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Summary Last Lecture

Definition

sequent calculus

Theorem (Normalisation and Strong Normalisation)
let 1 be a proof in minimal logic
3 a reduction sequence 1 =Tly,...,T1,

3 computable upper bound n on the maximal length of any
reduction sequence

Corollary

if To is complete and Ty, T, are satisfiable extensions of Ty, then
T1 U T» is satisfiable

GM (Institute of Computer Science @ UIBK) Automated Reasoning



Theorem
let G be a set of universal sentences (of L) without =, then the following
is equivalent

G s satisfiable

G has a Herbrand model

vV finite Go C Gr(G), Go has a Herbrand model

Corollary

3xq -+ 3%, G(x1, - . ., xp) is valid iff there are ground terms tf, ..., tk,
k € N and the following is valid: G(t},...,t}) Vv -V G(tf,..., tK)

Theorem

V formula F, 3 formula G not containing individual, nor function
constants, nor = such that F ~ G

GM (Institute of Computer Science @ UIBK) Automated Reasoning



o0y 00000000
Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Léwenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand's Theorem

v

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic

v
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Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Léwenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand's Theorem

v

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic

v
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Background: Russel's paradox
Definition

according to naive set theory, any definable collection is a set; this is not
a good idea
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Intuitionistic Logic

Background: Russel's paradox

Definition
according to naive set theory, any definable collection is a set; this is not
a good idea

Proof.
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Intuitionistic Logic

Background: Russel's paradox

Definition
according to naive set theory, any definable collection is a set; this is not
a good idea

Proof.
let R:={x|x ¢ x}
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Intuitionistic Logic

Background: Russel's paradox

Definition
according to naive set theory, any definable collection is a set; this is not
a good idea

Proof.
let R:={x|x ¢ x}
as "x & x" is a definition (= a predicate) this should be set
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Intuitionistic Logic

Background: Russel's paradox

Definition
according to naive set theory, any definable collection is a set; this is not
a good idea

Proof.
let R:={x|x ¢ x}
as "x & x" is a definition (= a predicate) this should be set
so either R € R, or R ¢ R, but

RER-RZR RZR—->RER
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Background: Russel's paradox
Definition

according to naive set theory, any definable collection is a set; this is not
a good idea

Proof.
let R:={x|x ¢ x}
as "x & x" is a definition (= a predicate) this should be set
so either R € R, or R ¢ R, but

RER-RZR RZR—->RER

hence R € R <+ R ¢ R, which is a contradiction
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Background: Russel's paradox
Definition

according to naive set theory, any definable collection is a set; this is not
a good idea

Proof.
let R:={x|x ¢ x}
as "x & x" is a definition (= a predicate) this should be set
so either R € R, or R ¢ R, but

RER-RZR RZR—->RER

hence R € R <+ R ¢ R, which is a contradiction
thus naive set theory is inconsistent

GM (Institute of Computer Science @ UIBK) Automated Reasoning



Intuitionistic Logic

Oops, what to do?

Brouwer’'s Way Out (1742)

Change Mathematics!
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Intuitionistic Logic

Oops, what to do?

Brouwer’'s Way Out (1742)

Change Mathematics!

Definition
e intuitionistic logic is a restriction of classical logic, where certain
formulas are no longer derivable
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Intuitionistic Logic

Oops, what to do?

Brouwer’'s Way Out (1742)

Change Mathematics!

Definition
e intuitionistic logic is a restriction of classical logic, where certain
formulas are no longer derivable

e for example AV —A is no longer valid
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Intuitionistic Logic

Oops, what to do?

Brouwer’'s Way Out (1742)

Change Mathematics!

Definition
e intuitionistic logic is a restriction of classical logic, where certain
formulas are no longer derivable
e for example AV —A is no longer valid
e its interpretation in intuitionistic logic is:
there is an argument for A or there is a argument for —=A (= from
the assumption A we can prove a contradiction)

GM (Institute of Computer Science @ UIBK) Automated Reasoning



A Problem with the Excluded Middle

Theorem J

3 solutions of the equation x¥ = z with x and y irrational and z rational
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A Problem with the Excluded Middle

Theorem
3 solutions of the equation x¥ = z with x and y irrational and z rational

Proof.

