$, then \mathcal{I} has at least n elements

let F be a formula such that x occurs in F

- x is bound if it occurs inside the scope of a quantifier
- otherwise x is free
- a formula without free variables is called closed or a sentence

let F be a formula such that x occurs in F

- x is bound if it occurs inside the scope of a quantifier
- otherwise x is free
- a formula without free variables is called closed or a sentence

Example

consider $\forall x (P(x) \land Q(x,y))$; then x is bound and y is free

let F be a formula such that x occurs in F

- x is bound if it occurs inside the scope of a quantifier
- otherwise x is free
- a formula without free variables is called closed or a sentence

Example

consider $\forall x (P(x) \land Q(x, y))$; then x is bound and y is free

Notation

let F be a formula, x a free variable in F, t a term

- we sometimes write F(x) instead of F to indicate x
- F(t) denotes the replacement of x by t
- F(t) is an instance of F(x)

F is called unsatisfiable

if $\neg \exists$ interpretation that is a model of F

 $\neg \operatorname{Sat}(F)$

F is called unsatisfiable

if $\neg \exists$ interpretation that is a model of F

 $\neg \operatorname{Sat}(F)$

Definition

F and G are logically equivalent if $F \models G$ and $G \models F$

 $\bar{s} \equiv G$

F is called unsatisfiable

if $\neg \exists$ interpretation that is a model of F

 $\neg \operatorname{Sat}(F)$

Definition

F and G are logically equivalent if $F \models G$ and $G \models F$

 $F \equiv G$

Lemma

 \forall formulas F and all sets of formulas $G: G \models F$ iff $\neg \mathsf{Sat}(G \cup \{\neg F\})$

F is called unsatisfiable

if $\neg \exists$ interpretation that is a model of F

 $\neg \operatorname{Sat}(F)$

Definition

F and G are logically equivalent if $F \models G$ and $G \models F$

 $F \equiv G$

Lemma

 \forall formulas F and all sets of formulas $G: G \models F$ iff $\neg \mathsf{Sat}(G \cup \{\neg F\})$

Lemma

- 1 let $\mathcal{I}_1=(\mathcal{A}_1,\ell_1)$ and $\mathcal{I}_2=(\mathcal{A}_2,\ell_2)$ be interpretations
- **2** the universes of \mathcal{I}_1 , \mathcal{I}_2 coincide
- ${f I}_1$ and ${\cal I}_2$ coincide on the constants and variables occurring in F

then
$$\mathcal{I}_1 \models F$$
 iff $\mathcal{I}_2 \models F$

Argument ①

- 1 a mother or father of a person is an ancestor of that person
- 2 an ancestor of an ancestor of a person is an ancestor of a person
- 3 Sarah is the mother of Isaac, Isaac is the father of Jacob
- 4 Thus, Sarah is an ancestor of Jacob

Argument ②

- a square or cube of a number is a power of that number
- 2 a power of a power of a number is a power of that number
- 3 64 is the cube of 4, four is the square of 2
- 4 Thus, 64 is a power of 2

Argument ①

- $\blacksquare \ \mathsf{M}(x,y) \lor \mathsf{F}(x,y) \to \mathsf{A}(x,y)$
- $A(x,y) \wedge A(y,z) \rightarrow A(x,z)$
- $M(Sarah, Isaac) \wedge F(Isaac, Jacob)$
- 4 Thus A(Sarah, Jacob)

Argument 2

- $\blacksquare S(x,y) \lor C(x,y) \to P(x,y)$
- $P(x,y) \land P(y,z) \rightarrow P(x,z)$
- 3 $C(64,4) \wedge S(4,2)$
- 4 Thus P(64, 2)

Argument ①

- **1** $R_1(x,y) \vee R_2(x,y) \to R_3(x,y)$
- **2** $R_3(x,y) \wedge R_3(y,z) \to R_3(x,z)$
- $R_1(c_1, c_2) \wedge R_2(c_2, c_3)$
- 4 Thus $R_3(c_1, c_3)$

Argument 2

- $\blacksquare R_1(x,y) \vee R_2(x,y) \to R_3(x,y)$
- **2** $R_3(x,y) \wedge R_3(y,z) \to R_3(x,z)$
- $R_1(c_1, c_2) \wedge R_2(c_2, c_3)$
- 4 Thus $R_3(c_1, c_3)$

Argument ①= ②?

$$\left\{ \begin{array}{l} \mathsf{R}_{1}(x,y) \vee \mathsf{R}_{2}(x,y) \to \mathsf{R}_{3}(x,y) \\ \mathsf{R}_{3}(x,y) \wedge \mathsf{R}_{3}(y,z) \to \mathsf{R}_{3}(x,z) \\ \mathsf{R}_{1}(\mathsf{c}_{1},\mathsf{c}_{2}) \wedge \mathsf{R}_{2}(\mathsf{c}_{2},\mathsf{c}_{3}) \end{array} \right\} \models \mathsf{R}_{3}(\mathsf{c}_{1},\mathsf{c}_{3})$$

Argument
$$1 = 2$$
?

$$\left\{ \begin{array}{l} \mathsf{R}_{1}(x,y) \vee \mathsf{R}_{2}(x,y) \to \mathsf{R}_{3}(x,y) \\ \mathsf{R}_{3}(x,y) \wedge \mathsf{R}_{3}(y,z) \to \mathsf{R}_{3}(x,z) \\ \mathsf{R}_{1}(\mathsf{c}_{1},\mathsf{c}_{2}) \wedge \mathsf{R}_{2}(\mathsf{c}_{2},\mathsf{c}_{3}) \end{array} \right\} \models \mathsf{R}_{3}(\mathsf{c}_{1},\mathsf{c}_{3})$$

Structure A

$c_1^{\mathcal{A}}$	Sarah	64	$R_1^{\mathcal{A}}(x,y)$	x mother of y	x square of y
$c_2^{\mathcal{A}}$	Isaac	4	$R_2^{\mathcal{A}}(x,y)$	x father of y	x cube of y
$c_3^{\mathcal{A}}$	Jacob	2	$R_3^{\mathcal{A}}(x,y)$	x ancestor of y	x power of y

