

Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

Theorem

let $\mathcal G$ be a set of universal sentences (of $\mathcal L$) without =, then the following is equivalent

- $oldsymbol{\mathcal{G}}$ is satisfiable
- 2 G has a Herbrand model
- $\exists \forall finite \mathcal{G}_0 \subseteq Gr(\mathcal{G}), \mathcal{G}_0 has a Herbrand model$

Corollary

 $\exists x_1 \cdots \exists x_n G(x_1, \dots, x_n)$ is valid iff there are ground terms t_1^k, \dots, t_n^k , $k \in \mathbb{N}$ and the following is valid: $G(t_1^1, \dots, t_n^1) \vee \dots \vee G(t_1^k, \dots, t_n^k)$

Theorem

 \forall formula F, \exists formula G not containing individual, nor function constants. nor = such that $F \approx G$

Summa

Summary Last Lecture

Definition

sequent calculus

Theorem (Normalisation and Strong Normalisation)

let Π be a proof in minimal logic

- **1** \exists a reduction sequence $\Pi = \Pi_1, \dots, \Pi_n$
- **2** ∃ computable upper bound n on the maximal length of any reduction sequence

Corollary

if T_0 is complete and T_1 , T_2 are satisfiable extensions of T_0 , then $T_1 \cup T_2$ is satisfiable

GM (Institute of Computer Science @ UIBK

Automated Reasonin

127/

Summar

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, sequent calculus, normalisation

Properties of First Order Logic

GM (Institute of Computer Science @ UIBK)

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Background: Russel's paradox

Definition

according to naive set theory, any definable collection is a set; this is not a good idea

Proof.

- $\blacksquare \text{ let } R := \{x \mid x \notin x\}$
- 2 as " $x \notin x$ " is a definition (= a predicate) this should be set
- 3 so either $R \in R$, or $R \notin R$, but

$$R \in R \to R \notin R$$
 $R \notin R \to R \in R$

- 4 hence $R \in R \leftrightarrow R \notin R$, which is a contradiction
- 5 thus naive set theory is inconsistent

(Institute of Computer Science @ UIBK)

Automated Reasoning

A Problem with the Excluded Middle

Theorem

 \exists solutions of the equation $x^y = z$ with x and y irrational and z rational

Proof.

- $\sqrt{2}$ is an irrational number
- 2 one of the following two cases has to occur:
 - $\sqrt{2}^{\sqrt{2}}$ is rational, then

$$x = \sqrt{2}$$
 $v = \sqrt{2}$ $z = \sqrt{2}^{\sqrt{2}}$

$$x = \sqrt{2} \qquad y = \sqrt{2} \qquad z = \sqrt{2}^{\sqrt{2}}$$
• $\sqrt{2}^{\sqrt{2}}$ is irrational, then
$$x = \sqrt{2}^{\sqrt{2}} \qquad y = \sqrt{2} \qquad z = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = 2$$

prototypical example of a non-constructive proof

Oops, what to do?

Brouwer's Way Out (1742)

Change Mathematics!

Definition

- intuitionistic logic is a restriction of classical logic, where certain formulas are no longer derivable
- for example $A \vee \neg A$ is no longer valid
- its interpretation in intuitionistic logic is:

there is an argument for A or there is a argument for $\neg A$ (= from the assumption A we can prove a contradiction)

GM (Institute of Computer Science @ UIBK

Intuitionistic Logic

	introduction	elimination
\wedge	$\frac{E}{E \wedge F} \wedge : i$	$\frac{E \wedge F}{E} \wedge : e \frac{E \wedge F}{F} \wedge : e$
V	$\frac{E}{E \vee F} \vee : i \frac{F}{F \vee F} \vee : i$	$ \frac{E \lor F \qquad \begin{array}{c c} E & F \\ \vdots & \vdots \\ G & G \end{array}}{G} \lor : e $
\rightarrow	$ \begin{array}{c} E \\ \vdots \\ F \\ E \to F \end{array} \to: i $	$\frac{E E ightarrow F}{F} ightarrow :$ e

