

Automated Reasoning

Georg Moser

Winter 2013

ummary

Lemma ①

let S be the set of satisfiable sets of formulas; pick $\mathcal{G} \in S$

- 1 if $\mathcal{G}_0 \subseteq \mathcal{G}$, then $\mathcal{G}_0 \in S$
- **2** no formula F and $\neg F$ in G
- 3 if $\neg \neg F \in \mathcal{G}$, then $\mathcal{G} \cup \{F\} \in S$
- 4 if $(E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup \{E\} \in S$ or $\mathcal{G} \cup \{F\} \in S$
- **5** if $\neg (E \lor F) \in \mathcal{G}$, then $\mathcal{G} \cup \{\neg E\} \in S$ and $\mathcal{G} \cup \{\neg F\} \in S$
- 6 if $\exists x F(x) \in \mathcal{G}$, the constant c doesn't occur in \mathcal{G} , then $\mathcal{G} \cup \{F(c)\} \in S$
- **7** *if* $\neg \exists x F(x) \in \mathcal{G}$, then \forall terms $t, \mathcal{G} \cup \{\neg F(t)\} \in S$
- 8 for any term $t, G \cup \{t = t\} \in S$
- **9** if $\{F(s), s = t\} \subseteq \mathcal{G}$, then $\mathcal{G} \cup \{F(t)\} \in S$

Definition

we call the properties (of S) in the lemma satisfaction properties

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas ${\mathcal G}$ has a model, then ${\mathcal G}$ has a model

Löwenheim-Skolem Theorem

if a set of formulas ${\mathcal G}$ has a model, then ${\mathcal G}$ has a countable model

Summary

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, completeness, natural deduction, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Model Existence

 $\mathcal L$ base language; $\mathcal L^+ \supseteq \mathcal L$ infinitely many new individual constants

Theorem (Model Existence Theorem)

- if *S*^{*} is a set of formula sets of *L*⁺ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of $\mathcal{L}, \exists \mathcal{M}, \mathcal{M} \models \mathcal{G}$
- **2** \forall elements *m* of \mathcal{M} : *m* denotes term in \mathcal{L}^+

Automated Reasoning

GM (Institute of Computer Science @ UIBK

Model Existence

Lemma ③

1 let \mathcal{G} be a formula set admitting the closure properties

- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- $\mathcal{M} \models \mathcal{G}$

Lemma ④

- let L be a language; L⁺ extension of L with infinitely many individual constants
- 2 let S^* be a set of formula sets (of \mathcal{L}^+), let S^* admit the satisfaction properties
- 3 \forall formula set $\mathcal{G} \in S^*$ (of \mathcal{L}), $\exists \mathcal{G}^* \supseteq \mathcal{G}$ (of \mathcal{L}^+), such that \mathcal{G}^* fulfils the closure properties

Proof of Model Existence

by Lemma ④ and Lemma ③

lodel Existence

Closure Properties

Lemma

- the set ${\mathcal G}$ of formulas that are true in ${\mathcal M}$ admit
- **1** no formula F and \neg F in \mathcal{G}
- 2 if $\neg \neg F \in \mathcal{G}$, then $F \in \mathcal{G}$
- 3 if $(E \lor F) \in \mathcal{G}$, then $E \in \mathcal{G}$ or $F \in \mathcal{G}$
- 4 if $\neg (E \lor F) \in \mathcal{G}$, then $\neg E \in \mathcal{G}$ and $\neg F \in \mathcal{G}$
- **5** if $\exists x F(x) \in \mathcal{G}$, then \exists term t (of \mathcal{L}^+), $F(t) \in \mathcal{G}$
- 6 if $\neg \exists x F(x) \in \mathcal{G}$, then \forall term t (of \mathcal{L}^+), $\neg F(t) \in \mathcal{G}$
- 7 \forall term t (of \mathcal{L}^+), $t = t \in \mathcal{G}$
- **B** if $F(s) \in \mathcal{G}$, $s = t \in \mathcal{G}$, then $F(t) \in \mathcal{G}$

Definition

we call the properties of $\mathcal G$ closure properties

GM (Institute of Computer Science @ UIBK)

1/1

Model Existence

Proof of Lemma ③ (no identity, no function symbols)

- let ${\mathcal G}$ be a formula set admitting the closure properties
- then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term

Automated Reasoning

• $\mathcal{M} \models \mathcal{G}$

Proof

- **1** the domain of \mathcal{M} is the set of terms (of \mathcal{L}^+)
- **2** \forall constants *c*

- $c^{\mathcal{M}} := c$
- **3** \forall predicate constant *P*, \forall terms t_1, \ldots, t_n :

$$(t_1,\ldots,t_n)\in P^{\mathcal{M}}\Longleftrightarrow P(t_1,\ldots,t_n)\in \mathcal{G}$$

