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Summary

Summary Last Lecture

Compactness Theorem

if every finite subset of a set of formulas G has a model, then G has a
model

Löwenheim-Skolem Theorem

if a set of formulas G has a model, then G has a countable model

compactness

Löwenheim-Skolem

Lemma À Lemma Á

model existence

∃ satisfaction properties
S admits satisfaction properties ⇒
S∗ admits satisfaction properties

S admits satisfaction properties ⇒
G ∈ S is satisfiable
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Summary

Lemma À

let S be the set of satisfiable sets of formulas; pick G ∈ S

1 if G0 ⊆ G, then G0 ∈ S

2 no formula F and ¬F in G
3 if ¬¬F ∈ G, then G ∪ {F} ∈ S

4 if (E ∨ F ) ∈ G, then G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 if ¬(E ∨ F ) ∈ G, then G ∪ {¬E} ∈ S and G ∪ {¬F} ∈ S

6 if ∃xF (x) ∈ G, the constant c doesn’t occur in G, then
G ∪ {F (c)} ∈ S

7 if ¬∃xF (x) ∈ G, then ∀ terms t, G ∪ {¬F (t)} ∈ S

8 for any term t, G ∪ {t = t} ∈ S

9 if {F (s), s = t} ⊆ G, then G ∪ {F (t)} ∈ S

Definition

we call the properties (of S) in the lemma satisfaction properties
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Summary

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model
existence theorem, completeness, natural deduction, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic
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Model Existence

Model Existence

L base language; L+ ⊇ L infinitely many new individual constants

Theorem (Model Existence Theorem)

1 if S∗ is a set of formula sets of L+ having the satisfaction
properties, then ∀ formula sets G ∈ S∗ of L, ∃ M, M |= G

2 ∀ elements m of M: m denotes term in L+

model existenceLemma Â Lemma Ã

G has closure properties⇒ ∃ model
M, M |= G

S admits satisfaction properties ⇒
G ∈ S admits closure properties
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Model Existence

Closure Properties

Lemma

the set G of formulas that are true in M admit

1 no formula F and ¬F in G
2 if ¬¬F ∈ G, then F ∈ G
3 if (E ∨ F ) ∈ G, then E ∈ G or F ∈ G
4 if ¬(E ∨ F ) ∈ G, then ¬E ∈ G and ¬F ∈ G
5 if ∃xF (x) ∈ G, then ∃ term t (of L+), F (t) ∈ G
6 if ¬∃xF (x) ∈ G, then ∀ term t (of L+), ¬F (t) ∈ G
7 ∀ term t (of L+), t = t ∈ G
8 if F (s) ∈ G, s = t ∈ G, then F (t) ∈ G

Definition

we call the properties of G closure properties
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Model Existence

Lemma Â

1 let G be a formula set admitting the closure properties

2 then ∃ interpretation M in which every element of the domain is
the denotation of some term

3 M |= G

Lemma Ã

1 let L be a language; L+ extension of L with infinitely many
individual constants

2 let S∗ be a set of formula sets (of L+), let S∗ admit the satisfaction
properties

3 ∀ formula set G ∈ S∗ (of L), ∃ G∗ ⊇ G (of L+), such that G∗ fulfils
the closure properties

Proof of Model Existence

by Lemma Ã and Lemma Â
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Model Existence

Proof of Lemma Â
(no identity, no function symbols)

• let G be a formula set admitting the closure properties

• then ∃ interpretation M in which every element of the domain is
the denotation of some term

• M |= G

Proof

1 the domain of M is the set of terms (of L+)

2 ∀ constants c

cM := c

3 ∀ predicate constant P, ∀ terms t1, . . . , tn:

(t1, . . . , tn) ∈ PM ⇐⇒ P(t1, . . . , tn) ∈ G

4 ∀ variables x : `(x) := x
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Model Existence

Proof (cont’d)

5 definition of M takes care of the demand that every element of its
domain is the denotation of a term

6 we claim ∀ formulas F : F ∈ G ⇒M |= F

Claim: F ∈ G ⇒M |= F
we show the claim by induction on F :

• for the base case, let F = P(t1, . . . , tn), if F ∈ G, then by definition
(t1, . . . , tn) ∈ PM; hence M |= F

