

Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

Compactness Theorem

if every finite subset of a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a model

Löwenheim-Skolem Theorem

if a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a countable model

compactness

Löwenheim-Skolem

Compactness Theorem

if every finite subset of a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a model

Löwenheim-Skolem Theorem

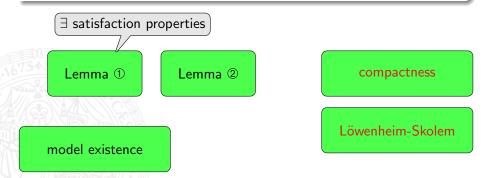
if a set of formulas $\mathcal G$ has a model, then $\mathcal G$ has a countable model

Compactness Theorem

if every finite subset of a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a model

Löwenheim-Skolem Theorem

if a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a countable model



Compactness Theorem

if every finite subset of a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a model

Löwenheim-Skolem Theorem

if a set of formulas $\mathcal G$ has a model, then $\mathcal G$ has a countable model

S admits satisfaction properties \Rightarrow S^* admits satisfaction properties

Lemma ①

Lemma ②

compactness

model existence

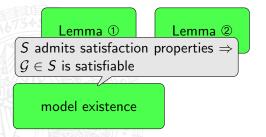
Löwenheim-Skolem

Compactness Theorem

if every finite subset of a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a model

Löwenheim-Skolem Theorem

if a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a countable model



compactness

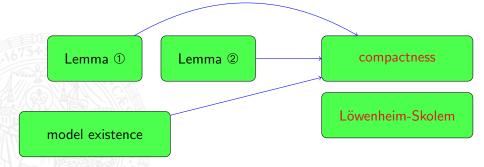
Löwenheim-Skolem

Compactness Theorem

if every finite subset of a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a model

Löwenheim-Skolem Theorem

if a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a countable model

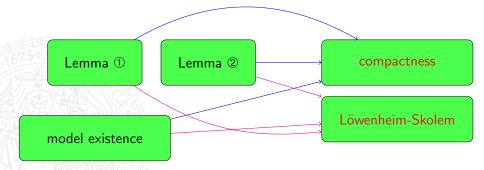


Compactness Theorem

if every finite subset of a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a model

Löwenheim-Skolem Theorem

if a set of formulas $\mathcal G$ has a model, then $\mathcal G$ has a countable model



Compactness Theorem

if every finite subset of a set of formulas ${\cal G}$ has a model, then ${\cal G}$ has a model

Löwenheim-Skolem Theorem

if a set of formulas $\mathcal G$ has a model, then $\mathcal G$ has a countable model

model existence

Lemma ①

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$

- **1** if $G_0 \subseteq G$, then $G_0 \in S$
- 2 no formula F and $\neg F$ in G
- \exists if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup \{F\} \in S$
- **4** if $(E \vee F) \in \mathcal{G}$, then $\mathcal{G} \cup \{E\} \in S$ or $\mathcal{G} \cup \{F\} \in S$
- **6** if $\exists x F(x) \in \mathcal{G}$, the constant c doesn't occur in \mathcal{G} , then $\mathcal{G} \cup \{F(c)\} \in \mathcal{S}$
- if $\neg \exists x F(x) \in \mathcal{G}$, then \forall terms t, $\mathcal{G} \cup \{ \neg F(t) \} \in S$
- 8 for any term t, $\mathcal{G} \cup \{t = t\} \in \mathcal{S}$

Definition

we call the properties (of S) in the lemma satisfaction properties

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, completeness, natural deduction, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, completeness, natural deduction, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

 \mathcal{L} base language; $\mathcal{L}^+\supseteq\mathcal{L}$ infinitely many new individual constants

 \mathcal{L} base language; $\mathcal{L}^+\supseteq\mathcal{L}$ infinitely many new individual constants

Theorem (Model Existence Theorem)

- **1** if S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists \mathcal{M}$, $\mathcal{M} \models \mathcal{G}$
- $\forall elements m of M: m denotes term in L^+$

 \mathcal{L} base language; $\mathcal{L}^+ \supseteq \mathcal{L}$ infinitely many new individual constants

Theorem (Model Existence Theorem)

- **1** if S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists \mathcal{M}$, $\mathcal{M} \models \mathcal{G}$
- $\forall elements m of \mathcal{M}: m denotes term in \mathcal{L}^+$

Lemma ③

Lemma 4

model existence

 \mathcal{L} base language; $\mathcal{L}^+\supseteq\mathcal{L}$ infinitely many new individual constants

Theorem (Model Existence Theorem)

- I if S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists \mathcal{M}$, $\mathcal{M} \models \mathcal{G}$
- $\forall elements m of \mathcal{M}: m denotes term in \mathcal{L}^+$

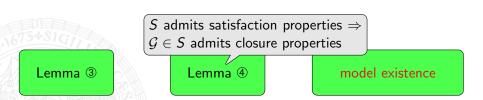
$$\mathcal{G}$$
 has closure properties $\Rightarrow \exists$ model $\mathcal{M}, \ \mathcal{M} \models \mathcal{G}$
Lemma ③ Lemma ④

model existence

 \mathcal{L} base language; $\mathcal{L}^+\supseteq\mathcal{L}$ infinitely many new individual constants

Theorem (Model Existence Theorem)

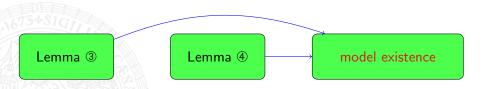
- **1** if S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists \mathcal{M}$, $\mathcal{M} \models \mathcal{G}$
- \triangledown elements m of \mathcal{M} : m denotes term in \mathcal{L}^+



 \mathcal{L} base language; $\mathcal{L}^+\supseteq\mathcal{L}$ infinitely many new individual constants

Theorem (Model Existence Theorem)

- **1** if S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists \mathcal{M}$, $\mathcal{M} \models \mathcal{G}$
- $\forall elements m of \mathcal{M}: m denotes term in \mathcal{L}^+$



Lemma

Lemma

the set $\mathcal G$ of formulas that are true in $\mathcal M$ admit

1 no formula F and $\neg F$ in \mathcal{G}

Lemma

the set G of formulas that are true in M admit

- **1** no formula F and $\neg F$ in G
- **2** if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$

Lemma

the set G of formulas that are true in M admit

- **1** no formula F and $\neg F$ in G
- **2** if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$
- \exists if $(E \vee F) \in \mathcal{G}$, then $E \in \mathcal{G}$ or $F \in \mathcal{G}$

