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Summary

Summary Last Lecture

Theorem (Model Existence Theorem)

1 if S∗ is a set of formula sets of L+ having the satisfaction
properties, then ∀ formula sets G ∈ S∗ of L, ∃ M, M |= G

2 ∀ elements m of M: m denotes term in L+

Definition

let G be a set of formulas, F a formula

• if ∃ a natural deduction proof from of F from finite G0 ⊆ G, we
write G ` F

Theorem

first-order logic is sound and complete: G |= F ⇐⇒ G ` F
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Summary

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness, sequent calculus, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic
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Sequent Calculus

Definition
• the expression A1, . . . ,An ⇒ B1, . . . ,Bm is called a sequent

• intuitively this means A1 ∧ · · · ∧ An → B1 ∨ · · · ∨ Bm

Example

the following expression is a sequent

∃xP(x), ∀x∀y(P(x)→ Q(y))⇒ ∀yQ(y)

Definitions
• the formulas Ai , Bj are called sequent formulas; let

Γ = {A1, . . . ,An}, ∆ = {B1, . . . ,Bm}, then Γ is the antecedent, ∆
the succedent

• sequences of sequent formulas are considered as multisets

• Greek capital letters Γ,∆,Λ, . . . are used to denote multisets of
sequent formulas
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Sequent Calculus

Rules of Sequent Calculus

left right

∧
E , Γ⇒ ∆

E ∧ F , Γ⇒ ∆
∧ : l

Γ⇒ ∆,E Γ⇒ ∆,F

Γ⇒ ∆,E ∧ F
∧ : r

F , Γ⇒ ∆

E ∧ F , Γ⇒ ∆
∧ : l

∨
E , Γ⇒ ∆ F , Γ⇒ ∆

E ∨ F , Γ⇒ ∆
∨ : l

Γ⇒ ∆,E

Γ⇒ ∆,E ∨ F
∨ : r

Γ⇒ ∆,F

Γ⇒ ∆,E ∨ F
∨ : r

→
Γ⇒ ∆,E F , Γ⇒ ∆

E → F , Γ⇒ ∆
→ : l

Γ,E ⇒ ∆,F

Γ⇒ ∆,E → F
→ : l
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Sequent Calculus

Sequent Calculus (cont’d)

left right

¬
Γ⇒ ∆,E

¬E , Γ⇒ ∆
¬ : l

E , Γ⇒ ∆

Γ⇒ ∆,¬E
¬ : r

= ⇒ t = t s1 = t1, . . . , sn = tn ⇒ f (s) = f (t)

s1 = t1, . . . , sn = tn ⇒ P(s) = P(t)

∃
F (x), Γ⇒ ∆

∃xF (x), Γ⇒ ∆
∃ : l

Γ⇒ ∆,F (t)

Γ⇒ ∆, ∃xF (x)
∃ : r

∀
F (t), Γ⇒ ∆

∀xF (x), Γ⇒ ∆
∀ : l

Γ⇒ ∆,F (x)

Γ⇒ ∆, ∀xF (x)
∀ : r

variable x in ∃ : l, ∀ : r must not occur free in lower sequent
(eigenvariable condition)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 13/1

Sequent Calculus

Sequent Calculus Structural Rules

left right

axiom and cut A⇒ A
Γ⇒ ∆,A A, Γ⇒ ∆

Γ⇒ ∆

contraction
A,A, Γ⇒ ∆

A, Γ⇒ ∆
c: l

Γ⇒ ∆,A,A

Γ⇒ ∆,A
c : r

weakening
Γ⇒ ∆

A, Γ⇒ ∆
w : l

Γ⇒ ∆
Γ⇒ ∆,A

w : r

Observation

we note the link between elimination (introduction) rules in natural de-
duction and left (right) rules in sequent calculus
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Sequent Calculus

Example revisited

Example

P(x)⇒ P(x)

P(x)⇒ Q(y),P(x)
w : l

Q(y)⇒ Q(y)

P(x),Q(y)⇒ Q(y)
w : l

P(x),P(x)→ Q(y)⇒ Q(y)
→ : l

P(x), ∀y(P(x)→ Q(y))⇒ Q(y)
∀ : l

P(x),∀x∀y(P(x)→ Q(y))⇒ Q(y)
∀ : l

∃xP(x), ∀x∀y(P(x)→ Q(y))⇒ Q(y)
∃ : l

∃xP(x),∀x∀y(P(x)→ Q(y))⇒ ∀yQ(y)
∀ : r
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Normalisation