• for the step case, we assume F = ∃xG (x) and F ∈ G; the other
cases are similar

by assumption G fulfils the closure properties, hence there exists a
term t such that G (t) ∈ G

by induction hypothesis: M |= G (t) and thus M |= ∃xG (x)
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Model Existence

Model Construction in a Picture

set of terms over L+

...
k5
k4
k3
k2
k1
k0

...
x7
x6
x5
x4
x3
x2
x1
x0

domain of M

...
k5
k4
k3
k2
k1
k0

...
x7
x6
x5
x4
x3
x2
x1
x0

M

`
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Model Existence

Proof of Lemma Ã
(no identity, no function symbols)

• let L be a language; L+ extension of L with infinitely many
individual constants

• let S∗ be a set of formula sets (of L+), let S∗ admit the satisfaction
properties

• ∀ formula set G ∈ S∗ (of L), ∃ G∗ ⊇ G (of L+), such that G∗ fulfils
the closure properties

Proof

• construct sequence of sets belonging to S∗

G = G0,G1,G2, . . . Gn ⊆ Gn+1

• Gn is constructed in step n

• set G∗ =
⋃

n>0 Gn
• closure properties induce (infinitely many) demands
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Model Existence

Proof (cont’d)

Demands

1 no formula F and ¬F in Gn for all n > 0

2 if ¬¬F ∈ Gn, then ∃k > n, Gk+1 = Gk ∪ {F}
3 if (E ∨ F ) ∈ Gn, then ∃k > n, Gk+1 = Gk ∪ {E} or Gk+1 = Gk ∪ {F}
4 if ¬(E ∨ F ) ∈ Gn, then ∃k1, k2 > n, Gk1+1 = Gk1 ∪ {¬E} and
Gk2+1 = Gk2 ∪ {¬F}

5 if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}
6 if ¬∃xF (x) ∈ Gn, then ∀ term t, ∃k > n, Gk+1 = Gk ∪ {¬F (t)}
7 ∀ terms t, ∃k > n such that t = t ∈ Gk
8 if F (s) ∈ Gn, and s = t ∈ Gn, ∃k > n F (t) ∈ Gk

Claim

all demands can be granted, in particular the satisfaction properties guar-
antee that any demand can be met
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Model Existence

Proof (cont’d)

• consider Demand 5:
if ∃xF (x) ∈ Gn, then ∃ term t, ∃k > n, Gk+1 = Gk ∪ {F (t)}

• we use that S∗ fulfils the satisfaction properties (c is fresh):

∃xF (x) ∈ Gn ∈ S∗ ⇒ ∀k > n Gk ∪ {F (c)} ∈ S∗

• we fulfil demand by setting (at step k)

Gk+1 := Gk ∪ {F (c)} for fresh c

• similar for the Demands 2–8

Claim: ∃ fair strategy

• assign a pair (i , n) to each demand except Demand 6
assign triple (i , n, ptq) to Demand 6, i is the number of the demand
raised at step n, ptq Gödel number of t

• enumerate all pairs or triples and encode them as number k

• in step k we grant the demand raised at step n
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Model Existence

Saturation of G in a Picture

formula set G = G0

...

¬¬T (k0, k1)

∃xR(x)

P(x3) ∨ Q(k0)

formula set Gk+1, k > 0

∃xF (x) ∈ Gn, then ∃k > n, ∃ term t, Gk+1 = Gk ∪ {F (t)}

...

R(k2)

¬¬T (k0, k1)

∃xR(x)

P(x3) ∨ Q(k0)
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Model Existence

Generalisation I: Function Constants

Lemma Â (revisited)

1 let G be a formula set admitting the closure properties

2 suppose that L is free of the equality symbol

3 then ∃ interpretation M in which every element of the domain is
the denotation of some term

4 M |= G

Proof.

1 t1, . . . , tn elements of M and f an n-ary function symbol in L
2 define: fM(t1, . . . , tn) := f (t1, . . . , tn)

3 following the earlier proof, we verify M |= G

this extends model existence to first-order logic (without =)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 80/1

Model Existence

Generalisation II: Equality

Lemma Â (revisited again)

1 let G be a formula set admitting the closure properties

2 then ∃ interpretation M in which every element of the domain is
the denotation of some term

3 M |= G

Proof.