Lemma

the set G of formulas that are true in M admit

- **1** no formula F and $\neg F$ in G
- **2** if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$
- **3** if $(E \vee F) \in \mathcal{G}$, then $E \in \mathcal{G}$ or $F \in \mathcal{G}$
- 4 if $\neg (E \lor F) \in \mathcal{G}$, then $\neg E \in \mathcal{G}$ and $\neg F \in \mathcal{G}$

Lemma

- **1** no formula F and $\neg F$ in G
- **2** if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$
- \exists if $(E \vee F) \in \mathcal{G}$, then $E \in \mathcal{G}$ or $F \in \mathcal{G}$
- **4** if $\neg (E \lor F) \in \mathcal{G}$, then $\neg E \in \mathcal{G}$ and $\neg F \in \mathcal{G}$
- **5** if $\exists x F(x) \in \mathcal{G}$, then \exists term t (of \mathcal{L}^+), $F(t) \in \mathcal{G}$

Lemma

- **1** no formula F and $\neg F$ in G
- **2** if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$
- \exists if $(E \vee F) \in \mathcal{G}$, then $E \in \mathcal{G}$ or $F \in \mathcal{G}$
- **4** if $\neg (E \lor F) \in \mathcal{G}$, then $\neg E \in \mathcal{G}$ and $\neg F \in \mathcal{G}$
- **5** if $\exists x F(x) \in \mathcal{G}$, then \exists term t (of \mathcal{L}^+), $F(t) \in \mathcal{G}$
- **6** if $\neg \exists x F(x) \in \mathcal{G}$, then \forall term t (of \mathcal{L}^+), $\neg F(t) \in \mathcal{G}$

Lemma

- \blacksquare no formula F and $\neg F$ in G
- **2** if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$
- \exists if $(E \vee F) \in \mathcal{G}$, then $E \in \mathcal{G}$ or $F \in \mathcal{G}$
- 4 if $\neg (E \lor F) \in \mathcal{G}$, then $\neg E \in \mathcal{G}$ and $\neg F \in \mathcal{G}$
- **5** if $\exists x F(x) \in \mathcal{G}$, then \exists term t (of \mathcal{L}^+), $F(t) \in \mathcal{G}$
- **6** if $\neg \exists x F(x) \in \mathcal{G}$, then \forall term t (of \mathcal{L}^+), $\neg F(t) \in \mathcal{G}$
- 7 \forall term t (of \mathcal{L}^+), $t = t \in \mathcal{G}$

Lemma

- **1** no formula F and $\neg F$ in G
- **2** if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$
- \exists if $(E \vee F) \in \mathcal{G}$, then $E \in \mathcal{G}$ or $F \in \mathcal{G}$
- **4** if $\neg (E \lor F) \in \mathcal{G}$, then $\neg E \in \mathcal{G}$ and $\neg F \in \mathcal{G}$
- **5** if $\exists x F(x) \in \mathcal{G}$, then \exists term t (of \mathcal{L}^+), $F(t) \in \mathcal{G}$
- **6** if $\neg \exists x F(x) \in \mathcal{G}$, then \forall term t (of \mathcal{L}^+), $\neg F(t) \in \mathcal{G}$
- 7 \forall term t (of \mathcal{L}^+), $t = t \in \mathcal{G}$
- 8 if $F(s) \in \mathcal{G}$, $s = t \in \mathcal{G}$, then $F(t) \in \mathcal{G}$

Lemma

the set $\mathcal G$ of formulas that are true in $\mathcal M$ admit

- **1** no formula F and $\neg F$ in G
- \mathbf{Z} if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$
- \exists if $(E \vee F) \in \mathcal{G}$, then $E \in \mathcal{G}$ or $F \in \mathcal{G}$
- 4 if $\neg (E \lor F) \in \mathcal{G}$, then $\neg E \in \mathcal{G}$ and $\neg F \in \mathcal{G}$
- **5** if $\exists x F(x) \in \mathcal{G}$, then \exists term t (of \mathcal{L}^+), $F(t) \in \mathcal{G}$
- **6** if $\neg \exists x F(x) \in \mathcal{G}$, then \forall term t (of \mathcal{L}^+), $\neg F(t) \in \mathcal{G}$
- 7 \forall term t (of \mathcal{L}^+), $t = t \in \mathcal{G}$
- 8 if $F(s) \in \mathcal{G}$, $s = t \in \mathcal{G}$, then $F(t) \in \mathcal{G}$

Definition

we call the properties of \mathcal{G} closure properties

lacktriangledown let ${\mathcal G}$ be a formula set admitting the closure properties

- f I let ${\cal G}$ be a formula set admitting the closure properties
- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term

- f I let ${\cal G}$ be a formula set admitting the closure properties
- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathfrak{I} \mathcal{M} \models \mathcal{G}$

- f I let $\cal G$ be a formula set admitting the closure properties
- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathfrak{I} \mathcal{M} \models \mathcal{G}$

Lemma 4

I let $\mathcal L$ be a language; $\mathcal L^+$ extension of $\mathcal L$ with infinitely many individual constants

Lemma 3

- $oxed{1}$ let ${\mathcal G}$ be a formula set admitting the closure properties
- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathfrak{I} \mathcal{M} \models \mathcal{G}$

Lemma 4

- I let $\mathcal L$ be a language; $\mathcal L^+$ extension of $\mathcal L$ with infinitely many individual constants
- 2 let S^* be a set of formula sets (of \mathcal{L}^+), let S^* admit the satisfaction properties

Lemma 3

- lacksquare let $\mathcal G$ be a formula set admitting the closure properties
- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathfrak{I} \mathcal{M} \models \mathcal{G}$

Lemma 4

- I let $\mathcal L$ be a language; $\mathcal L^+$ extension of $\mathcal L$ with infinitely many individual constants
- 2 let S^* be a set of formula sets (of \mathcal{L}^+), let S^* admit the satisfaction properties
- \exists \forall formula set $\mathcal{G} \in \mathcal{S}^*$ (of \mathcal{L}), \exists $\mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

- $oxed{1}$ let ${\mathcal G}$ be a formula set admitting the closure properties
- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathfrak{I} \mathcal{M} \models \mathcal{G}$

Lemma 4

- I let $\mathcal L$ be a language; $\mathcal L^+$ extension of $\mathcal L$ with infinitely many individual constants
- 2 let S^* be a set of formula sets (of \mathcal{L}^+), let S^* admit the satisfaction properties
- \exists \forall formula set $\mathcal{G} \in S^*$ (of \mathcal{L}), \exists $\mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

Proof of Model Existence

by Lemma 4 and Lemma 3

Proof of Lemma 3

(no identity, no function symbols)

