

Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

Summary Last Lecture

Theorem (Model Existence Theorem)

- **1** If S^* is a set of formula sets of \mathcal{L}^+ having the satisfaction properties, then \forall formula sets $\mathcal{G} \in S^*$ of \mathcal{L} , $\exists \mathcal{M}$, $\mathcal{M} \models \mathcal{G}$

Definition

let $\mathcal G$ be a set of formulas, F a formula

• if \exists a natural deduction proof from of F from finite $\mathcal{G}_0 \subseteq \mathcal{G}$, we write $\mathcal{G} \vdash F$

Theorem

first-order logic is sound and complete: $\mathcal{G} \models F \iff \mathcal{G} \vdash F$

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

- the expression $A_1, \ldots, A_n \Rightarrow B_1, \ldots, B_m$ is called a sequent
- intuitively this means $A_1 \wedge \cdots \wedge A_n \rightarrow B_1 \vee \cdots \vee B_m$

Definition

- the expression $A_1, \ldots, A_n \Rightarrow B_1, \ldots, B_m$ is called a sequent
- intuitively this means $A_1 \wedge \cdots \wedge A_n \rightarrow B_1 \vee \cdots \vee B_m$

Example

the following expression is a sequent

$$\exists x \mathsf{P}(x), \forall x \forall y (\mathsf{P}(x) \to \mathsf{Q}(y)) \Rightarrow \forall y \mathsf{Q}(y)$$

Definition

- the expression $A_1, \ldots, A_n \Rightarrow B_1, \ldots, B_m$ is called a sequent
- intuitively this means $A_1 \wedge \cdots \wedge A_n \rightarrow B_1 \vee \cdots \vee B_m$

Example

the following expression is a sequent

$$\exists x P(x), \forall x \forall y (P(x) \to Q(y)) \Rightarrow \forall y Q(y)$$

- the formulas A_i , B_j are called sequent formulas; let $\Gamma = \{A_1, \ldots, A_n\}$, $\Delta = \{B_1, \ldots, B_m\}$, then Γ is the antecedent, Δ the succedent
- sequences of sequent formulas are considered as multisets
- Greek capital letters $\Gamma, \Delta, \Lambda, \ldots$ are used to denote multisets of sequent formulas

Rules of Sequent Calculus

	left	right
\wedge	$\frac{E,\Gamma\Rightarrow\Delta}{E\wedge F,\Gamma\Rightarrow\Delta}\wedge\colon I$	$\frac{\Gamma \Rightarrow \Delta, E \Gamma \Rightarrow \Delta, F}{\Gamma \Rightarrow \Delta, E \land F} \land : r$
	$\frac{F,\Gamma\Rightarrow\Delta}{E\wedge F,\Gamma\Rightarrow\Delta}\wedge\colon I$	
V	$ \frac{E,\Gamma\Rightarrow\Delta F,\Gamma\Rightarrow\Delta}{E\vee F,\Gamma\Rightarrow\Delta} \vee: I $	$\frac{\Gamma \Rightarrow \Delta, E}{\Gamma \Rightarrow \Delta, E \vee F} \vee : \mathbf{r}$
		$\frac{\Gamma \Rightarrow \Delta, F}{\Gamma \Rightarrow \Delta, E \vee F} \vee : \mathbf{r}$
	$ \frac{\Gamma \Rightarrow \Delta, E F, \Gamma \Rightarrow \Delta}{E \to F, \Gamma \Rightarrow \Delta} \to : I $	$\frac{\Gamma, E \Rightarrow \Delta, F}{\Gamma \Rightarrow \Delta, E \to F} \to : I$

Sequent Calculus (cont'd)

variable x in \exists : I, \forall : r must not occur free in lower sequent (eigenvariable condition)

Sequent Calculus Structural Rules

	left	right
axiom and cut	$A\Rightarrow A$	$\frac{\Gamma \Rightarrow \Delta, A A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$
contraction	$\frac{A, A, \Gamma \Rightarrow \Delta}{A, \Gamma \Rightarrow \Delta} \mathbf{c} : \mathbf{I}$	$\frac{\Gamma\Rightarrow\Delta,A,A}{\Gamma\Rightarrow\Delta,A}\text{ c: r}$
weakening	$\frac{\Gamma \Rightarrow \Delta}{A, \Gamma \Rightarrow \Delta} \text{ w: } I$	$\frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, A} \le r$

Sequent Calculus Structural Rules

	left	right
axiom and cut	$A \Rightarrow A$	$\frac{\Gamma\Rightarrow\Delta,A A,\Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\Delta}$
contraction	$\frac{A, A, \Gamma \Rightarrow \Delta}{A, \Gamma \Rightarrow \Delta} c: I$	$\frac{\Gamma \Rightarrow \Delta, A, A}{\Gamma \Rightarrow \Delta, A} \mathbf{c} : \mathbf{r}$
weakening	$\frac{\Gamma \Rightarrow \Delta}{A, \Gamma \Rightarrow \Delta} \text{ w: } I$	$\frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, A} \text{ w: } r$

Observation

we note the link between elimination (introduction) rules in natural deduction and left (right) rules in sequent calculus

Example revisited

Example

Example revisited

Example

$$\frac{P(x) \Rightarrow P(x)}{P(x) \Rightarrow Q(y), P(x)} \text{ w: I } \frac{Q(y) \Rightarrow Q(y)}{P(x), Q(y) \Rightarrow Q(y)} \xrightarrow{\text{w: I}} \frac{P(x), P(x) \rightarrow Q(y) \Rightarrow Q(y)}{P(x), Q(y) \Rightarrow Q(y)} \xrightarrow{\text{y: I}} \xrightarrow{\frac{P(x), \forall y (P(x) \rightarrow Q(y)) \Rightarrow Q(y)}{P(x), \forall x \forall y (P(x) \rightarrow Q(y)) \Rightarrow Q(y)}} \xrightarrow{\text{y: I}} \frac{\frac{P(x), \forall x \forall y (P(x) \rightarrow Q(y)) \Rightarrow Q(y)}{P(x), \forall x \forall y (P(x) \rightarrow Q(y)) \Rightarrow Q(y)}} \xrightarrow{\text{y: I}} \xrightarrow{\frac{P(x), \forall x \forall y (P(x) \rightarrow Q(y)) \Rightarrow Q(y)}{P(x), \forall x \forall y (P(x) \rightarrow Q(y)) \Rightarrow \forall y Q(y)}} \xrightarrow{\text{y: I}} \xrightarrow{\text{q: I}} \xrightarrow{\text{q$$

Normalisation

Motivation

• consider the following two abstract derivations:

$$\begin{array}{ccc} \Pi_1 & \Pi_2 \\ \underline{F} & F \\ \hline E \wedge F \\ \hline F & \wedge \colon \mathsf{e} \end{array} \qquad \begin{array}{c} \Pi_2 \\ F \end{array}$$

- clearly the right derivation can replace the left one
- the situation is called detour
- the rewrite step is called normalisation

Normalisation

Motivation

consider the following two abstract derivations:

$$\begin{array}{ccc} \Pi_1 & \Pi_2 \\ \underline{E} & F \\ \underline{E \wedge F} & \wedge : \mathbf{i} \\ \underline{E} & \wedge : \mathbf{e} \end{array} \qquad \begin{array}{c} \Pi_2 \\ E \end{array}$$

- clearly the right derivation can replace the left one
- the situation is called detour
- the rewrite step is called normalisation

- process of eliminating all detours is called normalisation
- strong normalisation means that normalisation terminates for all possible reduction sequences

- minimal logic contains ⊥ as truth constant, and ∧, ∨, →
- negation is defined:

$$\neg A := A \rightarrow \perp$$

natural deduction for minimal logic consists of:

$$\wedge: i, \wedge: e \quad \vee: i, \vee: e \quad \rightarrow: i, \rightarrow: e$$

- minimal logic contains ⊥ as truth constant, and ∧, ∨, →
- negation is defined:

$$\neg A := A \rightarrow \perp$$

natural deduction for minimal logic consists of:

$$\wedge: i, \wedge: e \quad \vee: i, \vee: e \quad \rightarrow: i, \rightarrow: e$$

Lemma

• in minimal logic $\neg A, A \not\vdash B$;

- minimal logic contains ⊥ as truth constant, and ∧, ∨, →
- negation is defined:

$$\neg A := A \rightarrow \perp$$

natural deduction for minimal logic consists of:

$$\wedge: i, \wedge: e \quad \vee: i, \vee: e \quad \rightarrow: i, \rightarrow: e$$

Lemma

• in minimal logic $\neg A, A \not\vdash B$; minimal logic is restriction of classical logic (and also of intuitionistic logic)

- minimal logic contains \perp as truth constant, and \wedge , \vee , \rightarrow
- negation is defined:

$$\neg A := A \rightarrow \perp$$

natural deduction for minimal logic consists of:

$$\wedge: i, \wedge: e \quad \vee: i, \vee: e \quad \rightarrow: i, \rightarrow: e$$