1 suppose (s = t) ∈ G, where s and t are syntactically different

2 for M according to the original construction, we have M 6|= s = t

3 define a variant of the model M, denoted as M′

4 consider the set E of all equations induced by G:

E = {s = t | G |= s = t}
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Model Existence

Proof (cont’d).

5 E gives rise to an equivalence relation ∼
6 domain of M′ is set of equivalent classes of terms of L+

7 [t]∼ denotes the equivalence class of t

8 definition of the structure underlying M′:

fM([t1]∼, . . . , [tn]∼) = [f (t1, . . . , tn)]∼ f is n-ary function
PM([t1]∼, . . . , [tn]∼)⇐⇒ P(t1, . . . , tn) ∈ G P is n-ary predicate

9 from this M′ |= G

this extends model existence to full first-order logic
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Model Existence

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, Löwenheim-Skolem, compactness, model
existence theorem, completeness, natural deduction, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic
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Natural Deduction

Natural Deduction for First-Order Logic

introduction elimination

∧ E F
E ∧ F

∧ : i
E ∧ F

E
∧ : e E ∧ F

F
∧ : e

∨ E
E ∨ F

∨ : i
F

E ∨ F
∨ : i

E ∨ F

E
...
G

F
...
G

G
∨ : e

→

E
...
F

E → F
→ : i

E E → F
F

→ : e
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Natural Deduction

Natural Deduction Extended

introduction elimination

¬

E
...
⊥
¬E

¬ : i
F ¬F
⊥ ¬ : e

⊥ ⊥
F
⊥ : e

¬¬ ¬¬F
F
¬¬ : e

= t = t =: i
s = t F (s)

F (t)
=: e
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Natural Deduction

Natural Deduction Quantifier Rules

introduction elimination

∃
F (t)

∃xF (x)
∃ : i

∃xF (x)

x F (x)
...
G

G
∃ : e

∀

x
...
F (x)

∀xF (x)
∀ : i

∀xF (x)

F (t)
∀ : e

variable x in ∃ : e, ∀ : i local to box
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Natural Deduction

Example

1 ∃xP(x) premise
2 ∀x∀y(P(x)→ Q(y)) premise
3 y
4 x P(x) assumption
5 ∀y(P(x)→ Q(y)) 2,∀ : e
6 P(x)→ Q(y) 5, ∀ : e
7 Q(y) 4, 6,→ : e
8 Q(y) 1, 4− 7,∃ : e
9 ∀yQ(y) 3− 8,∀ : i

hence we have

∃xP(x),∀x∀y(P(x)→ Q(y)) ` ∀yQ(y)

provability relation
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Gödel’s Completeness Theorem

Gödel’s Completeness Theorem

Definition

let G be a set of formulas, F a formula

• if ∃ a natural deduction proof from of F from finite G0 ⊆ G, we
write G ` F

• if ¬ ∃ proof of ⊥ from G, we say G is consistent, otherwise
inconsistent

Theorem

first-order logic is sound and complete: G |= F ⇐⇒ G ` F

Proof Idea

• the set S of consistent sets of formulas admit the satisfactions
properties

• by the model existence theorem any G ∈ S is satisfiable
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Gödel’s Completeness Theorem

Soundness Theorem

first-order logic is sound

G |= F ⇐ G ` F

completenessmodel existenceLemma Å

S set of consistent sets⇒ S admits
satisfaction properties

Lemma

G ` F iff G ∪ {¬F} is inconsistent

Lemma Å

the set S of all consistent set of formulas has the satisfaction properties
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Gödel’s Completeness Theorem

Completeness Theorem

first-order logic is complete

G |= F ⇒ G ` F

Proof.

1 wlog ∃ finite G0 ⊆ G, G0 |= F , recall G |= F iff ¬Sat(G ∪ {¬F})
if (∃ finite G0 ⊆ G ¬ Sat(G0 ∪ {¬F})) iff G0 |= F

2 suppose G0 6` F , we have to show G0 6|= F

3 suppose G0 ∪ {¬F} is consistent, then G0 ∪ {¬F} is satisfiable

4 Lemma Å yields that the set S of consistent formulas sets fulfils the
satisfaction properties

5 model existence yields that ∀ H ∈ S , H satisfiable

6 as G0 ∪ {¬F} ∈ S , G0 ∪ {¬F} satisfiable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 90/1


