Automated Reasoning

Georg Moser
Institute of Computer Science @ UIBK

Winter 2013

Summary Last Lecture

Definition

- intuitionistic logic is a restriction of classical logic, where certain formulas are no longer derivable
- for example $A \vee \neg A$ is no longer valid

Definition (Curry-Howard)
the Curry-Howard correspondence (aka Curry-Howard isomorphism) consists of the following parts:
1 formulas = types
2 proof = programs
3 normalisation = computation

Example

$$
\begin{array}{cccc}
\Pi_{1} & & & \\
\vdots & \Pi_{2} & \Pi_{1}\left[x \backslash \Pi_{2}\right] \\
\Gamma, x: \sigma \Rightarrow M: \tau & \vdots & \vdots & \vdots \\
\frac{\Gamma \Rightarrow \lambda x \cdot M: \sigma \rightarrow \tau}{} & \Gamma \Rightarrow N: \tau \\
\Gamma \Rightarrow(\lambda x \cdot M) N: \tau
\end{array} ~ ل \Rightarrow M[x:=N]
$$

the proof $\Pi_{1}\left[x \backslash \Pi_{2}\right]$ represents the proof that is obtained from Π_{1} by replacing assumptions corresponding to the variable x by Π_{2}

Remark

the Curry-Howard correspondence extends to many systems:

- intuitionistic logic and λ-calculus
- Hilbert axioms and combinatory logic

Outline of the Lecture

Propositional Logic
short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, LöwenheimSkolem, compactness, model existence theorem, natural deduction, completeness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Outline of the Lecture

Propositional Logic
short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, LöwenheimSkolem, compactness, model existence theorem, natural deduction, completeness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Limits of First-Order Logic

Lemma

given a directed graph \mathcal{G}, we can not express the following: let s and t be nodes in \mathcal{G}, then there exists a path from s to t

Limits of First-Order Logic

Lemma

given a directed graph \mathcal{G}, we can not express the following: let s and t be nodes in \mathcal{G}, then there exists a path from s to t

Proof Sketch.

1 let A be a formula that expresses that node t is reachable from s

Limits of First-Order Logic

Lemma

given a directed graph \mathcal{G}, we can not express the following: let s and t be nodes in \mathcal{G}, then there exists a path from s to t

Proof Sketch.

1 let A be a formula that expresses that node t is reachable from s
2 let B_{n} express that $\neg \exists$ path of length n between s and t

Limits of First-Order Logic

Lemma

given a directed graph \mathcal{G}, we can not express the following: let s and t be nodes in \mathcal{G}, then there exists a path from s to t

Proof Sketch.

1 let A be a formula that expresses that node t is reachable from s
2 let B_{n} express that $\neg \exists$ path of length n between s and t
$3 \mathcal{C}:=A \cup\left\{B_{n} \mid n \geqslant 1\right\}$ is unsatisfiable

Limits of First-Order Logic

Lemma

given a directed graph \mathcal{G}, we can not express the following: let s and t be nodes in \mathcal{G}, then there exists a path from s to t

Proof Sketch.

1 let A be a formula that expresses that node t is reachable from s
2 let B_{n} express that $\neg \exists$ path of length n between s and t
$3 \mathcal{C}:=A \cup\left\{B_{n} \mid n \geqslant 1\right\}$ is unsatisfiable
$4 \forall$ finite $\mathcal{C}_{0} \subset \mathcal{C}, \mathcal{C}_{0}$ is satisfiable

Limits of First-Order Logic

Lemma

given a directed graph \mathcal{G}, we can not express the following: let s and t be nodes in \mathcal{G}, then there exists a path from s to t

Proof Sketch.

1 let A be a formula that expresses that node t is reachable from s
2 let B_{n} express that $\neg \exists$ path of length n between s and t
$3 \mathcal{C}:=A \cup\left\{B_{n} \mid n \geqslant 1\right\}$ is unsatisfiable
$4 \forall$ finite $\mathcal{C}_{0} \subset \mathcal{C}, \mathcal{C}_{0}$ is satisfiable
5 contradiction to compactness

Limits of First-Order Logic

Lemma

given a directed graph \mathcal{G}, we can not express the following: let s and t be nodes in \mathcal{G}, then there exists a path from s to t

Proof Sketch.

1 let A be a formula that expresses that node t is reachable from s
2 let B_{n} express that $\neg \exists$ path of length n between s and t
$3 \mathcal{C}:=A \cup\left\{B_{n} \mid n \geqslant 1\right\}$ is unsatisfiable
$4 \forall$ finite $\mathcal{C}_{0} \subset \mathcal{C}, \mathcal{C}_{0}$ is satisfiable
5 contradiction to compactness
Corollary
reachability is not expressible in first-order logic

Limits of First-Order Logic

Lemma

given a directed graph \mathcal{G}, we can not express the following: let s and t be nodes in \mathcal{G}, then there exists a path from s to t

Proof Sketch.

1 let A be a formula that expresses that node t is reachable from s
2 let B_{n} express that $\neg \exists$ path of length n between s and t
$3 \mathcal{C}:=A \cup\left\{B_{n} \mid n \geqslant 1\right\}$ is unsatisfiable
$4 \forall$ finite $\mathcal{C}_{0} \subset \mathcal{C}, \mathcal{C}_{0}$ is satisfiable
5 contradiction to compactness

Corollary

reachability is not expressible in first-order logic; i.e., there is no formula $F(x, y)$ such that F holds iff \exists path in graph \mathcal{G} from $\ell(x)$ to $\ell(y)$

Question
 what about an infinite set of formulas?

Question

what about an infinite set of formulas?
Definition
let \mathcal{H} be a set of sentences (of \mathcal{L}) and let
$\operatorname{Mod}(\mathcal{H})=\{\mathcal{A} \mid \mathcal{A}$ is a structure $($ of $\mathcal{L})$ and $\mathcal{A} \models \mathcal{H}\}$

Question

what about an infinite set of formulas?
Definition
let \mathcal{H} be a set of sentences (of \mathcal{L}) and let
$\operatorname{Mod}(\mathcal{H})=\{\mathcal{A} \mid \mathcal{A}$ is a structure (of $\mathcal{L})$ and $\mathcal{A}=\mathcal{H}\}$
let \mathcal{K} be a collection of structures

Question

what about an infinite set of formulas?
Definition
let \mathcal{H} be a set of sentences (of \mathcal{L}) and let

$$
\operatorname{Mod}(\mathcal{H})=\{\mathcal{A} \mid \mathcal{A} \text { is a structure (of } \mathcal{L}) \text { and } \mathcal{A} \models \mathcal{H}\}
$$

let \mathcal{K} be a collection of structures

- \mathcal{K} is elementary if \exists sentence F and $\mathcal{K}=\operatorname{Mod}(F)$

Question

what about an infinite set of formulas?