- ullet let ${\mathcal G}$ be a formula set admitting the closure properties
- then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathcal{M} \models \mathcal{G}$

(no identity, no function symbols)

- ullet let ${\mathcal G}$ be a formula set admitting the closure properties
- then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathcal{M} \models \mathcal{G}$

Proof

1 the domain of \mathcal{M} is the set of terms (of \mathcal{L}^+)

(no identity, no function symbols)

- ullet let ${\mathcal G}$ be a formula set admitting the closure properties
- then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathcal{M} \models \mathcal{G}$

Proof

- 1 the domain of \mathcal{M} is the set of terms (of \mathcal{L}^+)

$$c^{\mathcal{M}} := c$$

(no identity, no function symbols)

- ullet let ${\mathcal G}$ be a formula set admitting the closure properties
- then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathcal{M} \models \mathcal{G}$

Proof

- 1 the domain of $\mathcal M$ is the set of terms (of $\mathcal L^+$)

$$c^{\mathcal{M}} := c$$

 \forall predicate constant P, \forall terms t_1, \ldots, t_n :

$$(t_1,\ldots,t_n)\in P^{\mathcal{M}}\Longleftrightarrow P(t_1,\ldots,t_n)\in\mathcal{G}$$

(no identity, no function symbols)

- ullet let ${\mathcal G}$ be a formula set admitting the closure properties
- then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- M ⊨ G

Proof

- 1 the domain of \mathcal{M} is the set of terms (of \mathcal{L}^+)
- \triangledown \forall constants c

$$c^{\mathcal{M}} := c$$

 \forall predicate constant P, \forall terms t_1, \ldots, t_n :

$$(t_1,\ldots,t_n)\in P^{\mathcal{M}}\Longleftrightarrow P(t_1,\ldots,t_n)\in \mathcal{G}$$

 \forall variables $x: \ell(x) := x$

5 definition of $\mathcal M$ takes care of the demand that every element of its domain is the denotation of a term

- ${f 5}$ definition of ${\cal M}$ takes care of the demand that every element of its domain is the denotation of a term
- **6** we claim \forall formulas $F: F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

- ${f 5}$ definition of ${\cal M}$ takes care of the demand that every element of its domain is the denotation of a term
- **6** we claim \forall formulas $F: F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

Claim:
$$F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$$

we show the claim by induction on F:

- ${f 5}$ definition of ${\cal M}$ takes care of the demand that every element of its domain is the denotation of a term
- **6** we claim \forall formulas $F: F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

Claim: $F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

we show the claim by induction on F:

• for the base case, let $F = P(t_1, ..., t_n)$, if $F \in \mathcal{G}$, then by definition $(t_1, ..., t_n) \in P^{\mathcal{M}}$; hence $\mathcal{M} \models F$

- ${f 5}$ definition of ${\cal M}$ takes care of the demand that every element of its domain is the denotation of a term
- **6** we claim \forall formulas $F: F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

Claim: $F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

we show the claim by induction on F:

- for the base case, let $F = P(t_1, ..., t_n)$, if $F \in \mathcal{G}$, then by definition $(t_1, ..., t_n) \in P^{\mathcal{M}}$; hence $\mathcal{M} \models F$
- for the step case, we assume $F = \exists x G(x)$ and $F \in \mathcal{G}$; the other cases are similar

- ${f 5}$ definition of ${\cal M}$ takes care of the demand that every element of its domain is the denotation of a term
- **6** we claim \forall formulas $F: F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

Claim: $F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

we show the claim by induction on F:

- for the base case, let $F = P(t_1, ..., t_n)$, if $F \in \mathcal{G}$, then by definition $(t_1, ..., t_n) \in P^{\mathcal{M}}$; hence $\mathcal{M} \models F$
- for the step case, we assume $F = \exists x G(x)$ and $F \in \mathcal{G}$; the other cases are similar

by assumption $\mathcal G$ fulfils the closure properties, hence there exists a term t such that $G(t)\in\mathcal G$

- ${\bf 5}$ definition of ${\cal M}$ takes care of the demand that every element of its domain is the denotation of a term
- **6** we claim \forall formulas $F: F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

Claim: $F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

we show the claim by induction on F:

- for the base case, let $F = P(t_1, ..., t_n)$, if $F \in \mathcal{G}$, then by definition $(t_1, ..., t_n) \in P^{\mathcal{M}}$; hence $\mathcal{M} \models F$
- for the step case, we assume $F = \exists x G(x)$ and $F \in \mathcal{G}$; the other cases are similar

by assumption $\mathcal G$ fulfils the closure properties, hence there exists a term t such that $G(t)\in\mathcal G$

by induction hypothesis: $\mathcal{M} \models G(t)$

- ${f 5}$ definition of ${\cal M}$ takes care of the demand that every element of its domain is the denotation of a term
- **6** we claim \forall formulas $F: F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

Claim: $F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

we show the claim by induction on F:

- for the base case, let $F = P(t_1, ..., t_n)$, if $F \in \mathcal{G}$, then by definition $(t_1, ..., t_n) \in P^{\mathcal{M}}$; hence $\mathcal{M} \models F$
- for the step case, we assume $F = \exists x G(x)$ and $F \in \mathcal{G}$; the other cases are similar

by assumption $\mathcal G$ fulfils the closure properties, hence there exists a term t such that $G(t)\in\mathcal G$

by induction hypothesis: $\mathcal{M} \models G(t)$ and thus $\mathcal{M} \models \exists x G(x)$

- ${f 5}$ definition of ${\cal M}$ takes care of the demand that every element of its domain is the denotation of a term
- **6** we claim \forall formulas $F: F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

Claim: $F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

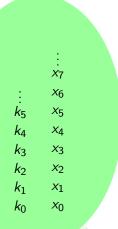
we show the claim by induction on F:

- for the base case, let $F = P(t_1, ..., t_n)$, if $F \in \mathcal{G}$, then by definition $(t_1, ..., t_n) \in P^{\mathcal{M}}$; hence $\mathcal{M} \models F$
- for the step case, we assume $F = \exists x G(x)$ and $F \in \mathcal{G}$; the other cases are similar

by assumption $\mathcal G$ fulfils the closure properties, hence there exists a term t such that $G(t)\in\mathcal G$

by induction hypothesis: $\mathcal{M} \models G(t)$ and thus $\mathcal{M} \models \exists x G(x)$

set of terms over \mathcal{L}^+



set of terms over \mathcal{L}^+

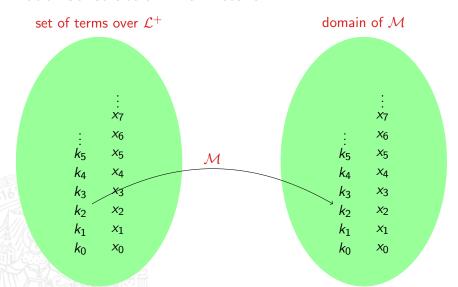
 $\begin{array}{cccc}
\vdots & & & \vdots \\
x_7 & & & & \\
\vdots & & & & & \\
k_5 & & & & & \\
k_5 & & & & & \\
k_5 & & & & & \\
k_4 & & & & & \\
k_4 & & & & & \\
k_3 & & & & & \\
k_3 & & & & & \\
k_2 & & & & & \\
k_1 & & & & & \\
\end{array}$

