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Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model
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Summary

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model
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Summary

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

(EI satisfaction properties}
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Summary

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

S admits satisfaction properties =
S* admits satisfaction properties
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Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

S admits satisfaction properties =

G € S is satisfiable -
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Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model
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Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model

GM (Institute of Computer Science @ UIBK] Automated Reasoning



Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Lowenheim-Skolem Theorem
if a set of formulas G has a model, then G has a countable model
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Lemma @

let S be the set of satisfiable sets of formulas; pick G € S
ifGo C G, then Gy € S

no formula F and —=F in G

if =—F € G, then GU{F} €S

if(EVF)eG, then GU{E} € SorGU{F} €S

if~(EVF)egG, then GU{-E} €S andGU{-F} €S

if 3xF(x) € G, the constant ¢ doesn't occur in G, then

GU{F(c)} €S

if =3xF(x) € G, then ¥ terms t, GU {—F(t)} € S

B forany termt, GU{t =t} €S

B if{F(s),s=t} C G, thenGU{F(t)} €S

B0 EN

Definition
we call the properties (of S) in the lemma satisfaction properties
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Summary
Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Léwenheim-Skolem, compactness, model
existence theorem, completeness, natural deduction, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic
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Summary
Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Léwenheim-Skolem, compactness, model
existence theorem, completeness, natural deduction, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic
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Model Existence

L base language; £ D L infinitely many new individual constants
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Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1
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Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1
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Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1

G has closure properties = 9 model

M, MEG
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Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1

S admits satisfaction properties =
G € S admits closure properties
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Model Existence

L base language; £ D L infinitely many new individual constants

Theorem (Model Existence Theorem)

if S* is a set of formula sets of LT having the satisfaction
properties, then ¥ formula sets G € S* of L, A M, M =G

Y elements m of M: m denotes term in L1
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and —F in G

GM (Institute of Computer Science @ UIBK) Automated Reasoning



Model Existence

Closure Properties

Lemma

the set G of formulas that are true in M admit
no formula F and —F in G
if——F € G, then F € G
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and —F in G

if——F € @G, then F e G
if(EVF)eG, thenEcGorFeg
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and —F in G

if——F € @G, then F e G
if(EVF)eG, thenEcGorFeg
if=(EV F)eg, then—E € G and -F € G
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and —F in G

if ——F g, then Fe g

if(EVF)eG, thenEcGorFeg

if -(EV F)eg, then-E € G and -F € G

if IxF(x) € G, then 3 term t (of LT), F(t) € G

(-~ |
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and —F in G

if ——F g, then Fe g

if(EVF)eG, thenEcGorFeg

if=(EV F)eg, then—E € G and -F € G

if IxF(x) € G, then 3 term t (of LT), F(t) € G

if ~3xF(x) € G, thenV term t (of L), =F(t) € G

BEEOEDN
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and —F in G

if ——F g, then Fe g

if(EVF)eG, thenEcGorFeg

if -(EV F)eg, then-E € G and -F € G

if IxF(x) € G, then 3 term t (of LT), F(t) € G

if ~3xF(x) € G, thenV term t (of L), =F(t) € G
Vitermt (of LT) t=t€g

BEEOEDN
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and —F in G

if ——F g, then Fe g

if(EVF)eG, thenEcGorFeg

if -(EV F)eg, then-E € G and -F € G

if IxF(x) € G, then 3 term t (of LT), F(t) € G

@ if —3xF(x) € G, then V¥ term t (of L), =F(t) € G
Vitermt (of LT) t=t€g

B ifF(s)eg,s=teg, then F(t) € g

(-~ |
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Model Existence

Closure Properties

Lemma
the set G of formulas that are true in M admit
no formula F and —F in G

if ——F g, then Fe g

if(EVF)eG, thenEcGorFeg

if -(EV F)eg, then-E € G and -F € G

if IxF(x) € G, then 3 term t (of LT), F(t) € G

@ if —3xF(x) € G, then V¥ term t (of L), =F(t) € G
Vitermt (of LT) t=t€g

B ifF(s)eg,s=teg, then F(t) € g

(-~ |

Definition

we call the properties of G closure properties
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Model Existence

