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Summary

Summary Last Lecture

Definition

sequent calculus

Theorem (Normalisation and Strong Normalisation)

let Π be a proof in minimal logic

1 ∃ a reduction sequence Π = Π1, . . . ,Πn

2 ∃ computable upper bound n on the maximal length of any
reduction sequence

Corollary

if T0 is complete and T1, T2 are satisfiable extensions of T0, then
T1 ∪ T2 is satisfiable
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Summary

Theorem

let G be a set of universal sentences (of L) without =, then the following
is equivalent

1 G is satisfiable

2 G has a Herbrand model

3 ∀ finite G0 ⊆ Gr(G), G0 has a Herbrand model

Corollary

∃x1 · · · ∃xnG (x1, . . . , xn) is valid iff there are ground terms tk1 , . . . , t
k
n ,

k ∈ N and the following is valid: G (t11 , . . . , t
1
n) ∨ · · · ∨ G (tk1 , . . . , t

k
n )

Theorem

∀ formula F , ∃ formula G not containing individual, nor function
constants, nor = such that F ≈ G
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Summary

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness, sequent calculus, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic
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Intuitionistic Logic

Background: Russel’s paradox

Definition

according to naive set theory, any definable collection is a set; this is not
a good idea

Proof.

1 let R := {x | x 6∈ x}
2 as “x 6∈ x” is a definition (= a predicate) this should be set

3 so either R ∈ R, or R 6∈ R, but

R ∈ R → R 6∈ R R 6∈ R → R ∈ R

4 hence R ∈ R ↔ R 6∈ R, which is a contradiction

5 thus naive set theory is inconsistent
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Intuitionistic Logic

Oops, what to do?

Brouwer’s Way Out (1742)

Change Mathematics!

Definition

• intuitionistic logic is a restriction of classical logic, where certain
formulas are no longer derivable

• for example A ∨ ¬A is no longer valid

• its interpretation in intuitionistic logic is:

there is an argument for A or there is a argument for ¬A (= from
the assumption A we can prove a contradiction)
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Intuitionistic Logic

A Problem with the Excluded Middle

Theorem

∃ solutions of the equation xy = z with x and y irrational and z rational

Proof.

1
√

2 is an irrational number

2 one of the following two cases has to occur:

•
√

2
√
2

is rational, then

x =
√

2 y =
√

2 z =
√

2
√
2

•
√

2
√
2

is irrational, then

x =
√

2
√
2

y =
√

2 z = (
√

2
√
2
)
√
2 =
√

2
√
2·
√
2

= 2

prototypical example of a non-constructive proof
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Intuitionistic Logic

Intuitionistic Logic

introduction elimination

∧ E F
E ∧ F

∧ : i
E ∧ F

E
∧ : e E ∧ F

F
∧ : e

∨ E
E ∨ F

∨ : i
F

F ∨ F
∨ : i

E ∨ F

E
...
G

F
...
G

G
∨ : e

→

E
...
F

E → F
→ : i

E E → F
F

→ : e
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Intuitionistic Logic

introduction elimination

¬

E
...
⊥
¬E

¬ : i
F ¬F
⊥ ¬ : e

⊥ ⊥
F
¬ : e

Remark

note the absence of
¬¬F

F
¬¬ : e
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Intuitionistic Logic

Definition (Alternative)

an equivalent formalisation of intutitionistic logic is given by sequent
calculus with the following restriction:

∀ sequents Γ⇒ ∆: |∆| 6 1

Definition (Brower, Heyting, Kolmogorow (Kreisel) Interpretation)

• an argument for E ∧ F is an argument for E and F

• an argument for E ∨ F is an argument of E or F

• an argument for E → F is a transformation of an argument for E
into an argument for F

• ¬E is interpreted as E →⊥
• no argument for ⊥ can exist

the formal definition needs Kripke models
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Intuitionistic Logic

Kripke Models

Definition

• a frame F is a pair (W ,6), where W denotes a nonempty set of
worlds and 6 denotes a preorder on W