Definition

let \mathcal{H} be a set of sentences (of \mathcal{L}) and let

$$
\operatorname{Mod}(\mathcal{H})=\{\mathcal{A} \mid \mathcal{A} \text { is a structure (of } \mathcal{L}) \text { and } \mathcal{A} \models \mathcal{H}\}
$$

let \mathcal{K} be a collection of structures

- \mathcal{K} is elementary if \exists sentence F and $\mathcal{K}=\operatorname{Mod}(F)$
- \mathcal{K} is Δ-elementary if \exists set of sentences \mathcal{H} and $\mathcal{K}=\operatorname{Mod}(\mathcal{H})$

Question

what about an infinite set of formulas?

Definition

let \mathcal{H} be a set of sentences (of \mathcal{L}) and let

$$
\operatorname{Mod}(\mathcal{H})=\{\mathcal{A} \mid \mathcal{A} \text { is a structure (of } \mathcal{L}) \text { and } \mathcal{A} \models \mathcal{H}\}
$$

let \mathcal{K} be a collection of structures

- \mathcal{K} is elementary if \exists sentence F and $\mathcal{K}=\operatorname{Mod}(F)$
- \mathcal{K} is Δ-elementary if \exists set of sentences \mathcal{H} and $\mathcal{K}=\operatorname{Mod}(\mathcal{H})$

Fact

- each elementary class is Δ-elementary
- every Δ-elementary class is the intersection of elementary classes:

$$
\operatorname{Mod}(\mathcal{F})=\bigcap_{F \in \mathcal{F}} \operatorname{Mod}(F)
$$

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_{1} of connected graphs is not Δ-elementary

 (-

Example

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_{1} of connected graphs is not Δ-elementary

Proof.
1 suppose $\mathcal{K}_{1}=\operatorname{Mod}(\mathcal{H})$ for set of sentences \mathcal{H}

Example

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_{1} of connected graphs is not Δ-elementary

Proof.
1 suppose $\mathcal{K}_{1}=\operatorname{Mod}(\mathcal{H})$ for set of sentences \mathcal{H}
2 set $B_{n}, n \geqslant 2$ as $x=y \vee \exists x_{1} \cdots \exists x_{n-2} R\left(x, x_{1}\right) \wedge \cdots \wedge R\left(x_{n-2}, y\right)$

Example

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_{1} of connected graphs is not Δ-elementary

Proof.

1 suppose $\mathcal{K}_{1}=\operatorname{Mod}(\mathcal{H})$ for set of sentences \mathcal{H}
2 set $B_{n}, n \geqslant 2$ as $x=y \vee \exists x_{1} \cdots \exists x_{n-2} R\left(x, x_{1}\right) \wedge \cdots \wedge R\left(x_{n-2}, y\right)$
$3 \forall m, \mathcal{H} \cup\left\{\neg B_{n} \mid 2 \leqslant n \leqslant m\right\}$ has a model, but $\mathcal{H} \cup\left\{\neg B_{n} \mid 2 \leqslant n\right\}$ is unsatisfiable

Example

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_{1} of connected graphs is not Δ-elementary

Proof.

1 suppose $\mathcal{K}_{1}=\operatorname{Mod}(\mathcal{H})$ for set of sentences \mathcal{H}
2 set $B_{n}, n \geqslant 2$ as $x=y \vee \exists x_{1} \cdots \exists x_{n-2} R\left(x, x_{1}\right) \wedge \cdots \wedge R\left(x_{n-2}, y\right)$
$3 \forall m, \mathcal{H} \cup\left\{\neg B_{n} \mid 2 \leqslant n \leqslant m\right\}$ has a model, but $\mathcal{H} \cup\left\{\neg B_{n} \mid 2 \leqslant n\right\}$ is unsatisfiable

4 contradiction to compactness

Example

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_{1} of connected graphs is not Δ-elementary

Proof.

1 suppose $\mathcal{K}_{1}=\operatorname{Mod}(\mathcal{H})$ for set of sentences \mathcal{H}
2 set $B_{n}, n \geqslant 2$ as $x=y \vee \exists x_{1} \cdots \exists x_{n-2} R\left(x, x_{1}\right) \wedge \cdots \wedge R\left(x_{n-2}, y\right)$
$3 \forall m, \mathcal{H} \cup\left\{\neg B_{n} \mid 2 \leqslant n \leqslant m\right\}$ has a model, but $\mathcal{H} \cup\left\{\neg B_{n} \mid 2 \leqslant n\right\}$ is unsatisfiable

4 contradiction to compactness
Answer
infinite set of formulas are not enough

Example

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_{1} of connected graphs is not Δ-elementary

Proof.
1 suppose $\mathcal{K}_{1}=\operatorname{Mod}(\mathcal{H})$ for set of sentences \mathcal{H}
2 set $B_{n}, n \geqslant 2$ as $x=y \vee \exists x_{1} \cdots \exists x_{n-2} R\left(x, x_{1}\right) \wedge \cdots \wedge R\left(x_{n-2}, y\right)$
$3 \forall m, \mathcal{H} \cup\left\{\neg B_{n} \mid 2 \leqslant n \leqslant m\right\}$ has a model, but $\mathcal{H} \cup\left\{\neg B_{n} \mid 2 \leqslant n\right\}$ is unsatisfiable

4 contradiction to compactness
Answer
infinite set of formulas are not enough

Example

finiteness is not expressible in first-order logic

The Language of Second-Order Logic

a second-order language extends a first-order language as follows

The Language of Second-Order Logic

a second-order language extends a first-order language as follows
Definition
1 first-order variables

The Language of Second-Order Logic

a second-order language extends a first-order language as follows
Definition
1 first-order variables
2 relation (or predicate) variables

$$
V_{0}^{i}, V_{1}^{i}, \ldots, V_{j}^{i}, \ldots \quad \text { denoted } X, Y, Z \text {, etc. }
$$

The Language of Second-Order Logic

a second-order language extends a first-order language as follows
Definition
1 first-order variables
2 relation (or predicate) variables

$$
V_{0}^{i}, V_{1}^{i}, \ldots, V_{j}^{i}, \ldots
$$

3 function variables

$$
u_{0}^{i}, u_{1}^{i}, \ldots, u_{j}^{i}, \ldots
$$

The Language of Second-Order Logic

a second-order language extends a first-order language as follows

Definition

1 first-order variables
2 relation (or predicate) variables
$V_{0}^{i}, V_{1}^{i}, \ldots, V_{j}^{i}, \ldots$
denoted X, Y, Z, etc.

3 function variables
$u_{0}^{i}, u_{1}^{i}, \ldots, u_{j}^{i}, \ldots \quad$ denoted u, v, w, etc.