Lemma ®
let G be a formula set admitting the closure properties
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Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term
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Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG
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Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Lemma @

let £ be a language; LT extension of £ with infinitely many
individual constants
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Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Lemma @

let £ be a language; LT extension of £ with infinitely many
individual constants

let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
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Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Lemma @

let £ be a language; LT extension of £ with infinitely many
individual constants

let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties

V formula set G € S* (of £), 3 G* 2 G (of LT), such that G* fulfils
the closure properties
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Model Existence

Lemma ®
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Lemma @
let £ be a language; LT extension of £ with infinitely many
individual constants
let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties

V formula set G € S* (of £), 3 G* 2 G (of LT), such that G* fulfils
the closure properties

Proof of Model Existence
by Lemma @ and Lemma ® |
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Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then J interpretation M in which every element of the domain is
the denotation of some term

e MEG
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Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then J interpretation M in which every element of the domain is
the denotation of some term

e MEG

Proof
the domain of M is the set of terms (of L)
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Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then J interpretation M in which every element of the domain is
the denotation of some term

e MEG
Proof
the domain of M is the set of terms (of L)

V constants ¢
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Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then J interpretation M in which every element of the domain is
the denotation of some term

e MEG
Proof
the domain of M is the set of terms (of L)

V constants ¢

cti=c
V predicate constant P, V terms ti,..., ty:
(t1,...,ty) € P = P(t1,...,t)) €G
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Model Existence

Proof of Lemma ®

(no identity, no function symbols)

e let G be a formula set admitting the closure properties

e then J interpretation M in which every element of the domain is
the denotation of some term

e MEG
Proof
the domain of M is the set of terms (of L)

V constants ¢

cti=c
V predicate constant P, V terms ti,..., ty:
(t1,...,ty) € P = P(t1,...,t)) €G

V variables x: /(x) := x
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formulas F: FeG= M[EF
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formulas F: FeG= M[EF

Claim: FeG=MEF
we show the claim by induction on F:
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formulas F: FeG= M[EF

Claim: FeG=MEF
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,ty) € PM; hence M = F
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formulas F: FeG= M[EF

Claim: FeG=MEF
we show the claim by induction on F:
e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,ty) € PM; hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formulas F: FeG= M EF

Claim: FeG=MEF
we show the claim by induction on F:
e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,ty) € P, hence M = F
o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G(t) € G
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formulas F: FeG= M EF

Claim: FeG=MEF
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,ty) € PM; hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G(t) € G

by induction hypothesis: M = G(t)
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formulas F: FeG= M EF

Claim: FeG=MEF
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,ty) € PM; hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G(t) € G

by induction hypothesis: M = G(t) and thus M = 3xG(x)
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Proof (cont'd)

definition of M takes care of the demand that every element of its
domain is the denotation of a term

@ we claim V formulas F: FeG= M EF

Claim: FeG=MEF
we show the claim by induction on F:

e for the base case, let F = P(t1,...,t,), if F € G, then by definition
(t1,...,ty) € PM; hence M = F

o for the step case, we assume F = 3xG(x) and F € G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G(t) € G

by induction hypothesis: M = G(t) and thus M = 3xG(x)
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Model Construction in a Picture

set of terms over £

X7

: X6
k. 5 X5
ky X4
k3 X3
ko X2
kq X1
ko X0
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Model Existence

Model Construction in a Picture

set of terms over LT domain of M

X.7 X'7
: X6 : X6
ks X5 ks X
kq X4 kq X4
k3 X3 k3 X3
ko X2 ko X2
kq X1 kq X1
ko X0 ko X0
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Model Existence

Model Construction in a Picture

set of terms over £ domain of M

X.7 X'7
: X6 ; X6
ks X5 M ks X5
k4 X4 k4 X4
k3 k3 X3
ko X2 ko X2
kq X1 kq X1
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Model Existence

Model Construction in a Picture

set of terms over £

domain of M

L

: /\ :