Lemma

- in minimal logic $\neg A, A \not\vdash B$; minimal logic is restriction of classical logic (and also of intuitionistic logic)
- to obtain classical logic, we may add the following proof by contradiction (PBC)

Immediate Reductions

Definitions

• Π is immediately reduced to Ψ , if Ψ is obtained by an immediate reduction

- Π is immediately reduced to Ψ , if Ψ is obtained by an immediate reduction
- a sequence of immediate reduction steps is a reduction

- Π is immediately reduced to Ψ , if Ψ is obtained by an immediate reduction
- a sequence of immediate reduction steps is a reduction
- a proof is normal, if it has no immediate reduction

- Π is immediately reduced to Ψ , if Ψ is obtained by an immediate reduction
- a sequence of immediate reduction steps is a reduction
- a proof is normal, if it has no immediate reduction
- a reduction sequence is a sequence of proofs Π_1, \ldots, Π_n , such that Π_{i+1} is an immediate reduct of Π_i and Π_n is normal

Definitions

- Π is immediately reduced to Ψ , if Ψ is obtained by an immediate reduction
- a sequence of immediate reduction steps is a reduction
- a proof is normal, if it has no immediate reduction
- a reduction sequence is a sequence of proofs Π_1, \ldots, Π_n , such that Π_{i+1} is an immediate reduct of Π_i and Π_n is normal

Theorem (Normalisation and Strong Normalisation)

let Π be a proof in minimal logic

- **1** \exists a reduction sequence $\Pi = \Pi_1, \dots, \Pi_n$
- **2** ∃ computable upper bound n on the maximal length of any reduction sequence

Normalisation in General

Theorem (Gentzen, Prawitz)

let Π be a proof in intuitionistic logic; then Π reduces to a normal proof Ψ and any reduction sequence terminates

Normalisation in General

Theorem (Gentzen, Prawitz)

let Π be a proof in intuitionistic logic; then Π reduces to a normal proof Ψ and any reduction sequence terminates

Theorem (Stalmarck)

let Π be a proof in classical logic; then Π reduces to a normal proof Ψ and any reduction sequence terminates

Normalisation in General

Theorem (Gentzen, Prawitz)

let Π be a proof in intuitionistic logic; then Π reduces to a normal proof Ψ and any reduction sequence terminates

Theorem (Stalmarck)

let Π be a proof in classical logic; then Π reduces to a normal proof Ψ and any reduction sequence terminates

Facts

- normalisation or strong normalisation theorem holds for many many logics
- normalisation in natural deduction corresponds to cut-elimination in sequent calculus

Consistency Proofs

Lemma (Subformula Property)

let Π be a normal proof of A, any formula B in Π fulfils one of the following assertions:

- B is a subformula of A
- **2** B is (closed) assumption of PBC; $B = \neg C$ and C is a subformula of A
- \blacksquare $B = \bot$ and is used as result of PBC

Consistency Proofs

Lemma (Subformula Property)

let Π be a normal proof of A, any formula B in Π fulfils one of the following assertions:

- B is a subformula of A
- 2 B is (closed) assumption of PBC; $B = \neg C$ and C is a subformula of A
- \blacksquare $B = \bot$ and is used as result of PBC

Corollary

 $\neg \exists$ normal derivation of \bot

Lemma

if sentence $A \rightarrow C$ holds, \exists sentence B such that

- $\blacksquare A \to B \text{ and } B \to C$
- 2 all axioms in B occur in both A and C

Lemma

if sentence $A \rightarrow C$ holds, \exists sentence B such that

- $\blacksquare A \to B \text{ and } B \to C$
- 2 all constants in B occur in both A and C

Lemma

if sentence $A \rightarrow C$ holds, \exists sentence B such that

- **1** $A \rightarrow B$ and $B \rightarrow C$
- 2 all constants in B occur in both A and C

Example

consider
$$\underbrace{\exists x F(x) \land \exists x \neg F(x)}_{A} \rightarrow \underbrace{\exists x \exists y \ x \neq y}_{C}$$
 but $\neg \exists$ interpolant B

Lemma

if sentence $A \rightarrow C$ holds, \exists sentence B such that

- **1** $A \rightarrow B$ and $B \rightarrow C$
- 2 all constants in B occur in both A and C

Example

consider
$$\underbrace{\exists x F(x) \land \exists x \neg F(x)}_{A} \rightarrow \underbrace{\exists x \exists y \ x \neq y}_{C}$$
 but $\neg \exists$ interpolant B

Theorem

if sentence $A \rightarrow C$ holds, \exists sentence B such that

- **1** $A \rightarrow B$ and $B \rightarrow C$
- 2 all nonlogical constants in B occur in both A and C

Proof of Craig's Interpolation Theorem

Degnerated Cases

• suppose A is unsatisfiable:

use
$$\exists x \ x \neq x$$
 as interpolant

• suppose C is valid:

use
$$\exists x \ x = x$$
 as interpolant

Proof of Craig's Interpolation Theorem

Degnerated Cases

suppose A is unsatisfiable:

use \perp as interpolant

• suppose *C* is valid:

use \top as interpolant

Proof of Craig's Interpolation Theorem

Degnerated Cases

• suppose A is unsatisfiable:

use \perp as interpolant

• suppose *C* is valid:

use \top as interpolant

Definitions

• $\mathcal L$ contains all the nonlogical symbols occurring in both A and C and its extension $\mathcal L^+$ contains infinitely many individual constants

Proof of Craig's Interpolation Theorem

Degnerated Cases

• suppose *A* is unsatisfiable:

use \perp as interpolant

• suppose *C* is valid:

use \top as interpolant

Definitions

- $\mathcal L$ contains all the nonlogical symbols occurring in both A and C and its extension $\mathcal L^+$ contains infinitely many individual constants
- set of sentences \mathcal{G} (of \mathcal{L}^+) are A-sentences if all sentences in \mathcal{G} contain only predicate constants that occur in A

Proof of Craig's Interpolation Theorem

Degnerated Cases

• suppose A is unsatisfiable:

use \perp as interpolant

• suppose *C* is valid:

use \top as interpolant

Definitions

- \mathcal{L} contains all the nonlogical symbols occurring in both A and C and its extension \mathcal{L}^+ contains infinitely many individual constants
- set of sentences \mathcal{G} (of \mathcal{L}^+) are A-sentences if all sentences in \mathcal{G} contain only predicate constants that occur in A
- set of sentences \mathcal{G} (of \mathcal{L}^+) are C-sentences if all sentences in \mathcal{G} contain only predicate constants that occur in C

Definition

- a pair of set of sentences $(\mathcal{G}_1,\mathcal{G}_2)$ is barred by B if
 - **1** \mathcal{G}_1 are satisfiable A-sentences, \mathcal{G}_2 are satisfiable C-sentences
 - 2 B is both an A-sentence and a C-sentence
 - $\mathfrak{G}_1 \models B \text{ and } \mathcal{G}_2 \models \neg B$

Definition

- a pair of set of sentences $(\mathcal{G}_1,\mathcal{G}_2)$ is barred by B if
 - **1** \mathcal{G}_1 are satisfiable A-sentences, \mathcal{G}_2 are satisfiable C-sentences
 - 2 B is both an A-sentence and a C-sentence
 - $\mathfrak{G}_1 \models B \text{ and } \mathcal{G}_2 \models \neg B$

Example

suppose $A \to C$ is valid, doesn't contain function constant, but there is no interpolant B; then no sentence B bars $(\{A\}, \{\neg C\})$

Definition

- a pair of set of sentences $(\mathcal{G}_1,\mathcal{G}_2)$ is barred by B if
 - **I** \mathcal{G}_1 are satisfiable A-sentences, \mathcal{G}_2 are satisfiable C-sentences
 - 2 B is both an A-sentence and a C-sentence
 - $\mathfrak{G}_1 \models B \text{ and } \mathcal{G}_2 \models \neg B$

Example

suppose $A \to C$ is valid, doesn't contain function constant, but there is no interpolant B; then no sentence B bars $(\{A\}, \{\neg C\})$

Definition

- a sets of sentences $\mathcal G$ admits unbarred division, if
 - **1** \exists pair $(\mathcal{G}_1, \mathcal{G}_2)$ of *A*-sentences and *C*-sentences
 - 2 $\mathcal{G} = \mathcal{G}_1 \cup \mathcal{G}_2$, \mathcal{G}_1 and \mathcal{G}_2 are satisfiable
 - 3 no sentence bars $\mathcal{G}_1, \mathcal{G}_2$

 \blacksquare assume $\neg \exists$ interpolant B

- **1** assume $\neg \exists$ interpolant B
- 2 define collection S of sets of sentences such that $\{A, \neg C\} \in S$ and S will fulfil the satisfaction properties

- **1** assume $\neg \exists$ interpolant B
- 2 define collection S of sets of sentences such that $\{A, \neg C\} \in S$ and S will fulfil the satisfaction properties
- 3 S = collection of sentences \mathcal{G} that admit an unbarred division