Definition

second-order terms are defined like first-order terms together with the following clause

The Language of Second-Order Logic

a second-order language extends a first-order language as follows

Definition

1 first-order variables
2 relation (or predicate) variables
$V_{0}^{i}, V_{1}^{i}, \ldots, V_{j}^{i}, \ldots$ denoted X, Y, Z, etc.
3 function variables
$u_{0}^{i}, u_{1}^{i}, \ldots, u_{j}^{i}, \ldots \quad$ denoted u, v, w, etc.

Definition

second-order terms are defined like first-order terms together with the following clause
4 if t_{1}, \ldots, t_{n} are second-order terms, u an n-ary function variable, then $u\left(t_{1}, \ldots, t_{n}\right)$ is a second-order term

The Language of Second-Order Logic

a second-order language extends a first-order language as follows

Definition

1 first-order variables
2 relation (or predicate) variables
$V_{0}^{i}, V_{1}^{i}, \ldots, V_{j}^{i}, \ldots$ denoted X, Y, Z, etc.
3 function variables
$u_{0}^{i}, u_{1}^{i}, \ldots, u_{j}^{i}, \ldots \quad \operatorname{denoted} u, v, w$, etc.

Definition

second-order terms are defined like first-order terms together with the following clause
4 if t_{1}, \ldots, t_{n} are second-order terms, u an n-ary function variable, then $u\left(t_{1}, \ldots, t_{n}\right)$ is a second-order term
a second-order terms without function variables is first-order

Definition

second-order formulas are defined as follows

Definition

second-order formulas are defined as follows
1 first-order formulas are second-order formula

Definition

second-order formulas are defined as follows
1 first-order formulas are second-order formula
2 if t_{1}, \ldots, t_{n} are second-order terms, X an n-ary predicate variable, then $X\left(t_{1}, \ldots, t_{n}\right)$ is a second-order formula

Definition

second-order formulas are defined as follows
1 first-order formulas are second-order formula
2 if t_{1}, \ldots, t_{n} are second-order terms, X an n-ary predicate variable, then $X\left(t_{1}, \ldots, t_{n}\right)$ is a second-order formula
3 If $A(f)$ is a second-order formula, f a function constant, u a function variable, then

$$
\forall u A(u) \quad \exists u A(u)
$$

are second-order formulas

Definition

second-order formulas are defined as follows
1 first-order formulas are second-order formula
2 if t_{1}, \ldots, t_{n} are second-order terms, X an n-ary predicate variable, then $X\left(t_{1}, \ldots, t_{n}\right)$ is a second-order formula
3 If $A(f)$ is a second-order formula, f a function constant, u a function variable, then

$$
\forall u A(u) \quad \exists u A(u)
$$

are second-order formulas
4 if $A(P)$ a formula, P a predicate constant, X a predicate variable, then

$$
\forall X A(X) \quad \exists X A(X)
$$

are second-order formulas

Definition

second-order formulas are defined as follows
1 first-order formulas are second-order formula
2 if t_{1}, \ldots, t_{n} are second-order terms, X an n-ary predicate variable, then $X\left(t_{1}, \ldots, t_{n}\right)$ is a second-order formula
3 If $A(f)$ is a second-order formula, f a function constant, u a function variable, then

$$
\forall u A(u) \quad \exists u A(u)
$$

are second-order formulas
4 if $A(P)$ a formula, P a predicate constant, X a predicate variable, then

$$
\forall X A(X) \quad \exists X A(X)
$$

are second-order formulas
5 a second-order formula without predicate and function variables is first-order
都

\qquad

．
\qquad
．

$$
\bar{\square}
$$

Example

let u denote a function variable, X a predicate variable

$$
\forall x f(x)=x \quad \exists u \forall x u(x)=x
$$

1 the first formulas expresses a property of the identity function

Second-Order Logic

$\forall x f(x)=x \quad \exists u \forall x u(x)=x$

 -

\qquad
 $=$

\square
1

Example

let u denote a function variable, X a predicate variable

$$
\forall x f(x)=x \quad \exists u \forall x u(x)=x
$$

1 the first formulas expresses a property of the identity function
2 the 2nd asserts existence of an identity function

Example

consider

$$
x=y \rightarrow(P(x) \leftrightarrow P(y)) \quad x=y \leftrightarrow \forall X(X(x) \leftrightarrow X(y))
$$

Example

let u denote a function variable, X a predicate variable

$$
\forall x f(x)=x \quad \exists u \forall x u(x)=x
$$

11 the first formulas expresses a property of the identity function
2 the 2nd asserts existence of an identity function

Example

consider

$$
x=y \rightarrow(P(x) \leftrightarrow P(y)) \quad x=y \leftrightarrow \forall X(X(x) \leftrightarrow X(y))
$$

1 the first formulas expresses a property of equality

Example

let u denote a function variable, X a predicate variable

$$
\forall x f(x)=x \quad \exists u \forall x u(x)=x
$$

11 the first formulas expresses a property of the identity function
2 the 2nd asserts existence of an identity function

Example

consider

$$
x=y \rightarrow(P(x) \leftrightarrow P(y)) \quad x=y \leftrightarrow \forall X(X(x) \leftrightarrow X(y))
$$

1 the first formulas expresses a property of equality
2 the 2nd asserts defines equality

Second-Order Interpretation

Definition
a second-order environment ℓ for \mathcal{A} is a mapping

$$
\begin{aligned}
\ell: & \left\{\left\{x_{n} \mid n \in \mathbb{N}\right\} \rightarrow A\right\} \cup \\
& \left\{\left\{u_{n}^{i} \mid i, n \in \mathbb{N}\right\} \rightarrow\left(A^{i} \rightarrow A\right)\right\} \cup\left\{\left\{V_{n}^{i} \mid i, n \in \mathbb{N}\right\} \rightarrow A^{i}\right\}
\end{aligned}
$$

Second-Order Interpretation

Definition
a second-order environment ℓ for \mathcal{A} is a mapping

$$
\begin{aligned}
\ell: & \left\{\left\{x_{n} \mid n \in \mathbb{N}\right\} \rightarrow A\right\} \cup \\
& \left\{\left\{u_{n}^{i} \mid i, n \in \mathbb{N}\right\} \rightarrow\left(A^{i} \rightarrow A\right)\right\} \cup\left\{\left\{V_{n}^{i} \mid i, n \in \mathbb{N}\right\} \rightarrow A^{i}\right\}
\end{aligned}
$$

$\ell\left\{X \mapsto A^{\prime}\right\}$ maps X to relation $A^{\prime} \subseteq A^{n}$ if X is n-ary; all other maps are unchanged; similarly for function variables