: X6 : X6
k.5 X5 M k5 X5
kq X4 kq X4
k3 A ks X3
ko X2 ko X2
kq X1 kq X1
ko X0 ko X0
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Model Construction in a Picture

formula set G domain of M

x7

: X6
k5 X5
kg X4
k3 X3
ko X2
kq X1
ko X0
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Model Construction in a Picture

formula set G domain of M

kQERM

x3 € PM X7

: X6
k5 X5
kg X4
k3 X3
ko X2
kq X1
ko X0
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Model Existence

Model Construction in a Picture

formula set G domain of M

M
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Model Existence

Proof of Lemma @
(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
e V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties
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Model Existence

Proof of Lemma @
(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
e V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof
e construct sequence of sets belonging to S*

G =20G0,01,G2,... Gn C Gnt1
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Model Existence

Proof of Lemma @

(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
e V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof
e construct sequence of sets belonging to S*

G =20G0,01,G2,... Gn C Gnt1

e G, is constructed in step n
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Model Existence

Proof of Lemma @

(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
e V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof
e construct sequence of sets belonging to S*

G =20G0,01,G2,... Gn C Gnt1

e G, is constructed in step n

@ 5ot G = Uy G
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Model Existence

Proof of Lemma @

(no identity, no function symbols)
e let £ be a language; £ extension of £ with infinitely many
individual constants
e let S* be a set of formula sets (of £1), let S* admit the satisfaction
properties
e V formula set G € S* (of £), 3 G* D G (of LT), such that G* fulfils
the closure properties

Proof
e construct sequence of sets belonging to S*

G =20G0,01,G2,... Gn C Gnt1

e G, is constructed in step n

@ 5ot G = Uy G

e closure properties induce (infinitely many) demands
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Proof (cont'd)

Demands
no formula F and =F in G, forall n >0
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Proof (cont'd)

Demands
no formula F and =F in G, forall n >0
if -——F € G,, then 3k > n, gk+1 =G, U {F}
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Proof (cont'd)

Demands
no formula F and =F in G, forall n >0
if ==F € Gp, then 3k > n, Gx11 = Gk U{F}
if (EV F) € Gp, then 3k > n, Gyy1 =Gk U{E} or Gey1 = G U{F}
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Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if ==F € Gp, then 3k > n, Gx11 = Gk U{F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gky1 = G U{F}
if 7(EV F) € Gy, then ki, ko > n, Gy, 41 = Gk, U{—E} and
Glo+1 = Gk, U{F}
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Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -—F € G,, then 3k > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gky1 = G U{F}
if —|(E V F) € G,, then Jkq, ko > n, gkl+1 = gk1 U {—|E} and
Glot1 = Gi, U{~F}
if 3xF(x) € Gy, then I term t, Ik = n, Gryr1 = Gk U{F(t)}
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Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -——F € G,, then 3k > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gky1 = G U{F}
if —|(E V F) € G,, then Jkq, ko > n, gkl+1 = gkl U {—|E} and
Glot1 = Gi, U{~F}
if 3xF(x) € Gy, then I term t, Ik = n, Gryr1 = Gk U{F(t)}
if =3xF(x) € Gp, then V term t, 3k > n, Gyy1 = G U{-F(t)}

B o
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Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -—F € G,, then 3k > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gky1 = G U{F}
if —|(E V F) € G,, then Jkq, ko > n, gkl+1 = gkl U {—|E} and
Gko+1 = Gk, U{~F}
if 3xF(x) € Gy, then I term t, Ik = n, Gryr1 = Gk U{F(t)}
@A if ~3IxF(x) € Gy, then V term t, Ik > n, Gyy1 = G U{-F(t)}
V terms t, 3k > n such that t =t € Gy
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Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -—F € G,, then 3k > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gky1 = G U{F}
if —|(E V F) € G,, then Jkq, ko > n, gkl+1 = gkl U {—|E} and
Gko+1 = Gk, U{~F}
if 3xF(x) € Gy, then I term t, Ik = n, Gryr1 = Gk U{F(t)}
@A if ~3IxF(x) € Gy, then V term t, Ik > n, Gyy1 = G U{-F(t)}
V terms t, 3k > n such that t =t € Gy
B if F(s) €Gn and s=t € G, Ik > n F(t) € Gk
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Model Existence