Remark

note the absence of

$$\frac{\neg \neg F}{F} \neg \neg$$
: e

GM (Institute of Computer Science @ UIBK)

Automated Reasoning

134/1

Intuitionistic Logic

Kripke Models

Definition

- a frame \mathcal{F} is a pair (W, \leq) , where W denotes a nonempty set of worlds and \leq denotes a preorder on W
- a Kripke model on a frame $F = (W, \leq)$ is a triple

$$\mathcal{K} = (W, \leq, (\mathcal{A}_p)_{p \in W})$$

such that for all *p*:

- $2 A_p$ is a non-empty set (the domain in world p)
- $\mathbf{3}$ A_p is a mapping that associates predicate constants to domains
- \forall predicate symbols P, $p,q\in W$, $(a_1,\ldots,a_n)\in A_p^n$:

$$p \leqslant q, \mathcal{A}_p \models P(a_1, \dots, a_n)$$
 implies $\mathcal{A}_a \models P(a_1, \dots, a_n)$

• we set $A = \bigcup_{p \in W} A_p$

Definition (Alternative)

an equivalent formalisation of intutitionistic logic is given by sequent calculus with the following restriction:

$$\forall$$
 sequents $\Gamma \Rightarrow \Delta : |\Delta| \leqslant 1$

Definition (Brower, Heyting, Kolmogorow (Kreisel) Interpretation)

- an argument for $E \wedge F$ is an argument for E and F
- an argument for $E \vee F$ is an argument of E or F
- an argument for $E \to F$ is a transformation of an argument for E into an argument for F
- $\neg E$ is interpreted as $E \rightarrow \perp$
- ullet no argument for ot can exist

the formal definition needs Kripke models

GM (Institute of Computer Science @ UIBK)

Automated Reasoning

135/

Intuitionistic Logic

Convention

suppose $F(x_1,...,x_n)$ is formula with free variables $x_1,...,x_n$; we write $F(a_1,...,a_n)$ for the "interpretation" of x_i by $a_i \in A$ in F

Definition

for a given Kripke model $\mathcal{K} = (W, \leqslant, (\mathcal{A}_p)_{p \in W})$ the satisfaction relation is defined as follows:

$$\begin{array}{lll} \mathcal{K},p \Vdash \top & \mathcal{K},p \not\Vdash \bot \\ \mathcal{K},p \Vdash P(a_1,\ldots,a_n) & \text{if } \mathcal{A}_p \models P(a_1,\ldots,a_n) \\ \mathcal{K},p \Vdash A \land B & \text{iff } \mathcal{K},p \Vdash A \text{ and } \mathcal{K},p \Vdash B \\ \mathcal{K},p \Vdash A \lor B & \text{iff } \mathcal{K},p \Vdash A \text{ or } \mathcal{K},p \Vdash B \\ \mathcal{K},p \Vdash A \to B & \text{iff for all } q \geqslant p \colon \mathcal{K},q \Vdash A \text{ implies } \mathcal{K},q \Vdash B \end{array}$$

a formula F is valid in \mathcal{K} if $\mathcal{K}, p \Vdash F$ for all $p \in W$

Some Transfer Results

Theorem

natural deduction (and the sequent calculus) for intuitionistic logic is sound and complete

Theorem

- natural deduction is strongly normalising
- sequent calculus admits cut-eliminiation

Theorem

Craig's interpolation theoremm holds for intutitionistic logic

GM (Institute of Computer Science @ UIBK)

Automated Reasoning

138/

Natural Deduction vs Sequent Calculus

A Sequent Calculus for Minimal Logic

"Natural Deduction" for Minimal Logic

	introduction	elimination	
		$A \Rightarrow A$	
^	$\frac{\Gamma \Rightarrow E \Gamma \Rightarrow F}{\Gamma \Rightarrow E \land F}$	$\frac{\Gamma \Rightarrow E \land F}{\Gamma \Rightarrow E}$	$\frac{\Gamma \Rightarrow E \land F}{\Gamma \Rightarrow F}$
V	$ \frac{\Gamma \Rightarrow E}{\Gamma \Rightarrow E \lor F} \frac{\Gamma \Rightarrow F}{\Gamma \Rightarrow E \lor F} $	$\Gamma \Rightarrow E \vee F$	$\frac{\Gamma, E \Rightarrow G \Gamma, F \Rightarrow G}{\Gamma \Rightarrow G}$
\rightarrow	$\frac{\Gamma, E \Rightarrow F}{\Gamma \Rightarrow E \to F}$	$\Gamma \Rightarrow E$	$\frac{\Gamma \Rightarrow E \to F}{\Gamma \Rightarrow F}$