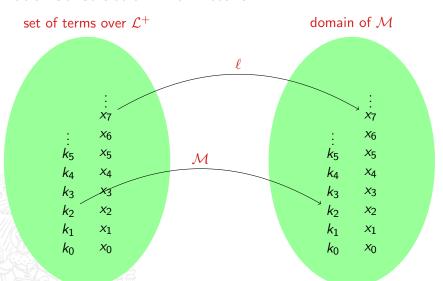
 x_0

domain of ${\mathcal M}$

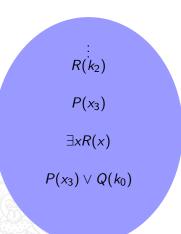
*X*7 *X*₆ *X*5 *X*₄ k3 *X*3 k_2 *X*2 k_1 *X*₁ k_0 x_0

 k_0



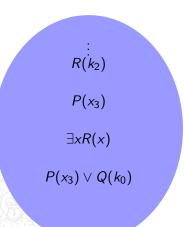


formula set $\mathcal G$

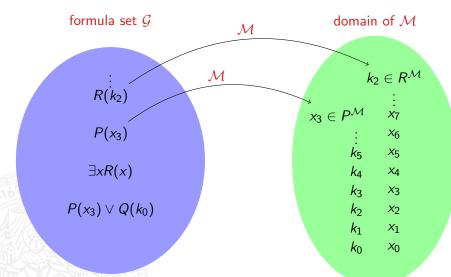


domain of ${\mathcal M}$

formula set \mathcal{G}



domain of ${\mathcal M}$



(no identity, no function symbols)

- let $\mathcal L$ be a language; $\mathcal L^+$ extension of $\mathcal L$ with infinitely many individual constants
- let S^* be a set of formula sets (of \mathcal{L}^+), let S^* admit the satisfaction properties
- \forall formula set $\mathcal{G} \in S^*$ (of \mathcal{L}), $\exists \mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

(no identity, no function symbols)

- let $\mathcal L$ be a language; $\mathcal L^+$ extension of $\mathcal L$ with infinitely many individual constants
- let S^* be a set of formula sets (of \mathcal{L}^+), let S^* admit the satisfaction properties
- \forall formula set $\mathcal{G} \in \mathcal{S}^*$ (of \mathcal{L}), $\exists \ \mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

Proof

• construct sequence of sets belonging to S^*

$$\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \dots$$
 $\mathcal{G}_n \subseteq \mathcal{G}_{n+1}$

(no identity, no function symbols)

- let $\mathcal L$ be a language; $\mathcal L^+$ extension of $\mathcal L$ with infinitely many individual constants
- let S^* be a set of formula sets (of \mathcal{L}^+), let S^* admit the satisfaction properties
- \forall formula set $\mathcal{G} \in \mathcal{S}^*$ (of \mathcal{L}), $\exists \ \mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

Proof

• construct sequence of sets belonging to S^*

$$\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \dots$$
 $\mathcal{G}_n \subseteq \mathcal{G}_{n+1}$

• \mathcal{G}_n is constructed in step n

(no identity, no function symbols)

- let $\mathcal L$ be a language; $\mathcal L^+$ extension of $\mathcal L$ with infinitely many individual constants
- let S^* be a set of formula sets (of \mathcal{L}^+), let S^* admit the satisfaction properties
- \forall formula set $\mathcal{G} \in \mathcal{S}^*$ (of \mathcal{L}), $\exists \ \mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

Proof

• construct sequence of sets belonging to S^*

$$\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \dots$$
 $\mathcal{G}_n \subseteq \mathcal{G}_{n+1}$

- \mathcal{G}_n is constructed in step n
- set $\mathcal{G}^* = \bigcup_{n \geq 0} \mathcal{G}_n$

(no identity, no function symbols)

- let $\mathcal L$ be a language; $\mathcal L^+$ extension of $\mathcal L$ with infinitely many individual constants
- let S^* be a set of formula sets (of \mathcal{L}^+), let S^* admit the satisfaction properties
- \forall formula set $\mathcal{G} \in \mathcal{S}^*$ (of \mathcal{L}), $\exists \ \mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

Proof

• construct sequence of sets belonging to S^*

$$\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \dots$$
 $\mathcal{G}_n \subseteq \mathcal{G}_{n+1}$

- \mathcal{G}_n is constructed in step n
- set $\mathcal{G}^* = \bigcup_{n \geq 0} \mathcal{G}_n$
- closure properties induce (infinitely many) demands

Demands

1 no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \text{ if } (E \vee F) \in \mathcal{G}_n, \text{ then } \exists k \geqslant n, \ \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \ \text{if} \ (E \vee F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n \text{, } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- 4 if $\neg (E \lor F) \in \mathcal{G}_n$, then $\exists k_1, k_2 \geqslant n$, $\mathcal{G}_{k_1+1} = \mathcal{G}_{k_1} \cup \{\neg E\}$ and $\mathcal{G}_{k_2+1} = \mathcal{G}_{k_2} \cup \{\neg F\}$

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \ \text{if } (E \vee F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n \text{, } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- 4 if $\neg (E \lor F) \in \mathcal{G}_n$, then $\exists k_1, k_2 \geqslant n$, $\mathcal{G}_{k_1+1} = \mathcal{G}_{k_1} \cup \{\neg E\}$ and $\mathcal{G}_{k_2+1} = \mathcal{G}_{k_2} \cup \{\neg F\}$
- **5** if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \ \text{if } (E \vee F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n \text{, } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- 4 if $\neg (E \lor F) \in \mathcal{G}_n$, then $\exists k_1, k_2 \geqslant n$, $\mathcal{G}_{k_1+1} = \mathcal{G}_{k_1} \cup \{\neg E\}$ and $\mathcal{G}_{k_2+1} = \mathcal{G}_{k_2} \cup \{\neg F\}$
- **5** if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- **6** if $\neg \exists x F(x) \in \mathcal{G}_n$, then \forall term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{ \neg F(t) \}$