V/2 is an irrational number

GM (Institute of Computer Science @ UIBK) Automated Reasoning



A Problem with the Excluded Middle

Theorem
3 solutions of the equation x¥ = z with x and y irrational and z rational

Proof.

V/2 is an irrational number
one of the following two cases has to occur:

° \/5\5 is rational, then

e /2" is irrational, then
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A Problem with the Excluded Middle

Theorem
3 solutions of the equation x¥ = z with x and y irrational and z rational

Proof.

V/2 is an irrational number
one of the following two cases has to occur:

° \/Eﬁ is rational, then
x=vZ y=v2 z=v2"
° \/5\6 is irrational, then
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A Problem with the Excluded Middle

Theorem
3 solutions of the equation x¥ = z with x and y irrational and z rational

Proof.

V/2 is an irrational number
one of the following two cases has to occur:

° \/Eﬁ is rational, then
x=vZ y=v2 z=v2"
° \/5\6 is irrational, then
x=v2? y=vi 2= (2 =2 oo
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A Problem with the Excluded Middle

Theorem
3 solutions of the equation x¥ = z with x and y irrational and z rational

Proof.

V/2 is an irrational number
one of the following two cases has to occur:

° \/Eﬁ is rational, then
x=vZ y=v2 z=v2"
° \/5\6 is irrational, then
x=v2? y=vi 2= (2 =2 oo
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A Problem with the Excluded Middle

Theorem
3 solutions of the equation x¥ = z with x and y irrational and z rational

Proof.

V/2 is an irrational number
one of the following two cases has to occur:

° \/Eﬁ is rational, then
x=vZ y=v2 z=v2"
° \/5\6 is irrational, then
x=v2? y=vi 2= (2 =2 oo

prototypical example of a non-constructive proof
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Intuitionistic Logic

Intuitionistic Logic

introduction elimination

E F EANF . EANF .
A EANF “E N:e “F N:e

E F
E ] EVF G G _

\ m\/.l m\/.l C Ve

E

F . E ESF .
R EF F o ©
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Intuitionistic Logic

introduction elimination

E

I_
Rl
J
@
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Intuitionistic Logic

introduction elimination
E
1 .
= —E F T F e
L L.
Remark
note the absence of
- :
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Intuitionistic Logic

Definition (Alternative)

an equivalent formalisation of intutitionistic logic is given by sequent
calculus with the following restriction:

V sequents ' = A: |A| <1
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Intuitionistic Logic

Definition (Alternative)
an equivalent formalisation of intutitionistic logic is given by sequent
calculus with the following restriction:

V sequents ' = A: |A| <1

Definition (Brower, Heyting, Kolmogorow (Kreisel) Interpretation)
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Intuitionistic Logic

Definition (Alternative)
an equivalent formalisation of intutitionistic logic is given by sequent
calculus with the following restriction:

V sequents ' = A: |A| <1

Definition (Brower, Heyting, Kolmogorow (Kreisel) Interpretation)

e an argument for E A F is an argument for E and F
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Intuitionistic Logic

Definition (Alternative)
an equivalent formalisation of intutitionistic logic is given by sequent
calculus with the following restriction:

V sequents ' = A: |A| <1

Definition (Brower, Heyting, Kolmogorow (Kreisel) Interpretation)
e an argument for E A F is an argument for E and F

e an argument for EV F is an argument of E or F

Automated Reasoning
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Intuitionistic Logic

Definition (Alternative)

an equivalent formalisation of intutitionistic logic is given by sequent
calculus with the following restriction:

V sequents ' = A: |A| <1

Definition (Brower, Heyting, Kolmogorow (Kreisel) Interpretation)
e an argument for E A F is an argument for E and F
e an argument for EV F is an argument of E or F

e an argument for E — F is a transformation of an argument for E
into an argument for F
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Intuitionistic Logic

Definition (Alternative)

an equivalent formalisation of intutitionistic logic is given by sequent
calculus with the following restriction:

V sequents ' = A: |A| <1

Definition (Brower, Heyting, Kolmogorow (Kreisel) Interpretation)
e an argument for E A F is an argument for E and F
e an argument for EV F is an argument of E or F

e an argument for E — F is a transformation of an argument for E
into an argument for F

e —F is interpreted as £ — |
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Intuitionistic Logic