Second-Order Interpretation

Definition
a second-order environment ℓ for \mathcal{A} is a mapping

$$
\begin{aligned}
\ell: & \left\{\left\{x_{n} \mid n \in \mathbb{N}\right\} \rightarrow A\right\} \cup \\
& \left\{\left\{u_{n}^{i} \mid i, n \in \mathbb{N}\right\} \rightarrow\left(A^{i} \rightarrow A\right)\right\} \cup\left\{\left\{V_{n}^{i} \mid i, n \in \mathbb{N}\right\} \rightarrow A^{i}\right\}
\end{aligned}
$$

$\ell\left\{X \mapsto A^{\prime}\right\}$ maps X to relation $A^{\prime} \subseteq A^{n}$ if X is n-ary; all other maps are unchanged; similarly for function variables

Definition

a second-order interpretation \mathcal{I} is a pair (\mathcal{A}, ℓ) such that

Second-Order Interpretation

Definition
a second-order environment ℓ for \mathcal{A} is a mapping

$$
\begin{aligned}
\ell: & \left\{\left\{x_{n} \mid n \in \mathbb{N}\right\} \rightarrow A\right\} \cup \\
& \left\{\left\{u_{n}^{i} \mid i, n \in \mathbb{N}\right\} \rightarrow\left(A^{i} \rightarrow A\right)\right\} \cup\left\{\left\{V_{n}^{i} \mid i, n \in \mathbb{N}\right\} \rightarrow A^{i}\right\}
\end{aligned}
$$

$\ell\left\{X \mapsto A^{\prime}\right\}$ maps X to relation $A^{\prime} \subseteq A^{n}$ if X is n-ary; all other maps are unchanged; similarly for function variables

Definition

a second-order interpretation \mathcal{I} is a pair (\mathcal{A}, ℓ) such that

- \mathcal{A} is a structure

Second-Order Interpretation

Definition
a second-order environment ℓ for \mathcal{A} is a mapping

$$
\begin{aligned}
\ell: & \left\{\left\{x_{n} \mid n \in \mathbb{N}\right\} \rightarrow A\right\} \cup \\
& \left\{\left\{u_{n}^{i} \mid i, n \in \mathbb{N}\right\} \rightarrow\left(A^{i} \rightarrow A\right)\right\} \cup\left\{\left\{V_{n}^{i} \mid i, n \in \mathbb{N}\right\} \rightarrow A^{i}\right\}
\end{aligned}
$$

$\ell\left\{X \mapsto A^{\prime}\right\}$ maps X to relation $A^{\prime} \subseteq A^{n}$ if X is n-ary; all other maps are unchanged; similarly for function variables

Definition

a second-order interpretation \mathcal{I} is a pair (\mathcal{A}, ℓ) such that

- \mathcal{A} is a structure
- ℓ is a second-order environment
consider the structure \mathcal{A} with domain $\mathbb{N} ; \ell(u)=\operatorname{succ}$ and $\ell(x)=0$ and

-

\square

正
'

Example

consider the structure \mathcal{A} with domain $\mathbb{N} ; \ell(u)=$ succ and $\ell(x)=0$ and let $\mathcal{I}=(\mathcal{A}, \ell)$

$$
u(x)^{\mathcal{I}}=\operatorname{succ}(0)=1
$$

Definition

the value of a second-order term t :

$$
t^{\mathcal{I}}= \begin{cases}\ell(t) & \text { if } t \text { an individual variable } \\ c^{\mathcal{A}} & \text { if } t=c \\ f^{\mathcal{A}}\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right), f \text { a function constant } \\ \ell(u)\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) & \text { if } t=u\left(t_{1}, \ldots, t_{n}\right), u \text { a function variable }\end{cases}
$$

Satisfaction relation

Definition

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula

Satisfaction relation

Definition

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula

$$
\begin{aligned}
\mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right) & : \Longleftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}} \\
\mathcal{I} \models \neg F & : \Longleftrightarrow \text { if } \mathcal{I} \not \models F \\
\mathcal{I} \models F \vee G & : \Longleftrightarrow \text { if } \mathcal{I} \models F \text { or } \mathcal{I} \models G \\
\mathcal{I} \models \forall x F(x) & : \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \models F(x) \text { holds for all } a \in A \\
\mathcal{I} \models \exists x F(x) & : \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \models F(x) \text { holds for some } a \in A
\end{aligned}
$$

Satisfaction relation

Definition

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula

$$
\begin{array}{ll}
\mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right) & : \Longleftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}} \\
\mathcal{I} \models \neg F & : \Longleftrightarrow \text { if } \mathcal{I} \not \models F \\
\mathcal{I} \models F \vee G & : \Longleftrightarrow \text { if } \mathcal{I} \models F \text { or } \mathcal{I} \models G \\
\mathcal{I} \models \forall x F(x) & : \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \models F(x) \text { holds for all } a \in A \\
\mathcal{I} \models \exists x F(x) & : \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \models F(x) \text { holds for some } a \in A \\
\mathcal{I} \models X\left(t_{1}, \ldots, t_{n}\right) & : \Longleftrightarrow \quad \ell(X)=A^{\prime} \text { and }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in A^{\prime}
\end{array}
$$

Satisfaction relation

Definition

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula

$$
\begin{array}{ll}
\mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right) & : \Longleftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}} \\
\mathcal{I} \models \neg F & : \Longleftrightarrow \text { if } \mathcal{I} \not \models F \\
\mathcal{I} \models F \vee G & : \Longleftrightarrow \text { if } \mathcal{I} \models F \text { or } \mathcal{I} \models G \\
\mathcal{I} \models \forall x F(x) & : \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \models F(x) \text { holds for all } a \in A \\
\mathcal{I} \models \exists x F(x) & : \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \models F(x) \text { holds for some } a \in A \\
\mathcal{I} \models X\left(t_{1}, \ldots, t_{n}\right) & : \Longleftrightarrow \\
\mathcal{I} \models \forall(X)=A^{\prime} \text { and }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in A^{\prime} \\
\models \forall(X) & : \Longleftrightarrow \text { if } \mathcal{I}\left\{X \mapsto A^{\prime}\right\} \models F(X) \text { for all } A^{\prime} \subseteq A^{n}
\end{array}
$$

Satisfaction relation

Definition

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula

$$
\begin{aligned}
\mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right) & : \Longleftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}} \\
\mathcal{I} \models \neg F & : \Longleftrightarrow \text { if } \mathcal{I} \vDash F \\
\mathcal{I} \models F \vee G & : \Longleftrightarrow \text { if } \mathcal{I} \models F \text { or } \mathcal{I} \models G \\
\mathcal{I} \models \forall x F(x) & : \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \models F(x) \text { holds for all } a \in A \\
\mathcal{I} \models \exists x F(x) & : \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \models F(x) \text { holds for some } a \in A \\
\mathcal{I} \models X\left(t_{1}, \ldots, t_{n}\right) & : \Longleftrightarrow \ell(X)=A^{\prime} \text { and }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in A^{\prime} \\
\mathcal{I} \models \forall X F(X) & : \Longleftrightarrow \text { if } \mathcal{I}\left\{X \mapsto A^{\prime}\right\} \models F(X) \text { for all } A^{\prime} \subseteq A^{n} \\
\mathcal{I} \models \exists X \quad F(X) & : \Longleftrightarrow \text { if } \mathcal{I}\left\{X \mapsto A^{\prime}\right\} \models F(X) \text { for some } A^{\prime} \subseteq A^{n}
\end{aligned}
$$