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \ \text{if} \ (E \vee F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n \text{, } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- 4 if $\neg (E \lor F) \in \mathcal{G}_n$, then $\exists k_1, k_2 \geqslant n$, $\mathcal{G}_{k_1+1} = \mathcal{G}_{k_1} \cup \{\neg E\}$ and $\mathcal{G}_{k_2+1} = \mathcal{G}_{k_2} \cup \{\neg F\}$
- **5** if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \ge n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- **6** if $\neg \exists x F(x) \in \mathcal{G}_n$, then \forall term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{\neg F(t)\}$
- 7 \forall terms t, $\exists k \geqslant n$ such that $t = t \in \mathcal{G}_k$

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \ \text{if } (E \vee F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n \text{, } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- 4 if $\neg(E \lor F) \in \mathcal{G}_n$, then $\exists k_1, k_2 \geqslant n$, $\mathcal{G}_{k_1+1} = \mathcal{G}_{k_1} \cup \{\neg E\}$ and $\mathcal{G}_{k_2+1} = \mathcal{G}_{k_2} \cup \{\neg F\}$
- **5** if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- **6** if $\neg \exists x F(x) \in \mathcal{G}_n$, then \forall term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{\neg F(t)\}$
- 7 \forall terms t, $\exists k \geqslant n$ such that $t = t \in \mathcal{G}_k$
- 8 if $F(s) \in \mathcal{G}_n$, and $s = t \in \mathcal{G}_n$, $\exists k \geqslant n \ F(t) \in \mathcal{G}_k$

Demands

- **1** no formula F and $\neg F$ in \mathcal{G}_n for all $n \ge 0$
- 2 if $\neg \neg F \in \mathcal{G}_n$, then $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- $\exists \ \text{if } (E \vee F) \in \mathcal{G}_n \text{, then } \exists k \geqslant n \text{, } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\} \text{ or } \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$
- 4 if $\neg(E \lor F) \in \mathcal{G}_n$, then $\exists k_1, k_2 \geqslant n$, $\mathcal{G}_{k_1+1} = \mathcal{G}_{k_1} \cup \{\neg E\}$ and $\mathcal{G}_{k_2+1} = \mathcal{G}_{k_2} \cup \{\neg F\}$
- **5** if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- **6** if $\neg \exists x F(x) \in \mathcal{G}_n$, then \forall term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{\neg F(t)\}$
- 7 \forall terms t, $\exists k \geqslant n$ such that $t = t \in \mathcal{G}_k$
- 8 if $F(s) \in \mathcal{G}_n$, and $s = t \in \mathcal{G}_n$, $\exists k \geqslant n \ F(t) \in \mathcal{G}_k$

Claim

all demands can be granted, in particular the satisfaction properties guarantee that any demand can be met

• consider Demand 5: if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$

GM (Institute of Computer Science @ UIBK)

- consider Demand 5: if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \mathcal{G}_n \cup \{F(c)\} \in S^*$$

consider Demand 5:

if
$$\exists x F(x) \in \mathcal{G}_n$$
, then \exists term t , $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$

• we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in \mathcal{S}^* \Rightarrow \forall k \geqslant n \ \mathcal{G}_k \cup \{F(c)\} \in \mathcal{S}^*$$

- consider Demand 5: if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \geqslant n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

we fulfil demand by setting (at step k)

$$G_{k+1} := G_k \cup \{F(c)\}$$
 for fresh c

- consider Demand 5: if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \geqslant n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

we fulfil demand by setting (at step k)

$$\mathcal{G}_{k+1} := \mathcal{G}_k \cup \{F(c)\}$$
 for fresh c

similar for the Demands 2–8

- consider Demand 5: if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \geqslant n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

we fulfil demand by setting (at step k)

$$\mathcal{G}_{k+1} := \mathcal{G}_k \cup \{F(c)\}$$
 for fresh c

similar for the Demands 2–8

- consider Demand 5: if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \geqslant n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

we fulfil demand by setting (at step k)

$$\mathcal{G}_{k+1} := \mathcal{G}_k \cup \{F(c)\}$$
 for fresh c

similar for the Demands 2–8

Claim: ∃ fair strategy

• assign a pair (i, n) to each demand except Demand 6 assign triple $(i, n, \lceil t \rceil)$ to Demand 6, i is the number of the demand raised at step n, $\lceil t \rceil$ Gödel number of t

- consider Demand 5: if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \geqslant n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

we fulfil demand by setting (at step k)

$$\mathcal{G}_{k+1} := \mathcal{G}_k \cup \{F(c)\}$$
 for fresh c

similar for the Demands 2–8

- assign a pair (i, n) to each demand except Demand 6 assign triple $(i, n, \lceil t \rceil)$ to Demand 6, i is the number of the demand raised at step n, $\lceil t \rceil$ Gödel number of t
- enumerate all pairs or triples and encode them as number k

- consider Demand 5: if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \geqslant n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

we fulfil demand by setting (at step k)

$$\mathcal{G}_{k+1} := \mathcal{G}_k \cup \{F(c)\}$$
 for fresh c

similar for the Demands 2–8

- assign a pair (i, n) to each demand except Demand 6 assign triple $(i, n, \lceil t \rceil)$ to Demand 6, i is the number of the demand raised at step n, $\lceil t \rceil$ Gödel number of t
- enumerate all pairs or triples and encode them as number k
- in step k we grant the demand raised at step n

- consider Demand 5: if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- we use that S^* fulfils the satisfaction properties (c is fresh):

$$\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \geqslant n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$$

we fulfil demand by setting (at step k)

$$\mathcal{G}_{k+1} := \mathcal{G}_k \cup \{F(c)\}$$
 for fresh c

similar for the Demands 2–8

- assign a pair (i, n) to each demand except Demand 6 assign triple $(i, n, \lceil t \rceil)$ to Demand 6, i is the number of the demand raised at step n, $\lceil t \rceil$ Gödel number of t
- enumerate all pairs or triples and encode them as number k
- in step k we grant the demand raised at step n

formula set
$$\mathcal{G} = \mathcal{G}_0$$

$$\vdots$$

$$\neg \neg T(k_0, k_1)$$

$$\exists x R(x)$$

$$P(x_3) \lor Q(k_0)$$

formula set
$$\mathcal{G}=\mathcal{G}_0$$

 $\neg\neg T(k_0, k_1)$

 $\exists x R(x)$

 $P(x_3) \vee Q(k_0)$

$$\neg \neg F \in \mathcal{G}_n$$
, then $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$

formula set
$$\mathcal{G}=\mathcal{G}_0$$

:

 $\neg\neg T(k_0, k_1)$

 $\exists x R(x)$

 $P(x_3) \vee Q(k_0)$

formula set \mathcal{G}_{k+1} , $k \geqslant 0$

 $T(k_0, k_1)$

 $\neg\neg T(k_0, k_1)$

 $\exists x R(x)$

 $P(x_3) \vee Q(k_0)$

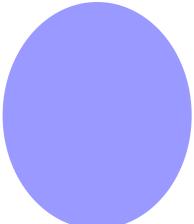
$$\neg \neg F \in \mathcal{G}_n$$
, then $\exists k \geqslant n, \, \mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$

formula set
$$\mathcal{G}=\mathcal{G}_0$$

 $\neg\neg T(k_0, k_1)$

 $\exists x R(x)$

 $P(x_3) \vee Q(k_0)$



$$(E \vee F) \in \mathcal{G}_n$$
, then $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\}$ or $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$

formula set
$$\mathcal{G} = \mathcal{G}_0$$

$$\vdots$$

$$\neg \neg T(k_0, k_1)$$

$$\exists x R(x)$$

$$P(x_3) \lor Q(k_0)$$

$$\vdots$$

$$P(x_3)$$

$$\neg T(k_0, k_1)$$

$$\exists x R(x)$$

$$P(x_3) \lor Q(k_0)$$

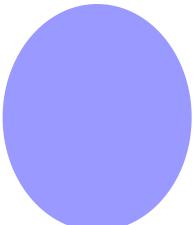
$$(E \vee F) \in \mathcal{G}_n$$
, then $\exists k \geqslant n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{E\}$ or $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F\}$

formula set
$$\mathcal{G} = \mathcal{G}_0$$

 $\neg\neg T(k_0, k_1)$

 $\exists x R(x)$

 $P(x_3) \vee Q(k_0)$



$$\exists x F(x) \in \mathcal{G}_n$$
, then $\exists k \geqslant n$, \exists term t , $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$

formula set
$$\mathcal{G} = \mathcal{G}_0$$

$$\vdots$$

$$\neg \neg T(k_0, k_1)$$

$$\exists x R(x)$$

$$P(x_3) \lor Q(k_0)$$

$$\vdots$$

$$R(k_2)$$

$$\neg T(k_0, k_1)$$

$$\exists x R(x)$$

$$P(x_3) \lor Q(k_0)$$

$$\exists x F(x) \in \mathcal{G}_n$$
, then $\exists k \geqslant n$, \exists term t , $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$

Generalisation I: Function Constants

Lemma ③ (revisited)

- lacktriangledown let ${\mathcal G}$ be a formula set admitting the closure properties
- f 2 suppose that $\cal L$ is free of the equality symbol
- \exists then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathcal{M} \models \mathcal{G}$

Generalisation I: Function Constants

Lemma ③ (revisited)

- lacktriangledown let ${\mathcal G}$ be a formula set admitting the closure properties
- $oldsymbol{2}$ suppose that ${\cal L}$ is free of the equality symbol
- 3 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $4 \mathcal{M} \models \mathcal{G}$

- $lacksquare{1} t_1, \ldots, t_n$ elements of $\mathcal M$ and f an n-ary function symbol in $\mathcal L$
- 2 define: $f^{\mathcal{M}}(t_1,\ldots,t_n):=f(t_1,\ldots,t_n)$
- $oxed{3}$ following the earlier proof, we verify $\mathcal{M} \models \mathcal{G}$

Generalisation I: Function Constants

Lemma ③ (revisited)

- lacktriangledown let ${\mathcal G}$ be a formula set admitting the closure properties
- $oldsymbol{2}$ suppose that ${\cal L}$ is free of the equality symbol
- 3 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $4 \mathcal{M} \models \mathcal{G}$

Proof.

- $lacksquare{1} t_1, \ldots, t_n$ elements of $\mathcal M$ and f an n-ary function symbol in $\mathcal L$
- 2 define: $f^{\mathcal{M}}(t_1,\ldots,t_n):=f(t_1,\ldots,t_n)$
- $oxed{3}$ following the earlier proof, we verify $\mathcal{M} \models \mathcal{G}$

this extends model existence to first-order logic (without =)

Lemma ③ (revisited again)

- lacksquare let ${\mathcal G}$ be a formula set admitting the closure properties
- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathfrak{I} \mathcal{M} \models \mathcal{G}$

Lemma ③ (revisited again)

- \blacksquare let ${\mathcal G}$ be a formula set admitting the closure properties
- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathfrak{Z} \mathcal{M} \models \mathcal{G}$

Proof.

1 suppose $(s = t) \in \mathcal{G}$, where s and t are syntactically different

Lemma ③ (revisited again)

- f I let $\cal G$ be a formula set admitting the closure properties
- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathfrak{Z} \mathcal{M} \models \mathcal{G}$

- **I** suppose $(s = t) \in \mathcal{G}$, where s and t are syntactically different
- **2** for \mathcal{M} according to the original construction, we have $\mathcal{M} \not\models s = t$

Lemma ③ (revisited again)

- f I let $\cal G$ be a formula set admitting the closure properties
- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathfrak{I} \mathcal{M} \models \mathcal{G}$

- **I** suppose $(s = t) \in \mathcal{G}$, where s and t are syntactically different
- **2** for $\mathcal M$ according to the original construction, we have $\mathcal M \not\models s = t$
- 3 define a variant of the model \mathcal{M} , denoted as \mathcal{M}'

Lemma ③ (revisited again)

- lacktriangledown let ${\mathcal G}$ be a formula set admitting the closure properties
- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathfrak{I} \mathcal{M} \models \mathcal{G}$

- **I** suppose $(s = t) \in \mathcal{G}$, where s and t are syntactically different
- **2** for $\mathcal M$ according to the original construction, we have $\mathcal M \not\models s = t$
- \blacksquare define a variant of the model \mathcal{M} , denoted as \mathcal{M}'
- 4 consider the set \mathcal{E} of all equations induced by \mathcal{G} :

$$\mathcal{E} = \{ s = t \mid \mathcal{G} \models s = t \}$$

5 ${\cal E}$ gives rise to an equivalence relation \sim

- 5 ${\cal E}$ gives rise to an equivalence relation \sim
- 6 domain of \mathcal{M}' is set of equivalent classes of terms of \mathcal{L}^+

- 5 ${\cal E}$ gives rise to an equivalence relation \sim
- **6** domain of \mathcal{M}' is set of equivalent classes of terms of \mathcal{L}^+
- $[t]_{\sim}$ denotes the equivalence class of t