• a Kripke model on a frame F = (W ,6) is a triple

K = (W ,6, (Ap)p∈W )

such that for all p:

1 Ap = (Ap, ap)
2 Ap is a non-empty set (the domain in world p)
3 Ap is a mapping that associates predicate constants to domains

• ∀ predicate symbols P, p, q ∈W , (a1, . . . , an) ∈ An
p:

p 6 q,Ap |= P(a1, . . . , an) implies Aq |= P(a1, . . . , an)

• we set A =
⋃

p∈W Ap
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Intuitionistic Logic

Convention

suppose F (x1, . . . , xn) is formula with free variables x1, . . . , xn; we write

F (a1, . . . , an) for the “interpretation” of xi by ai ∈ A in F �

Definition

for a given Kripke model K = (W ,6, (Ap)p∈W ) the satisfaction relation
is defined as follows:

K, p  > K, p 6 ⊥
K, p  P(a1, . . . , an) if Ap |= P(a1, . . . , an)

K, p  A ∧ B iff K, p  A and K, p  B

K, p  A ∨ B iff K, p  A or K, p  B

K, p  A→ B iff for all q > p: K, q  A implies K, q  B

a formula F is valid in K if K, p  F for all p ∈W
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Intuitionistic Logic

Some Transfer Results

Theorem

natural deduction (and the sequent calculus) for intuitionistic logic is
sound and complete

Theorem
• natural deduction is strongly normalising

• sequent calculus admits cut-eliminiation

Theorem

Craig’s interpolation theoremm holds for intutitionistic logic
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Natural Deduction vs Sequent Calculus

“Natural Deduction” for Minimal Logic

introduction elimination

A⇒ A

∧ Γ⇒ E Γ⇒ F
Γ⇒ E ∧ F

Γ⇒ E ∧ F
Γ⇒ E

Γ⇒ E ∧ F
Γ⇒ F

∨ Γ⇒ E
Γ⇒ E ∨ F

Γ⇒ F
Γ⇒ E ∨ F

Γ⇒ E ∨ F Γ,E ⇒ G Γ,F ⇒ G

Γ⇒ G

→
Γ,E ⇒ F

Γ⇒ E → F
Γ⇒ E Γ⇒ E → F

Γ⇒ F
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Natural Deduction vs Sequent Calculus

A Sequent Calculus for Minimal Logic

left right

∧
E , Γ⇒ C

E ∧ F , Γ⇒ C
∧ : l

Γ1 ⇒ E Γ2 ⇒ F
Γ1, Γ2 ⇒ E ∧ F

∧ : r

F , Γ⇒ C

E ∧ F , Γ⇒ C
∧ : l

∨
E , Γ1 ⇒ C F , Γ2 ⇒ C

E ∨ F , Γ1, Γ2 ⇒ C
∨ : l

Γ⇒ E
Γ⇒ E ∨ F

∨ : r

Γ⇒ F
Γ⇒ E ∨ F

∨ : r

→
Γ1 ⇒ E F , Γ2 ⇒ C

E → F , Γ1, Γ2 ⇒ C
→ : l

Γ,E ⇒ F

Γ⇒ E → F
→ : l
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Natural Deduction vs. Sequent Calculus

Lemma

let S = (Γ⇒ C ) be a sequent; ∃ proof Π of S in natural deduction iff ∃
proof Ψ of S in the sequent calculus

Proof

direction from left to right is shown by induction on the length of Π, i.e.,
on the number of sequents in Π

1 the base case is immediate as Π ` A⇒ A iff Ψ ` A⇒ A

2 for the step case, consider the case that Π has the following form:

Π0
Γ⇒ E ∧ F

Γ⇒ E

by induction hypothesis ∃ a sequent calculus proof Ψ0 of Γ⇒ E ∧ F
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Natural Deduction vs. Sequent Calculus

Proof (cont’d).