Definition (Alternative)

an equivalent formalisation of intutitionistic logic is given by sequent
calculus with the following restriction:

V sequents ' = A: |A| <1

Definition (Brower, Heyting, Kolmogorow (Kreisel) Interpretation)
e an argument for E A F is an argument for E and F
e an argument for EV F is an argument of E or F

e an argument for E — F is a transformation of an argument for E
into an argument for F

e —F is interpreted as £ — |

e no argument for L can exist
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Intuitionistic Logic

Definition (Alternative)

an equivalent formalisation of intutitionistic logic is given by sequent
calculus with the following restriction:

V sequents ' = A: |A| <1

Definition (Brower, Heyting, Kolmogorow (Kreisel) Interpretation)
e an argument for E A F is an argument for E and F
e an argument for EV F is an argument of E or F

e an argument for E — F is a transformation of an argument for E
into an argument for F

e —F is interpreted as £ — |

e no argument for L can exist

the formal definition needs Kripke models
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Kripke Models
Definition

e a frame F is a pair (W, <), where W denotes a nonempty set of
worlds and < denotes a preorder on W
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Kripke Models

Definition
e a frame F is a pair (W, <), where W denotes a nonempty set of
worlds and < denotes a preorder on W

e a Kripke model on a frame F = (W, <) is a triple
K= (Wa < (‘AP)PEW)

such that for all p:

Ap = (Ap ap)
Ap is a non-empty set (the domain in world p)
A, is a mapping that associates predicate constants to domains
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Kripke Models

Definition
e a frame F is a pair (W, <), where W denotes a nonempty set of
worlds and < denotes a preorder on W

e a Kripke model on a frame F = (W, <) is a triple
K= (Wa < (‘AP)PEW)

such that for all p:
Ap = (Ap; ap)
Ap is a non-empty set (the domain in world p)
A, is a mapping that associates predicate constants to domains

e V predicate symbols P, p,q € W, (a1,...,a,) € AJ:
p<q Ay =P(a1,...,an) implies Ag = P(a1,...,an)
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Kripke Models

Definition
e a frame F is a pair (W, <), where W denotes a nonempty set of
worlds and < denotes a preorder on W

e a Kripke model on a frame F = (W, <) is a triple
K= (Wa < (AP)PEW)

such that for all p:

Ap = (Ap ap)
Ap is a non-empty set (the domain in world p)
A, is a mapping that associates predicate constants to domains

e V predicate symbols P, p,q € W, (a1,...,a,) € AJ:
p<q Ay =P(a1,...,an) implies Ag = P(a1,...,an)

o weset A=J,cp Ap
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Intuitionistic Logic

Convention

suppose F(xi,...,xn) is formula with free variables xi, ..., x,; we write
F(a1,...,an) for the “interpretation” of x; by a; € Ain F @
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Intuitionistic Logic

Convention

suppose F(xi,...,xn) is formula with free variables xi, ..., x,; we write
F(a1,...,an) for the “interpretation” of x; by a; € Ain F ?2
Definition

for a given Kripke model IC = (W, <, (Ap)pew) the satisfaction relation
is defined as follows:

K,pl-T K,plf L

K,plFP(ai,...,a,) if Ay =P(a1,...,an)

K,plFAAB iff C,plFAand K,pl- B

K,plFAVB iff C,pl-Aor K,pl-B

K,plFA—B iff for all g > p: K,q - A implies K, g IF B
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Intuitionistic Logic

Convention

suppose F(xi,...,xn) is formula with free variables xi, ..., x,; we write
F(a1,...,an) for the “interpretation” of x; by a; € Ain F ?2
Definition

for a given Kripke model IC = (W, <, (Ap)pew) the satisfaction relation
is defined as follows:

K,pl-T K,plf L

K,plFP(ai,...,a,) if Ay =P(a1,...,an)

K,plFAAB iff C,plFAand K,pl- B

K,plFAVB iff C,pl-Aor K,pl-B

K,plFA—B iff for all g > p: K,q - A implies K, g IF B

a formula F is valid in K if I, pl- F for all pe W
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Intuitionistic Logic