Satisfaction relation

Definition

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula

$$
\begin{array}{ll}
\mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right) & : \Longleftrightarrow \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}} \\
\mathcal{I} \models \neg F & : \Longleftrightarrow \text { if } \mathcal{I} \not \models F \\
\mathcal{I} \models F \vee G & : \Longleftrightarrow \text { if } \mathcal{I} \models F \text { or } \mathcal{I} \models G \\
\mathcal{I} \models \forall x F(x) & : \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \models F(x) \text { holds for all } a \in A \\
\mathcal{I} \models \exists x F(x) & : \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \models F(x) \text { holds for some } a \in A \\
\mathcal{I} \models X\left(t_{1}, \ldots, t_{n}\right) & : \Longleftrightarrow \ell(X)=A^{\prime} \text { and }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in A^{\prime} \\
\mathcal{I} \models \forall X F(X) & : \Longleftrightarrow \text { if } \mathcal{I}\left\{X \mapsto A^{\prime}\right\} \models F(X) \text { for all } A^{\prime} \subseteq A^{n} \\
\mathcal{I} \models \exists X F(X) & : \Longleftrightarrow \text { if } \mathcal{I}\left\{X \mapsto A^{\prime}\right\} \models F(X) \text { for some } A^{\prime} \subseteq A^{n} \\
\mathcal{I} \models \forall u F(u) & : \Longleftrightarrow \text { if } \mathcal{I}\{u \mapsto f\} \models F(u) \text { for all } f: A^{n} \rightarrow A
\end{array}
$$

Satisfaction relation

Definition

$\mathcal{I}=(\mathcal{A}, \ell)$ an interpretation; F a formula

$$
\begin{aligned}
& \mathcal{I} \models P\left(t_{1}, \ldots, t_{n}\right) \quad: \Longleftrightarrow \quad \text { if }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in P^{\mathcal{A}} \\
& \mathcal{I} \vDash \neg F \quad: \Longleftrightarrow \text { if } \mathcal{I} \not \vDash F \\
& \mathcal{I} \models F \vee G \quad: \Longleftrightarrow \quad \text { if } \mathcal{I} \models F \text { or } \mathcal{I} \models G \\
& \mathcal{I} \models \forall x F(x) \quad: \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \models F(x) \text { holds for all } a \in A \\
& \mathcal{I} \models \exists x F(x) \quad: \Longleftrightarrow \text { if } \mathcal{I}\{x \mapsto a\} \models F(x) \text { holds for some } a \in A \\
& \mathcal{I} \models X\left(t_{1}, \ldots, t_{n}\right) \quad \Longleftrightarrow \quad \ell(X)=A^{\prime} \text { and }\left(t_{1}^{\mathcal{I}}, \ldots, t_{n}^{\mathcal{I}}\right) \in A^{\prime} \\
& \mathcal{I} \equiv \forall X F(X) \quad: \Longleftrightarrow \quad \text { if } \mathcal{I}\left\{X \mapsto A^{\prime}\right\} \models F(X) \text { for all } A^{\prime} \subseteq A^{n} \\
& \mathcal{I} \models \exists X F(X) \quad: \Longleftrightarrow \quad \text { if } \mathcal{I}\left\{X \mapsto A^{\prime}\right\} \models F(X) \text { for some } A^{\prime} \subseteq A^{n} \\
& \mathcal{I} \models \forall u F(u) \quad: \Longleftrightarrow \text { if } \mathcal{I}\{u \mapsto f\} \models F(u) \text { for all } f: A^{n} \rightarrow A \\
& \mathcal{I} \models \exists u F(u) \quad: \Longleftrightarrow \quad \text { if } \mathcal{I}\{u \mapsto f\} \models F(u) \text { for some } f: A^{n} \rightarrow A
\end{aligned}
$$

 \square
 \section*{Reachability is Expressible in Second-Order Logic
 \section*{Reachability is Expressible in Second-Order Logic

 Reachability is Expressible in Second-

Example
det \mathcal{G} be a structure defined over the lang
dom G

 Reachability is Expressible in Second-
Example
det \mathcal{G} be a structure defined over the lang
dom G

 ـ ـ

 .

 .

 -

 -

 Reachability is E
Example
olet \mathcal{G} be a stru
domain G

 Reachability is E
Example
olet \mathcal{G} be a stru
domain G

 © U UB

 © U UB

 nable
let \mathcal{G}
domair

 nable
let \mathcal{G}
domair

 Reachability is Expressible in Second-
Example
• let \mathcal{G} be a structure defined over the lang
domain G

 Reachability is Expressible in Second-
Example
• let \mathcal{G} be a structure defined over the lang
domain G

 Example
det \mathcal{G} be a structure defined over the language $\mathcal{L}=\{R\}$ with the
domain
• 4, Example
det \mathcal{G} be a structure defined over the language $\mathcal{L}=\{R\}$ with the
domain
• 4, ability
xam

- le ability
xam
- le
}
}

/1

Reachability is Expressible in Second-Order Logic

Example

- let \mathcal{G} be a structure defined over the language $\mathcal{L}=\{R\}$ with the domain G
- R represents the (directed) edge relation of the graph \mathcal{G}

Reachability is Expressible in Second-Order Logic

Example

- let \mathcal{G} be a structure defined over the language $\mathcal{L}=\{R\}$ with the domain G
- R represents the (directed) edge relation of the graph \mathcal{G}
- consider the second order formula $F(x, y)$

$$
\begin{gathered}
\exists P\left(\forall z _ { 1 } \forall z _ { 2 } \forall z _ { 3 } \left(\neg P\left(z_{1}, z_{1}\right) \wedge\right.\right. \\
\left.\wedge\left(P\left(z_{1}, z_{2}\right) \wedge P\left(z_{2}, z_{3}\right) \rightarrow P\left(z_{1}, z_{3}\right)\right)\right) \wedge \\
\wedge \forall z_{1} \forall z_{2}\left(\left(P\left(z_{1}, z_{2}\right) \wedge \neg \exists z_{3}\left(P\left(z_{1}, z_{3}\right) \wedge P\left(z_{3}, z_{2}\right)\right) \rightarrow R\left(z_{1}, z_{2}\right)\right) \wedge\right. \\
\wedge P(x, y))
\end{gathered}
$$