Argument ①= ②!

$$\left\{ \begin{array}{c} \forall x \forall y (\mathsf{R}_1(x,y) \vee \mathsf{R}_2(x,y) \to \mathsf{R}_3(x,y)) \\ \forall x \forall y \forall z (\mathsf{R}_3(x,y) \wedge \mathsf{R}_3(y,z) \to \mathsf{R}_3(x,z)) \\ \mathsf{R}_1(\mathsf{c}_1,\mathsf{c}_2) \wedge \mathsf{R}_2(\mathsf{c}_2,\mathsf{c}_3) \end{array} \right\} \models \mathsf{R}_3(\mathsf{c}_1,\mathsf{c}_3)$$

Structure A

$c_1^{\mathcal{A}}$	Sarah	64	$R_1^{\mathcal{A}}(x,y)$	x mother of y	x square of y
$c_2^{\mathcal{A}}$	Isaac	4	$R_2^{\mathcal{A}}(x,y)$	x father of y	x cube of y
$c_3^{\mathcal{A}}$	Jacob	2	$R_3^{\mathcal{A}}(x,y)$	x ancestor of y	x power of y

Toy Example: Logic as Modelling Language

Argument ①= ②!

$$\left\{ \begin{array}{c} \forall x \forall y (\mathsf{R}_1(x,y) \vee \mathsf{R}_2(x,y) \to \mathsf{R}_3(x,y)) \\ \forall x \forall y \forall z (\mathsf{R}_3(x,y) \wedge \mathsf{R}_3(y,z) \to \mathsf{R}_3(x,z)) \\ \mathsf{R}_1(\mathsf{c}_1,\mathsf{c}_2) \wedge \mathsf{R}_2(\mathsf{c}_2,\mathsf{c}_3) \end{array} \right\} \models \mathsf{R}_3(\mathsf{c}_1,\mathsf{c}_3)$$

Structure A

$c_1^{\mathcal{A}}$	Sarah	64	$R_1^{\mathcal{A}}(x,y)$	x mother of y	x square of y
$c_2^{\mathcal{A}}$	Isaac	4	$R_2^{\mathcal{A}}(x,y)$	x father of y	x cube of y
$c_3^{\mathcal{A}}$	Jacob	2	$R_3^{\mathcal{A}}(x,y)$	x ancestor of y	x power of y

Question

how to automate?

Fact

the idea of automated reasoning is (very) old

Fact

the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646–1716) proposed the idea of

Fact

the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646–1716) proposed the idea of

 lingua characteristica a universal language, able to express all concepts

Fact

the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646–1716) proposed the idea of

- lingua characteristica a universal language, able to express all concepts
- calculus ratiocinator

 a machine to "compute"

 whether a given argument is sound

Fact

the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646–1716) proposed the idea of

- lingua characteristica a universal language, able to express all concepts
- calculus ratiocinator

 a machine to "compute"

 whether a given argument is sound

we already know that a 'calculus ratiocinator' cannot exist

Theorem

- 1 the decision problem for the consequence relation is undecidable
- 2 the set of valid first-order formulas is not recursive

Theorem

- 1 the decision problem for the consequence relation is undecidable
- 2 the set of valid first-order formulas is not recursive

Proof Ideas.

- encoding of TMs as first-order formulas
- reduction from Post correspondence problem

Theorem

- 1 the decision problem for the consequence relation is undecidable
- 2 the set of valid first-order formulas is not recursive

Proof Ideas.

- encoding of TMs as first-order formulas
- reduction from Post correspondence problem

Theorem

- 1 the decision problem for the consequence relation is undecidable
- 2 the set of valid first-order formulas is not recursive

Proof Ideas.

- encoding of TMs as first-order formulas
- reduction from Post correspondence problem

Theorem

the set of valid first-order formulas (over a countable language) is recursive enumerable

Theorem

- 1 the decision problem for the consequence relation is undecidable
- 2 the set of valid first-order formulas is not recursive

Proof Ideas.

- encoding of TMs as first-order formulas
- reduction from Post correspondence problem

Theorem

the set of valid first-order formulas (over a countable language) is recursive enumerable

- the set of all formulas (over a countable language) is countable
- completeness yields that one can enumerate all valid formulas

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

 \mathcal{A} , \mathcal{B} two structures over the same language; assume \exists bijection $m \colon A \to B$ such that

 \mathcal{A} , \mathcal{B} two structures over the same language; assume \exists bijection $m \colon A \to B$ such that

1 \forall individual constant c: $m(c^{\mathcal{A}}) = c^{\mathcal{B}}$

 \mathcal{A} , \mathcal{B} two structures over the same language; assume \exists bijection $m: \mathcal{A} \to \mathcal{B}$ such that

- 1 \forall individual constant c: $m(c^A) = c^B$
- **2** \forall function constant f, \forall $a_1, \ldots, a_n \in A$:

$$m(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(m(a_1),\ldots,m(a_n))$$
 and

 \mathcal{A} , \mathcal{B} two structures over the same language; assume \exists bijection $m: \mathcal{A} \to \mathcal{B}$ such that

- 1 \forall individual constant c: $m(c^{\mathcal{A}}) = c^{\mathcal{B}}$
- 2 \forall function constant f, \forall $a_1, \ldots, a_n \in A$:

$$m(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(m(a_1),\ldots,m(a_n))$$
 and

 \exists \forall predicate constant P, \forall $a_1, \ldots, a_n \in A$:

$$P^{\mathcal{A}}(a_1,\ldots,a_n) \Longleftrightarrow P^{\mathcal{B}}(\mathbf{m}(a_1),\ldots,\mathbf{m}(a_n))$$

 \mathcal{A} , \mathcal{B} two structures over the same language; assume \exists bijection $m: \mathcal{A} \to \mathcal{B}$ such that

- 1 \forall individual constant c: $m(c^{\mathcal{A}}) = c^{\mathcal{B}}$
- **2** \forall function constant f, \forall $a_1, \ldots, a_n \in A$:

$$m(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(m(a_1),\ldots,m(a_n))$$
 and