- **1** assume $\neg \exists$ interpolant B
- 2 define collection S of sets of sentences such that $\{A, \neg C\} \in S$ and S will fulfil the satisfaction properties
- 3 S = collection of sentences \mathcal{G} that admit an unbarred division
- **4** verify that *S* admits the satisfaction properties, wlog we only show let \mathcal{G} ∈ *S*, if $(E \lor F) \in \mathcal{G}$, then either $\mathcal{G} \cup \{E\} \in S$ or $\mathcal{G} \cup \{F\} \in S$

- **1** assume $\neg \exists$ interpolant B
- 2 define collection S of sets of sentences such that $\{A, \neg C\} \in S$ and S will fulfil the satisfaction properties
- 3 S = collection of sentences \mathcal{G} that admit an unbarred division
- **4** verify that S admits the satisfaction properties, wlog we only show let G ∈ S, if $(E \lor F) ∈ G$, then either $G \cup \{E\} ∈ S$ or $G \cup \{F\} ∈ S$
- **5** \exists $(\mathcal{G}_1,\mathcal{G}_2)$ such that $\mathcal{G}=\mathcal{G}_1\cup\mathcal{G}_2$ and $(\mathcal{G}_1,\mathcal{G}_2)$ is unbarred

- **1** assume $\neg \exists$ interpolant B
- 2 define collection S of sets of sentences such that $\{A, \neg C\} \in S$ and S will fulfil the satisfaction properties
- 3 S = collection of sentences G that admit an unbarred division
- 4 verify that S admits the satisfaction properties, wlog we only show let $G \in S$, if $(E \vee F) \in G$, then either $G \cup \{E\} \in S$ or $G \cup \{F\} \in S$
- 5 \exists $(\mathcal{G}_1,\mathcal{G}_2)$ such that $\mathcal{G}=\mathcal{G}_1\cup\mathcal{G}_2$ and $(\mathcal{G}_1,\mathcal{G}_2)$ is unbarred
- 6 wlog $(E \lor F)$ ∈ \mathcal{G}_1

- **1** assume $\neg \exists$ interpolant B
- 2 define collection S of sets of sentences such that $\{A, \neg C\} \in S$ and S will fulfil the satisfaction properties
- 3 S = collection of sentences G that admit an unbarred division
- 4 verify that S admits the satisfaction properties, wlog we only show let $G \in S$, if $(E \vee F) \in G$, then either $G \cup \{E\} \in S$ or $G \cup \{F\} \in S$
- 5 \exists $(\mathcal{G}_1,\mathcal{G}_2)$ such that $\mathcal{G}=\mathcal{G}_1\cup\mathcal{G}_2$ and $(\mathcal{G}_1,\mathcal{G}_2)$ is unbarred
- 6 wlog $(E \vee F) \in \mathcal{G}_1$
- 7 it suffices to show that $(\mathcal{G}_1 \cup \{E\}, \mathcal{G}_2)$ or $(\mathcal{G}_1 \cup \{F\}, \mathcal{G}_2)$ forms an unbarred division of $\mathcal{G} \cup \{E\} \in \mathcal{S}$

- **1** assume $\neg \exists$ interpolant B
- 2 define collection S of sets of sentences such that $\{A, \neg C\} \in S$ and S will fulfil the satisfaction properties
- 3 S = collection of sentences G that admit an unbarred division
- 4 verify that S admits the satisfaction properties, wlog we only show let $G \in S$, if $(E \vee F) \in G$, then either $G \cup \{E\} \in S$ or $G \cup \{F\} \in S$
- 5 \exists $(\mathcal{G}_1,\mathcal{G}_2)$ such that $\mathcal{G}=\mathcal{G}_1\cup\mathcal{G}_2$ and $(\mathcal{G}_1,\mathcal{G}_2)$ is unbarred
- 6 wlog $(E \vee F) \in \mathcal{G}_1$
- 7 it suffices to show that $(\mathcal{G}_1 \cup \{E\}, \mathcal{G}_2)$ or $(\mathcal{G}_1 \cup \{F\}, \mathcal{G}_2)$ forms an unbarred division of $\mathcal{G} \cup \{E\} \in S$
- 8 wlog $\mathcal{G}_1 \cup \{E\}$ and $\mathcal{G}_1 \cup \{F\}$ are satisfiable

- **1** assume $\neg \exists$ interpolant B
- 2 define collection S of sets of sentences such that $\{A, \neg C\} \in S$ and S will fulfil the satisfaction properties
- 3 S = collection of sentences G that admit an unbarred division
- 4 verify that S admits the satisfaction properties, wlog we only show let $G \in S$, if $(E \vee F) \in G$, then either $G \cup \{E\} \in S$ or $G \cup \{F\} \in S$
- 5 \exists $(\mathcal{G}_1,\mathcal{G}_2)$ such that $\mathcal{G}=\mathcal{G}_1\cup\mathcal{G}_2$ and $(\mathcal{G}_1,\mathcal{G}_2)$ is unbarred
- 6 wlog $(E \vee F) \in \mathcal{G}_1$
- 7 it suffices to show that $(\mathcal{G}_1 \cup \{E\}, \mathcal{G}_2)$ or $(\mathcal{G}_1 \cup \{F\}, \mathcal{G}_2)$ forms an unbarred division of $\mathcal{G} \cup \{E\} \in S$
- 8 wlog $\mathcal{G}_1 \cup \{E\}$ and $\mathcal{G}_1 \cup \{F\}$ are satisfiable
- g assume further both alternatives fail to be unbarred divisions; then we derive a contradiction that \mathcal{G} admits an unbarred division

- **1** assume $\neg \exists$ interpolant B
- 2 define collection S of sets of sentences such that $\{A, \neg C\} \in S$ and S will fulfil the satisfaction properties
- 3 S = collection of sentences G that admit an unbarred division
- 4 verify that S admits the satisfaction properties, wlog we only show let $G \in S$, if $(E \vee F) \in G$, then either $G \cup \{E\} \in S$ or $G \cup \{F\} \in S$
- 5 \exists $(\mathcal{G}_1,\mathcal{G}_2)$ such that $\mathcal{G}=\mathcal{G}_1\cup\mathcal{G}_2$ and $(\mathcal{G}_1,\mathcal{G}_2)$ is unbarred
- 6 wlog $(E \vee F) \in \mathcal{G}_1$
- 7 it suffices to show that $(\mathcal{G}_1 \cup \{E\}, \mathcal{G}_2)$ or $(\mathcal{G}_1 \cup \{F\}, \mathcal{G}_2)$ forms an unbarred division of $\mathcal{G} \cup \{E\} \in S$
- 8 wlog $\mathcal{G}_1 \cup \{E\}$ and $\mathcal{G}_1 \cup \{F\}$ are satisfiable
- g assume further both alternatives fail to be unbarred divisions; then we derive a contradiction that G admits an unbarred division

- abstract interpretations represent the behaviour of programs
- logical products of interpretations allows combination of interpreters
- based on Nelson-Oppen methodology

- abstract interpretations represent the behaviour of programs
- logical products of interpretations allows combination of interpreters
- based on Nelson-Oppen methodology

Observation

the Nelson-Oppen method allows to combining decision procedures of different theories S, T to obtain a decision procedure for $S \cup T$

- abstract interpretations represent the behaviour of programs
- logical products of interpretations allows combination of interpreters
- based on Nelson-Oppen methodology

Observation

the Nelson-Oppen method allows to combining decision procedures of different theories S, T to obtain a decision procedure for $S \cup T$

Definition

• a theory in a language $\mathcal L$ is a set of sentences of $\mathcal L$ that is closed under logical consequence

- abstract interpretations represent the behaviour of programs
- logical products of interpretations allows combination of interpreters
- based on Nelson-Oppen methodology

Observation

the Nelson-Oppen method allows to combining decision procedures of different theories S, T to obtain a decision procedure for $S \cup T$

Definition

- a theory in a language $\mathcal L$ is a set of sentences of $\mathcal L$ that is closed under logical consequence
- an element of a theory is a theorem

- abstract interpretations represent the behaviour of programs
- logical products of interpretations allows combination of interpreters
- based on Nelson-Oppen methodology

Observation

the Nelson-Oppen method allows to combining decision procedures of different theories S, T to obtain a decision procedure for $S \cup T$

Definition

- a theory in a language ${\cal L}$ is a set of sentences of ${\cal L}$ that is closed under logical consequence
- an element of a theory is a theorem
- a theory T is satisfiable if the set of sentences T is satisfiable

Definition

• a theory T is complete if \forall sentence F of \mathcal{L} : $F \in T$ or $\neg F \in T$

Definition

- a theory T is complete if \forall sentence F of \mathcal{L} : $F \in T$ or $\neg F \in T$
- T' is an extension of theory T, if $T \subseteq T'$

Definition

- a theory T is complete if \forall sentence F of \mathcal{L} : $F \in T$ or $\neg F \in T$
- T' is an extension of theory T, if $T \subseteq T'$
- an extension T' of T is conservative if any $A \in T'$ of the language of T, is a theorem of T

Definition

- a theory T is complete if \forall sentence F of \mathcal{L} : $F \in T$ or $\neg F \in T$
- T' is an extension of theory T, if $T \subseteq T'$
- an extension T' of T is conservative if any $A \in T'$ of the language of T, is a theorem of T

Lemma

the union $S \cup T$ of two theories S and T is satisfiable iff there is no sentence in S whose negation is in T

Definition

- a theory T is complete if \forall sentence F of \mathcal{L} : $F \in T$ or $\neg F \in T$
- T' is an extension of theory T, if $T \subseteq T'$
- an extension T' of T is conservative if any $A \in T'$ of the language of T, is a theorem of T

Lemma

the union $S \cup T$ of two theories S and T is satisfiable iff there is no sentence in S whose negation is in T

Definitions

- \mathcal{L}_0 , \mathcal{L}_1 , \mathcal{L}_2 are languages such that $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$
- T_i is theory in \mathcal{L}_i $(i \in \{0, 1, 2\})$

if T_1 , T_2 are conservative extensions of T_0 , then T_3 is a conservative extension of T_0 , where $T_3 = \{A \mid T_1 \cup T_2 \models A\}$

if T_1 , T_2 are conservative extensions of T_0 , then T_3 is a conservative extension of T_0 , where $T_3 = \{A \mid T_1 \cup T_2 \models A\}$

Proof.