Reachability is Expressible in Second-Order Logic

Example

- let \mathcal{G} be a structure defined over the language $\mathcal{L}=\{R\}$ with the domain G
- R represents the (directed) edge relation of the graph \mathcal{G}
- consider the second order formula $F(x, y)$

$$
\begin{gathered}
\exists P\left(\forall z _ { 1 } \forall z _ { 2 } \forall z _ { 3 } \left(\neg P\left(z_{1}, z_{1}\right) \wedge\right.\right. \\
\left.\wedge\left(P\left(z_{1}, z_{2}\right) \wedge P\left(z_{2}, z_{3}\right) \rightarrow P\left(z_{1}, z_{3}\right)\right)\right) \wedge \\
\wedge \forall z_{1} \forall z_{2}\left(\left(P\left(z_{1}, z_{2}\right) \wedge \neg \exists z_{3}\left(P\left(z_{1}, z_{3}\right) \wedge P\left(z_{3}, z_{2}\right)\right) \rightarrow R\left(z_{1}, z_{2}\right)\right) \wedge\right. \\
\wedge P(x, y))
\end{gathered}
$$

- suppose $\mathcal{I} \models F(x, y)$, then \exists path in \mathcal{G} from $\ell(x)$ to $\ell(y)$
 \section*{\section*{More examples
 \section*{\section*{More examples

 The Bad News}

 The Bad News}
=

$$
\square
$$

Example

consider Whitehead－Russel definition of equality：

$$
x=y \Longleftrightarrow \forall X(X(x) \rightarrow X(y))
$$

\square都

\square

\qquad
\qquad

友

_

More examples

Example

consider Whitehead-Russel definition of equality:

$$
x=y \Longleftrightarrow \forall X(X(x) \rightarrow X(y))
$$

Lemma

Leibnitz's equality and Whitehead-Russel's equality are equivalent

More examples

Example
consider Whitehead-Russel definition of equality:

$$
x=y \Longleftrightarrow \forall X(X(x) \rightarrow X(y))
$$

Lemma
Leibnitz's equality and Whitehead-Russel's equality are equivalent

Example

consider the following "axiom" of enumerability (Enum)

$$
\exists z \exists u \forall X((X(z) \wedge \forall x(X(x) \rightarrow X(u(x)))) \rightarrow \forall x X(x))
$$

which is true in an interpretation iff its domain is countable

Example

consider the following "axiom" of infinity (lnf)

$$
\exists z \exists u(\forall x z \neq u(x) \wedge \forall x \forall y(u(x)=u(y) \rightarrow x=y))
$$

which is true in an interpretation iff the domain it infinite

Example

consider the following "axiom" of infinity (lnf)

$$
\exists z \exists u(\forall x z \neq u(x) \wedge \forall x \forall y(u(x)=u(y) \rightarrow x=y))
$$

which is true in an interpretation iff the domain it infinite

Lemma

Löwenheim-Skolem fails for second-order logic

Example

consider the following "axiom" of infinity (lnf)

$$
\exists z \exists u(\forall x z \neq u(x) \wedge \forall x \forall y(u(x)=u(y) \rightarrow x=y))
$$

which is true in an interpretation iff the domain it infinite

Lemma

Löwenheim-Skolem fails for second-order logic

Proof.

1 recall that Löwenheim-Skolem asserts that if a set of sentences \mathcal{G} has a model, then \mathcal{G} has a countable model
2 consider $\mathcal{G}=\{\neg$ Enum, Inf $\}$
3 then \mathcal{G} is satisfiable, but only with uncountable models
4 contradiction

Example

consider the following "axiom" of infinity (lnf)

$$
\exists z \exists u(\forall x z \neq u(x) \wedge \forall x \forall y(u(x)=u(y) \rightarrow x=y))
$$

which is true in an interpretation iff the domain it infinite

Lemma

Löwenheim-Skolem fails for second-order logic

Proof.

1 recall that Löwenheim-Skolem asserts that if a set of sentences \mathcal{G} has a model, then \mathcal{G} has a countable model
2 consider $\mathcal{G}=\{\neg$ Enum, Inf $\}$
3 then \mathcal{G} is satisfiable, but only with uncountable models
4 contradiction

Definition

consider (the following variant of) Robinson's \mathbf{Q}
$N_{1}: \quad \mathrm{s}\left(v_{1}\right)=\mathrm{s}\left(v_{2}\right) \rightarrow v_{1}=v_{2}$
$N_{2}: \quad 0 \neq \mathrm{s}\left(v_{1}\right)$
$N_{3}: \quad\left(v_{1}+0\right)=v_{1}$
$N_{4}: \quad\left(v_{1}+s\left(v_{2}\right)\right)=\mathrm{s}\left(v_{1}+v_{2}\right)$
$N_{5}: \quad\left(v_{1} \cdot 0\right)=0$
$N_{6}: \quad\left(v_{1} \cdot s\left(v_{2}\right)\right)=\left(\left(v_{1} \cdot v_{2}\right)+v_{1}\right)$
$N_{7}: \quad\left(v_{1} \leqslant 0\right) \Longleftrightarrow\left(v_{1}=0\right)$
$N_{8}: \quad\left(v_{1} \leqslant \mathrm{~s}\left(v_{2}\right)\right) \Longleftrightarrow\left(v_{1} \leqslant v_{2} \vee v_{1}=\mathrm{s}\left(v_{2}\right)\right)$
$N_{9}: \quad\left(v_{1} \leqslant v_{2}\right) \vee\left(v_{2} \leqslant v_{1}\right)$

Definition

consider (the following variant of) Robinson's \mathbf{Q}

$N_{1}:$	$s\left(v_{1}\right)=s\left(v_{2}\right) \rightarrow v_{1}=v_{2}$
$N_{2}:$	$0 \neq s\left(v_{1}\right)$
$N_{3}:$	$\left(v_{1}+0\right)=v_{1}$
$N_{4}:$	$\left(v_{1}+s\left(v_{2}\right)\right)=s\left(v_{1}+v_{2}\right)$
$N_{5}:$	$\left(v_{1} \cdot 0\right)=0$
$N_{6}:$	$\left(v_{1} \cdot s\left(v_{2}\right)\right)=\left(\left(v_{1} \cdot v_{2}\right)+v_{1}\right)$
$N_{7}:$	$\left(v_{1} \leqslant 0\right) \Longleftrightarrow\left(v_{1}=0\right)$
$N_{8}:$	$\left(v_{1} \leqslant s\left(v_{2}\right)\right) \Longleftrightarrow\left(v_{1} \leqslant v_{2} \vee v_{1}=s\left(v_{2}\right)\right)$
$N_{9}:$	$\left(v_{1} \leqslant v_{2}\right) \vee\left(v_{2} \leqslant v_{1}\right)$