 \exists \forall predicate constant P, \forall $a_1, \ldots, a_n \in A$:

$$P^{\mathcal{A}}(a_1,\ldots,a_n) \Longleftrightarrow P^{\mathcal{B}}(\mathbf{m}(a_1),\ldots,\mathbf{m}(a_n))$$

then m is called an isomorphism between \mathcal{A} and \mathcal{B} denoted $m: \mathcal{A} \cong \mathcal{B}$

 \mathcal{A} , \mathcal{B} two structures over the same language; assume \exists bijection $m: \mathcal{A} \to \mathcal{B}$ such that

- 1 \forall individual constant c: $m(c^{\mathcal{A}}) = c^{\mathcal{B}}$
- 2 \forall function constant f, \forall $a_1, \ldots, a_n \in A$:

$$m(f^{\mathcal{A}}(a_1,\ldots,a_n))=f^{\mathcal{B}}(m(a_1),\ldots,m(a_n))$$
 and

 \forall predicate constant P, \forall $a_1, \ldots, a_n \in A$:

$$P^{\mathcal{A}}(a_1,\ldots,a_n) \Longleftrightarrow P^{\mathcal{B}}(\mathbf{m}(a_1),\ldots,\mathbf{m}(a_n))$$

then m is called an isomorphism between $\mathcal A$ and $\mathcal B$ denoted $m\colon \mathcal A\cong \mathcal B$

Lemma

let A, B be sets; $m: A \to B$ be a bijection; if A is a structure with domain A, then \exists structure \mathcal{B} with $A \cong \mathcal{B}$

let \mathcal{A} , \mathcal{B} be structures such that $m \colon \mathcal{A} \cong \mathcal{B}$, then for all sentences $F \colon \mathcal{A} \models F$ iff $\mathcal{B} \models F$

let \mathcal{A} , \mathcal{B} be structures such that $m \colon \mathcal{A} \cong \mathcal{B}$, then for all sentences $F \colon \mathcal{A} \models F$ iff $\mathcal{B} \models F$

let \mathcal{A} , \mathcal{B} be structures such that $m \colon \mathcal{A} \cong \mathcal{B}$, then for all sentences $F \colon \mathcal{A} \models F$ iff $\mathcal{B} \models F$

Proof.

1 let $\mathcal{I}=(\mathcal{A},\ell)$, define $\ell^m=m\circ\ell$, set $\mathcal{J}=(\mathcal{B},\ell^m)$

let \mathcal{A} , \mathcal{B} be structures such that $m \colon \mathcal{A} \cong \mathcal{B}$, then for all sentences $F \colon \mathcal{A} \models F$ iff $\mathcal{B} \models F$

- 1 let $\mathcal{I} = (\mathcal{A}, \ell)$, define $\ell^m = m \circ \ell$, set $\mathcal{J} = (\mathcal{B}, \ell^m)$
- $\mathbf{Z} \ \forall \ \text{terms } t \colon m(t^{\mathcal{I}}) = t^{\mathcal{I}}$ (follows by induction on t)

let \mathcal{A} , \mathcal{B} be structures such that $m \colon \mathcal{A} \cong \mathcal{B}$, then for all sentences $F \colon \mathcal{A} \models F$ iff $\mathcal{B} \models F$

- 1 let $\mathcal{I} = (\mathcal{A}, \ell)$, define $\ell^m = m \circ \ell$, set $\mathcal{J} = (\mathcal{B}, \ell^m)$
- $\exists \forall \text{ formulas } F \colon \mathcal{I} \models F \iff \mathcal{J} \models F$

let \mathcal{A} , \mathcal{B} be structures such that $m \colon \mathcal{A} \cong \mathcal{B}$, then for all sentences $F \colon \mathcal{A} \models F$ iff $\mathcal{B} \models F$

- 1 let $\mathcal{I} = (\mathcal{A}, \ell)$, define $\ell^m = m \circ \ell$, set $\mathcal{J} = (\mathcal{B}, \ell^m)$
- $\exists \forall \text{ formulas } F : \mathcal{I} \models F \iff \mathcal{J} \models F$
 - base case F = (s = t)

$$\mathcal{I} \models s = t \iff s^{\mathcal{I}} = t^{\mathcal{I}} \iff m(s^{\mathcal{I}}) = m(t^{\mathcal{I}}) \iff \mathcal{J} \models s = t$$

let \mathcal{A} , \mathcal{B} be structures such that $m \colon \mathcal{A} \cong \mathcal{B}$, then for all sentences $F \colon \mathcal{A} \models F$ iff $\mathcal{B} \models F$

Proof.

1 let
$$\mathcal{I} = (\mathcal{A}, \ell)$$
, define $\ell^m = m \circ \ell$, set $\mathcal{J} = (\mathcal{B}, \ell^m)$

2
$$\forall$$
 terms t : $m(t^{\mathcal{I}}) = t^{\mathcal{I}}$ (follows by induction on t)

$$\exists \forall \text{ formulas } F \colon \mathcal{I} \models F \iff \mathcal{J} \models F$$

• base case
$$F = (s = t)$$

$$\mathcal{I} \models s = t \iff s^{\mathcal{I}} = t^{\mathcal{I}} \iff m(s^{\mathcal{I}}) = m(t^{\mathcal{I}}) \iff \mathcal{J} \models s = t$$

• step case $F = \exists xG$

let \mathcal{A} , \mathcal{B} be structures such that $m \colon \mathcal{A} \cong \mathcal{B}$, then for all sentences $F \colon \mathcal{A} \models F$ iff $\mathcal{B} \models F$

Proof.