Some Transfer Results

Theorem

natural deduction (and the sequent calculus) for intuitionistic logic is
sound and complete
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Intuitionistic Logic

Some Transfer Results

Theorem

natural deduction (and the sequent calculus) for intuitionistic logic is
sound and complete

Theorem
e natural deduction is strongly normalising

e sequent calculus admits cut-eliminiation
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Intuitionistic Logic

Some Transfer Results

Theorem

natural deduction (and the sequent calculus) for intuitionistic logic is
sound and complete

Theorem
e natural deduction is strongly normalising

e sequent calculus admits cut-eliminiation

Theorem J

Craig’s interpolation theoremm holds for intutitionistic logic
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Natural Deduction vs Sequent Calculus

“Natural Deduction” for Minimal Logic

introduction elimination
A=A
l=E I'=F [=EAF = EAF
A FT—EAF r—E r— F
r= E = F r=EVF TWE=G I,F=G

VITSEVF T=EVF r—G
LE=F r=E T=E-F

Y] FT=E—F r=F
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A Sequent Calculus for Minimal Logic

left right
_Er=c =£ lb=>F
A EAFT=C /v o= EAF
_AI=C
ErFTr=c /!
Eli=C Fl,=C . r=£ .
VITEVELR=C F=EvFE "
= F .
Fr—evE "
i=E FTly=C . E=F .
| ESFTL,=C Fr=E>F
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Natural Deduction vs. Sequent Calculus

Lemma

let S = (I = C) be a sequent; 3 proof I of S in natural deduction iff 3
proof W of S in the sequent calculus
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Natural Deduction vs. Sequent Calculus

Lemma
let S = (I = C) be a sequent; 3 proof I of S in natural deduction iff 3
proof W of S in the sequent calculus

Proof
direction from left to right is shown by induction on the length of I1, i.e.,
on the number of sequents in [1
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Natural Deduction vs. Sequent Calculus

Lemma
let S = (I = C) be a sequent; 3 proof I of S in natural deduction iff 3
proof W of S in the sequent calculus

Proof
direction from left to right is shown by induction on the length of I, i.e.,
on the number of sequents in [1

the base case is immediate as[MTF A= AiffVFA= A
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Natural Deduction vs. Sequent Calculus

Lemma
let S = (I = C) be a sequent; 3 proof I of S in natural deduction iff 3
proof W of S in the sequent calculus

Proof
direction from left to right is shown by induction on the length of I1, i.e.,
on the number of sequents in I1
the base case is immediate as [T-F A= Aiff V- A= A
for the step case, consider the case that [1 has the following form:
Mo

Fr=EAF
[=E

by induction hypothesis 3 a sequent calculus proof Wy of = EAF
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Natural Deduction vs. Sequent Calculus

Proof (cont'd).

the following is a correct proof:

A E=E
r=EANF ENF=E
= E

A
cut
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Natural Deduction vs. Sequent Calculus

Proof (cont'd).

the following is a correct proof:

A E=E
r=EANF ENF=E
= E

A
cut

all other cases are similar
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Natural Deduction vs. Sequent Calculus

Proof (cont'd).

the following is a correct proof:

A E=E
r=EANF ENF=E
= E

A
cut

all other cases are similar

the other direction follows by induction on the length of W |
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Natural Deduction vs. Sequent Calculus

Proof (cont'd).

the following is a correct proof:

Wy E=E A
r~EAF EAF=E’
= E cut

all other cases are similar

the other direction follows by induction on the length of W |

Question
is this really correct?
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Natural Deduction vs. Sequent Calculus

Proof (cont'd).

the following is a correct proof:

A E=E
r=EANF ENF=E
= E

A
cut

all other cases are similar

the other direction follows by induction on the length of W |

Question
is this really correct?