Normalisation
Motivation

• consider the following two abstract derivations:

Π1
E

Π2
F

E ∧ F
∧ : i

E
∧ : e Π2

E

• clearly the right derivation can replace the left one

• the situation is called detour

• the rewrite step is called normalisation

Definition
• process of eliminating all detours is called normalisation

• strong normalisation means that normalisation terminates for all
possible reduction sequences
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Normalisation

Definition (Minimal Propositional Logic)

• minimal logic contains ⊥ as truth constant, and ∧, ∨, →
• negation is defined:

¬A := A→⊥

• natural deduction for minimal logic consists of:
∧ : i,∧ : e ∨ : i,∨ : e → : i,→ : e

Lemma
• in minimal logic ¬A,A 6` B; minimal logic is restriction of classical

logic (and also of intuitionistic logic)

• to obtain classical logic, we may add the following proof by
contradiction (PBC)

¬E
...
⊥

E
⊥
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Normalisation in Minimal Logic

Immediate Reductions

detour contraction

∧

Π1

E
Π2

F
E ∧ F

∧ : i

E
∧ : e

Assumptions of Π1,Π2

Π∗1

E

∨

Π1

E
E ∨ F

∨ : i

Π2

E
...
G

Π3

F
...
G

G
∨ : e

Π2

G

Π1

E

→
Π1

E

Π2

E
...
F

E → F
→ : i

F
→ : e

Π2

F

Π1

E
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Normalisation in Minimal Logic

(Strong) Normalisation Theorem

Definitions
• Π is immediately reduced to Ψ, if Ψ is obtained by an immediate

reduction

• a sequence of immediate reduction steps is a reduction

• a proof is normal, if it has no immediate reduction

• a reduction sequence is a sequence of proofs Π1, . . . ,Πn, such that
Πi+1 is an immediate reduct of Πi and Πn is normal

Theorem (Normalisation and Strong Normalisation)

let Π be a proof in minimal logic

1 ∃ a reduction sequence Π = Π1, . . . ,Πn

2 ∃ computable upper bound n on the maximal length of any
reduction sequence
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Normalisation in Minimal Logic

Normalisation in General

Theorem (Gentzen, Prawitz)

let Π be a proof in intuitionistic logic; then Π reduces to a normal proof
Ψ and any reduction sequence terminates

Theorem (Stalmarck)

let Π be a proof in classical logic; then Π reduces to a normal proof Ψ
and any reduction sequence terminates

Facts

• normalisation or strong normalisation theorem holds for many many
logics

• normalisation in natural deduction corresponds to cut-elimination in
sequent calculus

GM (Institute of Computer Science @ UIBK) Automated Reasoning 20/1

Normalisation in Minimal Logic

Consistency Proofs

Lemma (Subformula Property)

let Π be a normal proof of A, any formula B in Π fulfils one of the
following assertions:

1 B is a subformula of A

2 B is (closed) assumption of PBC; B = ¬C and C is a subformula of
A

3 B =⊥ and is used as result of PBC

Corollary

¬ ∃ normal derivation of ⊥
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Craig’s Interpolation Theorem

Craig’s Interpolation Theorem

Lemma

if sentence A→ C holds, ∃ sentence B such that

1 A→ B and B → C

2 all axioms in B occur in both A and C

Example

consider ∃xF (x) ∧ ∃x¬F (x)︸ ︷︷ ︸
A

→ ∃x∃y x 6= y︸ ︷︷ ︸
C

but ¬ ∃ interpolant B

Theorem

if sentence A→ C holds, ∃ sentence B such that

1 A→ B and B → C

2 all nonlogical constants in B occur in both A and C
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Craig’s Interpolation Theorem

Proof of Craig’s Interpolation Theorem

Degnerated Cases

• suppose A is unsatisfiable:

use ∃x x 6= x as interpolant

• suppose C is valid:

use ∃x x = x as interpolant

Definitions
• L contains all the nonlogical symbols occurring in both A and C

and its extension L+ contains infinitely many individual constants

• set of sentences G (of L+) are A-sentences if all sentences in G
contain only predicate constants that occur in A

• set of sentences G (of L+) are C -sentences if all sentences in G
contain only predicate constants that occur in C
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Craig’s Interpolation Theorem

Definition

a pair of set of sentences (G1,G2) is barred by B if

1 G1 are satisfiable A-sentences, G2 are satisfiable C -sentences

2 B is both an A-sentence and a C -sentence

3 G1 |= B and G2 |= ¬B

Example

suppose A→ C is valid, doesn’t contain function constant, but there is
no interpolant B; then no sentence B bars ({A}, {¬C})

Definition

a sets of sentences G admits unbarred division, if

1 ∃ pair (G1,G2) of A-sentences and C -sentences

2 G = G1 ∪ G2, G1 and G2 are satisfiable

3 no sentence bars G1,G2
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Craig’s Interpolation Theorem

Proof of Craig’s Interpolation Theorem (no =, no functions).