GM (Institute of Computer Science @ UIBK)

Automated Reasoning

139/

Natural Deduction vs. Sequent Calculus

Lemma

let $S = (\Gamma \Rightarrow C)$ be a sequent; \exists proof Π of S in natural deduction iff \exists proof Ψ of S in the sequent calculus

Proof

direction from left to right is shown by induction on the length of Π , i.e., on the number of sequents in Π

- **1** the base case is immediate as $\Pi \vdash A \Rightarrow A$ iff $\Psi \vdash A \Rightarrow A$
- **2** for the step case, consider the case that Π has the following form:

$$\begin{array}{c}
\Pi_0 \\
\Gamma \Rightarrow E \wedge F \\
\Gamma \Rightarrow F
\end{array}$$

by induction hypothesis \exists a sequent calculus proof Ψ_0 of $\Gamma \Rightarrow E \wedge F$

Natural Deduction vs. Sequent Calcu

Proof (cont'd).

3 the following is a correct proof:

$$\frac{\Psi_0}{\Gamma \Rightarrow E \land F} \xrightarrow{E \Rightarrow E} \frac{E \Rightarrow E}{E \land F \Rightarrow E} \land \exists I$$

$$\Gamma \Rightarrow F$$

$$cut$$

4 all other cases are similar

the other direction follows by induction on the length of Ψ

Question

is this really correct?

Answer

no, we forgot about the structural rules in the direction from right to left

GM (Institute of Computer Science @ UIBK)

Automated Reasoning

142/1

Natural Deduction vs. Sequent Calculus

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, sequent calculus, normalisation

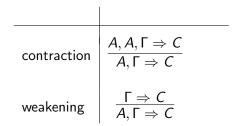
Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Second-Order Logic

"Natural Deduction" Structural Rules



Observations

- note the restriction to one formula in the succedent
- contraction and weakening can also be represented by changed axioms and representation of sequents

GM (Institute of Computer Science @ UIBK

Automated Reasoning

1/2/

Typed λ -Calculu

Typed λ -Calculus

Definition (types and terms)

we define the set of types T and typed λ -terms as follows:

- a variable type: α , β , γ , ...
- if σ , τ are types, then $(\sigma \times \tau)$ is a (product) type
- if σ , τ are types, then $(\sigma \to \tau)$ is a (function) type
- any (typed) variable $x : \sigma$ is a (typed) term
- if $M : \sigma$, $N : \tau$ are terms, then $\langle M, N \rangle : \sigma \times \tau$ is a term
- if $M : \sigma \times \tau$ is a term, then $fst(M) : \sigma$ and $snd(M) : \tau$ are terms
- if $M : \tau$ is a term, $x : \sigma$ a variable, then the abstraction $(\lambda x^{\sigma}.M) : \sigma \to \tau$ is a term
- if $M: \sigma \to \tau$, $N: \sigma$ are terms, then the application $(MN): \tau$ is a term.

Example

the following are (well-formed, typed) terms

$$\lambda fx.fx: (\sigma \to \tau) \to \sigma \to \tau \qquad \langle \lambda x.x, \lambda y.y \rangle : (\sigma \to \sigma) \times (\tau \to \tau)$$

but $\lambda x.xx$ cannot be typed!

Definition

the set of free variables of a term is defined as follows

- $FV(x) = \{x\}.$
- $FV(\lambda x.M) = FV(M) \{x\}$
- $FV(MN) = FV(\langle M, N \rangle) = FV(M) \cup FV(N)$.
- FV(fst(M)) = FV(snd(M)) = FV(M).