4 \forall variables $x: \ell(x) := x$

Model Existence

Proof (cont'd)

- **5** definition of \mathcal{M} takes care of the demand that every element of its domain is the denotation of a term
- **6** we claim \forall formulas $F: F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

Claim: $F \in \mathcal{G} \Rightarrow \mathcal{M} \models F$

we show the claim by induction on F:

- for the base case, let $F = P(t_1, \ldots, t_n)$, if $F \in \mathcal{G}$, then by definition $(t_1, \ldots, t_n) \in P^{\mathcal{M}}$; hence $\mathcal{M} \models F$
- for the step case, we assume F = ∃xG(x) and F ∈ G; the other cases are similar

by assumption \mathcal{G} fulfils the closure properties, hence there exists a term t such that $G(t) \in \mathcal{G}$

by induction hypothesis: $\mathcal{M} \models G(t)$ and thus $\mathcal{M} \models \exists x G(x)$

Automated Reasonin

GM (Institute of Computer Science @ UIBK)

Model Existence

Proof of Lemma ④

(no identity, no function symbols)

- let ${\cal L}$ be a language; ${\cal L}^+$ extension of ${\cal L}$ with infinitely many individual constants
- let S^* be a set of formula sets (of \mathcal{L}^+), let S^* admit the satisfaction properties
- ∀ formula set G ∈ S* (of L), ∃ G* ⊇ G (of L+), such that G* fulfils the closure properties

Proof

• construct sequence of sets belonging to S^*

$$\mathcal{G} = \mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \dots$$
 $\mathcal{G}_n \subseteq \mathcal{G}_{n+1}$

- \mathcal{G}_n is constructed in step n
- set $\mathcal{G}^* = \bigcup_{n \ge 0} \mathcal{G}_n$
- closure properties induce (infinitely many) demands

Model Existenc

Model Construction in a Picture

Model Existence

74/1

76/1

Proof (cont'd)

Demands

Claim

all demands can be granted, in particular the satisfaction properties guarantee that any demand can be met

Model Existence

Proof (cont'd)

- consider Demand 5:
- if $\exists x F(x) \in \mathcal{G}_n$, then \exists term t, $\exists k \ge n$, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$
- we use that S^* fulfils the satisfaction properties (c is fresh):

 $\exists x F(x) \in \mathcal{G}_n \in S^* \Rightarrow \forall k \ge n \ \mathcal{G}_k \cup \{F(c)\} \in S^*$

• we fulfil demand by setting (at step k)

 $\mathcal{G}_{k+1} := \mathcal{G}_k \cup \{F(c)\}$ for fresh *c*

• similar for the Demands 2-8

Claim: ∃ fair strategy

- assign a pair (i, n) to each demand except Demand 6
 assign triple (i, n, [¬]t[¬]) to Demand 6, i is the number of the demand
 raised at step n, [¬]t[¬] Gödel number of t
- enumerate all pairs or triples and encode them as number k
- in step k we grant the demand raised at step n

GM (Institute of Computer Science @ UIBK) Automated Reasoning

Model Existence

Generalisation I: Function Constants

Lemma ③ (revisited)

- **1** let \mathcal{G} be a formula set admitting the closure properties
- **2** suppose that \mathcal{L} is free of the equality symbol
- 3 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term
- 4 $\mathcal{M} \models \mathcal{G}$

Proof.

- **1** t_1, \ldots, t_n elements of \mathcal{M} and f an *n*-ary function symbol in \mathcal{L}
- **2** define: $f^{\mathcal{M}}(t_1, ..., t_n) := f(t_1, ..., t_n)$
- 3 following the earlier proof, we verify $\mathcal{M} \models \mathcal{G}$

this extends model existence to first-order logic (without =)

odel Existence

Saturation of \mathcal{G} in a Picture

$\exists x F(x) \in \mathcal{G}_n$, then $\exists k \ge n$, \exists term t, $\mathcal{G}_{k+1} = \mathcal{G}_k \cup \{F(t)\}$

Automated Reasoning

GM (Institute of Computer Science @ UIBK)

9/1

odel Existence

Generalisation II: Equality

Lemma ③ (revisited again)

- 1 let \mathcal{G} be a formula set admitting the closure properties
- 2 then \exists interpretation $\mathcal M$ in which every element of the domain is the denotation of some term

3 $\mathcal{M} \models \mathcal{G}$

Proof.