Answer

no, we forgot about the structural rules in the direction from right to left
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Natural Deduction vs. Sequent Calculus

“Natural Deduction” Structural Rules

_ AAT=C
contraction | — A
. = C¢C =
weakening AT = C r= C
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Natural Deduction vs. Sequent Calculus

“Natural Deduction” Structural Rules

contraction

weakening

Observations

A AT = C

Al=C

I=Cc
Al=C

e note the restriction to one formula in the succedent

e contraction and weakening can also be represented by changed
axioms and representation of sequents
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Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Lowenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Second-Order Logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning



Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Lowenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Second-Order Logic
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Typed A-Calculus

Definition (types and terms)

we define the set of types T and typed A\-terms as follows:
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Typed A-Calculus

Definition (types and terms)

we define the set of types T and typed A\-terms as follows:
e a variable type: «, 3, 7, ...
e if o, T are types, then (o x 7) is a (product) type
e if o, T are types, then (0 — 7) is a (function) type
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Typed A-Calculus

Definition (types and terms)
we define the set of types T and typed A\-terms as follows:
e a variable type: «, 3, 7, ...
e if o, T are types, then (o x 7) is a (product) type
e if o, T are types, then (0 — 7) is a (function) type
e any (typed) variable x : o is a (typed) term
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Typed A-Calculus

Definition (types and terms)
we define the set of types T and typed A\-terms as follows:
e a variable type: «, 3, 7, ...
e if o, T are types, then (o x 7) is a (product) type
e if o, T are types, then (0 — 7) is a (function) type
e any (typed) variable x : o is a (typed) term
o if M:o, N:7 are terms, then (M, N) : 0 x 7 is a term

o if M: o X 7 is a term, then fst(M) : o and snd(M) : T are terms
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Typed A-Calculus

Definition (types and terms)
we define the set of types T and typed A\-terms as follows:
e a variable type: «, 3, 7, ...
e if o, T are types, then (o x 7) is a (product) type
e if o, T are types, then (0 — 7) is a (function) type
e any (typed) variable x : o is a (typed) term
o if M:o, N:7 are terms, then (M, N) : 0 x 7 is a term
o if M: o X 7 is a term, then fst(M) : o and snd(M) : T are terms

e if M:7isaterm, x: o a variable,
then the abstraction (Ax?.M) : o — 7 is a term

e if M:0o — 7, N: o are terms, then the application (MN) : 7 is a
term.
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Typed A-Calculus

Example
the following are (well-formed, typed) terms
Mx.tx:(c—>T)—>0—T (Axx,A\y.y) i (0 = 0) x (T —7)

but Ax.xx cannot be typed!
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Typed A-Calculus

Example
the following are (well-formed, typed) terms
Mx.tx:(c—>T)—>0—T (Axx,A\y.y) i (0 = 0) x (T —7)

but Ax.xx cannot be typed!

Definition
the set of free variables of a term is defined as follows
e FV(x) = {x}.

FV(Ax.M) = FV(M) — {x}
FV(MN) = FV((M, N)) = FV(M) U FV(N).
FV(fst(M)) = FV(snd(M)) = FV(M).
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Typed A-Calculus

Example
the following are (well-formed, typed) terms
Mx.tx:(c—>T)—>0—T (Axx,A\y.y) i (0 = 0) x (T —7)

but Ax.xx cannot be typed!

Definition
the set of free variables of a term is defined as follows
e FV(x) = {x}.

FV(Ax.M) = FV(M) — {x}
FV(MN) = FV((M, N)) = FV(M) U FV(N).
FV(fst(M)) = FV(snd(M)) = FV(M).

Definition (informal)

occurrences of x in the scope of \ are called bound
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Typed A-Calculus

Definition (substitution)
M|[x := N] denotes the result of substituting N for x in M
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Typed A-Calculus

Definition (substitution)
M|[x := N] denotes the result of substituting N for x in M
e x[x :=N]= N and if x # y, then y[x .= N] =y
o (Ax.M)[x := N] = Ix.M
o (Ay.M)[x := N]=MAy.(M[x:=N]), if x#y and y & FV(N)
o (MyMy)[x := N] = (My[x := N])(Ma[x := NJ])

GM (Institute of Computer Science @ UIBK] Automated Reasoning



Typed A-Calculus

Definition (substitution)
M|[x := N] denotes the result of substituting N for x in M
e x[x :=N]= N and if x # y, then y[x .= N] =y
o (Ax.M)[x := N] = Ix.M
o (Ay.M)[x := N]=MAy.(M[x:=N]), if x#y and y & FV(N)
o (MyMy)[x := N] = (My[x := N])(Ma[x := NJ])
o (Mg, Mp)[x := N] = (My[x := N], Ma[x := NJ])