1 let
$$\mathcal{I} = (\mathcal{A}, \ell)$$
, define $\ell^m = m \circ \ell$, set $\mathcal{J} = (\mathcal{B}, \ell^m)$

2
$$\forall$$
 terms t : $m(t^{\mathcal{I}}) = t^{\mathcal{I}}$ (follows by induction on t)

$$\exists \forall \text{ formulas } F \colon \mathcal{I} \models F \iff \mathcal{J} \models F$$

• base case F = (s = t)

$$\mathcal{I} \models s = t \iff s^{\mathcal{I}} = t^{\mathcal{I}} \iff m(s^{\mathcal{I}}) = m(t^{\mathcal{I}}) \iff \mathcal{J} \models s = t$$

• step case $F = \exists xG$

- **1** \forall formula F that has a finite model has a model in the domain $\{0, 1, 2, \dots, n\}$

- \forall formula F that has a finite model has a model in the domain $\{0,1,2,\ldots,n\}$

Proof.

combination of both lemmas

- \forall formula F that has a finite model has a model in the domain $\{0,1,2,\ldots,n\}$
- ${\bf 2} \ \forall$ formula F that has a countable infinite model has a model whose domain is $\mathbb N$

Proof.

combination of both lemmas

Example

consider
$$\mathcal{L} = \{ \leftrightharpoons \}$$
 and
$$E : \iff \forall x \ x \leftrightharpoons x \land \forall x \forall y \ (x \leftrightharpoons y \land y \leftrightharpoons x) \land \\ \forall x \forall y \forall z \ ((x \leftrightharpoons y \land y \leftrightharpoons z) \to x \leftrightharpoons z)$$

$$F : \iff \forall x \forall y \ x \leftrightharpoons y$$

- \forall formula F that has a finite model has a model in the domain $\{0,1,2,\ldots,n\}$

Proof.

combination of both lemmas

Example

consider
$$\mathcal{L} = \{ \leftrightharpoons \}$$
 and
$$E : \iff \forall x \ x \leftrightharpoons x \land \forall x \forall y \ (x \leftrightharpoons y \land y \leftrightharpoons x) \land \\ \forall x \forall y \forall z \ ((x \leftrightharpoons y \land y \leftrightharpoons z) \to x \leftrightharpoons z)$$

$$F : \iff \forall x \forall y \ x \leftrightharpoons y$$

if \mathcal{M} and \mathbb{N} are countable infinite and $\mathcal{M} \models E \land F$, $\mathcal{N} \models E \land F$, then $\mathcal{M} \cong \mathcal{N}$

Theorem (Compactness Theorem)

if every finite subset of a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a model

Theorem (Compactness Theorem)

if every finite subset of a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a model

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas $\mathcal G$ has a model, then $\mathcal G$ has a countable model

Theorem (Compactness Theorem)

if every finite subset of a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a model

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a countable model

Corollary

if a set of formulas $\mathcal G$ has arbitrarily large finite models, then it has a countable infinite model

Theorem (Compactness Theorem)

if every finite subset of a set of formulas $\mathcal G$ has a model, then $\mathcal G$ has a model

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Corollary

if a set of formulas $\mathcal G$ has arbitrarily large finite models, then it has a countable infinite model

Proof Idea.

employ compactness to show that \mathcal{G} has an infinite model and Löwenheim-

Skolem to show that this model is countable

1 any satisfiable set of formulas \mathcal{G} has a model whose domain is either the set of natural numbers < n or \mathbb{N}

- **1** any satisfiable set of formulas $\mathcal G$ has a model whose domain is either the set of natural numbers < n or $\mathbb N$
- 2 if G is a satisfiable set of formulas, no function symbols, no identity in language, then G has a model whose domain is \mathbb{N}

- **1** any satisfiable set of formulas \mathcal{G} has a model whose domain is either the set of natural numbers < n or \mathbb{N}
- 2 if $\mathcal G$ is a satisfiable set of formulas, no function symbols, no identity in language, then $\mathcal G$ has a model whose domain is $\mathbb N$

Proof (of second item).

1 suppose $\mathcal G$ has a model $\mathcal I$ with domain $\{0,\ldots,n-1\}$

- **1** any satisfiable set of formulas \mathcal{G} has a model whose domain is either the set of natural numbers < n or \mathbb{N}
- 2 if $\mathcal G$ is a satisfiable set of formulas, no function symbols, no identity in language, then $\mathcal G$ has a model whose domain is $\mathbb N$

- **I** suppose $\mathcal G$ has a model $\mathcal I$ with domain $\{0,\ldots,n-1\}$
- **2** define $f: \mathbb{N} \to \{0, 1, \dots, n-1\}$ as:

$$f(m) = \min\{m, n-1\}$$

- 1 any satisfiable set of formulas $\mathcal G$ has a model whose domain is either the set of natural numbers < n or $\mathbb N$
- ${f 2}$ if ${\cal G}$ is a satisfiable set of formulas, no function symbols, no identity in language, then ${\cal G}$ has a model whose domain is ${\Bbb N}$

Proof (of second item).

- **I** suppose $\mathcal G$ has a model $\mathcal I$ with domain $\{0,\dots,n-1\}$
- 2 define $f: \mathbb{N} \to \{0, 1, \dots, n-1\}$ as:

$$f(m) = \min\{m, n-1\}$$

 ${f 3}$ define ${\cal J}$ with domain ${\Bbb N}$ and look-up table ℓ

- 1 any satisfiable set of formulas $\mathcal G$ has a model whose domain is either the set of natural numbers < n or $\mathbb N$
- ${f 2}$ if ${\cal G}$ is a satisfiable set of formulas, no function symbols, no identity in language, then ${\cal G}$ has a model whose domain is ${\Bbb N}$

- **1** suppose $\mathcal G$ has a model $\mathcal I$ with domain $\{0,\ldots,n-1\}$
- **2** define $f: \mathbb{N} \to \{0, 1, \dots, n-1\}$ as:

$$f(m) = \min\{m, n-1\}$$

- ${f 3}$ define ${\cal J}$ with domain ${\Bbb N}$ and look-up table ℓ
 - $f(c^{\mathcal{J}}) = c^{\mathcal{I}}$

- \blacksquare any satisfiable set of formulas $\mathcal G$ has a model whose domain is either the set of natural numbers < n or $\mathbb N$
- ${f 2}$ if ${\cal G}$ is a satisfiable set of formulas, no function symbols, no identity in language, then ${\cal G}$ has a model whose domain is ${\Bbb N}$