Definition (informal)

occurrences of x in the scope of λ are called bound

GM (Institute of Computer Science @ UIBK)

Automated Reasoning

1/6/

Typed λ -Calculus

Lemma

 β -reduction is closed under context:

$$M \xrightarrow{\beta} N \Longrightarrow \begin{cases} LM \xrightarrow{\beta} LN \\ ML \xrightarrow{\beta} NL \\ \lambda x. M \xrightarrow{\beta} \lambda x. N \\ \langle M, L \rangle \xrightarrow{\beta} \langle N, L \rangle \\ \langle L, M \rangle \xrightarrow{\beta} \langle L, N \rangle \\ fst(M) \xrightarrow{\beta} fst(N) \\ snd(M) \xrightarrow{\beta} snd(N) \end{cases}$$

Example

$$(\lambda f.\lambda x.fx)(\lambda x.x+1)0 \xrightarrow{\beta} (\lambda x.(\lambda x.x+1)x)0 \xrightarrow{\beta} (\lambda x.x+1)0 \xrightarrow{\beta} 1$$

Definition (substitution)

M[x := N] denotes the result of substituting N for x in M

- x[x := N] = N and if $x \neq y$, then y[x := N] = y
- $(\lambda x.M)[x := N] = \lambda x.M$
- $(\lambda y.M)[x := N] = \lambda y.(M[x := N])$, if $x \neq y$ and $y \notin FV(N)$
- $(M_1M_2)[x := N] = (M_1[x := N])(M_2[x := N])$
- $\langle M_1, M_2 \rangle [x := N] = \langle M_1[x := N], M_2[x := N] \rangle$
- fst(M)[x := N] = fst(M[x := N])
- snd(M)[x := N] = snd(M[x := N])

Definition (β -reduction)

$$\begin{array}{ccc} (\lambda x.M)N & \xrightarrow{\beta} M[x:=N] \\ \mathrm{fst}(\langle M,N\rangle) & \xrightarrow{\beta} M \\ \mathrm{snd}(\langle M,N\rangle) & \xrightarrow{\beta} N \end{array}$$

GM (Institute of Computer Science @ UIBK

Automated Reasoning

147/

Curry-Howard Isomorphism

Type Checking

$$\frac{\overline{x}: \sigma, \Gamma \Rightarrow x: \sigma}{\Gamma \Rightarrow M: \sigma \qquad \Gamma \Rightarrow M: \tau} \text{ pair } \frac{\Gamma \Rightarrow M: \sigma \times \tau}{\Gamma \Rightarrow \text{ fst } (M): \sigma} \text{ fst } \frac{\Gamma \Rightarrow M: \sigma \times \tau}{\Gamma \Rightarrow \text{ snd}(M): \tau} \text{ snd}$$

$$\rightarrow \frac{\Gamma, x: \sigma \Rightarrow M: \tau}{\Gamma \Rightarrow \lambda x. M: \sigma \rightarrow \tau} \text{ abs } \frac{\Gamma \Rightarrow M: \sigma \rightarrow \tau}{\Gamma \Rightarrow MN: \tau} \text{ app}$$

Remarks

- 1 different to type checking system in functional programming we have type assignment for product types
- weakening is incorporated into the axiom, sequents are presented as sets

Types as Formulas

Definition (Types as Formulas)

(ref)
$$\sim$$
 (Ax) + structural rules

(pair)
$$\sim$$
 (\wedge :i)

(abs)
$$\sim$$
 (\rightarrow : i) (app) \sim (\rightarrow : e)

(fst)
$$\sim$$
 (\wedge : e) (snd) \sim (\wedge : e)

Question

what is the correspondence to \vee ?

Answer

sum types!