GM (Institute of Computer Science @ UIBK) Automated Reasoning



Typed A-Calculus

Definition (substitution)
M|[x := N] denotes the result of substituting N for x in M
e x[x :=N]= N and if x # y, then y[x .= N] =y
o (Ax.M)[x := N] = Ix.M
o (Ay.M)[x := N]=MAy.(M[x:=N]), if x#y and y & FV(N)
o (MyMy)[x := N] = (My[x := N])(Ma[x := NJ])
o (Mg, Mp)[x := N] = (My[x := N], Ma[x := NJ])
e fst(M)[x := N] = fst(M[x := N])
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Typed A-Calculus

Definition (substitution)
M|[x := N] denotes the result of substituting N for x in M
e x[x :=N]= N and if x # y, then y[x .= N] =y
o (Ax.M)[x := N] = Ix.M
o (Ay.M)[x := N]=MAy.(M[x:=N]), if x#y and y & FV(N)
o (MyMy)[x := N] = (My[x := N])(Ma[x := NJ])
o (Mg, Mp)[x := N] = (My[x := N], Ma[x := NJ])
e fst(M)[x := N] = fst(M[x := N])
e snd(M)[x := N] = snd(M[x := N])
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Typed A-Calculus

Definition (substitution)
M|[x := N] denotes the result of substituting N for x in M
e x[x :=N]= N and if x # y, then y[x .= N] =y
o (Ax.M)[x := N] = Ix.M
o (Ay.M)[x := N]=MAy.(M[x:=N]), if x#y and y & FV(N)
o (MyMy)[x := N] = (My[x := N])(Ma[x := NJ])
o (Mg, Mp)[x := N] = (My[x := N], Ma[x := NJ])
e fst(M)[x := N] = fst(M[x := N])
e snd(M)[x := N] = snd(M[x := N])

Definition (/3-reduction)
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Typed A-Calculus

Lemma
(B-reduction is closed under context:

(LM 2 LN

ML 25 NL

M s ax. N
MEN= {2 L
M 2wy
fst(M) 25 fst(N)

( snd(M) LN snd(N)
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Typed A-Calculus

Lemma
(B-reduction is closed under context:

(LM 2 LN

ML 25 NL

M s ax. N
ME5N= {02 L
M 2wy
fst(M) 25 fst(N)

( snd(M) LN snd(N)

Example

(MFAxB)Ox +1)0 2 O Ooxex + 1)x)0 2 Oxex +1)0 25 1
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Curry-Howard Isomorphism

Type Checking

([=M:0c T==N:T
| T=(M,N):oxr

Nx:o=M:T1
= XMxM:oc—71

a

pair

bs

x:o=x:0

F=M:oxT1

ref

= M:oxT1

[ =M

= fst(M):o

fit = snd(M): 7 snd

co—717 = N:o

F= MN -7 PP

GM (Institute of Computer Science @ UIBK)

Automated Reasoning



Type Checking

x:U,F:>x:Uref
[=M:o F:>N:7'Pairr:>M:0><7'fst F:>M:a><Tsnd
“ | T=(MN):oxt Fr=fst(M):0 ~ [ =snd(M):T
Nx:o=M:T1 abs Fr=M:c>r1 r:>N:Uapp
= = XXxM:c—T1 [= MN: Tt
Remarks

different to type checking system in functional programming we
have type assignment for product types

weakening is incorporated into the axiom, sequents arepresented as
sets
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Types as Formulas

Types as Formulas

Definition (Types as Formulas)

(ref) ~  (Ax) + structural rules (pair) ~ (A1)
(abs) ~  (—=:1) (fst) ~ (A:e)
(app) ~ (—:€) (snd) ~ (A:e)
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Types as Formulas

Types as Formulas

Definition (Types as Formulas)
(ref) ~  (Ax) + structural rules (pair) ~ (A1)
(abs) ~  (—=:1) (fst) ~ (A:e)
(app) ~ (—:€) (snd) ~ (A:e)

Question

what is the correspondence to V7
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Types as Formulas

Types as Formulas

Definition (Types as Formulas)

(ref) ~  (Ax) + structural rules (pair) ~ (A1)

(abs) ~  (—=:1) (fst) ~ (A:e)

(app) ~ (—:€) (snd) ~ (A:e)
Question

what is the correspondence to V7

Answer

sum types!
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Types as Formulas

Types as Formulas

Definition (Types as Formulas)

(ref) ~  (Ax) + structural rules (pair) ~ (A1)

(abs) ~  (—=:1) (fst) ~ (A:e)

(app) ~ (—:€) (snd) ~ (A:e)
Question

what is the correspondence to V7

Answer
sum types!