- **1** suppose $\mathcal G$ has a model $\mathcal I$ with domain $\{0,\ldots,n-1\}$
- 2 define $f: \mathbb{N} \to \{0, 1, \dots, n-1\}$ as:

$$f(m) = \min\{m, n-1\}$$

- ${f 3}$ define ${\cal J}$ with domain ${\Bbb N}$ and look-up table ℓ
 - $f(c^{\mathcal{J}}) = c^{\mathcal{I}}$
 - \forall predicate constants P, \forall n_1, \ldots, n_k $(n_1, \ldots, n_k) \in P^{\mathcal{I}}$ iff $(f(n_1), \ldots, f(n_k)) \in P^{\mathcal{I}}$

- **1** any satisfiable set of formulas \mathcal{G} has a model whose domain is either the set of natural numbers < n or \mathbb{N}
- ${f 2}$ if ${\cal G}$ is a satisfiable set of formulas, no function symbols, no identity in language, then ${\cal G}$ has a model whose domain is ${\Bbb N}$

- **1** suppose $\mathcal G$ has a model $\mathcal I$ with domain $\{0,\ldots,n-1\}$
- **2** define $f: \mathbb{N} \to \{0, 1, \dots, n-1\}$ as:

$$f(m) = \min\{m, n-1\}$$

- ${f 3}$ define ${\cal J}$ with domain ${\Bbb N}$ and look-up table ℓ
 - $f(c^{\mathcal{J}}) = c^{\mathcal{I}}$
 - \forall predicate constants P, \forall n_1, \ldots, n_k $(n_1, \ldots, n_k) \in P^{\mathcal{I}}$ iff $(f(n_1), \ldots, f(n_k)) \in P^{\mathcal{I}}$
- 4 *f* is a surjective homomorphism, the proof of the isomorphism lemma holds

first-order logic features the following three theorems

- (soundness and) completeness
- 2 compactness
- 3 Löwenheim-Skolem

first-order logic features the following three theorems

- (soundness and) completeness
- 2 compactness
- 3 Löwenheim-Skolem

Observations

 any proof of completeness is indirect: suppose ∃ a consistent set G, then G is satisfiable

first-order logic features the following three theorems

- 1 (soundness and) completeness
- 2 compactness
- 3 Löwenheim-Skolem

Observations

 $(\perp$ is not ${\sf derivable})$

• any proof of completeness s indirect: suppose \exists a consistent set \mathcal{G} , then \mathcal{G} is satisfiable

first-order logic features the following three theorems

- **1** (soundness and) completeness
- 2 compactness
- 3 Löwenheim-Skolem

Observations

 $(\perp$ is not ${\sf derivable})$

- any proof of completeness \mathcal{G} indirect: suppose \exists a consistent set \mathcal{G} , then \mathcal{G} is satisfiable
- to show $\mathcal G$ is satisfiable one constructs a countable model $\mathcal M$

first-order logic features the following three theorems

- (soundness and) completeness
- 2 compactness
- 3 Löwenheim-Skolem

Observations

 $(\perp$ is not derivable)

- any proof of completeness $\mathcal G$ indirect: suppose \exists a consistent set $\mathcal G$, then $\mathcal G$ is satisfiable
- ullet to show ${\mathcal G}$ is satisfiable one constructs a countable model ${\mathcal M}$
- Löwenheim-Skolem and compactness follow

first-order logic features the following three theorems

- **1** (soundness and) completeness
- 2 compactness
- 3 Löwenheim-Skolem

Observations

 $oxedsymbol{oxedsymbol{oxedsymbol{oxedsymbol{\mathsf{L}}}}$ is not $oxedsymbol{\mathsf{derivable}}$

- any proof of completeness indirect: suppose \exists a consistent set $\mathcal G$, then $\mathcal G$ is satisfiable
- ullet to show ${\mathcal G}$ is satisfiable one constructs a countable model ${\mathcal M}$
- Löwenheim-Skolem and compactness follow
- the central piece of work is the construction of M; this is independent on the proof system

first-order logic features the following three theorems

- 1 (soundness and) completeness
- 2 compactness
- 3 Löwenheim-Skolem

Observations

 $oxedsymbol{oxedsymbol{oxedsymbol{oxedsymbol{\mathsf{L}}}}$ is not $oxedsymbol{\mathsf{derivable}}$

- any proof of completeness $\mathcal G$ indirect: suppose \exists a consistent set $\mathcal G$, then $\mathcal G$ is satisfiable
- ullet to show ${\mathcal G}$ is satisfiable one constructs a countable model ${\mathcal M}$
- Löwenheim-Skolem and compactness follow
- the central piece of work is the construction of M; this is independent on the proof system

in proof, we restrict the logical symbols to \neg , \lor , \exists , and =

Howto Prove Compactness and Löwenheim-Skolem

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$

1 if $G_0 \subseteq G$, then $G_0 \in S$

- **2** no formula F and $\neg F$ in \mathcal{G}

- **1** if $\mathcal{G}_0 \subseteq \mathcal{G}$, then $\mathcal{G}_0 \in \mathcal{S}$
- **2** no formula F and $\neg F$ in G
- **3** if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup \{F\} \in S$

- **1** if $\mathcal{G}_0 \subseteq \mathcal{G}$, then $\mathcal{G}_0 \in \mathcal{S}$
- \square no formula F and $\neg F$ in G
- \exists if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup \{F\} \in S$
- 4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup \{E\} \in S$ or $\mathcal{G} \cup \{F\} \in S$

- **1** if $\mathcal{G}_0 \subseteq \mathcal{G}$, then $\mathcal{G}_0 \in \mathcal{S}$
- 2 no formula F and $\neg F$ in G
- **3** *if* $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup \{F\} \in S$
- 4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup \{E\} \in S$ or $\mathcal{G} \cup \{F\} \in S$

- **1** if $\mathcal{G}_0 \subseteq \mathcal{G}$, then $\mathcal{G}_0 \in \mathcal{S}$
- 2 no formula F and $\neg F$ in G
- **3** *if* $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup \{F\} \in S$
- 4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup \{E\} \in S$ or $\mathcal{G} \cup \{F\} \in S$
- **5** if $\neg (E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup {\neg E} \in S$ and $\mathcal{G} \cup {\neg F} \in S$