Definition

a (binary) sum type describes a set of values drawn from exactly two given types

GM (Institute of Computer Science @ UIBK)

Types as Formula

Curry-Howard Correspondence

Definition (Types as Formulas (cont'd))

(ref)
$$\sim$$
 (Ax) + structural rules

(pair)
$$\sim$$
 (\wedge : i)

(abs)
$$\sim$$
 (\rightarrow : i)

(fst)
$$\sim$$
 (\wedge : e)

(app)
$$\sim$$
 (\rightarrow : e)

(snd)
$$\sim$$
 (\wedge : e)

(inl)
$$\sim$$
 (\vee :i)

(inr)
$$\sim$$
 (\vee :i)

(case)
$$\sim$$
 (\vee : e)

Definition (Curry-Howard)

the Curry-Howard correspondence (aka Curry-Howard isomorophism) consists of the following parts:

Type System for Sum Types

Definition (β -reduction, cont'd)

$$(\lambda x.M)N \xrightarrow{\beta} M[x:=N]$$

$$\operatorname{fst}(\langle M,N\rangle) \xrightarrow{\beta} M \\ \operatorname{snd}(\langle M,N\rangle) \xrightarrow{\beta} N$$

$$\operatorname{case inl}(M) \text{ of } \operatorname{inl}(x) \longrightarrow N_1 \mid \operatorname{inr}(y) \longrightarrow N_2 \xrightarrow{\beta} N_1[x:=M]$$

$$\operatorname{case inr}(N) \text{ of } \operatorname{inl}(x) \longrightarrow N_1 \mid \operatorname{inr}(y) \longrightarrow N_2 \xrightarrow{\beta} N_2[y:=N]$$

GM (Institute of Computer Science @ UIBK)

Proofs as Programs

Proofs as Programs

Definition (normalisation)

$$\begin{array}{ccc} \Pi_1 & \Pi_2 \\ \vdots & \vdots \\ \Gamma \Rightarrow M : \sigma & \Gamma \Rightarrow N : \tau \\ \hline \Gamma \Rightarrow \langle M, N \rangle : \sigma \times \tau \\ \hline \Gamma \Rightarrow \mathsf{fst}(\langle M, N \rangle) : \sigma \end{array} \Longrightarrow \begin{array}{c} \Pi_1 \\ \vdots \\ \Gamma \Rightarrow M : \sigma \end{array}$$

Definition (β -reduction)

(Institute of Computer Science @ UIBK

$$\mathsf{fst}(\langle M, N \rangle)$$

$$\frac{\beta}{\beta}$$

Definition (normalisation)

$$\begin{array}{cccc} \Pi_{1} & & \Pi_{2} & \Pi_{1}[x \backslash \Pi_{2}] \\ \underline{\Gamma, x : \sigma \Rightarrow M : \tau} & \vdots & \Longrightarrow & \vdots \\ \underline{\Gamma \Rightarrow \lambda x. M : \sigma \rightarrow \tau} & \underline{\Gamma \Rightarrow N : \sigma} & & \underline{\Gamma \Rightarrow M[x := N] : \tau} \end{array}$$

the proof $\Pi_1[x \setminus \Pi_2]$ represents the proof obtained from Π_1 by substituting Π_2 into Π_1 instead of the use of ref wrt x

Definition (β -reduction)

 $(\lambda xM)N$

 $\xrightarrow{\beta}$

Μ

GM (Institute of Computer Science @ UIBK)

Automated Reasoning

154/1

Proofs as Programs

Example

- strong normalisation of simply typed λ -calculus is typically proved via strong normalisation of minimal logic
- similarily, undecidablilty of type inhabitation of dependent types follows from undeciabilty of intuitionistic predicate logic

Example

correspondencence between interaction nets and linear logic provides type system to interaction nets

Example

- formalisation of the theory of forbidden patterns for rewrite strategies in Isabelle provides a machine-checked theory
- \bullet code export from Isabelle provides OCaml code that has been integrated into $T_T T_2$

GM (Institute of Computer Science @ UIBK)

Automated Reasoning

156/1

Proofs as Prograr

Discussion

Fact

the Curry-Howard correspondence extends to many systems, for example

- intuitionistic logic and λ -calculus
- Hilbert axioms and combinatory logic
- linear logic and interaction nets

Observations

the Curry-Howard correspondence

- I links logic with programming, i.e., provides an explanation for the sucess of logic in computer science
- 2 allows to mutual enrich both areas
- 3 provides a formally verified form of programming
- 4 . . .

GM (Institute of Computer Science @ UIBK

Automated Reasoning

155/