

Automated Reasoning

Georg Moser

0.1673+SIGILITY Freedown Construction Constr

Institute of Computer Science @ UIBK

Winter 2013

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

mmary

Summary Last Lecture

Selection of Applications

- Program Analysis; logical product of abstract interpreters
- Databases; disjunctive datalog
- Programming Languages; types as formulas
- Computational Complexity; implicit complexity

Lessons Learnt

- (mathematical) logic is the science of (mathematical) reasoning
- logic has been and is very successfully used as workbench for various areas in computer science
- applications are not trivial (in both senses)

GM (Institute of Computer Science @ UIBK) Automated Reasonin

35/1

First-Order Logi

First-Order Logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning

The Language of First-Order Logic

a first-order language is determined by specifying its constants, variables, logical symbols, auxiliary (brackets, comma)

Definition

- individual constants: $k_0, k_1, \ldots, k_j, \ldots$ denoted c, d, etc.
- function constants with *i* arguments: f_0^i, f_1^i, \ldots denoted *f*, *g*, *h* etc.
- predicate constants with *i* arguments: Rⁱ₀, Rⁱ₁,... denoted as P, Q, R, etc.

Definition

• variables: *x*₀, *x*₁, . . . , *x_j*, . . .

denoted x, y, z, etc.

GM (Institute of Computer Science @ UIBK) Automated Reasoning

Syntax First-Order Logic

Terms of a Language

Definition

terms (of \mathcal{L}) are defined as follows

- any individual constant c in \mathcal{L} is a term
- any variable x is a term
- if t_1, \ldots, t_n are terms, f an n-ary function constant in \mathcal{L} , then $f(t_1, \ldots, t_n)$ is a term

Example

- s(s(s(0))) is a term (of \mathcal{L}_{arith})
- s(x) is a term (of \mathcal{L}_{arith})

Convention

if the language ${\mathcal L}$ is clear from context the phrase "of ${\mathcal L}$ " will be dropped

yntax First-Order Logic

Definition

- propositional connectives: \neg , \land , \lor , \rightarrow
- quantifiers ∀, ∃
- equality sign =

the equality sign = is a predicate but treated like a logical symbol

Definition

if the cardinality of the set of constants in ${\mathcal L}$ is countable, we say ${\mathcal L}$ is countable

Automated Reasoning

Example

the language of arithmetic $\mathcal{L}_{\text{arith}}$ contains = and consists of

- individual constant 0
- function constants s, +, \cdot
- predicate constant <

GM (Institute of Computer Science @ UIBK)

39/1

Syntax First-Order Logic

Formulas (of a Language)

Definition

- $P(t_1, \ldots, t_n)$ is an atomic formula; P a constant of arity n, t_i terms
- $t_1 = t_2$ is an atomic formula, if = is present

Definition

formulas are defined as follows

- atomic formulas are formulas
- A and B are frms: $(\neg A)$, $(A \land B)$, $(A \lor B)$, $(A \to B)$ are formulas
- if A a formula, x a variable, then

 $\forall x A = \exists x A$

are formulas

Convention

if brackets are not necessary they are omitted:

 $\exists, \forall > \neg > \lor, \land > \rightarrow$ right-associativity of \rightarrow

Example

consider \mathcal{L}_{arith} , which of the following are formulas over \mathcal{L}_{arith} ?

- $x < y \land \neg \exists z (x < z \land z < y)$
- $\forall x(x=0) \rightarrow \exists x(x=0)$
- $\forall x(x < y \land \exists x(y = x))$

(Institute of Computer Science @ UIBK

 \checkmark

Syntax First-Order Logic

Definition

- an environment for \mathcal{A} is a mapping $\ell \colon \{x_n \mid n \in \mathbb{N}\} \to \mathcal{A}$
- $\ell \{x \mapsto t\}$ denotes the environment mapping x to t and all other variables $y \neq x$ to $\ell(y)$

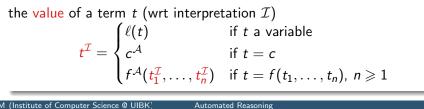
Automated Reasoning

Definition

an interpretation \mathcal{I} is a pair (\mathcal{A}, ℓ) such that

- \mathcal{A} is a structure
- ℓ is an environment

Definition



ntax First-Order Log

The Semantics of First-Order Logic

Definition

a structure is a pair $\mathcal{A} = (A, a)$ such that:

- A is a non-empty set. A is called domain
- mapping *a* associates constants with the domain:
 - any individual constant c is associated with an element $a(c) \in A$.
 - any *n*-ary function constant f is associated with $a(f): A^n \to A$.
 - any *n*-ary predicate constants *P* is associated with a subset $a(P) \subset A^n$.
- equality sign = is associated with the identity relation a(=).