- **1** if $\mathcal{G}_0 \subseteq \mathcal{G}$, then $\mathcal{G}_0 \in \mathcal{S}$
- 2 no formula F and $\neg F$ in G
- \exists if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup \{F\} \in S$
- 4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup \{E\} \in S$ or $\mathcal{G} \cup \{F\} \in S$
- **5** if $\neg (E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup {\neg E} \in S$ and $\mathcal{G} \cup {\neg F} \in S$

- **1** if $G_0 \subseteq G$, then $G_0 \in S$
- 2 no formula F and $\neg F$ in G
- \exists if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup \{F\} \in S$
- **4** if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup \{E\} \in S$ or $\mathcal{G} \cup \{F\} \in S$
- **5** if $\neg (E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup \{\neg E\} \in S$ and $\mathcal{G} \cup \{\neg F\} \in S$
- **1** if $\exists x F(x) \in \mathcal{G}$, the constant c doesn't occur in \mathcal{G} , then $\mathcal{G} \cup \{F(c)\} \in S$

- **1** *if* $\mathcal{G}_0 \subseteq \mathcal{G}$, then $\mathcal{G}_0 \in \mathcal{S}$
- **2** no formula F and $\neg F$ in G
- **3** if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup \{F\} \in S$
- 4 if $(E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup \{E\} \in S$ or $\mathcal{G} \cup \{F\} \in S$
- **5** if $\neg (E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup \{\neg E\} \in S$ and $\mathcal{G} \cup \{\neg F\} \in S$
- **1** if $\exists x F(x) \in \mathcal{G}$, the constant c doesn't occur in \mathcal{G} , then $\mathcal{G} \cup \{F(c)\} \in S$
- if $\neg \exists x F(x) \in \mathcal{G}$, then \forall terms t, $\mathcal{G} \cup \{ \neg F(t) \} \in \mathcal{S}$

- **1** if $\mathcal{G}_0 \subseteq \mathcal{G}$, then $\mathcal{G}_0 \in \mathcal{S}$
- 2 no formula F and $\neg F$ in G
- **3** if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup \{F\} \in S$
- 4 if $(E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup \{E\} \in S$ or $\mathcal{G} \cup \{F\} \in S$
- **5** if $\neg (E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup {\neg E} \in S$ and $\mathcal{G} \cup {\neg F} \in S$
- **1** if $\exists x F(x) \in \mathcal{G}$, the constant c doesn't occur in \mathcal{G} , then $\mathcal{G} \cup \{F(c)\} \in S$
- if $\neg \exists x F(x) \in \mathcal{G}$, then \forall terms t, $\mathcal{G} \cup \{ \neg F(t) \} \in \mathcal{S}$
- **B** for any term t, $\mathcal{G} \cup \{t = t\} \in S$

- **1** *if* $G_0 \subseteq G$, then $G_0 \in S$
- 2 no formula F and $\neg F$ in G
- **3** if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup \{F\} \in S$
- 4 if $(E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup \{E\} \in S$ or $\mathcal{G} \cup \{F\} \in S$
- **5** if $\neg (E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup {\neg E} \in S$ and $\mathcal{G} \cup {\neg F} \in S$
- **1** if $\exists x F(x) \in \mathcal{G}$, the constant c doesn't occur in \mathcal{G} , then $\mathcal{G} \cup \{F(c)\} \in S$
- if $\neg \exists x F(x) \in \mathcal{G}$, then \forall terms t, $\mathcal{G} \cup \{ \neg F(t) \} \in \mathcal{S}$
- 8 for any term t, $\mathcal{G} \cup \{t = t\} \in \mathcal{S}$
- $g \ \, \textit{if} \, \{F(s), s=t\} \subseteq \mathcal{G} \textit{, then} \, \, \mathcal{G} \cup \{F(t)\} \in S$

let S be the set of satisfiable sets of formulas; pick $G \in S$

- **1** if $G_0 \subseteq G$, then $G_0 \in S$
- 2 no formula F and $\neg F$ in G
- \exists if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup \{F\} \in S$
- 4 if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup \{E\} \in S$ or $\mathcal{G} \cup \{F\} \in S$
- **5** if $\neg (E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup {\neg E} \in S$ and $\mathcal{G} \cup {\neg F} \in S$
- **6** if $\exists x F(x) \in \mathcal{G}$, the constant c doesn't occur in \mathcal{G} , then $\mathcal{G} \cup \{F(c)\} \in \mathcal{S}$
- if $\neg \exists x F(x) \in \mathcal{G}$, then \forall terms t, $\mathcal{G} \cup \{ \neg F(t) \} \in S$
- 8 for any term t, $\mathcal{G} \cup \{t = t\} \in \mathcal{S}$

Definition

we call the properties (of S) in the lemma satisfaction properties

1 assume *S* is a set of formula sets and *S* has the satisfaction properties

- **1** assume *S* is a set of formula sets and *S* has the satisfaction properties
- 2 let S^* be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in \mathcal{S}$

- **1** assume *S* is a set of formula sets and *S* has the satisfaction properties
- 2 let S^* be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in \mathcal{S}$
- 3 then S^* has the satisfaction properties

- **1** assume S is a set of formula sets and S has the satisfaction properties
- 2 let S^* be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in \mathcal{S}$
- **3** then S* has the satisfaction properties

Proof.

Lemma ②

- **1** assume S is a set of formula sets and S has the satisfaction properties
- 2 let S^* be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in \mathcal{S}$
- 3 then S^* has the satisfaction properties

Proof.

we treat the case of disjunction

• assume $\mathcal{G} \in S^*$, $(E \vee F) \in \mathcal{G}$, $\mathcal{G} \cup \{E\} \notin S^*$ and $\mathcal{G} \cup \{F\} \notin S^*$

- **1** assume S is a set of formula sets and S has the satisfaction properties
- 2 let S^* be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in \mathcal{S}$
- 3 then S^* has the satisfaction properties

Proof.