Proof (cont'd)
Demands
no formula F and =F in G, forall n >0
if -—F € G,, then 3k > n, ng =G, U {F}
if (EV F) € Gp, then 3k > n, Gyy1 =G U{E} or Gky1 = G U{F}
if —|(E V F) € G,, then Jkq, ko > n, gkl+1 = gkl U {—|E} and
Gko+1 = Gk, U{~F}
if 3xF(x) € Gy, then I term t, Ik = n, Gryr1 = Gk U{F(t)}
@A if ~3IxF(x) € Gy, then V term t, Ik > n, Gyy1 = G U{-F(t)}
V terms t, 3k > n such that t =t € Gy
B if F(s) €Gn and s=t € G, Ik > n F(t) € Gk

Claim
all demands can be granted, in particular the satisfaction properties guar-
antee that any demand can be met

y
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Proof (cont'd)
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Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}
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Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

e we use that S* fulfils the satisfaction properties (c is fresh):

IxF(x) € G € S = G, U{F(c)} € 5"
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Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

e we use that S* fulfils the satisfaction properties (c is fresh):

IxF(x) € G € S* =Vk 2 nGyU{F(c)} € §*
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Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

e we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € G € S* =Vk 2 nGyU{F(c)} € §*
e we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢
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Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

e we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € G € S* =Vk 2 nGyU{F(c)} € §*
e we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢

e similar for the Demands 2-8
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Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

e we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € G € S* =Vk 2 nGyU{F(c)} € §*
e we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢

e similar for the Demands 2-8

Claim: 4 fair strategy
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Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

e we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € G € S* =Vk 2 nGyU{F(c)} € §*
e we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢

e similar for the Demands 2-8

Claim: 4 fair strategy

e assign a pair (i, n) to each demand except Demand 6
assign triple (i,n,"t") to Demand 6, i is the number of the demand
raised at step n, "t Godel number of t
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Proof (cont'd)

e consider Demand 5:
if 3xF(x) € Gy, then I term t, 3k > n, Gyy1 = G U{F(t)}

e we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € G € S* =Vk 2 nGyU{F(c)} € §*
e we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢

e similar for the Demands 2-8

Claim: 4 fair strategy

e assign a pair (i, n) to each demand except Demand 6
assign triple (i,n,"t") to Demand 6, i is the number of the demand
raised at step n, "t Godel number of t

e enumerate all pairs or triples and encode them as number k

L
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Proof (cont'd)

e consider Demand 5:
if IxF(x) € Gy, then I term t, Ik > n, Ge1 = G U {F(t)}

e we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € G € S* =Vk 2 nGyU{F(c)} € §*
e we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢

e similar for the Demands 2-8

Claim: 4 fair strategy

e assign a pair (i, n) to each demand except Demand 6
assign triple (i,n,"t") to Demand 6, i is the number of the demand
raised at step n, "t Godel number of t

e enumerate all pairs or triples and encode them as number k

e in step k we grant the demand raised at step n
—
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Proof (cont'd)

e consider Demand 5:
if IxF(x) € Gy, then I term t, Ik > n, Ge1 = G U {F(t)}

e we use that S* fulfils the satisfaction properties (c is fresh):
IxF(x) € G € S* =Vk 2 nGyU{F(c)} € §*
e we fulfil demand by setting (at step k)
Gk+1:= Gk U{F(c)} for fresh ¢

e similar for the Demands 2-8

Claim: 4 fair strategy

e assign a pair (i, n) to each demand except Demand 6
assign triple (i,n,"t") to Demand 6, i is the number of the demand
raised at step n, "t Godel number of t

e enumerate all pairs or triples and encode them as number k

e in step k we grant the demand raised at step n H
—
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Saturation of G in a Picture

formula set G = Gg
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Model Existence

Saturation of G in a Picture

formula set G = Gg formula set Gx11, k>0

——F € Gy, then 3k > n, Gey1 = Gk U{F}
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Model Existence

Saturation of G in a Picture

formula set G = Gg formula set Gx11, k>0

——F € Gy, then 3k > n, Gey1 = Gk U{F}
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Model Existence