we write $c^{\mathcal{A}}$. $f^{\mathcal{A}}$, and $P^{\mathcal{A}}$, instead of a(c), a(f), and a(P); for brevity we write = for the equality sign and the identity relation

Automated Reasonin

Remark

a structure is equivalent to the definition of model in LICS

GM (Institute of Computer Science @ UIBK)

Syntax First-Order Logic

Definition (The Satisfaction Relation) $\mathcal{I} = (\mathcal{A}, \ell)$ an interpretation; F a formula, we define $\mathcal{I} \models F$

 $\mathcal{I} \models t_1 = t_2 \qquad : \iff \text{if } t_1^{\mathcal{I}} = t_2^{\mathcal{I}}$ $\mathcal{I} \models P(t_1, \ldots, t_n) \iff \text{if} (t_1^{\mathcal{I}}, \ldots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$ $\mathcal{I} \models \neg F \qquad :\iff \text{if } \mathcal{I} \not\models F$ $\mathcal{I} \models \mathbf{F} \land \mathbf{G} \qquad :\iff \text{if } \mathcal{I} \models \mathbf{F} \text{ and } \mathcal{I} \models \mathbf{G}$ $\mathcal{I} \models \mathbf{F} \lor \mathbf{G} \qquad :\iff \text{if } \mathcal{I} \models \mathbf{F} \text{ or } \mathcal{I} \models \mathbf{G}$ $\mathcal{I} \models \mathcal{F} \rightarrow \mathcal{G}$: \iff if $\mathcal{I} \models \mathcal{F}$, then $\mathcal{I} \models \mathcal{G}$ $\mathcal{I} \models \forall x F \qquad :\iff \text{if } \mathcal{I}\{x \mapsto a\} \models F \text{ holds for all } a \in A$ $\mathcal{I} \models \exists x F \qquad :\iff \text{if } \mathcal{I}\{x \mapsto a\} \models F \text{ holds for some } a \in A$

let \mathcal{G} be a set of formulas

- $\mathcal{I} \models \mathcal{G}$, if $\mathcal{I} \models F$ for all $F \in \mathcal{G}$
- \mathcal{I} models \mathcal{G} , if $\mathcal{I} \models \mathcal{G}$

Definition

Definition	
F , G_1, \ldots, G_n be formulas	
• $G_1, \ldots, G_n \models F$ iff	
\forall interpretations $\mathcal I$ of all G_1, \ldots, G_n such that	
${\mathcal I}$ models ${\mathcal G}_1,\ldots$, ${\mathcal G}_n$,we have ${\mathcal I}$ models ${\mathcal F}$	
• F is called satisfiable	
if \exists an interpretation that is a model of F	Sat(F)
• <i>F</i> is valid if	
F is satisfiable in any interpretation	= <i>F</i>

Example

consider the formula $A := x < y \land \neg \exists z (x < z \land z < y)$

• $\mathcal{N} = (\mathbb{N}, 0, \mathsf{succ}, +, \cdot, <)$ denote the standard structure of arithmetic

Automated Reasoning

- $\ell(x) = 1, \ell(y) = 2$
- then $(\mathcal{N}, \ell) \models A$

GM (Institute of Computer Science @ UIBK)

Syntax First-Order Logic

Definition

let F be a formula such that x occurs in F

- x is bound if it occurs inside the scope of a quantifier
- otherwise x is free
- a formula without free variables is called closed or a sentence

Example

consider $\forall x(P(x) \land Q(x, y))$; then x is bound and y is free

Notation

let F be a formula, x a free variable in F, t a term

- we sometimes write F(x) instead of F to indicate x
- F(t) denotes the replacement of x by t
- F(t) is an instance of F(x)

Example

consider concatenation of lists

app(nil, Ys) = Ys app(Xs, Ys) = cons(head(Xs), app(tail(Xs), Ys))and the language \mathcal{L} :

nil, head(Xs), tail(Xs), cons(X, Xs), =, and App(Xs, Ys, Zs) then list concatenation is expressible as follows:

 $\forall x \operatorname{App}(\operatorname{nil}, x, x) \land \land \forall x \forall y \forall z \ (x \neq \operatorname{nil} \land \operatorname{App}(\operatorname{tail}(x), y, z) \to \operatorname{App}(x, y, \operatorname{cons}(\operatorname{head}(x), z)))$