1 assume ¬ ∃ interpolant B

2 define collection S of sets of sentences such that {A,¬C} ∈ S and
S will fulfil the satisfaction properties

3 S = collection of sentences G that admit an unbarred division

4 verify that S admits the satisfaction properties, wlog we only show

let G ∈ S , if (E ∨ F ) ∈ G, then either G ∪ {E} ∈ S or G ∪ {F} ∈ S

5 ∃ (G1,G2) such that G = G1 ∪ G2 and (G1,G2) is unbarred

6 wlog (E ∨ F ) ∈ G1
7 it suffices to show that (G1 ∪ {E},G2) or (G1 ∪ {F},G2) forms an

unbarred division of G ∪ {E} ∈ S

8 wlog G1 ∪ {E} and G1 ∪ {F} are satisfiable

9 assume further both alternatives fail to be unbarred divisions; then
we derive a contradiction that G admits an unbarred division

GM (Institute of Computer Science @ UIBK) Automated Reasoning 25/1

Craig’s Interpolation Theorem

Recall: Application Program Analysis

• abstract interpretations represent the behaviour of programs

• logical products of interpretations allows combination of interpreters

• based on Nelson-Oppen methodology

Observation

the Nelson-Oppen method allows to combining decision procedures of dif-
ferent theories S , T to obtain a decision procedure for S ∪ T

Definition
• a theory in a language L is a set of sentences of L that is closed

under logical consequence

• an element of a theory is a theorem

• a theory T is satisfiable if the set of sentences T is satisfiable
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Robinson’s Joint Consistency Theorem

Robinson’s Joint Consistency Theorem

Definition
• a theory T is complete if ∀ sentence F of L: F ∈ T or ¬F ∈ T

• T ′ is an extension of theory T , if T ⊆ T ′

• an extension T ′ of T is conservative
if any A ∈ T ′ of the language of T , is a theorem of T

Lemma

the union S ∪ T of two theories S and T is satisfiable iff there is no
sentence in S whose negation is in T

Definitions
• L0, L1, L2 are languages such that L0 = L1 ∩ L2
• Ti is theory in Li (i ∈ {0, 1, 2})
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Robinson’s Joint Consistency Theorem

Theorem

if T1, T2 are conservative extensions of T0, then T3 is a conservative
extension of T0, where T3 = {A | T1 ∪ T2 |= A}

Proof.

1 suppose A is a sentence of L0 that is a theorem of T3

2 set U2 := {B | T2 ∪ {¬A} |= B}
3 T1 ∪ U2 is unsatisfiable; by the lemma ∃ C ∈ T1 such that ¬C ∈ U2

4 C , ¬C are sentences of L0
5 ¬A→ ¬C ∈ L0
6 by assumption C is a theorem of T0

7 moreover ¬A→ ¬C ∈ T2 thus a theorem of T0

8 this yields that A is theorem of T0
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Robinson’s Joint Consistency Theorem

Robinson’s Joint Consistency Theorem

Corollary

if T0 is complete and T1, T2 are satisfiable extensions of T0, then
T1 ∪ T2 is satisfiable

Proof.

1 a satisfiable extension of a complete theory T is conservative

2 a conservative extension of a satisfiable theory is satisfiable

3 set T3 = {A | T1 ∪ T2 |= A}
4 by assumption (and the above) T1, T2 are conservative

5 by previous theorem T3 is conservative extension of T0

6 by the above T3 is satisfiable, hence T1 ∪ T2 is satisfiable
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Robinson’s Joint Consistency Theorem

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness, sequent calculus, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic
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Prenex Normal Form

Definition (Prenex Normal Form)

1 a formula F is in prenex normal form if it has the form

Q1x1 · · ·Qnxn G︸︷︷︸
matrix

Qi ∈ {∀,∃}

G is quantifier-free

2 if G is a conjunction of disjunctions of literals, we say F is in
conjunctive prenex normal form (CNF for short)