Definition
a (binary) sum type describes a set of values drawn from exactly two
given types
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Type System for Sum Types

[=M:o r=N:71
v F=inl(M):0+7 F=inr(N):o+7

l=M:04+7 I,x:o=N:v T,y: 7= No:~v
= case M of inl(x) — Ny |inr(y) — Np: vy
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Type System for Sum Types

[=M:o r=N:71
v F=inl(M):0+7 F=inr(N):o+7

l=M:04+7 I,x:o=N:v T,y: 7= No:~v
= case M of inl(x) — Ny |inr(y) — Np: vy

Definition (/3-reduction, cont'd)
Ox.MN 2 M[x == N]
fst((M, N)) 2 m
snd((M,N)) 2 N
case inl(M) of inl(x) — Ny |inr(y) — N> LN Ni[x := M]
case inr(N) of inl(x) — Ny | inr(y) — Na LN Noly == N]
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Types as Formulas

Curry-Howard Correspondence

Definition (Types as Formulas (cont'd))

(ref)  ~  (Ax) + structural rules (pair) ~ (A1)
(abs) ~ (=) (fst) ~ (A:e)
(app) ~ (=:e) (snd) ~ (A:e)
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Types as Formulas

Curry-Howard Correspondence

Definition (Types as Formulas (cont'd))
(ref)  ~  (Ax) + structural rules (pair) ~ (A1)
(abs) ~ (=) (fst) ~ (A:e)
(app) ~ (=€) (snd) ~ (A:e)
(inl) ~  (v:i) (inr) ~  (v:i)
(case) ~ (V:e)
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Types as Formulas

Curry-Howard Correspondence

Definition (Types as Formulas (cont'd))

(ref)  ~  (Ax) + structural rules (pair) ~ (A1)
(abs) ~ (=) (fst) ~ (A:e)
(app) ~ (—:e) (snd) ~ (A:e)
(inl) ~  (v:i) (inr) ~  (v:i)
(case) ~ (V:e)

Definition (Curry-Howard)

the Curry-Howard correspondence (aka Curry-Howard isomorophism)
consists of the following parts:

formulas = types
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Types as Formulas

Curry-Howard Correspondence

Definition (Types as Formulas (cont'd))

(ref)  ~  (Ax) + structural rules (pair) ~ (A1)
(abs) ~ (=) (fst) ~ (A:e)
(app) ~ (—:e) (snd) ~ (A:e)
(inl) ~  (v:i) (inr) ~  (v:i)
(case) ~ (V:e)

Definition (Curry-Howard)

the Curry-Howard correspondence (aka Curry-Howard isomorophism)
consists of the following parts:

proof = programs
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Types as Formulas

Curry-Howard Correspondence

Definition (Types as Formulas (cont'd))

(ref)  ~  (Ax) + structural rules (pair) ~ (A1)
(abs) ~ (=) (fst) ~ (A:e)
(app) ~ (—:e) (snd) ~ (A:e)
(inl) ~  (v:i) (inr) ~  (v:i)
(case) ~ (V:e)

Definition (Curry-Howard)

the Curry-Howard correspondence (aka Curry-Howard isomorophism)
consists of the following parts:

normalisation = computation
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Types as Formulas

Curry-Howard Correspondence

Definition (Types as Formulas (cont'd))

(ref)  ~  (Ax) + structural rules (pair) ~ (A1)
(abs) ~ (=) (fst) ~ (A:e)
(app) ~ (—:e) (snd) ~ (A:e)
(inl) ~  (v:i) (inr) ~  (v:i)
(case) ~ (V:e)