- **1** suppose $(s = t) \in \mathcal{G}$, where s and t are syntactically different
- 2 for \mathcal{M} according to the original construction, we have $\mathcal{M} \not\models s = t$
- 3 define a variant of the model \mathcal{M} , denoted as \mathcal{M}'
- **4** consider the set \mathcal{E} of all equations induced by \mathcal{G} :

$\mathcal{E} = \{ s = t \mid \mathcal{G} \models s = t \}$

Proof (cont'd).

- 5 ${\cal E}$ gives rise to an equivalence relation \sim
- 6 domain of \mathcal{M}' is set of equivalent classes of terms of \mathcal{L}^+
- **[**t]_~ denotes the equivalence class of t
- **B** definition of the structure underlying \mathcal{M}' :

 $\begin{array}{ll} f^{\mathcal{M}}([t_1]_{\sim},\ldots,[t_n]_{\sim}) = [f(t_1,\ldots,t_n)]_{\sim} & f \text{ is } n \text{-ary function} \\ P^{\mathcal{M}}([t_1]_{\sim},\ldots,[t_n]_{\sim}) \Longleftrightarrow P(t_1,\ldots,t_n) \in \mathcal{G} & P \text{ is } n \text{-ary predicate} \end{array}$

9 from this $\mathcal{M}' \models \mathcal{G}$

this extends model existence to full first-order logic

Automated Reasoning

GΜ	(Institute of	of	Computer	Science	0	ι

82/1

Natural Deduction

Natural Deduction for First-Order Logic

odel Existence

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model existence theorem, completeness, natural deduction, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning

atural Deduction

Natural Deduction Extended

Natural Deduction Quantifier Rules

variable x in \exists : e, \forall : i local to box

GM (Institute of Computer Science @ UIBK) Automated Reasoning

Gödel's Completeness Theorem

Definition

Gödel's Completeness Theorem

let \mathcal{G} be a set of formulas, F a formula

- if ∃ a natural deduction proof from of F from finite G₀ ⊆ G, we write G ⊢ F
- if $\neg \exists$ proof of \bot from $\mathcal G,$ we say $\mathcal G$ is consistent, otherwise inconsistent

Theorem

first-order logic is sound and complete: $\mathcal{G} \models \mathcal{F} \iff \mathcal{G} \vdash \mathcal{F}$

Proof Idea

- the set S of consistent sets of formulas admit the satisfactions properties
- by the model existence theorem any $\mathcal{G}\in S$ is satisfiable

88/1

86/1

Example $\exists x P(x)$ 1 premise 2 $\forall x \forall y (\mathsf{P}(x) \to \mathsf{Q}(y))$ premise 3 V P(x)4 assumption X $\forall y(\mathsf{P}(x) \to \mathsf{Q}(y))$ 2,∀: e 5 $P(x) \rightarrow Q(y)$ 5.∀: e 6 Q(y) $4, 6, \rightarrow : e$ 7 1,4-7,∃: e 8 Q(y) $\forall y Q(y)$ $3-8, \forall:i$ 9 provability relation hence we have $\exists x \mathsf{P}(x), \forall x \forall y (\mathsf{P}(x) \to \mathsf{Q}(y)) \vdash \forall y \mathsf{Q}(y)$ GM (Institute of Computer Science @ UIBK Automated Reasonin

Gödel's Completeness Theorem

the set *S* of all consistent set of formulas has the satisfaction properties

Completeness Theorem

first-order logic is complete

 $\mathcal{G} \models \mathsf{F} \Rightarrow \mathcal{G} \vdash \mathsf{F}$

Proof.

- 1 wlog \exists finite $\mathcal{G}_0 \subseteq \mathcal{G}, \mathcal{G}_0 \models F$, recall $\mathcal{G} \models F$ iff $\neg \operatorname{Sat}(\mathcal{G} \cup \{\neg F\})$ if $(\exists$ finite $\mathcal{G}_0 \subseteq \mathcal{G} \neg \operatorname{Sat}(\mathcal{G}_0 \cup \{\neg F\}))$ iff $\mathcal{G}_0 \models F$
- **2** suppose $\mathcal{G}_0 \not\vdash F$, we have to show $\mathcal{G}_0 \not\models F$
- **3** suppose $\mathcal{G}_0 \cup \{\neg F\}$ is consistent, then $\mathcal{G}_0 \cup \{\neg F\}$ is satisfiable
- **4** Lemma ⁽⁶⁾ yields that the set *S* of consistent formulas sets fulfils the satisfaction properties
- **5** model existence yields that $\forall \mathcal{H} \in S, \mathcal{H}$ satisfiable
- **6** as $\mathcal{G}_0 \cup \{\neg F\} \in S$, $\mathcal{G}_0 \cup \{\neg F\}$ satisfiable

GM (Institute of Computer Science @ UIBK) Automated Reasoning

90/1