Saturation of G in a Picture

formula set G = Gg formula set Gx11, k>0

(EV-F) € Gp, then 3k > n, Gi1 = Gk U{E} or Gyy1 = Gk U{F}
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Model Existence

Saturation of G in a Picture

formula set G = Gg formula set Gx11, k>0

(EV-F) € Gp, then 3k > n, Gi1 = Gk U{E} or Gyy1 = Gk U{F}
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Model Existence

Saturation of G in a Picture

formula set G = Gg formula set Gx11, k>0

IxF(x) € G, then 3k > n, T term t, Gy1 = G U{F(t)}

GM (Institute of Computer Science @ UIBK] Automated Reasoning



Model Existence

Saturation of G in a Picture

formula set G = Gg formula set Gx11, k>0

IxF(x) € G, then 3k > n, T term t, Gy1 = G U{F(t)}
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Generalisation |: Function Constants

Lemma @ (revisited)
let G be a formula set admitting the closure properties
suppose that L is free of the equality symbol

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG
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Generalisation |: Function Constants

Lemma @ (revisited)
let G be a formula set admitting the closure properties
suppose that L is free of the equality symbol

then 3 interpretation M in which every element of the domain is
the denotation of some term

MEG
Proof.
ti,...,t, elements of M and f an n-ary function symbol in £

define: FM(ty, ..., t,) = f(t1,...,tn)
following the earlier proof, we verify M = G
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Model Existence

Generalisation |: Function Constants
Lemma @ (revisited)
let G be a formula set admitting the closure properties
suppose that L is free of the equality symbol

then 3 interpretation M in which every element of the domain is
the denotation of some term

MEG
Proof.
ti,...,t, elements of M and f an n-ary function symbol in £

define: FM(ty, ..., t,) = f(t1,...,tn)
following the earlier proof, we verify M = G

this extends model existence to first-order logic (without =)
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Generalisation |I: Equality

Lemma ® (revisited again)
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG
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Generalisation |I: Equality

Lemma ® (revisited again)
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Proof.
suppose (s = t) € G, where s and t are syntactically different
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Generalisation |I: Equality

Lemma ® (revisited again)
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Proof.
suppose (s = t) € G, where s and t are syntactically different

for M according to the original construction, we have M [~ s =t
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Generalisation |I: Equality

Lemma ® (revisited again)
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Proof.
suppose (s = t) € G, where s and t are syntactically different
for M according to the original construction, we have M [~ s =t
define a variant of the model M, denoted as M’
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Model Existence

Generalisation |I: Equality

Lemma ® (revisited again)
let G be a formula set admitting the closure properties

then 3 interpretation M in which every element of the domain is
the denotation of some term

BMEG

Proof.

suppose (s = t) € G, where s and t are syntactically different

for M according to the original construction, we have M [~ s =t
define a variant of the model M, denoted as M’

consider the set £ of all equations induced by G:

E={s=t|GEs=t}

GM (Institute of Computer Science @ UIBK)
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Model Existence

Proof (cont'd).

& gives rise to an equivalence relation ~

GM (Institute of Computer Science @ UIBK) Automated Reasoning



Model Existence

Proof (cont'd).

& gives rise to an equivalence relation ~

[@ domain of M’ is set of equivalent classes of terms of £
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Model Existence

Proof (cont'd).
& gives rise to an equivalence relation ~
[@ domain of M’ is set of equivalent classes of terms of £

[t]~ denotes the equivalence class of t
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Model Existence

Proof (cont'd).
& gives rise to an equivalence relation ~
[@ domain of M’ is set of equivalent classes of terms of £
[t]~ denotes the equivalence class of t

B definition of the structure underlying M’:

FM([t1]~s - oo [ta)~) = [F(t, ooy t)]~ f is n-ary function
PM([ti]~s ..., [t]~) <= P(t1,...,tn) €G P is n-ary predicate
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Model Existence

Proof (cont'd).
& gives rise to an equivalence relation ~
[@ domain of M’ is set of equivalent classes of terms of £
[t]~ denotes the equivalence class of t

B definition of the structure underlying M’:

FM([t1]~s - oo [ta)~) = [F(t, ooy t)]~ f is n-ary function
PM([ti]~s ..., [t]~) <= P(t1,...,tn) €G P is n-ary predicate

B from this M' =G
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Model Existence

Proof (cont'd).
& gives rise to an equivalence relation ~
[@ domain of M’ is set of equivalent classes of terms of £
[t]~ denotes the equivalence class of t

B definition of the structure underlying M’:

FM([t1]~s - oo [ta)~) = [F(t, ooy t)]~ f is n-ary function
PM([ti]~s ..., [t]~) <= P(t1,...,tn) €G P is n-ary predicate

B from this M' =G =
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Model Existence

Proof (cont'd).
& gives rise to an equivalence relation ~
[@ domain of M’ is set of equivalent classes of terms of £
[t]~ denotes the equivalence class of t

B definition of the structure underlying M’:

FM([t1]~s - oo [ta)~) = [F(t, ooy t)]~ f is n-ary function
PM([ti]~s ..., [t]~) <= P(t1,...,tn) €G P is n-ary predicate

B from this M' =G =

this extends model existence to full first-order logic
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Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Léwenheim-Skolem, compactness, model
existence theorem, completeness, natural deduction, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand's Theorem

v

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic
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Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Léwenheim-Skolem, compactness, model
existence theorem, completeness, natural deduction, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic
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Natural Deduction for First-Order Logic

introduction elimination

E F . EANF EANF .
A E/\F/\" “E N:e = N e

E F
_E . _F . EVF | & G|

\ E\/F\/.I E\/Fv'l C Ve

E

F E ESF .
K EoF F ¢
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Natural Deduction

Natural Deduction Extended

introduction elimination
E
L] L F -F ..
B -E 1 ’
L
=F F l:e
& 2 e
s=t F(s)
—== T = ] =:€
t=t F(t)

Automated Reasoning
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Natural Deduction

Natural Deduction Quantifier Rules
introduction elimination
x  F(x)
F(t) IxF(x) G
3 EIxF(x) 3 C d: e
X
F(x) - VxF (x)
v VxF(x) F(o)

variable x in 3: e, V: i local to box

GM (Institute of Computer Science @ UIBK)
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Natural Deduction

Example
1 IxP(x) premise
2 VxVy(P(x) — Q(y)) premise
3 y
4 X P(x) assumption
5 Vy(P(x) = Q(y))  2,V:e
6 P(x) = Q(y) 5 V:e
7 Q(y) 4,6,—: e
8 Q(y) 1,4—7,3: e
9 VyQ(y) 3-8,V
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Natural Deduction

Example
1 IxP(x) premise
2 VxVy(P(x) — Q(y)) premise
3 y
4 X P(x) assumption
5 vy(P(x) 2 Q(y))  2,V:e
6 P(x) — Q(y) 5,V e
7 Q(y) 4,6, —:e
8 Q(y) 1,4—7,3:6
9 YyQ(y) 3-8,V:i
hence we have
IxP(x), VxVy(P(x) — Q(y)) F VyQ(y)
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Natural Deduction

Example
1 IxP(x) premise
2 VxVy(P(x) — Q(y)) premise
3 y
4 X P(x) assumption
5 Vy(P(x) = Q(y))  2,V:e
6 P(x) — Q(y) 5V:e
7 Q(y) 4,6,—: e
8 Q(y) 1,4—7,3:6
9 VyQ(y) 3-8,V:i
hence we have (provability relationj
IxP(x), VxVy(P(x) — Q(y)) F VyQ(y)

GM (Institute of Computer Science @ UIBK) Automated Reasoning



Godel’'s Completeness Theorem

Godel’'s Completeness Theorem

Definition
let G be a set of formulas, F a formula

e if 3 a natural deduction proof from of F from finite Gg C G, we
write G - F
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Godel’'s Completeness Theorem