- 5 ${\cal E}$ gives rise to an equivalence relation \sim
- **6** domain of \mathcal{M}' is set of equivalent classes of terms of \mathcal{L}^+
- $[t]_{\sim}$ denotes the equivalence class of t
- 8 definition of the structure underlying \mathcal{M}' :

$$f^{\mathcal{M}}([t_1]_{\sim},\ldots,[t_n]_{\sim}) = [f(t_1,\ldots,t_n)]_{\sim} \qquad f \text{ is n-ary function}$$

 $P^{\mathcal{M}}([t_1]_{\sim},\ldots,[t_n]_{\sim}) \Longleftrightarrow P(t_1,\ldots,t_n) \in \mathcal{G} \quad P \text{ is n-ary predicate}$

- 5 ${\cal E}$ gives rise to an equivalence relation \sim
- **6** domain of \mathcal{M}' is set of equivalent classes of terms of \mathcal{L}^+
- $[t]_{\sim}$ denotes the equivalence class of t
- 8 definition of the structure underlying \mathcal{M}' :

$$f^{\mathcal{M}}([t_1]_{\sim},\ldots,[t_n]_{\sim}) = [f(t_1,\ldots,t_n)]_{\sim}$$
 f is n -ary function $P^{\mathcal{M}}([t_1]_{\sim},\ldots,[t_n]_{\sim}) \Longleftrightarrow P(t_1,\ldots,t_n) \in \mathcal{G}$ P is n -ary predicate

9 from this $\mathcal{M}' \models \mathcal{G}$

- ${f 5}$ ${f \cal E}$ gives rise to an equivalence relation \sim
- **6** domain of \mathcal{M}' is set of equivalent classes of terms of \mathcal{L}^+
- $[t]_{\sim}$ denotes the equivalence class of t
- 8 definition of the structure underlying \mathcal{M}' :

$$f^{\mathcal{M}}([t_1]_{\sim},\ldots,[t_n]_{\sim}) = [f(t_1,\ldots,t_n)]_{\sim} \qquad \text{f is n-ary function} \ P^{\mathcal{M}}([t_1]_{\sim},\ldots,[t_n]_{\sim}) \Longleftrightarrow P(t_1,\ldots,t_n) \in \mathcal{G} \quad P \text{ is n-ary predicate}$$

 $oldsymbol{9}$ from this $\mathcal{M}' \models \mathcal{G}$

- 5 ${\cal E}$ gives rise to an equivalence relation \sim
- $oldsymbol{\mathsf{G}}$ domain of \mathcal{M}' is set of equivalent classes of terms of \mathcal{L}^+
- $[t]_{\sim}$ denotes the equivalence class of t
- 8 definition of the structure underlying \mathcal{M}' :

$$f^{\mathcal{M}}([t_1]_{\sim},\ldots,[t_n]_{\sim}) = [f(t_1,\ldots,t_n)]_{\sim}$$
 f is n -ary function $P^{\mathcal{M}}([t_1]_{\sim},\ldots,[t_n]_{\sim}) \Longleftrightarrow P(t_1,\ldots,t_n) \in \mathcal{G}$ P is n -ary predicate

 $oldsymbol{9}$ from this $\mathcal{M}' \models \mathcal{G}$

this extends model existence to full first-order logic

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, completeness, natural deduction, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, completeness, natural deduction, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

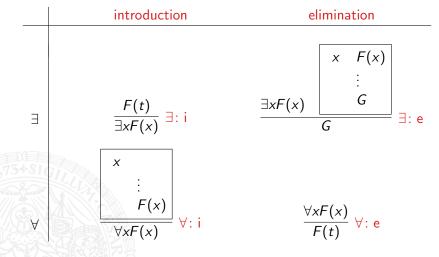
Natural Deduction for First-Order Logic

-	introduction	elimination
\wedge	$\frac{E}{E \wedge F} \wedge : \mathbf{i}$	$\frac{E \wedge F}{E} \wedge : e \qquad \frac{E \wedge F}{F} \wedge : e$
MV 34810	$\frac{E}{E \vee F} \vee : i \qquad \frac{F}{E \vee F} \vee : i$	$ \begin{array}{c c} E & F \\ \vdots & \vdots \\ G & G \end{array} $ V: e
\Rightarrow	$ \begin{array}{c c} E \\ \vdots \\ F \end{array} \rightarrow: \mathbf{i} $	$\frac{E E \rightarrow F}{F} \rightarrow : e$

Natural Deduction Extended

	introduction	elimination
	E :	
¬	<u>⊥</u> ¬: i	<u>F ¬F</u> ¬: e
134SIG		$\frac{\perp}{F} \perp : e$
		$\frac{\neg \neg F}{F}$ $\neg \neg : e$
	$\overline{t=t}=:i$	$\frac{s=t F(s)}{F(t)}=:e$

Natural Deduction Quantifier Rules

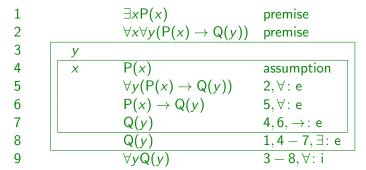


variable x in \exists : e, \forall : i local to box

Example

 $\exists x P(x)$ premise $\forall x \forall y (P(x) \rightarrow Q(y))$ premise 3 P(x)4 assumption X $\forall y (P(x) \rightarrow Q(y))$ 5 2, ∀: e $P(x) \rightarrow Q(y)$ 6 5, ∀: e Q(y) $4, 6, \rightarrow$: e Q(y)1, 4 - 7, ∃: e 8 $\forall y Q(y)$ 3 - 8, ∀: i 9

Example



hence we have

$$\exists x P(x), \forall x \forall y (P(x) \rightarrow Q(y)) \vdash \forall y Q(y)$$

Example

 $\exists x P(x)$ premise $\forall x \forall y (P(x) \rightarrow Q(y))$ premise 3 P(x)assumption X $\forall y (P(x) \rightarrow Q(y))$ 5 2, ∀: e $P(x) \rightarrow Q(y)$ 6 5, ∀: e Q(y) $4, 6, \rightarrow$: e 8 Q(y)1, 4 - 7, ∃: e $\forall y Q(y)$ 3 – 8, ∀: i 9

hence we have

provability relation

$$\exists x P(x), \forall x \forall y (P(x) \rightarrow Q(y)) \vdash \forall y Q(y)$$

Definition

let $\mathcal G$ be a set of formulas, F a formula

• if \exists a natural deduction proof from of F from finite $\mathcal{G}_0 \subseteq \mathcal{G}$, we write $\mathcal{G} \vdash F$