1 suppose A is a sentence of \mathcal{L}_0 that is a theorem of \mathcal{T}_3

if T_1 , T_2 are conservative extensions of T_0 , then T_3 is a conservative extension of T_0 , where $T_3 = \{A \mid T_1 \cup T_2 \models A\}$

- **1** suppose A is a sentence of \mathcal{L}_0 that is a theorem of \mathcal{T}_3
- **2** set $U_2 := \{B \mid T_2 \cup \{\neg A\} \models B\}$

if T_1 , T_2 are conservative extensions of T_0 , then T_3 is a conservative extension of T_0 , where $T_3 = \{A \mid T_1 \cup T_2 \models A\}$

- **I** suppose A is a sentence of \mathcal{L}_0 that is a theorem of \mathcal{T}_3
- **2** set $U_2 := \{B \mid T_2 \cup \{\neg A\} \models B\}$
- \exists $T_1 \cup U_2$ is unsatisfiable; by the lemma \exists $C \in T_1$ such that $\neg C \in U_2$

if T_1 , T_2 are conservative extensions of T_0 , then T_3 is a conservative extension of T_0 , where $T_3 = \{A \mid T_1 \cup T_2 \models A\}$

- **I** suppose A is a sentence of \mathcal{L}_0 that is a theorem of \mathcal{T}_3
- **2** set $U_2 := \{B \mid T_2 \cup \{\neg A\} \models B\}$
- \exists $T_1 \cup U_2$ is unsatisfiable; by the lemma \exists $C \in T_1$ such that $\neg C \in U_2$
- 4 C, $\neg C$ are sentences of \mathcal{L}_0

if T_1 , T_2 are conservative extensions of T_0 , then T_3 is a conservative extension of T_0 , where $T_3 = \{A \mid T_1 \cup T_2 \models A\}$

- **I** suppose A is a sentence of \mathcal{L}_0 that is a theorem of \mathcal{T}_3
- 2 set $U_2 := \{B \mid T_2 \cup \{\neg A\} \models B\}$
- \exists $T_1 \cup U_2$ is unsatisfiable; by the lemma \exists $C \in T_1$ such that $\neg C \in U_2$
- **4** C, $\neg C$ are sentences of \mathcal{L}_0
- $\neg A \rightarrow \neg C \in \mathcal{L}_0$

if T_1 , T_2 are conservative extensions of T_0 , then T_3 is a conservative extension of T_0 , where $T_3 = \{A \mid T_1 \cup T_2 \models A\}$

- **1** suppose A is a sentence of \mathcal{L}_0 that is a theorem of \mathcal{T}_3
- 2 set $U_2 := \{B \mid T_2 \cup \{\neg A\} \models B\}$
- \exists $T_1 \cup U_2$ is unsatisfiable; by the lemma \exists $C \in T_1$ such that $\neg C \in U_2$
- **4** C, $\neg C$ are sentences of \mathcal{L}_0
- $\neg A \rightarrow \neg C \in \mathcal{L}_0$
- **6** by assumption C is a theorem of T_0

if T_1 , T_2 are conservative extensions of T_0 , then T_3 is a conservative extension of T_0 , where $T_3 = \{A \mid T_1 \cup T_2 \models A\}$

- **I** suppose A is a sentence of \mathcal{L}_0 that is a theorem of \mathcal{T}_3
- 2 set $U_2 := \{B \mid T_2 \cup \{\neg A\} \models B\}$
- \exists $T_1 \cup U_2$ is unsatisfiable; by the lemma \exists $C \in T_1$ such that $\neg C \in U_2$
- **4** C, $\neg C$ are sentences of \mathcal{L}_0
- $\neg A \rightarrow \neg C \in \mathcal{L}_0$
- **6** by assumption C is a theorem of T_0
- **T** moreover $\neg A \rightarrow \neg C \in T_2$ thus a theorem of T_0

if T_1 , T_2 are conservative extensions of T_0 , then T_3 is a conservative extension of T_0 , where $T_3 = \{A \mid T_1 \cup T_2 \models A\}$

- **I** suppose A is a sentence of \mathcal{L}_0 that is a theorem of \mathcal{T}_3
- 2 set $U_2 := \{B \mid T_2 \cup \{\neg A\} \models B\}$
- \exists $T_1 \cup U_2$ is unsatisfiable; by the lemma \exists $C \in T_1$ such that $\neg C \in U_2$
- **4** C, $\neg C$ are sentences of \mathcal{L}_0
- $\neg A \rightarrow \neg C \in \mathcal{L}_0$
- **6** by assumption C is a theorem of T_0
- **T** moreover $\neg A \rightarrow \neg C \in T_2$ thus a theorem of T_0
- \blacksquare this yields that A is theorem of T_0

Corollary

if T_0 is complete and T_1 , T_2 are satisfiable extensions of T_0 , then $T_1 \cup T_2$ is satisfiable

Corollary

if T_0 is complete and T_1 , T_2 are satisfiable extensions of T_0 , then $T_1 \cup T_2$ is satisfiable

Proof.

 $lue{1}$ a satisfiable extension of a complete theory T is conservative

Corollary

if T_0 is complete and T_1 , T_2 are satisfiable extensions of T_0 , then $T_1 \cup T_2$ is satisfiable

- $lue{1}$ a satisfiable extension of a complete theory T is conservative
- 2 a conservative extension of a satisfiable theory is satisfiable

Corollary

if T_0 is complete and T_1 , T_2 are satisfiable extensions of T_0 , then $T_1 \cup T_2$ is satisfiable

- $lue{1}$ a satisfiable extension of a complete theory T is conservative
- 2 a conservative extension of a satisfiable theory is satisfiable
- 3 set $T_3 = \{A \mid T_1 \cup T_2 \models A\}$

Corollary

if T_0 is complete and T_1 , T_2 are satisfiable extensions of T_0 , then $T_1 \cup T_2$ is satisfiable

- $lue{1}$ a satisfiable extension of a complete theory T is conservative
- 2 a conservative extension of a satisfiable theory is satisfiable
- 3 set $T_3 = \{A \mid T_1 \cup T_2 \models A\}$
- 4 by assumption (and the above) T_1 , T_2 are conservative

Corollary

if T_0 is complete and T_1 , T_2 are satisfiable extensions of T_0 , then $T_1 \cup T_2$ is satisfiable

- $lue{1}$ a satisfiable extension of a complete theory T is conservative
- 2 a conservative extension of a satisfiable theory is satisfiable
- 3 set $T_3 = \{A \mid T_1 \cup T_2 \models A\}$
- 4 by assumption (and the above) T_1 , T_2 are conservative
- **5** by previous theorem T_3 is conservative extension of T_0

Corollary

if T_0 is complete and T_1 , T_2 are satisfiable extensions of T_0 , then $T_1 \cup T_2$ is satisfiable

- lacktriangledown a satisfiable extension of a complete theory T is conservative
- 2 a conservative extension of a satisfiable theory is satisfiable
- 3 set $T_3 = \{A \mid T_1 \cup T_2 \models A\}$
- 4 by assumption (and the above) T_1 , T_2 are conservative
- **5** by previous theorem T_3 is conservative extension of T_0
- **6** by the above T_3 is satisfiable, hence $T_1 \cup T_2$ is satisfiable

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Definition (Prenex Normal Form)

 \blacksquare a formula F is in prenex normal form if it has the form

$$Q_1x_1\cdots Q_nx_n G$$
matrix

$$Q_i \in \{\forall, \exists\}$$

 \boldsymbol{G} is quantifier-free

Definition (Prenex Normal Form)

 \blacksquare a formula F is in prenex normal form if it has the form

$$Q_1x_1\cdots Q_nx_n$$
 G matrix

 $Q_i \in \{\forall, \exists\}$

G is quantifier-free

2 if G is a conjunction of disjunctions of literals, we say F is in conjunctive prenex normal form (CNF for short)