Fact

\mathbf{Q} is complete for quantifier-free sentences of the language of arithmetic

Example

let \mathbf{P}^{2} be the axioms in \mathbf{Q} together with the following axiom of induction

$$
\forall X((X(0) \wedge \forall x(X(x) \rightarrow X(\mathrm{~s}(x)))) \rightarrow \forall x X(x))
$$

then any interpretation of the language of arithmetic is a model of \mathbf{P}^{2} iff it is isomorphic to the standard interpretation

Example

let \mathbf{P}^{2} be the axioms in \mathbf{Q} together with the following axiom of induction

$$
\forall X((X(0) \wedge \forall x(X(x) \rightarrow X(\mathrm{~s}(x)))) \rightarrow \forall x X(x))
$$

then any interpretation of the language of arithmetic is a model of \mathbf{P}^{2} iff it is isomorphic to the standard interpretation

Lemma

compactness fails for second-order logic

Example

let \mathbf{P}^{2} be the axioms in \mathbf{Q} together with the following axiom of induction

$$
\forall X((X(0) \wedge \forall x(X(x) \rightarrow X(\mathrm{~s}(x)))) \rightarrow \forall x X(x))
$$

then any interpretation of the language of arithmetic is a model of \mathbf{P}^{2} iff it is isomorphic to the standard interpretation

Lemma

compactness fails for second-order logic

Proof.
1 add a constant c to the language of arithmetic
2 consider $\mathcal{G}=\left\{\mathbf{P}^{2}, c \neq 0, c \neq 1, c \neq 2, \ldots\right\}$
3 any finite subset of \mathcal{G} is satisfiable, while \mathcal{G} is not
4 contradiction

Summary of Bad News

Lemma

the set of valid second-order sentences is not recursively enumerable

Summary of Bad News

Lemma

the set of valid second-order sentences is not recursively enumerable

Proof Sketch.

the proof essentially employs that \mathbf{P}^{2} exactly confirms to number theory, as the later is incomplete $\neg \exists$ a calculus complete for second-order

Summary of Bad News

Lemma

the set of valid second-order sentences is not recursively enumerable

Proof Sketch.

the proof essentially employs that \mathbf{P}^{2} exactly confirms to number theory, as the later is incomplete $\neg \exists$ a calculus complete for second-order

Theorem

1 compactness fails for second-order logic
2 Löwenheim-Skolem fails for second-order logic
$3 \neg \exists$ a calculus that is complete for second-order logic

Summary of Bad News

Lemma

the set of valid second-order sentences is not recursively enumerable

Proof Sketch.

the proof essentially employs that \mathbf{P}^{2} exactly confirms to number theory, as the later is incomplete $\neg \exists$ a calculus complete for second-order

Theorem

1 compactness fails for second-order logic
2 Löwenheim-Skolem fails for second-order logic
$3 \neg \exists$ a calculus that is complete for second-order logic, in particular the set of valid second-order sentences is not recursively enumerable

Good News

Example

finite models
\exists set \mathcal{H} of second-order sentences, such that $\operatorname{Mod}^{\text {fin }}(\mathcal{H})=$ NP

Good News

Example

finite models

\exists set \mathcal{H} of second-order sentences, such that $\operatorname{Mod}^{\text {fin }}(\mathcal{H})=$ NP

Definition

- Let \mathcal{K} be a set of finite structures and let F be a (second-order) sentence
- suppose \mathcal{M} is a (second-order) structure in \mathcal{K}
then the $F-\mathcal{K}$ problem asks, whether $\mathcal{M} \vDash F$ holds

Definition (existential second-order formula ($\exists \mathrm{SO}$))

 we call a second-order formula F existential if F has the following form:$$
\exists X_{1} \exists X_{2} \cdots \exists X_{n} G
$$

Definition (existential second-order formula ($\exists \mathrm{SO}$)) we call a second-order formula F existential if F has the following form:

$$
\exists X_{1} \exists X_{2} \cdots \exists X_{n} G
$$

where G is essentially a first-order formula that may contain the free second-order variables X_{1}, \ldots, X_{n}

Definition (existential second-order formula ($\exists \mathrm{SO}$))
we call a second-order formula F existential if F has the following form:

$$
\exists X_{1} \exists X_{2} \cdots \exists X_{n} G
$$

where G is essentially a first-order formula that may contain the free second-order variables X_{1}, \ldots, X_{n}

Lemma (1)
if F is $\exists S O$, then the $F-\mathcal{K}$ problem is in NP

Definition (existential second-order formula ($\exists \mathrm{SO}$))
we call a second-order formula F existential if F has the following form:

$$
\exists X_{1} \exists X_{2} \cdots \exists X_{n} G
$$

where G is essentially a first-order formula that may contain the free second-order variables X_{1}, \ldots, X_{n}

Lemma (1)

if F is $\exists S O$, then the $F-\mathcal{K}$ problem is in NP

Lemma (2)

if $F-\mathcal{K}$ is decidable by a NTM M that runs in polynomial time then F is equivalent to an existential second-order sentence

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)
1 a sentence F is equivalent to a sentence in $\exists S O$ iff $F-\mathcal{K} \in N P$

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)
1 a sentence F is equivalent to a sentence in $\exists S O$ iff $F-\mathcal{K} \in$ NP
2 if $F-\mathcal{K} \in N P$, then it can be assumed that the first-order part of F is a universal formula

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)
1 a sentence F is equivalent to a sentence in $\exists S O$ iff $F-\mathcal{K} \in$ NP
2 if $F-\mathcal{K} \in N P$, then it can be assumed that the first-order part of F is a universal formula

Proof.

1 suppose F is an existential second-order sentence; by Lemma (1), $F-\mathcal{K} \in \mathrm{NP}$

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)
1 a sentence F is equivalent to a sentence in $\exists S O$ iff $F-\mathcal{K} \in$ NP
2 if $F-\mathcal{K} \in N P$, then it can be assumed that the first-order part of F is a universal formula

Proof.

1 suppose F is an existential second-order sentence; by Lemma (1), $F-\mathcal{K} \in \mathrm{NP}$
2 suppose $F-\mathcal{K} \in \mathrm{NP} ; \exists \mathrm{NTM} N$ that decides $F-\mathcal{K}$

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)
1 a sentence F is equivalent to a sentence in $\exists S O$ iff $F-\mathcal{K} \in$ NP
2 if $F-\mathcal{K} \in N P$, then it can be assumed that the first-order part of F is a universal formula

Proof.