Definition

let \mathcal{G} be a set of formulas, F a formula

- if ∃ a natural deduction proof from of F from finite G₀ ⊆ G, we write G ⊢ F
- if $\neg \exists$ proof of \bot from \mathcal{G} , we say \mathcal{G} is consistent, otherwise inconsistent

Definition

let \mathcal{G} be a set of formulas, F a formula

- if \exists a natural deduction proof from of F from finite $\mathcal{G}_0 \subseteq \mathcal{G}$, we write $\mathcal{G} \vdash F$
- if ¬∃ proof of ⊥ from G, we say G is consistent, otherwise inconsistent

Theorem

first-order logic is sound and complete: $\mathcal{G} \models F \iff \mathcal{G} \vdash F$

Definition

let \mathcal{G} be a set of formulas, F a formula

- if ∃ a natural deduction proof from of F from finite G₀ ⊆ G, we write G ⊢ F
- if ¬∃ proof of ⊥ from G, we say G is consistent, otherwise inconsistent

Theorem

first-order logic is sound and complete: $\mathcal{G} \models F \iff \mathcal{G} \vdash F$

Proof Idea

 the set S of consistent sets of formulas admit the satisfactions properties

Definition

let $\mathcal G$ be a set of formulas, F a formula

- if ∃ a natural deduction proof from of F from finite G₀ ⊆ G, we write G ⊢ F
- if ¬∃ proof of ⊥ from G, we say G is consistent, otherwise inconsistent

Theorem

first-order logic is sound and complete: $\mathcal{G} \models F \iff \mathcal{G} \vdash F$

Proof Idea

- the set S of consistent sets of formulas admit the satisfactions properties
- by the model existence theorem any $\mathcal{G} \in \mathcal{S}$ is satisfiable

Soundness Theorem first-order logic is sound

$$\mathcal{G} \models F \Leftarrow \mathcal{G} \vdash F$$

first-order logic is sound

$$\mathcal{G} \models F \Leftarrow \mathcal{G} \vdash F$$

Lemma 6

model existence

completeness

first-order logic is sound

$$\mathcal{G} \models F \Leftarrow \mathcal{G} \vdash F$$

S set of consistent sets $\Rightarrow S$ admits satisfaction properties

Lemma 6

model existence

completeness

first-order logic is sound

$$\mathcal{G} \models F \Leftarrow \mathcal{G} \vdash F$$

Lemma ⑥ completeness

first-order logic is sound

$$\mathcal{G} \models F \Leftarrow \mathcal{G} \vdash F$$

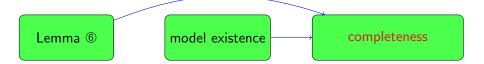
Lemma ⑥ model existence completeness

Lemma ®

the set S of all consistent set of formulas has the satisfaction properties

first-order logic is sound

$$\mathcal{G} \models F \Leftarrow \mathcal{G} \vdash F$$



Lemma

$$\mathcal{G} \vdash F$$
 iff $\mathcal{G} \cup \{\neg F\}$ is inconsistent

Lemma ®

the set S of all consistent set of formulas has the satisfaction properties

first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

Proof.

1 wlog ∃ finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$

first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

Proof.

■ wlog \exists finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \mathsf{Sat}(\mathcal{G} \cup \{\neg F\})$ if $(\exists$ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \mathsf{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$

first-order logic is complete

$$\mathcal{G} \models \mathsf{F} \Rightarrow \mathcal{G} \vdash \mathsf{F}$$

- wlog \exists finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \mathsf{Sat}(\mathcal{G} \cup \{\neg F\})$ if $(\exists$ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \mathsf{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$
- 2 suppose $\mathcal{G}_0 \not\vdash F$, we have to show $\mathcal{G}_0 \not\models F$

first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

- wlog \exists finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \mathsf{Sat}(\mathcal{G} \cup \{\neg F\})$ if $(\exists$ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \mathsf{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$
- 2 suppose $\mathcal{G}_0 \not\vdash F$, we have to show $\mathcal{G}_0 \not\models F$
- **3** suppose $\mathcal{G}_0 \cup \{\neg F\}$ is consistent, then $\mathcal{G}_0 \cup \{\neg F\}$ is satisfiable

first-order logic is complete

$$\mathcal{G} \models \mathsf{F} \Rightarrow \mathcal{G} \vdash \mathsf{F}$$

- wlog \exists finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \mathsf{Sat}(\mathcal{G} \cup \{\neg F\})$ if $(\exists$ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \mathsf{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$
- 2 suppose $\mathcal{G}_0 \not\vdash F$, we have to show $\mathcal{G}_0 \not\models F$
- **3** suppose $\mathcal{G}_0 \cup \{\neg F\}$ is consistent, then $\mathcal{G}_0 \cup \{\neg F\}$ is satisfiable
- 4 Lemma 6 yields that the set S of consistent formulas sets fulfils the satisfaction properties

first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

- wlog \exists finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \mathsf{Sat}(\mathcal{G} \cup \{\neg F\})$ if $(\exists$ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \mathsf{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$
- 2 suppose $\mathcal{G}_0 \not\vdash F$, we have to show $\mathcal{G}_0 \not\models F$
- **3** suppose $\mathcal{G}_0 \cup \{\neg F\}$ is consistent, then $\mathcal{G}_0 \cup \{\neg F\}$ is satisfiable
- 4 Lemma © yields that the set S of consistent formulas sets fulfils the satisfaction properties
- **5** model existence yields that $\forall \mathcal{H} \in S$, \mathcal{H} satisfiable

first-order logic is complete

$$\mathcal{G} \models F \Rightarrow \mathcal{G} \vdash F$$

- wlog \exists finite $\mathcal{G}_0 \subseteq \mathcal{G}$, $\mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \mathsf{Sat}(\mathcal{G} \cup \{\neg F\})$ if $(\exists$ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \mathsf{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$
- 2 suppose $\mathcal{G}_0 \not\vdash F$, we have to show $\mathcal{G}_0 \not\models F$
- **3** suppose $\mathcal{G}_0 \cup \{\neg F\}$ is consistent, then $\mathcal{G}_0 \cup \{\neg F\}$ is satisfiable
- 4 Lemma ® yields that the set S of consistent formulas sets fulfils the satisfaction properties
- **5** model existence yields that $\forall \mathcal{H} \in S$, \mathcal{H} satisfiable
- **6** as $\mathcal{G}_0 \cup \{\neg F\} \in \mathcal{S}$, $\mathcal{G}_0 \cup \{\neg F\}$ satisfiable