Definition (Curry-Howard)

the Curry-Howard correspondence (aka Curry-Howard isomorophism)
consists of the following parts:

formulas = types

proof = programs
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Types as Formulas

Curry-Howard Correspondence

Definition (Types as Formulas (cont'd))

(ref)  ~  (Ax) + structural rules (pair) ~ (A1)
(abs) ~ (=) (fst) ~ (A:e)
(app) ~ (—:e) (snd) ~ (A:e)
(inl) ~  (v:i) (inr) ~  (v:i)
(case) ~ (V:e)

Definition (Curry-Howard)

the Curry-Howard correspondence (aka Curry-Howard isomorophism)
consists of the following parts:

formulas = types
proof = programs
normalisation = computation
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Proofs as Programs

Proofs as Programs

Definition (normalisation)
M Mo
: : L
r=M:0c T=N:7 — :
r=(M,N):oxr r=M:o
= fst((M,N)) : o
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Proofs as Programs

Proofs as Programs

Definition (normalisation)
M Mo
: : L
r=M:0c T=N:7 — :
r=(M,N):oxr r=M:o
= fst((M,N)) : o

Definition (/-reduction) }

fst((M, NY) LN M
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Proofs as Programs

Definition (normalisation)

My

: Mo M1\
Mx:c=M:T1 : = :
= xM:0—57 T=N:o = Mx:=N]:7

M= (Ax.-M)N:7

the proof IM1[x\[M2] represents the proof obtained from I; by
substituting My into My instead of the use of ref wrt x
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Proofs as Programs

Definition (normalisation)

My

: Mo M1\
Mx:c=M:T1 : = :
= xM:0—57 T=N:o = Mx:=N]:7

M= (Ax.-M)N:7

the proof IM1[x\[M2] represents the proof obtained from I; by
substituting My into My instead of the use of ref wrt x

Definition (/-reduction) }

\Lm
<

(AXM)N
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Proofs as Programs

Discussion

Fact

the Curry-Howard correspondence extends to many systems, for example
e intuitionistic logic and \-calculus
e Hilbert axioms and combinatory logic

e linear logic and interaction nets
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Proofs as Programs

Discussion

Fact

the Curry-Howard correspondence extends to many systems, for example
e intuitionistic logic and \-calculus
e Hilbert axioms and combinatory logic

e linear logic and interaction nets

Observations

the Curry-Howard correspondence

links logic with programming, i.e., provides an explanation for the
sucess of logic in computer science

allows to mutual enrich both areas

GM (Institute of Computer Science @ UIBK)
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Proofs as Programs

Discussion

Fact

the Curry-Howard correspondence extends to many systems, for example
e intuitionistic logic and \-calculus
e Hilbert axioms and combinatory logic

e linear logic and interaction nets

Observations

the Curry-Howard correspondence

links logic with programming, i.e., provides an explanation for the
sucess of logic in computer science

allows to mutual enrich both areas
provides a formally verified form of programming

GM (Institute of Computer Science @ UIBK) Automated Reasoning




Proofs as Programs

Example

e strong normalisation of simply typed A-calculus is typically proved
via strong normalisation of minimal logic
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Proofs as Programs

Example

e strong normalisation of simply typed A-calculus is typically proved
via strong normalisation of minimal logic

e similarily, undecidablilty of type inhabitation of dependent types
follows from undeciabilty of intuitionistic predicate logic
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Proofs as Programs

Example

e strong normalisation of simply typed A-calculus is typically proved
via strong normalisation of minimal logic

e similarily, undecidablilty of type inhabitation of dependent types
follows from undeciabilty of intuitionistic predicate logic

Example

correspondencence between interaction nets and linear logic provides type
system to interaction nets
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Proofs as Programs

Example
e strong normalisation of simply typed A-calculus is typically proved
via strong normalisation of minimal logic

e similarily, undecidablilty of type inhabitation of dependent types
follows from undeciabilty of intuitionistic predicate logic

Example

correspondencence between interaction nets and linear logic provides type
system to interaction nets

Example
e formalisation of the theory of forbidden patterns for rewrite
strategies in Isabelle provides a machine-checked theory
e code export from Isabelle provides OCaml code that has been
integrated into T7T»
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