3 the following is a correct proof:

Ψ0
Γ⇒ E ∧ F

E ⇒ E
E ∧ F ⇒ E

∧ : l

Γ⇒ E
cut

4 all other cases are similar

the other direction follows by induction on the length of Ψ

Question

is this really correct?

Answer

no, we forgot about the structural rules in the direction from right to left
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Natural Deduction vs. Sequent Calculus

“Natural Deduction” Structural Rules

contraction
A,A, Γ⇒ C

A, Γ⇒ C

weakening
Γ⇒ C

A, Γ⇒ C
Γ⇒

Γ⇒ C

Observations

• note the restriction to one formula in the succedent

• contraction and weakening can also be represented by changed
axioms and representation of sequents
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Natural Deduction vs. Sequent Calculus

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness, sequent calculus, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Second-Order Logic
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Typed λ-Calculus

Typed λ-Calculus

Definition (types and terms)

we define the set of types T and typed λ-terms as follows:

• a variable type: α, β, γ, . . .

• if σ, τ are types, then (σ × τ) is a (product) type

• if σ, τ are types, then (σ → τ) is a (function) type

• any (typed) variable x : σ is a (typed) term

• if M : σ, N : τ are terms, then 〈M,N〉 : σ × τ is a term

• if M : σ × τ is a term, then fst(M) : σ and snd(M) : τ are terms

• if M : τ is a term, x : σ a variable,
then the abstraction (λxσ.M) : σ → τ is a term

• if M : σ → τ , N : σ are terms, then the application (MN) : τ is a
term.
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Typed λ-Calculus

Example

the following are (well-formed, typed) terms

λfx .fx : (σ → τ)→ σ → τ 〈λx .x , λy .y〉 : (σ → σ)× (τ → τ)

but λx .xx cannot be typed!

Definition

the set of free variables of a term is defined as follows

• FV(x) = {x}.
• FV(λx .M) = FV(M)− {x}
• FV(MN) = FV(〈M,N〉) = FV(M) ∪ FV(N).

• FV(fst(M)) = FV(snd(M)) = FV(M).

Definition (informal)

occurrences of x in the scope of λ are called bound
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Typed λ-Calculus

Definition (substitution)

M[x := N] denotes the result of substituting N for x in M

• x [x := N] = N and if x 6= y , then y [x := N] = y

• (λx .M)[x := N] = λx .M

• (λy .M)[x := N] = λy .(M[x := N]), if x 6= y and y 6∈ FV(N)

• (M1M2)[x := N] = (M1[x := N])(M2[x := N])

• 〈M1,M2〉[x := N] = 〈M1[x := N],M2[x := N]〉
• fst(M)[x := N] = fst(M[x := N])

• snd(M)[x := N] = snd(M[x := N])

Definition (β-reduction)

(λx .M)N
β−→ M[x := N]

fst(〈M,N〉) β−→ M
snd(〈M,N〉) β−→ N
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Typed λ-Calculus

Lemma

β-reduction is closed under context:

M
β−→ N =⇒



LM
β−→ LN

ML
β−→ NL

λx .M
β−→ λx .N

〈M, L〉 β−→ 〈N, L〉
〈L,M〉 β−→ 〈L,N〉
fst(M)

β−→ fst(N)

snd(M)
β−→ snd(N)

Example

(λf .λx .fx)(λx .x + 1)0
β−→ (λx .(λx .x + 1)x)0

β−→ (λx .x + 1)0
β−→ 1
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Curry-Howard Isomorphism

Type Checking

x : σ, Γ⇒ x : σ
ref

×
Γ⇒ M : σ Γ⇒ N : τ

Γ⇒ 〈M,N〉 : σ × τ
pair

Γ⇒ M : σ × τ
Γ⇒ fst(M) : σ

fst
Γ⇒ M : σ × τ
Γ⇒ snd(M) : τ

snd

→
Γ, x : σ ⇒ M : τ

Γ⇒ λx .M : σ → τ
abs

Γ⇒ M : σ → τ Γ⇒ N : σ
Γ⇒ MN : τ

app

Remarks

1 different to type checking system in functional programming we
have type assignment for product types

2 weakening is incorporated into the axiom, sequents arepresented as
sets
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Types as Formulas

Types as Formulas

Definition (Types as Formulas)

(ref) ∼ (Ax) + structural rules (pair) ∼ (∧ : i)
(abs) ∼ (→: i) (fst) ∼ (∧ : e)
(app) ∼ (→: e) (snd) ∼ (∧ : e)

Question

what is the correspondence to ∨?