Example

consider ∀xF (x)↔ G (a) or more precisely

(¬∀xF (x) ∨ G (a)) ∧ (¬G (a) ∨ ∀xF (x))

one CNF would be

∀x∃y((¬F (y) ∨ G (a)) ∧ (¬G (a) ∨ F (x)))
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Prenex Normal Form

Theorem

∀ first-order formula F , ∃ G such that G is in prenex normal form and
F ≡ G ; furthermore G can be effectively constructed from F

Proof.

use the following operations

1 rename bound variables such that each quantifier introduces a
unique bound variable

2 replace E → F by ¬E ∨ F

3 pull quantifiers out using

¬∀xF (x) ≡ ∃x¬F (x)

¬∃xF (x) ≡ ∀x¬F (x)

QxE (x)� F ≡ Qx(E (x)� F )

where Q ∈ {∀,∃}, � ∈ {∧,∨} and x not free in F
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Skolem Normal Form

Definition

• an existential formula F is of form ∃x1 · · · ∃xm G (x1, . . . , xm)

• a universal formula is of form ∀x1 · · · ∀xm G (x1, . . . , xm)

such that G is quantifier free

Definition (Skolem Normal Form)

a formula F is in Skolem normal form (SNF for short) if F is universal
and in CNF

let L be a language and L+ an extension of L

Definition

1 suppose I is an interpretation of L and I+ an interpretation of L+
that coincides with I on L

2 then I+ is an expansion of I
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Skolem Normal Form

Definition (Skolemisation)

given a sentence F , we define its Skolemisation F S as follows

1 transform F into a CNF F ′

such that F ′ = Q1x1 · · ·Qmxm G (x1, . . . , , xm)

2 set F ′′ = F ′ and repeatedly transform F ′′

∀x1 · · · ∀xi−1∃xiQi+1xi+1 · · ·Qmxm G (x1, . . . , xi , . . . , xm)

by s(F ′′)

∀x1 · · · ∀xi−1Qi+1xi+1 · · ·Qmxm G (x1, . . . , f (x1, . . . , xi−1), . . . , xm)

where f denotes a fresh function symbol of arity i − 1

Definition

formulas F and G are equivalent for satisfiability (F ≈ G ) whenever F is
satisfiable iff G is satisfiable
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Skolem Normal Form

Theorem

∀ first-order formula, F ∃ formula in SNF G such that F ≈ G ;
furthermore G can be effectively constructed from F

Proof.
• set

F = ∀x1 · · · ∀xi−1∃xi · · ·Qmxm G (x1, . . . , xm)

s(F ) = ∀x1 · · · ∀xi−1 · · ·Qmxm G (x1, . . . , f (x1, . . . , xi−1), . . . , xm)

H(x1, . . . , xi ) = Qi+1xi+1 · · ·Qmxm G (x1, . . . , xm)

• suppose F = ∀x1 · · · ∀xi−1∃xiH(x1, . . . , xi ) is satisfiable

• ∃ model M of F , then ∃ expansion M+ of M such that

M+ |= H(x1, . . . , xi−1, f (x1, . . . , xi−1))

• ∀x1 · · · ∀xi−1H(x1, . . . , f (x1, . . . , xi−1)) = s(F ) is satisfiable
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Skolem Normal Form

Example

consider ∀y∀x(x > y → ∃z(x > z ∧ z > y)); its SNF is

∀y∀x(¬(x > y) ∨ x > f(x , y)) ∧ (¬(x > y) ∨ f(x , y) > y)

a term t is closed if no variable occurs in t

Definition
• a Herbrand universe for a language L is the set of all closed terms

• we add fresh constant c if L doesn’t contain one

Example

let L = {c, f,P}, then the Herbrand universe H of L is

H = {c, f(c), f(f(c)), f(f(f(c))), . . . }
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Herbrand Theorem

Definition

• an interpretation I (of L) is Herbrand interpretation if

1 its universe is the Herbrand universe H for L
2 interpretation I sets tI = t for any closed term t

• a Herbrand interpretation M is a Herbrand model of a set of
formulas G if M |= G

Example

• consider F = ∀xP(x) and L = {c, f,P}
• the Herbrand model M interprets P as follows:

c ∈ PM f(c) ∈ PM f(f(c)) ∈ PM

f(f(f(c))) ∈ PM f(f(f(f(c)))) ∈ PM . . .