- assume $\mathcal{G} \in S^*$, $(E \vee F) \in \mathcal{G}$, $\mathcal{G} \cup \{E\} \not\in S^*$ and $\mathcal{G} \cup \{F\} \not\in S^*$
- \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in \mathcal{S}$,

Lemma ②

- **1** assume S is a set of formula sets and S has the satisfaction properties
- 2 let S^* be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in \mathcal{S}$
- 3 then S^* has the satisfaction properties

Proof.

- assume $\mathcal{G} \in S^*$, $(E \vee F) \in \mathcal{G}$, $\mathcal{G} \cup \{E\} \not\in S^*$ and $\mathcal{G} \cup \{F\} \not\in S^*$
- \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in \mathcal{S}$,
- \exists finite $\mathcal{G}_1 \subseteq \mathcal{G} \cup \{E\}$, $\mathcal{G}_1 \notin S$, \exists finite $\mathcal{G}_2 \subseteq \mathcal{G} \cup \{F\}$, $\mathcal{G}_2 \notin S$

- **1** assume S is a set of formula sets and S has the satisfaction properties
- 2 let S^* be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in \mathcal{S}$
- 3 then S^* has the satisfaction properties

Proof.

- assume $\mathcal{G} \in S^*$, $(E \vee F) \in \mathcal{G}$, $\mathcal{G} \cup \{E\} \not\in S^*$ and $\mathcal{G} \cup \{F\} \not\in S^*$
- \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in \mathcal{S}$,
- \exists finite $\mathcal{G}_1 \subseteq \mathcal{G} \cup \{E\}$, $\mathcal{G}_1 \notin S$, \exists finite $\mathcal{G}_2 \subseteq \mathcal{G} \cup \{F\}$, $\mathcal{G}_2 \notin S$
- wlog $\mathcal{G}_1=\mathcal{G}_1'\cup\{E\}$, $\mathcal{G}_2=\mathcal{G}_2'\cup\{F\}$, and $\mathcal{G}_1',\mathcal{G}_2'\subseteq\mathcal{G}$ finite

Lemma 2

- **1** assume S is a set of formula sets and S has the satisfaction properties
- **2** let S^* be the set of all formula sets G such that \forall finite $G_0 \subseteq G$, $G_0 \in S$
- 3 then S^* has the satisfaction properties

Proof.

we treat the case of disjunction

- assume $\mathcal{G} \in S^*$, $(E \vee F) \in \mathcal{G}$, $\mathcal{G} \cup \{E\} \not\in S^*$ and $\mathcal{G} \cup \{F\} \not\in S^*$
- \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in \mathcal{S}$,
- \exists finite $\mathcal{G}_1 \subseteq \mathcal{G} \cup \{E\}$, $\mathcal{G}_1 \notin S$, \exists finite $\mathcal{G}_2 \subseteq \mathcal{G} \cup \{F\}$, $\mathcal{G}_2 \notin S$
- wlog $\mathcal{G}_1=\mathcal{G}_1'\cup\{E\}$, $\mathcal{G}_2=\mathcal{G}_2'\cup\{F\}$, and $\mathcal{G}_1',\mathcal{G}_2'\subseteq\mathcal{G}$ finite
- $\mathcal{G}'_1 \cup \mathcal{G}'_2 \cup \{(E \vee F)\} \subseteq \mathcal{G}$, hence $\mathcal{G}'_1 \cup \mathcal{G}'_2 \cup \{(E \vee F)\} \in S$

Lemma ②

- **1** assume S is a set of formula sets and S has the satisfaction properties
- **2** let S^* be the set of all formula sets G such that \forall finite $G_0 \subseteq G$, $G_0 \in S$
- 3 then S^* has the satisfaction properties

Proof.

we treat the case of disjunction

- assume $\mathcal{G} \in S^*$, $(E \vee F) \in \mathcal{G}$, $\mathcal{G} \cup \{E\} \not\in S^*$ and $\mathcal{G} \cup \{F\} \not\in S^*$
- \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in \mathcal{S}$,
- \exists finite $\mathcal{G}_1 \subseteq \mathcal{G} \cup \{E\}$, $\mathcal{G}_1 \notin S$, \exists finite $\mathcal{G}_2 \subseteq \mathcal{G} \cup \{F\}$, $\mathcal{G}_2 \notin S$
- wlog $\mathcal{G}_1=\mathcal{G}_1'\cup\{E\}$, $\mathcal{G}_2=\mathcal{G}_2'\cup\{F\}$, and $\mathcal{G}_1',\mathcal{G}_2'\subseteq\mathcal{G}$ finite
- $\mathcal{G}_1' \cup \mathcal{G}_2' \cup \{(E \vee F)\} \subseteq \mathcal{G}$, hence $\mathcal{G}_1' \cup \mathcal{G}_2' \cup \{(E \vee F)\} \in S$
- hence $\mathcal{G}_1' \cup \mathcal{G}_2' \cup \{E\} \in S$ or $\mathcal{G}_1' \cup \mathcal{G}_2' \cup \{F\} \in S$

Lemma 2

- **1** assume S is a set of formula sets and S has the satisfaction properties
- **2** let S^* be the set of all formula sets G such that \forall finite $G_0 \subseteq G$, $G_0 \in S$
- **3** then S* has the satisfaction properties

Proof.

we treat the case of disjunction

- assume $\mathcal{G} \in S^*$, $(E \vee F) \in \mathcal{G}$, $\mathcal{G} \cup \{E\} \not\in S^*$ and $\mathcal{G} \cup \{F\} \not\in S^*$
- \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in \mathcal{S}$,
- \exists finite $\mathcal{G}_1 \subseteq \mathcal{G} \cup \{E\}$, $\mathcal{G}_1 \notin \mathcal{S}$, \exists finite $\mathcal{G}_2 \subseteq \mathcal{G} \cup \{F\}$, $\mathcal{G}_2 \notin \mathcal{S}$
- wlog $\mathcal{G}_1=\mathcal{G}_1'\cup\{E\}$, $\mathcal{G}_2=\mathcal{G}_2'\cup\{F\}$, and $\mathcal{G}_1',\mathcal{G}_2'\subseteq\mathcal{G}$ finite
- $\mathcal{G}_1' \cup \mathcal{G}_2' \cup \{(E \vee F)\} \subseteq \mathcal{G}$, hence $\mathcal{G}_1' \cup \mathcal{G}_2' \cup \{(E \vee F)\} \in S$
- hence $\mathcal{G}_1' \cup \mathcal{G}_2' \cup \{E\} \in S$ or $\mathcal{G}_1' \cup \mathcal{G}_2' \cup \{F\} \in S$
- contradiction