Godel’'s Completeness Theorem

Definition
let G be a set of formulas, F a formula

e if 3 a natural deduction proof from of F from finite Gg C G, we
write G - F

e if = 3 proof of L from G, we say G is consistent, otherwise
inconsistent

GM (Institute of Computer Science @ UIBK] Automated Reasoning



Godel’'s Completeness Theorem

Godel’'s Completeness Theorem

Definition
let G be a set of formulas, F a formula

e if 3 a natural deduction proof from of F from finite Gg C G, we
write G - F

e if = 3 proof of L from G, we say G is consistent, otherwise
inconsistent

Theorem

first-order logic is sound and complete: G = F < G+ F
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Godel’'s Completeness Theorem

Godel’'s Completeness Theorem

Definition
let G be a set of formulas, F a formula

e if 3 a natural deduction proof from of F from finite Gg C G, we
write G - F

e if = 3 proof of L from G, we say G is consistent, otherwise
inconsistent

Theorem
first-order logic is sound and complete: G = F < G+ F

Proof Idea

e the set S of consistent sets of formulas admit the satisfactions
properties
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Godel’'s Completeness Theorem

Godel’'s Completeness Theorem

Definition
let G be a set of formulas, F a formula

e if 3 a natural deduction proof from of F from finite Gg C G, we
write G - F

e if = 3 proof of L from G, we say G is consistent, otherwise
inconsistent

Theorem
first-order logic is sound and complete: G = F < G+ F

Proof Idea

e the set S of consistent sets of formulas admit the satisfactions
properties

e by the model existence theorem any G € S is satisfiable |
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Godel’'s Completeness Theorem

Soundness Theorem
first-order logic is sound

GFF<GFF
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Godel’s Completeness Theorem

Soundness Theorem
first-order logic is sound

GEF<GFF
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Godel’s Completeness Theorem

Soundness Theorem
first-order logic is sound

GEF<GFF

S set of consistent sets = S admits
satisfaction properties
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Godel’s Completeness Theorem

Soundness Theorem
first-order logic is sound

GEF<GFF
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Godel’s Completeness Theorem

Soundness Theorem
first-order logic is sound

GEF<GFF

Lemma ®
the set S of all consistent set of formulas has the satisfaction properties J
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Godel’s Completeness Theorem

Soundness Theorem
first-order logic is sound

GEF<GFF

Lemma
G & F iffGU {~F} is inconsistent

Lemma ®

the set S of all consistent set of formulas has the satisfaction properties
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Godel’'s Completeness Theorem

Completeness Theorem

first-order logic is complete

GFF=GFF
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Godel’'s Completeness Theorem

Completeness Theorem

first-order logic is complete

GFF=GFF

Proof.
wlog 3 finite Go C G, Go = F
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Godel’'s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GFF

Proof.

wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {~F})) iff Go = F
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Godel’'s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GFF

Proof.

wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {—F})) iff Go = F
suppose Go I/ F, we have to show Gg [~ F
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Godel’'s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GFF

Proof.

wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {~F})) iff Go = F

suppose Go I/ F, we have to show Gg [~ F

suppose Go U {—F} is consistent, then Go U {—F} is satisfiable
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Godel’'s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GFF

Proof.
wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {~F})) iff Go = F
suppose Go I/ F, we have to show Gg [~ F
suppose Go U {—F} is consistent, then Go U {—F} is satisfiable

Lemma ® yields that the set S of consistent formulas sets fulfils the
satisfaction properties
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Godel’'s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GFF

Proof.

wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {~F})) iff Go = F

suppose Go I/ F, we have to show Gg [~ F

suppose Go U {—F} is consistent, then Go U {—F} is satisfiable

Lemma ® yields that the set S of consistent formulas sets fulfils the
satisfaction properties

model existence yields that V H € S, H satisfiable
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Godel’'s Completeness Theorem

Completeness Theorem

first-order logic is complete

GEF=GFF

Proof.
wlog 3 finite Go C G, Go = F, recall G = F iff = Sat(G U {—F})
if (3 finite Go C G —Sat(Go U {~F})) iff Go = F
suppose Go I/ F, we have to show Gg [~ F
suppose Go U {—F} is consistent, then Go U {—F} is satisfiable

Lemma ® yields that the set S of consistent formulas sets fulfils the
satisfaction properties

model existence yields that V H € S, H satisfiable
@A as GoU{—-F} €S, GoU{—~F} satisfiable
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