1 suppose F is an existential second-order sentence; by Lemma (1), $F-\mathcal{K} \in \mathrm{NP}$
2 suppose $F-\mathcal{K} \in \mathrm{NP} ; \exists \mathrm{NTM} N$ that decides $F-\mathcal{K}$
3 by Lemma (2), F is equivalent to an \exists SO-formula G

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)
1 a sentence F is equivalent to a sentence in $\exists S O$ iff $F-\mathcal{K} \in N P$
2 if $F-\mathcal{K} \in \mathrm{NP}$, then it can be assumed that the first-order part of F is a universal formula

Proof.

1 suppose F is an existential second-order sentence; by Lemma (1), $F-\mathcal{K} \in \mathrm{NP}$
2 suppose $F-\mathcal{K} \in \mathrm{NP} ; \exists \mathrm{NTM} N$ that decides $F-\mathcal{K}$
3 by Lemma (2), F is equivalent to an \exists SO-formula G
4 the proof of the second lemma even yields that the first-order part of G is universal

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)
1 a sentence F is equivalent to a sentence in $\exists S O$ iff $F-\mathcal{K} \in N P$
2 if $F-\mathcal{K} \in \mathrm{NP}$, then it can be assumed that the first-order part of F is a universal formula

Proof.

1 suppose F is an existential second-order sentence; by Lemma (1), $F-\mathcal{K} \in \mathrm{NP}$
2 suppose $F-\mathcal{K} \in \mathrm{NP} ; \exists \mathrm{NTM} N$ that decides $F-\mathcal{K}$
3 by Lemma (2), F is equivalent to an \exists SO-formula G
4 the proof of the second lemma even yields that the first-order part of G is universal

Corollary
SAT is NP-complete (wrt. the polytime reducibility relation)

Corollary
SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

1 SAT \in NP follows from Lemma (1), as SAT can be easily encoded as \exists SO-formula

Corollary
SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

1 SAT \in NP follows from Lemma (1), as SAT can be easily encoded as \exists SO-formula

2 thus let $A \in \mathrm{NP}$

Corollary

SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

1 SAT \in NP follows from Lemma ${ }^{(1)}$, as SAT can be easily encoded as \exists SO-formula

2 thus let $A \in \mathrm{NP}$
3 by Fagin's theorem, there exists an \exists SO-formula F and some finite structures \mathcal{K}, such that A is equivalent to the $F-\mathcal{K}$ problem; moreover the first-order part of F is univeral

Corollary

SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

1 SAT \in NP follows from Lemma ${ }^{(1)}$, as SAT can be easily encoded as \exists SO-formula

2 thus let $A \in \mathrm{NP}$
3 by Fagin's theorem, there exists an \exists SO-formula F and some finite structures \mathcal{K}, such that A is equivalent to the $F-\mathcal{K}$ problem; moreover the first-order part of F is univeral
4 let $\mathcal{M} \in \mathcal{K}$ be a finite; the universal part of F can be represented as propositional formula B

Corollary

SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

1 SAT \in NP follows from Lemma ${ }^{(1)}$, as SAT can be easily encoded as \exists SO-formula

2 thus let $A \in \mathrm{NP}$
3 by Fagin's theorem, there exists an \exists SO-formula F and some finite structures \mathcal{K}, such that A is equivalent to the $F-\mathcal{K}$ problem; moreover the first-order part of F is univeral
4 let $\mathcal{M} \in \mathcal{K}$ be a finite; the universal part of F can be represented as propositional formula B
5 any interpretation of F is conceivable as an assignment of B (and vice versa)

Corollary

SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

1 SAT \in NP follows from Lemma (1), as SAT can be easily encoded as \exists SO-formula

2 thus let $A \in \mathrm{NP}$
3 by Fagin's theorem, there exists an \exists SO-formula F and some finite structures \mathcal{K}, such that A is equivalent to the $F-\mathcal{K}$ problem; moreover the first-order part of F is univeral
4 let $\mathcal{M} \in \mathcal{K}$ be a finite; the universal part of F can be represented as propositional formula B
5 any interpretation of F is conceivable as an assignment of B (and vice versa)
6 thus A is reducible to a SAT problem

Corollary

SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

1 SAT \in NP follows from Lemma (1), as SAT can be easily encoded as \exists SO-formula

2 thus let $A \in \mathrm{NP}$
3 by Fagin's theorem, there exists an \exists SO-formula F and some finite structures \mathcal{K}, such that A is equivalent to the $F-\mathcal{K}$ problem; moreover the first-order part of F is univeral
4 let $\mathcal{M} \in \mathcal{K}$ be a finite; the universal part of F can be represented as propositional formula B
5 any interpretation of F is conceivable as an assignment of B (and vice versa)
6 thus A is reducible to a SAT problem

Corollary

the following is equivalent:

- NP = coNP and
- $\exists S O$ is equivalent to (full) second-order logic

Corollary

the following is equivalent:

- NP = coNP and
- $\exists S O$ is equivalent to (full) second-order logic

Proof.

1 any problem in coNP is representable as $\forall \mathrm{SO}$ formula

Corollary

the following is equivalent:

- NP = coNP and
- $\exists S O$ is equivalent to (full) second-order logic

Proof.

1 any problem in coNP is representable as $\forall \mathrm{SO}$ formula
2 thus, if NP $=\mathrm{coNP}$, then $\exists \mathrm{SO} \equiv \forall \mathrm{SO}$

Corollary

the following is equivalent:

- NP = coNP and
- $\exists S O$ is equivalent to (full) second-order logic

Proof.

1 any problem in coNP is representable as $\forall \mathrm{SO}$ formula
2 thus, if $\mathrm{NP}=\mathrm{coNP}$, then $\exists \mathrm{SO} \equiv \forall \mathrm{SO}$
3 hence, $\exists \mathrm{SO}$ would be closed under negation and thus equivalent to full second-order logic

Corollary

the following is equivalent:

- NP = coNP and
- $\exists S O$ is equivalent to (full) second-order logic

Proof.

1 any problem in coNP is representable as $\forall \mathrm{SO}$ formula
2 thus, if NP = coNP, then $\exists \mathrm{SO} \equiv \forall \mathrm{SO}$
3 hence, $\exists \mathrm{SO}$ would be closed under negation and thus equivalent to full second-order logic

Corollary

the following is equivalent:

- NP = coNP and
- $\exists S O$ is equivalent to (full) second-order logic

Proof.

1 any problem in coNP is representable as $\forall \mathrm{SO}$ formula
2 thus, if NP = coNP, then $\exists \mathrm{SO} \equiv \forall \mathrm{SO}$
3 hence, $\exists \mathrm{SO}$ would be closed under negation and thus equivalent to full second-order logic

We leave it to the reader to verify and expand upon the claims
in this section and to resolve the problems whether
$P=N P=$ coNP \quad (S. Hedman, A First (sic!) Course in Logic)