• note that M is representable as the set of true atoms
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Herbrand Theorem

Herbrand’s Theorem

Jacques Herbrand (1908–1931)
proposed to

• transform first-order into
propositional logic

• basis of Gilmore’s prover

Corollary

G is satisfiable iff G has a Herbrand model (over L)

Proof.

follows from the proof of completeness

G a set of universal sentences (of L) without =
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Herbrand Theorem

Definition

Gr(G) = {G (t1, . . . , tn) | ∀x1 · · · ∀xnG (x1, . . . , xn) ∈ G, ti closed terms}

Theorem

the following is equivalent

1 G is satisfiable

2 G has a Herbrand model

3 ∀ finite G0 ⊆ Gr(G), G0 has a Herbrand model

Proof.

• ∀ finite G0 ⊆ Gr(G), G0 has a Herbrand model

• hence Gr(G) has a Herbrand model

• as G contains only universal sentences and by definition of a
Herbrand model this implies that G has a Herbrand model
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Herbrand Theorem

Corollary

G has a Herbrand model or G is unsatisfiable; in the latter case the
following statements hold (and are equivalent):

1 ∃ finite subset S ⊆ Gr(G); conjunction
∧

S is unsatisfiable

2 ∃ finite subset S ⊆ Gr(G); disjunction
∨
{¬A | A ∈ S} is valid

Corollary

∃x1 · · · ∃xnG (x1, . . . , xn) is valid iff there are ground terms tk1 , . . . , tkn ,
k ∈ N and the following is valid

G (t11 , . . . , t1n) ∨ · · · ∨ G (tk1 , . . . , tkn )

transform first-order into propositional logic
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Gilmore’s Prover

Definition (Gilmore’s Prover)

1 F be an arbitrary sentence in language L
2 consider its negation ¬F

wlog ¬F = ∀x1 · · · ∀xnG (x1, . . . , xn) in SNF

3 consider all possible Herbrand interpretations of L
4 F is valid if ∃ finite unsatisfiable subset S ⊆ Gr(¬F )

A = {A0,A1,A2, . . . } be atomic formulas over Herbrand universe of L

Definition (Semantic Tree)

the semantic tree T for F :

• the root is a semantic tree

• let I be a node in T of height n; then I is either a

1 leaf node or
2 the edges e1, e2 leaving node I are labelled by An and ¬An
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Gilmore’s Prover

Fact

path in T gives rise to a (partial) Herbrand interpretation I of F ′

Definition
• let I ∈ T , Herbrand interpretation induced by I is denoted as I
• I is closed, if ∃ G ∈ Gr(¬F ) such that I 6|= G and thus I 6|= ¬F

Lemma

if all nodes in T are closed then F is valid

Proof.
• all nodes in T are closed

• ∃ finite unsatisfiable S ⊆ Gr(¬F )

• by Herbrand’s theorem ¬F is unsatisfiable, hence F is valid
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Eliminating Function Symbols and Identity

Eliminating Function Symbols and Identity

Definition

1 wlog assume that in F individual and function constants occur only
to the right hand of =

2 we replace all occurrences of y = f (x1, . . . , xn) by P(x1, . . . , xn, y),
where P is fresh

3 the result of this transformation is denoted as F ′′

Definition (Functionality)

let C (f ) denote the following sentence, denoted as functionality axiom:

∀x1 · · · ∀xn∃y∀z(P(x1, . . . , xn, z)↔ z = y)

Lemma

F is satisfiable if and only if F ′′ ∧ C (f ) is satisfiable
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Eliminating Function Symbols and Identity

Definition (Equivalence and Congruence)

• let E denote the following equivalence axioms : ∀x x �
x ∧ ∀x∀y (x � y ∧ y � x) ∧ ∀x∀y∀z ((x � y ∧ y � z)→ x � z)

• let C (P) denote the following congruence axioms:

∀x1 · · · ∀xn∀y1 · · · ∀yn ((x1 � y1 ∧ · · · ∧ xn � yn)→
(P(x1, . . . , xn)↔ P(y1, . . . , yn))

let F ′′′ denote the result of replacing = everywhere by �

Lemma

F is satisfiable if and only if F ′′′ ∧ E ∧
∧

P∈F C (P) is satisfiable

Theorem

∀ formula F , ∃ formula G not containing individual, nor function
constants, nor = such that F ≈ G
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