Definition (Prenex Normal Form)

1 a formula F is in prenex normal form if it has the form

$$Q_1x_1\cdots Q_nx_n$$
 G $Q_i \in \{\forall, \exists\}$

G is quantifier-free

2 if G is a conjunction of disjunctions of literals, we say F is in conjunctive prenex normal form (CNF for short)

Example

consider $\forall x F(x) \leftrightarrow G(a)$ or more precisely

$$(\neg \forall x F(x) \lor G(a)) \land (\neg G(a) \lor \forall x F(x))$$

one CNF would be

$$\forall x \exists y ((\neg F(y) \lor G(a)) \land (\neg G(a) \lor F(x)))$$

 \forall first-order formula F, \exists G such that G is in prenex normal form and $F \equiv G$; furthermore G can be effectively constructed from F

 \forall first-order formula F, \exists G such that G is in prenex normal form and $F \equiv G$; furthermore G can be effectively constructed from F

Proof.

use the following operations

 \forall first-order formula F, \exists G such that G is in prenex normal form and $F \equiv G$; furthermore G can be effectively constructed from F

Proof.

use the following operations

rename bound variables such that each quantifier introduces a unique bound variable

 \forall first-order formula F, \exists G such that G is in prenex normal form and $F \equiv G$; furthermore G can be effectively constructed from F

Proof.

use the following operations

- rename bound variables such that each quantifier introduces a unique bound variable
- **2** replace $E \rightarrow F$ by $\neg E \lor F$

 \forall first-order formula F, \exists G such that G is in prenex normal form and $F \equiv G$; furthermore G can be effectively constructed from F

Proof.

use the following operations

- rename bound variables such that each quantifier introduces a unique bound variable
- **2** replace $E \to F$ by $\neg E \lor F$
- 3 pull quantifiers out using

$$\neg \forall x F(x) \equiv \exists x \neg F(x)$$
$$\neg \exists x F(x) \equiv \forall x \neg F(x)$$
$$QxE(x) \odot F \equiv Qx(E(x) \odot F)$$

where $Q \in \{ \forall, \exists \}, \odot \in \{ \land, \lor \}$ and x not free in F

 \forall first-order formula F, \exists G such that G is in prenex normal form and $F \equiv G$; furthermore G can be effectively constructed from F

Proof.

use the following operations

- rename bound variables such that each quantifier introduces a unique bound variable
- **2** replace $E \rightarrow F$ by $\neg E \lor F$
- 3 pull quantifiers out using

$$\neg \forall x F(x) \equiv \exists x \neg F(x)$$
$$\neg \exists x F(x) \equiv \forall x \neg F(x)$$
$$QxE(x) \odot F \equiv Qx(E(x) \odot F)$$

where $Q \in \{ \forall, \exists \}, \odot \in \{ \land, \lor \}$ and x not free in F

• an existential formula F is of form $\exists x_1 \cdots \exists x_m \ G(x_1, \dots, x_m)$

such that G is quantifier free

- an existential formula F is of form $\exists x_1 \cdots \exists x_m \ G(x_1, \dots, x_m)$
- a universal formula is of form $\forall x_1 \cdots \forall x_m \ G(x_1, \dots, x_m)$

such that G is quantifier free

- an existential formula F is of form $\exists x_1 \cdots \exists x_m \ G(x_1, \dots, x_m)$
- a universal formula is of form $\forall x_1 \cdots \forall x_m \ G(x_1, \dots, x_m)$

such that G is quantifier free

Definition (Skolem Normal Form)

a formula F is in Skolem normal form (SNF for short) if F is universal and in CNF

- an existential formula F is of form $\exists x_1 \cdots \exists x_m \ G(x_1, \dots, x_m)$
- a universal formula is of form $\forall x_1 \cdots \forall x_m \ G(x_1, \dots, x_m)$

such that G is quantifier free

Definition (Skolem Normal Form)

a formula F is in Skolem normal form (SNF for short) if F is universal and in CNF

let ${\mathcal L}$ be a language and ${\mathcal L}^+$ an extension of ${\mathcal L}$

- an existential formula F is of form $\exists x_1 \cdots \exists x_m \ G(x_1, \dots, x_m)$
- a universal formula is of form $\forall x_1 \cdots \forall x_m \ G(x_1, \dots, x_m)$

such that G is quantifier free

Definition (Skolem Normal Form)

a formula F is in Skolem normal form (SNF for short) if F is universal and in CNF

let ${\mathcal L}$ be a language and ${\mathcal L}^+$ an extension of ${\mathcal L}$

Definition

1 suppose \mathcal{I} is an interpretation of \mathcal{L} and \mathcal{I}^+ an interpretation of \mathcal{L}^+ that coincides with \mathcal{I} on \mathcal{L}

- an existential formula F is of form $\exists x_1 \cdots \exists x_m \ G(x_1, \dots, x_m)$
- a universal formula is of form $\forall x_1 \cdots \forall x_m \ G(x_1, \dots, x_m)$

such that G is quantifier free

Definition (Skolem Normal Form)

a formula F is in Skolem normal form (SNF for short) if F is universal and in CNF

let ${\mathcal L}$ be a language and ${\mathcal L}^+$ an extension of ${\mathcal L}$

Definition

- 1 suppose $\mathcal I$ is an interpretation of $\mathcal L$ and $\mathcal I^+$ an interpretation of $\mathcal L^+$ that coincides with $\mathcal I$ on $\mathcal L$
- 2 then \mathcal{I}^+ is an expansion of \mathcal{I}

given a sentence F, we define its Skolemisation F^S as follows

given a sentence F, we define its Skolemisation F^S as follows

1 transform F into a CNF F'such that $F' = Q_1x_1 \cdots Q_mx_m$ $G(x_1, \dots, x_m)$

given a sentence F, we define its Skolemisation F^S as follows

- 1 transform F into a CNF F'such that $F' = Q_1x_1 \cdots Q_mx_m \ G(x_1, \dots, x_m)$
- **2** set F'' = F' and repeatedly transform F''

$$\forall x_1 \cdots \forall x_{i-1} \exists x_i Q_{i+1} x_{i+1} \cdots Q_m x_m \ G(x_1, \dots, x_i, \dots, x_m)$$

by
$$s(F'')$$

$$\forall x_1 \cdots \forall x_{i-1} Q_{i+1} x_{i+1} \cdots Q_m x_m \ G(x_1, \ldots, f(x_1, \ldots, x_{i-1}), \ldots, x_m)$$

where f denotes a fresh function symbol of arity i-1

given a sentence F, we define its Skolemisation F^S as follows

- 1 transform F into a CNF F'such that $F' = Q_1x_1 \cdots Q_mx_m$ $G(x_1, \dots, x_m)$
- **2** set F'' = F' and repeatedly transform F''

$$\forall x_1 \cdots \forall x_{i-1} \exists x_i Q_{i+1} x_{i+1} \cdots Q_m x_m \ G(x_1, \dots, x_i, \dots, x_m)$$

by
$$s(F'')$$

$$\forall x_1 \cdots \forall x_{i-1} Q_{i+1} x_{i+1} \cdots Q_m x_m \ G(x_1, \ldots, f(x_1, \ldots, x_{i-1}), \ldots, x_m)$$

where f denotes a fresh function symbol of arity i-1

Definition

formulas F and G are equivalent for satisfiability $(F \approx G)$ whenever F is satisfiable iff G is satisfiable

 \forall first-order formula, $F \exists$ formula in SNF G such that $F \approx G$; furthermore G can be effectively constructed from F

 \forall first-order formula, $F \exists$ formula in SNF G such that $F \approx G$; furthermore G can be effectively constructed from F

 \forall first-order formula, $F \exists$ formula in SNF G such that $F \approx G$; furthermore G can be effectively constructed from F

Proof.

set

$$F = \forall x_1 \cdots \forall x_{i-1} \exists x_i \cdots Q_m x_m \ G(x_1, \dots, x_m)$$

$$\mathbf{s}(F) = \forall x_1 \cdots \forall x_{i-1} \cdots Q_m x_m \ G(x_1, \dots, \mathbf{f}(x_1, \dots, x_{i-1}), \dots, x_m)$$

$$H(x_1, \dots, x_i) = Q_{i+1} x_{i+1} \cdots Q_m x_m \ G(x_1, \dots, x_m)$$

 \forall first-order formula, $F \exists$ formula in SNF G such that $F \approx G$; furthermore G can be effectively constructed from F

Proof.

set

$$F = \forall x_1 \cdots \forall x_{i-1} \exists x_i \cdots Q_m x_m \ G(x_1, \dots, x_m)$$

$$s(F) = \forall x_1 \cdots \forall x_{i-1} \cdots Q_m x_m \ G(x_1, \dots, f(x_1, \dots, x_{i-1}), \dots, x_m)$$

$$H(x_1, \dots, x_i) = Q_{i+1} x_{i+1} \cdots Q_m x_m \ G(x_1, \dots, x_m)$$

• suppose $F = \forall x_1 \cdots \forall x_{i-1} \exists x_i H(x_1, \dots, x_i)$ is satisfiable