Example

define

$$I_n := \forall x_1 \dots \forall x_{n-1} \exists y (x_1 \neq y \land \dots \land x_{n-1} \neq y)$$

if $\mathcal{I} \models I_n$, then \mathcal{I} has at least *n* elements

GM (Institute of Computer Science @ UIBK) Automated Reasoning

47/1

Syntax First-Order Logic

Definition	1	
F is called unsatisfiable		
if $\neg \exists$ interpretation that is a model of <i>F</i>	$\neg \operatorname{Sat}(F)$	
Definition		
Definition		
F and G are logically equivalent if $F \models G$ and $G \models F$	$F \equiv G$	
Lemma	- 1	
\forall formulas F and all sets of formulas $\mathcal{G}: \mathcal{G} \models F$ iff $\neg \operatorname{Sat}(\mathcal{G} \cup \{\neg F\})$		
Lemma		
1 let $\mathcal{I}_1 = (\mathcal{A}_1, \ell_1)$ and $\mathcal{I}_2 = (\mathcal{A}_2, \ell_2)$ be interpretations		
2 the universes of \mathcal{I}_1 , \mathcal{I}_2 coincide		
3 \mathcal{I}_1 and \mathcal{I}_2 coincide on the constants and variables occurring in F		

then $\mathcal{I}_1 \models F$ iff $\mathcal{I}_2 \models F$

GM (Institute of Computer Science @ UIBK) Automated Reasonir

Toy Example: Logic as Modelling Language

$\mathsf{Argument}\ \textcircled{1}$

- **1** a mother or father of a person is an ancestor of that person
- **2** an ancestor of an ancestor of a person is an ancestor of a person
- **3** Sarah is the mother of Isaac, Isaac is the father of Jacob
- 4 Thus, Sarah is an ancestor of Jacob

Argument 2

- **1** a square or cube of a number is a power of that number
- **2** a power of a power of a number is a power of that number
- **3** 64 is the cube of 4, four is the square of 2
- **4** Thus, 64 is a power of 2

M (Institute of Computer Science @ UIBK) Automated Reasoning

50/1

Syntax First-Order Logic

Undecidability of First-Order Logic

Theorem

- **1** the decision problem for the consequence relation is undecidable
- **2** the set of valid first-order formulas is not recursive

Proof Ideas.

- encoding of TMs as first-order formulas
- reduction from Post correspondence problem

Theorem

the set of valid first-order formulas (over a countable language) is recursive enumerable

Proof.

- the set of all formulas (over a countable language) is countable
- · completeness yields that one can enumerate all valid formulas

yntax First-Order Logic

A Bit of History

Fact

the idea of automated reasoning is (very) old

Gottfried Leibnitz (1646–1716) proposed the idea of

- lingua characteristica a universal language, able to express all concepts
- calculus ratiocinator

 a machine to "compute"
 whether a given argument
 is sound

we already know that a 'calculus ratiocinator' cannot exist

GM (Institute of Computer Science @ UIBK)

utline

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Definition

 \mathcal{A}, \mathcal{B} two structures over the same language; assume \exists bijection $m: A \rightarrow B$ such that

- 1 \forall individual constant $c: m(c^{\mathcal{A}}) = c^{\mathcal{B}}$
- **2** \forall function constant f, $\forall a_1, \ldots, a_n \in A$: $m(f^{\mathcal{A}}(a_1,\ldots,a_n)) = f^{\mathcal{B}}(m(a_1),\ldots,m(a_n))$ and
- **3** \forall predicate constant $P, \forall a_1, \ldots, a_n \in A$:

$$\mathcal{P}^{\mathcal{A}}(a_1,\ldots,a_n) \Longleftrightarrow \mathcal{P}^{\mathcal{B}}(\mathbf{m}(a_1),\ldots,\mathbf{m}(a_n))$$

then *m* is called an isomorphism between \mathcal{A} and \mathcal{B} denoted *m*: $\mathcal{A} \cong \mathcal{B}$

Lemma

let A, B be sets; $m: A \rightarrow B$ be a bijection; if A is a structure with domain A, then \exists structure \mathcal{B} with $\mathcal{A} \cong \mathcal{B}$

Automated Reasoning

GM (Institute of Computer Science @ UIBK)

somorphism Theorem

Corollarv

- \blacksquare \forall formula F that has a finite model has a model in the domain $\{0, 1, 2, \ldots, n\}$
- **2** \forall formula F that has a countable infinite model has a model whose domain is \mathbb{N}

Proof.

combination of both lemmas

Example

consider $\mathcal{L} = \{ \leftrightarrows \}$ and $E: \Longleftrightarrow \forall x \ x \leftrightarrows x \land \forall x \forall y \ (x \leftrightarrows y \land y \leftrightarrows x) \land$ $\forall x \forall y \forall z \ ((x \leftrightarrows y \land y \leftrightarrows z) \rightarrow x \leftrightarrows z)$ $F : \iff \forall x \forall y \ x \rightleftharpoons y$

if \mathcal{M} and \mathbb{N} are countable infinite and $\mathcal{M} \models E \land F$, $\mathcal{N} \models E \land F$, then $\mathcal{M}\cong\mathcal{N}$

norphism Theore

Isomorphism Theorem

let \mathcal{A}, \mathcal{B} be structures such that $m: \mathcal{A} \cong \mathcal{B}$, then for all sentences F: $\mathcal{A} \models F$ iff $\mathcal{B} \models F$

Proof.