Answer

sum types!

Definition

a (binary) sum type describes a set of values drawn from exactly two
given types
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Types as Formulas

Type System for Sum Types

∨
Γ⇒ M : σ

Γ⇒ inl(M) : σ + τ
Γ⇒ N : τ

Γ⇒ inr(N) : σ + τ

Γ⇒ M : σ + τ Γ, x : σ ⇒ N1 : γ Γ, y : τ ⇒ N2 : γ

Γ⇒ case M of inl(x) −→ N1 | inr(y) −→ N2 : γ

Definition (β-reduction, cont’d)

(λx .M)N
β−→ M[x := N]

fst(〈M,N〉) β−→ M
snd(〈M,N〉) β−→ N

case inl(M) of inl(x) −→ N1 | inr(y) −→ N2
β−→ N1[x := M]

case inr(N) of inl(x) −→ N1 | inr(y) −→ N2
β−→ N2[y := N]
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Types as Formulas

Curry-Howard Correspondence

Definition (Types as Formulas (cont’d))

(ref) ∼ (Ax) + structural rules (pair) ∼ (∧ : i)
(abs) ∼ (→: i) (fst) ∼ (∧ : e)
(app) ∼ (→: e) (snd) ∼ (∧ : e)

(inl) ∼ (∨ : i) (inr) ∼ (∨ : i)
(case) ∼ (∨ : e)

Definition (Curry-Howard)

the Curry-Howard correspondence (aka Curry-Howard isomorophism)
consists of the following parts:

1 formulas = types

2 proof = programs

3 normalisation = computation
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Proofs as Programs

Proofs as Programs

Definition (normalisation)

Π1
...

Γ⇒ M : σ

Π2
...

Γ⇒ N : τ
Γ⇒ 〈M,N〉 : σ × τ
Γ⇒ fst(〈M,N〉) : σ

=⇒
Π1
...

Γ⇒ M : σ

Definition (β-reduction)

fst(〈M,N〉) β−→ M
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Proofs as Programs

Definition (normalisation)

Π1
...

Γ, x : σ ⇒ M : τ

Γ⇒ λx .M : σ → τ

Π2
...

Γ⇒ N : σ
Γ⇒ (λx .M)N : τ

=⇒
Π1[x\Π2]

...

Γ⇒ M[x := N] : τ

the proof Π1[x\Π2] represents the proof obtained from Π1 by
substituting Π2 into Π1 instead of the use of ref wrt x

Definition (β-reduction)

(λxM)N
β−→ M
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Proofs as Programs

Discussion

Fact

the Curry-Howard correspondence extends to many systems, for example

• intuitionistic logic and λ-calculus

• Hilbert axioms and combinatory logic

• linear logic and interaction nets

Observations

the Curry-Howard correspondence

1 links logic with programming, i.e., provides an explanation for the
sucess of logic in computer science

2 allows to mutual enrich both areas

3 provides a formally verified form of programming

4 . . .
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Proofs as Programs

Example

• strong normalisation of simply typed λ-calculus is typically proved
via strong normalisation of minimal logic

• similarily, undecidablilty of type inhabitation of dependent types
follows from undeciabilty of intuitionistic predicate logic

Example

correspondencence between interaction nets and linear logic provides type
system to interaction nets

Example

• formalisation of the theory of forbidden patterns for rewrite
strategies in Isabelle provides a machine-checked theory

• code export from Isabelle provides OCaml code that has been
integrated into TTT2
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