 $\mathcal L$ base language; $\mathcal L^+\supseteq \mathcal L$ infinitely many ${\sf new}$ individual constants

 \mathcal{L} base language; $\mathcal{L}^+\supseteq\mathcal{L}$ infinitely many new individual constants

Theorem (Model Existence Theorem)

- **1** if S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists \mathcal{M}$, $\mathcal{M} \models \mathcal{G}$
- $\forall elements m of M: m denotes term in L^+$

 \mathcal{L} base language; $\mathcal{L}^+\supseteq\mathcal{L}$ infinitely many new individual constants

Theorem (Model Existence Theorem)

- I if S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists \mathcal{M}$, $\mathcal{M} \models \mathcal{G}$
- \triangledown elements m of \mathcal{M} : m denotes term in \mathcal{L}^+

Compactness Theorem

if every finite subset of a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a model

 \mathcal{L} base language; $\mathcal{L}^+\supseteq\mathcal{L}$ infinitely many new individual constants

Theorem (Model Existence Theorem)

- **1** If S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists \mathcal{M}$, $\mathcal{M} \models \mathcal{G}$
- **2** \forall elements m of \mathcal{M} : m denotes term in \mathcal{L}^+

Compactness Theorem

if every finite subset of a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a model

Remark

the statement and the proof of the compactness theorem do not refer to provability; compactness is extensible to non-enumerable language

• consider the set S of satisfiable formula sets (over \mathcal{L})

- consider the set S of satisfiable formula sets (over \mathcal{L})
- consider the set S^* of all formulas set \mathcal{G} , $\forall \mathcal{G}_0 \subseteq \mathcal{G}$, \mathcal{G}_0 finite, $\mathcal{G}_0 \in S$

- consider the set S of satisfiable formula sets (over \mathcal{L}) (as in Lemma ①)
- consider the set S^* of all formulas set \mathcal{G} , $\forall \mathcal{G}_0 \subseteq \mathcal{G}$, \mathcal{G}_0 finite, $\mathcal{G}_0 \in S$ (as in Lemma 2)

- consider the set S of satisfiable formula sets (over \mathcal{L}) (as in Lemma ①)
- consider the set S^* of all formulas set \mathcal{G} , $\forall \ \mathcal{G}_0 \subseteq \mathcal{G}$, \mathcal{G}_0 finite, $\mathcal{G}_0 \in S$ (as in Lemma ②)
- Lemma \bigcirc yields that S admits the satisfaction properties
- Lemma @ yields that S^* admits the satisfaction properties

- consider the set S of satisfiable formula sets (over \mathcal{L}) (as in Lemma ①)
- consider the set S^* of all formulas set \mathcal{G} , $\forall \ \mathcal{G}_0 \subseteq \mathcal{G}$, \mathcal{G}_0 finite, $\mathcal{G}_0 \in S$ (as in Lemma ②)
- Lemma \bigcirc yields that S admits the satisfaction properties
- Lemma @ yields that S^* admits the satisfaction properties
- by assumption \mathcal{G} is in S^*

- consider the set S of satisfiable formula sets (over \mathcal{L}) (as in Lemma ①)
- consider the set S^* of all formulas set \mathcal{G} , $\forall \ \mathcal{G}_0 \subseteq \mathcal{G}$, \mathcal{G}_0 finite, $\mathcal{G}_0 \in S$ (as in Lemma ②)
- Lemma \bigcirc yields that S admits the satisfaction properties
- Lemma @ yields that S^* admits the satisfaction properties
- by assumption $\mathcal G$ is in S^*
- ullet by model existence ${\cal G}$ has a model ${\cal M}$

- consider the set S of satisfiable formula sets (over \mathcal{L}) (as in Lemma ①)
- consider the set S^* of all formulas set \mathcal{G} , $\forall \ \mathcal{G}_0 \subseteq \mathcal{G}$, \mathcal{G}_0 finite, $\mathcal{G}_0 \in S$ (as in Lemma ②)
- Lemma \bigcirc yields that S admits the satisfaction properties
- Lemma @ yields that S^* admits the satisfaction properties
- by assumption $\mathcal G$ is in S^*
- ullet by model existence ${\cal G}$ has a model ${\cal M}$

- consider the set S of satisfiable formula sets (over \mathcal{L}) (as in Lemma ①)
- consider the set S^* of all formulas set \mathcal{G} , $\forall \ \mathcal{G}_0 \subseteq \mathcal{G}$, \mathcal{G}_0 finite, $\mathcal{G}_0 \in S$ (as in Lemma ②)
- Lemma 1 yields that S admits the satisfaction properties
- Lemma ② yields that S^* admits the satisfaction properties
- by assumption $\mathcal G$ is in S^*
- ullet by model existence ${\mathcal G}$ has a model ${\mathcal M}$

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a countable model

Proof.

the model ${\mathcal M}$ constructed is countable

model existence

Lemma ③

Lemma 4

model existence

model existence

Definition

for any formal system; if \neg \exists proof of \bot from a formula set \mathcal{G} , we say \mathcal{G} is consistent

Definition

for any formal system; if $\neg \exists$ proof of \bot from a formula set \mathcal{G} , we say \mathcal{G} is consistent

Lemma ®

model existence

completeness

Definition

for any formal system; if $\neg \exists$ proof of \bot from a formula set \mathcal{G} , we say \mathcal{G} is consistent

S set of consistent sets $\Rightarrow S$ admits satisfaction properties

Lemma (6) model existence

completeness

Definition

for any formal system; if $\neg \exists$ proof of \bot from a formula set \mathcal{G} , we say \mathcal{G} is consistent

Lemma

model existence

completeness of resolution

S set of consistent sets $\Rightarrow S$ admits satisfaction properties

Lemma model existence

completeness of resolution