1 let $\mathcal{I} = (\mathcal{A}, \ell)$, define $\ell^m = m \circ \ell$, set $\mathcal{J} = (\mathcal{B}, \ell^m)$			
2 \forall terms t : $m(t^{\mathcal{I}}) =$	$= t^{\mathcal{J}}$	(follows by induction on t)	
$ \exists \forall \text{ formulas } F \colon \mathcal{I} \models F \Longleftrightarrow \mathcal{J} \models F $			
• base case $F = (s = t)$			
$\mathcal{I}\models s=t$ -	$\iff s^{\mathcal{I}} =$	$t^{\mathcal{I}} \iff m(s^{\mathcal{I}}) = m(t^{\mathcal{I}}) \iff \mathcal{J} \models s = t$	
• step case $F = \Xi$	хG		
$\mathcal{I}\models\exists xG$	\iff	there exists $a \in A$, $\mathcal{I}\{x \mapsto a\} \models G$	
	\iff	there exists $a \in A, \ \mathcal{J}\{x \mapsto m(a)\} \models G$	
	\iff	there exists $b\in B,\; \mathcal{J}\{x\mapsto b\}\models G$	
	\Leftrightarrow	$\mathcal{J}\models\exists xG$	

GM (Institute of Computer Science @ UIBK Automated Reasonii

Compactness and Löwenheim-Skole

Compactness and Löwenheim-Skolem

Theorem (Compactness Theorem)

if every finite subset of a set of formulas G has a model, then G has a model

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas G has a model, then G has a countable model

Corollary

if a set of formulas \mathcal{G} has arbitrarily large finite models, then it has a countable infinite model

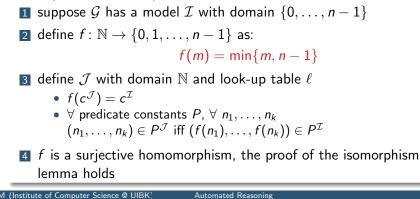
Proof Idea.

employ compactness to show that $\mathcal G$ has an infinite model and Löwenheim-Skolem to show that this model is countable

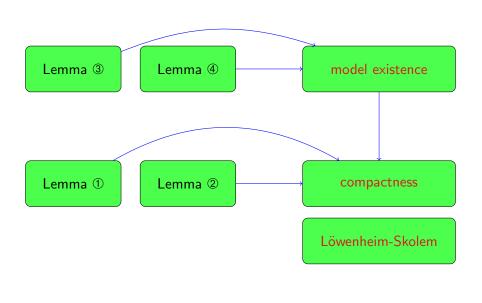
Corollarv

- **1** any satisfiable set of formulas \mathcal{G} has a model whose domain is either the set of natural numbers < n or \mathbb{N}
- **2** if \mathcal{G} is a satisfiable set of formulas, no function symbols, no identity in language, then \mathcal{G} has a model whose domain is \mathbb{N}

Proof (of second item).



Automated Reasonin



Howto Prove Compactness and Löwenheim-Skolem

Proof Plan for Completeness

first-order logic features the following three theorems

- **1** (soundness and) completeness
- 2 compactness
- 3 Löwenheim-Skolem

Observations

- any proof of completeness is indirect: suppose \exists a consistent set \mathcal{G} , then \mathcal{G} is satisfiable
- to show \mathcal{G} is satisfiable one constructs a countable model \mathcal{M}