 \forall first-order formula, $F \exists$ formula in SNF G such that $F \approx G$; furthermore G can be effectively constructed from F

Proof.

set

$$F = \forall x_1 \cdots \forall x_{i-1} \exists x_i \cdots Q_m x_m \ G(x_1, \dots, x_m)$$

$$s(F) = \forall x_1 \cdots \forall x_{i-1} \cdots Q_m x_m \ G(x_1, \dots, f(x_1, \dots, x_{i-1}), \dots, x_m)$$

$$H(x_1, \dots, x_i) = Q_{i+1} x_{i+1} \cdots Q_m x_m \ G(x_1, \dots, x_m)$$

- suppose $F = \forall x_1 \cdots \forall x_{i-1} \exists x_i H(x_1, \dots, x_i)$ is satisfiable
- \exists model \mathcal{M} of F, then \exists expansion \mathcal{M}^+ of \mathcal{M} such that

$$\mathcal{M}^+ \models H(x_1, \ldots, x_{i-1}, f(x_1, \ldots, x_{i-1}))$$

 \forall first-order formula, $F \exists$ formula in SNF G such that $F \approx G$; furthermore G can be effectively constructed from F

Proof.

set

$$F = \forall x_1 \cdots \forall x_{i-1} \exists x_i \cdots Q_m x_m \ G(x_1, \dots, x_m)$$

$$s(F) = \forall x_1 \cdots \forall x_{i-1} \cdots Q_m x_m \ G(x_1, \dots, f(x_1, \dots, x_{i-1}), \dots, x_m)$$

$$H(x_1, \dots, x_i) = Q_{i+1} x_{i+1} \cdots Q_m x_m \ G(x_1, \dots, x_m)$$

- suppose $F = \forall x_1 \cdots \forall x_{i-1} \exists x_i H(x_1, \dots, x_i)$ is satisfiable
- \exists model \mathcal{M} of F, then \exists expansion \mathcal{M}^+ of \mathcal{M} such that

$$\mathcal{M}^+ \models H(x_1,\ldots,x_{i-1},f(x_1,\ldots,x_{i-1}))$$

• $\forall x_1 \cdots \forall x_{i-1} H(x_1, \dots, f(x_1, \dots, x_{i-1})) = s(F)$ is satisfiable

 \forall first-order formula, $F \exists$ formula in SNF G such that $F \approx G$; furthermore G can be effectively constructed from F

Proof.

set

$$F = \forall x_1 \cdots \forall x_{i-1} \exists x_i \cdots Q_m x_m \ G(x_1, \dots, x_m)$$

$$s(F) = \forall x_1 \cdots \forall x_{i-1} \cdots Q_m x_m \ G(x_1, \dots, f(x_1, \dots, x_{i-1}), \dots, x_m)$$

$$H(x_1, \dots, x_i) = Q_{i+1} x_{i+1} \cdots Q_m x_m \ G(x_1, \dots, x_m)$$

- suppose $F = \forall x_1 \cdots \forall x_{i-1} \exists x_i H(x_1, \dots, x_i)$ is satisfiable
- \exists model \mathcal{M} of F, then \exists expansion \mathcal{M}^+ of \mathcal{M} such that

$$\mathcal{M}^+ \models H(x_1,\ldots,x_{i-1},f(x_1,\ldots,x_{i-1}))$$

• $\forall x_1 \cdots \forall x_{i-1} H(x_1, \dots, f(x_1, \dots, x_{i-1})) = s(F)$ is satisfiable

Example

consider
$$\forall y \forall x (x > y \to \exists z (x > z \land z > y))$$
; its SNF is $\forall y \forall x (\neg (x > y) \lor x > f(x, y)) \land (\neg (x > y) \lor f(x, y) > y)$

Example

consider
$$\forall y \forall x (x > y \to \exists z (x > z \land z > y))$$
; its SNF is $\forall y \forall x (\neg (x > y) \lor x > f(x, y)) \land (\neg (x > y) \lor f(x, y) > y)$

a term t is closed if no variable occurs in t

Example

consider
$$\forall y \forall x (x > y \to \exists z (x > z \land z > y))$$
; its SNF is $\forall y \forall x (\neg (x > y) \lor x > f(x, y)) \land (\neg (x > y) \lor f(x, y) > y)$

a term t is closed if no variable occurs in t

Definition

ullet a Herbrand universe for a language ${\cal L}$ is the set of all closed terms

Example

consider
$$\forall y \forall x (x > y \to \exists z (x > z \land z > y))$$
; its SNF is $\forall y \forall x (\neg (x > y) \lor x > f(x, y)) \land (\neg (x > y) \lor f(x, y) > y)$

a term t is closed if no variable occurs in t

Definition

- ullet a Herbrand universe for a language ${\cal L}$ is the set of all closed terms
- we add fresh constant c if \mathcal{L} doesn't contain one

Example

consider
$$\forall y \forall x (x > y \to \exists z (x > z \land z > y))$$
; its SNF is $\forall y \forall x (\neg (x > y) \lor x > f(x, y)) \land (\neg (x > y) \lor f(x, y) > y)$

a term t is closed if no variable occurs in t

Definition

- ullet a Herbrand universe for a language ${\cal L}$ is the set of all closed terms
- we add fresh constant c if \mathcal{L} doesn't contain one

Example

let
$$\mathcal{L} = \{c, f, P\}$$
, then the Herbrand universe H of \mathcal{L} is $H = \{c, f(c), f(f(c)), f(f(f(c))), \dots\}$

- ullet an interpretation $\mathcal I$ (of $\mathcal L$) is Herbrand interpretation if
 - 1 its universe is the Herbrand universe H for \mathcal{L}
 - 2 interpretation \mathcal{I} sets $t^{\mathcal{I}} = t$ for any closed term t

- an interpretation \mathcal{I} (of \mathcal{L}) is Herbrand interpretation if
 - 1 its universe is the Herbrand universe H for \mathcal{L}
 - 2 interpretation \mathcal{I} sets $t^{\mathcal{I}} = t$ for any closed term t
- a Herbrand interpretation $\mathcal M$ is a Herbrand model of a set of formulas $\mathcal G$ if $\mathcal M \models \mathcal G$

- ullet an interpretation $\mathcal I$ (of $\mathcal L$) is Herbrand interpretation if
 - f 1 its universe is the Herbrand universe H for ${\cal L}$
 - **2** interpretation \mathcal{I} sets $t^{\mathcal{I}} = t$ for any closed term t
- a Herbrand interpretation M is a Herbrand model of a set of formulas G if M ⊨ G

Example

• consider $F = \forall x P(x)$ and $\mathcal{L} = \{c, f, P\}$

- ullet an interpretation $\mathcal I$ (of $\mathcal L$) is Herbrand interpretation if
 - 1 its universe is the Herbrand universe H for \mathcal{L}
 - 2 interpretation \mathcal{I} sets $t^{\mathcal{I}} = t$ for any closed term t
- a Herbrand interpretation $\mathcal M$ is a Herbrand model of a set of formulas $\mathcal G$ if $\mathcal M \models \mathcal G$

Example

- consider $F = \forall x P(x)$ and $\mathcal{L} = \{c, f, P\}$
- ullet the Herbrand model ${\mathcal M}$ interprets P as follows:

$$\begin{split} c \in \mathsf{P}^{\mathcal{M}} & & f(c) \in \mathsf{P}^{\mathcal{M}} & f(f(c)) \in \mathsf{P}^{\mathcal{M}} \\ f(f(f(c))) \in \mathsf{P}^{\mathcal{M}} & f(f(f(f(c)))) \in \mathsf{P}^{\mathcal{M}} & \dots \end{split}$$

- ullet an interpretation $\mathcal I$ (of $\mathcal L$) is Herbrand interpretation if
 - 1 its universe is the Herbrand universe H for \mathcal{L}
 - **2** interpretation \mathcal{I} sets $t^{\mathcal{I}} = t$ for any closed term t
- a Herbrand interpretation M is a Herbrand model of a set of formulas G if M ⊨ G

Example

- consider $F = \forall x P(x)$ and $\mathcal{L} = \{c, f, P\}$
- the Herbrand model ${\mathcal M}$ interprets P as follows:

$$c \in P^{\mathcal{M}}$$
 $f(c) \in P^{\mathcal{M}}$ $f(f(c)) \in P^{\mathcal{M}}$
 $f(f(f(c))) \in P^{\mathcal{M}}$ $f(f(f(f(c)))) \in P^{\mathcal{M}}$...

ullet note that ${\mathcal M}$ is representable as the set of true atoms

Jacques Herbrand (1908–1931) proposed to

Jacques Herbrand (1908–1931) proposed to

• transform first-order into propositional logic

Jacques Herbrand (1908–1931) proposed to

- transform first-order into propositional logic
- basis of Gilmore's prover

Automated Reasoning

Jacques Herbrand (1908–1931) proposed to

- transform first-order into propositional logic
- basis of Gilmore's prover

Corollary

 ${\mathcal G}$ is satisfiable iff ${\mathcal G}$ has a Herbrand model (over ${\mathcal L}$)