 \perp is not derivable

- Löwenheim-Skolem and compactness follow
- the central piece of work is the construction of \mathcal{M} ; this is independent on the proof system

in proof, we restrict the logical symbols to \neg , \lor , \exists , and =

GM (Institute of Computer Science @ UIBK Automated Reasoning

Satisfaction Properties

lemma ①

let *S* be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$

- **1** if $G_0 \subseteq G$, then $G_0 \in S$
- **2** no formula F and \neg F in G
- 3 if $\neg \neg F \in G$, then $G \cup \{F\} \in S$
- 4 *if* $(E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup \{E\} \in S$ or $\mathcal{G} \cup \{F\} \in S$
- **5** if $\neg (E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup \{\neg E\} \in S$ and $\mathcal{G} \cup \{\neg F\} \in S$
- **6** if $\exists x F(x) \in \mathcal{G}$, the constant *c* doesn't occur in \mathcal{G} , then $\mathcal{G} \cup \{F(c)\} \in S$
- **7** *if* $\neg \exists x F(x) \in \mathcal{G}$, then \forall terms $t, \mathcal{G} \cup \{\neg F(t)\} \in S$
- 8 for any term $t, \mathcal{G} \cup \{t = t\} \in S$
- 9 if $\{F(s), s = t\} \subseteq \mathcal{G}$, then $\mathcal{G} \cup \{F(t)\} \in S$

Definition

GM (Institute of Computer Science @ UIBK)

we call the properties (of S) in the lemma satisfaction properties

Automated Reason

Satisfaction Properties

Lemma 2

- **1** assume *S* is a set of formula sets and *S* has the satisfaction properties
- 2 let S^* be the set of all formula sets \mathcal{G} such that \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}, \mathcal{G}_0 \in S$
- **3** then S^{*} has the satisfaction properties

Proof.

we treat the case of disjunction

- assume $\mathcal{G} \in S^*$, $(E \lor F) \in \mathcal{G}$, $\mathcal{G} \cup \{E\} \notin S^*$ and $\mathcal{G} \cup \{F\} \notin S^*$
- \forall finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \in S$,
- \exists finite $\mathcal{G}_1 \subseteq \mathcal{G} \cup \{E\}$, $\mathcal{G}_1 \notin S$, \exists finite $\mathcal{G}_2 \subseteq \mathcal{G} \cup \{F\}$, $\mathcal{G}_2 \notin S$
- wlog $\mathcal{G}_1 = \mathcal{G}_1' \cup \{E\}$, $\mathcal{G}_2 = \mathcal{G}_2' \cup \{F\}$, and $\mathcal{G}_1', \mathcal{G}_2' \subseteq \mathcal{G}$ finite
- $\mathcal{G}'_1 \cup \mathcal{G}'_2 \cup \{(E \lor F)\} \subseteq \mathcal{G}$, hence $\mathcal{G}'_1 \cup \mathcal{G}'_2 \cup \{(E \lor F)\} \in S$
- hence $\mathcal{G}_1' \cup \mathcal{G}_2' \cup \{E\} \in S$ or $\mathcal{G}_1' \cup \mathcal{G}_2' \cup \{F\} \in S$
- contradiction

(Institute of Computer Science @ UIBK) Automated Reasonin

Compactness and Löwenheim-Skolem Theorem

Proof (of compactness).

- consider the set S of satisfiable formula sets (over L) (as in Lemma 1)
- consider the set S^* of all formulas set \mathcal{G} , $\forall \ \mathcal{G}_0 \subseteq \mathcal{G}$, \mathcal{G}_0 finite, $\mathcal{G}_0 \in S$ (as in Lemma 2)
- Lemma 1 yields that S admits the satisfaction properties
- Lemma 2 yields that S^* admits the satisfaction properties
- by assumption $\mathcal G$ is in S^*
- by model existence ${\mathcal G}$ has a model ${\mathcal M}$

Theorem (Löwenheim-Skolem Theorem)

if a set of formulas ${\mathcal G}$ has a model, then ${\mathcal G}$ has a countable model

Proof.

the model ${\mathcal M}$ constructed is countable

Compactness and Löwenheim-Skolem Theorem

 $\mathcal L$ base language; $\mathcal L^+ \supseteq \mathcal L$ infinitely many new individual constants

Theorem (Model Existence Theorem)

- if S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists M, M \models \mathcal{G}$
- **2** \forall elements *m* of \mathcal{M} : *m* denotes term in \mathcal{L}^+

Compactness Theorem

if every finite subset of a set of formulas ${\mathcal G}$ has a model, then ${\mathcal G}$ has a model

Remark

the statement and the proof of the compactness theorem do not refer to provability; compactness is extensible to non-enumerable language

Automated Reasonir

GM (Institute of Computer Science @ UIBK)

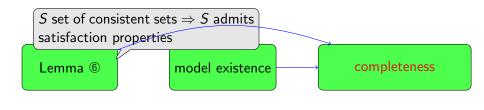
63/

ompactness and Löwenheim-Skolem Theorem

How to Prove Completeness

Definition

for any formal system; if \neg \exists proof of \bot from a formula set $\mathcal G,$ we say $\mathcal G$ is consistent



Later We Exploit the Proof