Proof.

follows from the proof of completeness

Jacques Herbrand (1908–1931) proposed to

- transform first-order into propositional logic
- basis of Gilmore's prover

Corollary

 \mathcal{G} is satisfiable iff \mathcal{G} has a Herbrand model (over \mathcal{L})

Proof

follows from the proof of completeness

 \mathcal{G} a set of universal sentences (of \mathcal{L}) without =

GM (Institute of Computer Science @ UIBK)

$$Gr(\mathcal{G}) = \{G(t_1, \dots, t_n) \mid \forall x_1 \dots \forall x_n G(x_1, \dots, x_n) \in \mathcal{G}, t_i \text{ closed terms}\}$$

$$\mathsf{Gr}(\mathcal{G}) = \{ G(t_1, \dots, t_n) \mid \forall x_1 \dots \forall x_n G(x_1, \dots, x_n) \in \mathcal{G}, t_i \text{ closed terms} \}$$

Theorem

the following is equivalent

- $oldsymbol{\mathbb{I}}$ $\mathcal G$ is satisfiable
- 2 G has a Herbrand model

$$\mathsf{Gr}(\mathcal{G}) = \{ \mathit{G}(t_1, \ldots, t_n) \mid \forall x_1 \cdots \forall x_n \mathit{G}(x_1, \ldots, x_n) \in \mathcal{G}, t_i \text{ closed terms} \}$$

Theorem

the following is equivalent

- \mathbf{I} \mathcal{G} is satisfiable
- 2 G has a Herbrand model
- $\exists \forall finite G_0 \subseteq Gr(G), G_0 has a Herbrand model$

$$Gr(\mathcal{G}) = \{G(t_1, \dots, t_n) \mid \forall x_1 \dots \forall x_n G(x_1, \dots, x_n) \in \mathcal{G}, t_i \text{ closed terms}\}$$

Theorem

the following is equivalent

- $oldsymbol{\mathbb{I}}$ $\mathcal G$ is satisfiable
- 2 G has a Herbrand model
- $\exists \forall finite G_0 \subseteq Gr(G), G_0 has a Herbrand model$

Proof.

• \forall finite $\mathcal{G}_0 \subseteq Gr(\mathcal{G})$, \mathcal{G}_0 has a Herbrand model

$$\mathsf{Gr}(\mathcal{G}) = \{ \textit{G}(t_1, \dots, t_n) \mid \forall x_1 \dots \forall x_n \textit{G}(x_1, \dots, x_n) \in \mathcal{G}, t_i \text{ closed terms} \}$$

Theorem

the following is equivalent

- $oldsymbol{\mathbb{I}}$ $\mathcal G$ is satisfiable
- $\mathbf{2}$ \mathcal{G} has a Herbrand model
- $\exists \forall finite \mathcal{G}_0 \subseteq Gr(\mathcal{G}), \mathcal{G}_0 has a Herbrand model$

- \forall finite $\mathcal{G}_0 \subseteq Gr(\mathcal{G})$, \mathcal{G}_0 has a Herbrand model
- hence $Gr(\mathcal{G})$ has a Herbrand model

$$\mathsf{Gr}(\mathcal{G}) = \{ \mathit{G}(t_1, \ldots, t_n) \mid \forall x_1 \cdots \forall x_n \mathit{G}(x_1, \ldots, x_n) \in \mathcal{G}, t_i \text{ closed terms} \}$$

Theorem

the following is equivalent

- $oldsymbol{\mathbb{I}}$ $\mathcal G$ is satisfiable
- 2 G has a Herbrand model
- $\exists \forall finite G_0 \subseteq Gr(G), G_0 has a Herbrand model$

- \forall finite $\mathcal{G}_0 \subseteq Gr(\mathcal{G})$, \mathcal{G}_0 has a Herbrand model
- hence $Gr(\mathcal{G})$ has a Herbrand model
- as $\mathcal G$ contains only universal sentences and by definition of a Herbrand model this implies that $\mathcal G$ has a Herbrand model

$$\mathsf{Gr}(\mathcal{G}) = \{ \mathit{G}(t_1, \ldots, t_n) \mid \forall x_1 \cdots \forall x_n \mathit{G}(x_1, \ldots, x_n) \in \mathcal{G}, t_i \text{ closed terms} \}$$

Theorem

the following is equivalent

- \mathbf{I} \mathcal{G} is satisfiable
- 2 G has a Herbrand model
- $\exists \forall finite G_0 \subseteq Gr(G), G_0 has a Herbrand model$

- \forall finite $\mathcal{G}_0 \subseteq Gr(\mathcal{G})$, \mathcal{G}_0 has a Herbrand model
- hence $Gr(\mathcal{G})$ has a Herbrand model
- as $\mathcal G$ contains only universal sentences and by definition of a Herbrand model this implies that $\mathcal G$ has a Herbrand model

 \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):

- **1** ∃ finite subset $S \subseteq Gr(\mathcal{G})$; conjunction $\bigwedge S$ is unsatisfiable
- $\supseteq \exists$ finite subset $S \subseteq Gr(\mathcal{G})$; disjunction $\bigvee \{ \neg A \mid A \in S \}$ is valid

 $\mathcal G$ has a Herbrand model or $\mathcal G$ is unsatisfiable; in the latter case the following statements hold (and are equivalent):

- **1** ∃ finite subset $S \subseteq Gr(\mathcal{G})$; conjunction $\bigwedge S$ is unsatisfiable
- **2** \exists finite subset $S \subseteq Gr(\mathcal{G})$; disjunction $\bigvee \{ \neg A \mid A \in S \}$ is valid

Corollary

 $\exists x_1 \cdots \exists x_n G(x_1, \dots, x_n)$ is valid iff there are ground terms t_1^k, \dots, t_n^k , $k \in \mathbb{N}$ and the following is valid

$$G(t_1^1,\ldots,t_n^1)\vee\cdots\vee G(t_1^k,\ldots,t_n^k)$$

 \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):

- **1** ∃ finite subset $S \subseteq Gr(\mathcal{G})$; conjunction $\bigwedge S$ is unsatisfiable
- **2** \exists finite subset $S \subseteq Gr(\mathcal{G})$; disjunction $\bigvee \{ \neg A \mid A \in S \}$ is valid

Corollary

 $\exists x_1 \cdots \exists x_n G(x_1, \dots, x_n)$ is valid iff there are ground terms t_1^k, \dots, t_n^k , $k \in \mathbb{N}$ and the following is valid

$$G(t_1^1,\ldots,t_n^1)\vee\cdots\vee G(t_1^k,\ldots,t_n^k)$$

transform first-order into propositional logic

 \mathcal{G} has a Herbrand model or \mathcal{G} is unsatisfiable; in the latter case the following statements hold (and are equivalent):

- **1** ∃ finite subset $S \subseteq Gr(\mathcal{G})$; conjunction $\bigwedge S$ is unsatisfiable
- **2** \exists finite subset $S \subseteq Gr(\mathcal{G})$; disjunction $\bigvee \{ \neg A \mid A \in S \}$ is valid

Corollary

 $\exists x_1 \cdots \exists x_n G(x_1, \dots, x_n)$ is valid iff there are ground terms t_1^k, \dots, t_n^k , $k \in \mathbb{N}$ and the following is valid

$$G(t_1^1,\ldots,t_n^1)\vee\cdots\vee G(t_1^k,\ldots,t_n^k)$$

transform first-order into propositional logic

f I F be an arbitrary sentence in language $\cal L$

- f I be an arbitrary sentence in language $\cal L$
- 2 consider its negation $\neg F$ wlog $\neg F = \forall x_1 \cdots \forall x_n G(x_1, \dots, x_n)$ in SNF

- f I be an arbitrary sentence in language $\cal L$
- 2 consider its negation $\neg F$ wlog $\neg F = \forall x_1 \cdots \forall x_n G(x_1, \dots, x_n)$ in SNF
- 3 consider all possible Herbrand interpretations of ${\cal L}$

- f I be an arbitrary sentence in language $\cal L$
- 2 consider its negation $\neg F$ wlog $\neg F = \forall x_1 \cdots \forall x_n G(x_1, \dots, x_n)$ in SNF
- $oldsymbol{\exists}$ consider all possible Herbrand interpretations of ${\mathcal L}$
- **4** *F* is valid if \exists finite unsatisfiable subset *S* ⊆ Gr($\neg F$)

- f I F be an arbitrary sentence in language ${\cal L}$
- 2 consider its negation $\neg F$ wlog $\neg F = \forall x_1 \cdots \forall x_n G(x_1, \dots, x_n)$ in SNF
- ${f 3}$ consider all possible Herbrand interpretations of ${\cal L}$
- **4** *F* is valid if ∃ finite unsatisfiable subset S ⊆ Gr(¬F)

 $\mathcal{A} = \{A_0, A_1, A_2, \dots\}$ be atomic formulas over Herbrand universe of \mathcal{L}

- f I F be an arbitrary sentence in language ${\cal L}$
- 2 consider its negation $\neg F$ wlog $\neg F = \forall x_1 \cdots \forall x_n G(x_1, \dots, x_n)$ in SNF
- f 3 consider all possible Herbrand interpretations of ${\cal L}$
- **4** F is valid if \exists finite unsatisfiable subset $S \subseteq Gr(\neg F)$

$$\mathcal{A} = \{A_0, A_1, A_2, \dots\}$$
 be atomic formulas over Herbrand universe of \mathcal{L}

Definition (Semantic Tree)

the semantic tree T for F:

- f I F be an arbitrary sentence in language ${\cal L}$
- 2 consider its negation $\neg F$ wlog $\neg F = \forall x_1 \cdots \forall x_n G(x_1, \dots, x_n)$ in SNF
- $oldsymbol{\exists}$ consider all possible Herbrand interpretations of ${\mathcal L}$
- **4** F is valid if \exists finite unsatisfiable subset $S \subseteq Gr(\neg F)$

$$\mathcal{A} = \{A_0, A_1, A_2, \dots\}$$
 be atomic formulas over Herbrand universe of \mathcal{L}

Definition (Semantic Tree)

the semantic tree T for F:

• the root is a semantic tree

- $lue{1}$ F be an arbitrary sentence in language ${\mathcal L}$
- 2 consider its negation $\neg F$ wlog $\neg F = \forall x_1 \cdots \forall x_n G(x_1, \dots, x_n)$ in SNF
- f 3 consider all possible Herbrand interpretations of ${\cal L}$
- **4** F is valid if \exists finite unsatisfiable subset $S \subseteq Gr(\neg F)$

$$\mathcal{A} = \{A_0, A_1, A_2, \dots\}$$
 be atomic formulas over Herbrand universe of \mathcal{L}

Definition (Semantic Tree)

the semantic tree T for F:

- the root is a semantic tree
- let I be a node in T of height n; then I is either a
 - 1 leaf node or

- f I F be an arbitrary sentence in language ${\cal L}$
- 2 consider its negation $\neg F$ wlog $\neg F = \forall x_1 \cdots \forall x_n G(x_1, \dots, x_n)$ in SNF
- $oldsymbol{\exists}$ consider all possible Herbrand interpretations of ${\mathcal L}$
- **4** F is valid if \exists finite unsatisfiable subset $S \subseteq Gr(\neg F)$

$$\mathcal{A} = \{A_0, A_1, A_2, \dots\}$$
 be atomic formulas over Herbrand universe of \mathcal{L}

Definition (Semantic Tree)

the semantic tree T for F:

- the root is a semantic tree
- let I be a node in T of height n; then I is either a
 - 1 leaf node or
 - 2 the edges e_1 , e_2 leaving node I are labelled by A_n and $\neg A_n$

path in T gives rise to a (partial) Herbrand interpretation $\mathcal I$ of F'

path in T gives rise to a (partial) Herbrand interpretation $\mathcal I$ of F'

Definition

path in T gives rise to a (partial) Herbrand interpretation $\mathcal I$ of F'

Definition

• let $I \in \mathcal{T}$, Herbrand interpretation induced by I is denoted as \mathcal{I}

path in T gives rise to a (partial) Herbrand interpretation $\mathcal I$ of F'

Definition

- let $I \in \mathcal{T}$, Herbrand interpretation induced by I is denoted as \mathcal{I}
- I is closed, if $\exists G \in Gr(\neg F)$ such that $\mathcal{I} \not\models G$ and thus $\mathcal{I} \not\models \neg F$

path in T gives rise to a (partial) Herbrand interpretation $\mathcal I$ of F'

Definition

- let $I \in \mathcal{T}$, Herbrand interpretation induced by I is denoted as \mathcal{I}
- I is closed, if $\exists G \in Gr(\neg F)$ such that $\mathcal{I} \not\models G$ and thus $\mathcal{I} \not\models \neg F$

Lemma

if all nodes in T are closed then F is valid

path in T gives rise to a (partial) Herbrand interpretation $\mathcal I$ of F'

Definition

- let $I \in \mathcal{T}$, Herbrand interpretation induced by I is denoted as \mathcal{I}
- I is closed, if $\exists G \in Gr(\neg F)$ such that $\mathcal{I} \not\models G$ and thus $\mathcal{I} \not\models \neg F$

Lemma

if all nodes in T are closed then F is valid

- all nodes in T are closed
- \exists finite unsatisfiable $S \subseteq Gr(\neg F)$
- by Herbrand's theorem $\neg F$ is unsatisfiable, hence F is valid

Eliminating Function Symbols and Identity

Definition

- \blacksquare wlog assume that in F individual and function constants occur only to the right hand of =
- 2 we replace all occurrences of $y = f(x_1, ..., x_n)$ by $P(x_1, ..., x_n, y)$, where P is fresh
- 3 the result of this transformation is denoted as F''

Eliminating Function Symbols and Identity

Definition

- \blacksquare wlog assume that in F individual and function constants occur only to the right hand of =
- 2 we replace all occurrences of $y = f(x_1, ..., x_n)$ by $P(x_1, ..., x_n, y)$, where P is fresh
- 3 the result of this transformation is denoted as F''

Definition (Functionality)

let C(f) denote the following sentence, denoted as functionality axiom:

$$\forall x_1 \cdots \forall x_n \exists y \forall z (P(x_1, \ldots, x_n, z) \leftrightarrow z = y)$$

Eliminating Function Symbols and Identity

Definition

- \blacksquare wlog assume that in F individual and function constants occur only to the right hand of =
- 2 we replace all occurrences of $y = f(x_1, ..., x_n)$ by $P(x_1, ..., x_n, y)$, where P is fresh
- \blacksquare the result of this transformation is denoted as F''

Definition (Functionality)

let C(f) denote the following sentence, denoted as functionality axiom:

$$\forall x_1 \cdots \forall x_n \exists y \forall z (P(x_1, \ldots, x_n, z) \leftrightarrow z = y)$$

Lemma

F is satisfiable if and only if $F'' \wedge C(f)$ is satisfiable

• let *E* denote the following equivalence axioms : $\forall x \ x \leftrightharpoons x \land \forall x \forall y \ (x \leftrightharpoons y \land y \leftrightharpoons x) \land \forall x \forall y \forall z \ ((x \leftrightharpoons y \land y \leftrightharpoons z) \to x \leftrightharpoons z)$

- let *E* denote the following equivalence axioms : $\forall x \ x \leftrightharpoons x \land \forall x \forall y \ (x \leftrightharpoons y \land y \leftrightharpoons x) \land \forall x \forall y \forall z \ ((x \leftrightharpoons y \land y \leftrightharpoons z) \to x \leftrightharpoons z)$
- let C(P) denote the following congruence axioms:

$$\forall x_1 \cdots \forall x_n \forall y_1 \cdots \forall y_n ((x_1 \leftrightharpoons y_1 \land \cdots \land x_n \leftrightharpoons y_n) \rightarrow (P(x_1, \ldots, x_n) \leftrightarrow P(y_1, \ldots, y_n))$$

- let *E* denote the following equivalence axioms : $\forall x \ x \leftrightharpoons x \land \forall x \forall y \ (x \leftrightharpoons y \land y \leftrightharpoons x) \land \forall x \forall y \forall z \ ((x \leftrightharpoons y \land y \leftrightharpoons z) \to x \leftrightharpoons z)$
- let C(P) denote the following congruence axioms:

$$\forall x_1 \cdots \forall x_n \forall y_1 \cdots \forall y_n ((x_1 \leftrightharpoons y_1 \land \cdots \land x_n \leftrightharpoons y_n) \rightarrow (P(x_1, \ldots, x_n) \leftrightarrow P(y_1, \ldots, y_n))$$

let F''' denote the result of replacing = everywhere by \leftrightarrows

Lemma

F is satisfiable if and only if $F''' \wedge E \wedge \bigwedge_{P \in F} C(P)$ is satisfiable

- let *E* denote the following equivalence axioms : $\forall x \ x = x \land \forall x \forall y \ (x \leftrightharpoons y \land y \leftrightharpoons x) \land \forall x \forall y \forall z \ ((x \leftrightharpoons y \land y \leftrightharpoons z) \to x \leftrightharpoons z)$
- let C(P) denote the following congruence axioms:

$$\forall x_1 \cdots \forall x_n \forall y_1 \cdots \forall y_n ((x_1 \leftrightharpoons y_1 \land \cdots \land x_n \leftrightharpoons y_n) \rightarrow (P(x_1, \ldots, x_n) \leftrightarrow P(y_1, \ldots, y_n))$$

let F''' denote the result of replacing = everywhere by =

Lemma

F is satisfiable if and only if $F''' \wedge E \wedge \bigwedge_{P \in F} C(P)$ is satisfiable

Theorem

 \forall formula F, \exists formula G not containing individual, nor function constants, nor = such that $F \approx G$