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Summary Last Lecture

Definition
e intuitionistic logic is a restriction of classical logic, where certain
formulas are no longer derivable

e for example AV —A is no longer valid

Definition (Curry-Howard)

the Curry-Howard correspondence (aka Curry-Howard isomorphism)
consists of the following parts:

formulas = types

proof = programs

normalisation = computation
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Example
My
Mo M1\
Mx:c=M:1 : = :
r:>)\xl\/l o1 =N:71 = M[x:= N]
= (O M)N : 7

the proof IM1[x\[M2] represents the proof that is obtained from [y by
replacing assumptions corresponding to the variable x by I,

Remark
the Curry-Howard correspondence extends to many systems:
e intuitionistic logic and A-calculus

e Hilbert axioms and combinatory logic
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o0y 00000000
Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Léwenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand's Theorem

v

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic

v
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Summary
Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Léwenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand's Theorem

v

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic

v
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Limits of First-Order Logic

Lemma

given a directed graph G, we can not express the following: let s and t
be nodes in G, then there exists a path from s to t
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Limits of First-Order Logic

Lemma

given a directed graph G, we can not express the following: let s and t
be nodes in G, then there exists a path from s to t

Proof Sketch.
let A be a formula that expresses that node t is reachable from s

GM (Institute of Computer Science @ UIBK) Automated Reasoning



Limits of First-Order Logic

Lemma

given a directed graph G, we can not express the following: let s and t
be nodes in G, then there exists a path from s to t

Proof Sketch.
let A be a formula that expresses that node t is reachable from s

let B, express that =3 path of length n between s and t
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Limits of First-Order Logic

Lemma

given a directed graph G, we can not express the following: let s and t
be nodes in G, then there exists a path from s to t

Proof Sketch.
let A be a formula that expresses that node t is reachable from s
let B, express that =3 path of length n between s and t
C := AU{B, | n > 1} is unsatisfiable

GM (Institute of Computer Science @ UIBK) Automated Reasoning



Limits of First-Order Logic

Lemma

given a directed graph G, we can not express the following: let s and t
be nodes in G, then there exists a path from s to t

Proof Sketch.
let A be a formula that expresses that node t is reachable from s
let B, express that =3 path of length n between s and t
C :=AU{B, | n> 1} is unsatisfiable
Y finite Cy C C, Cp is satisfiable
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Limits of First-Order Logic

Lemma

given a directed graph G, we can not express the following: let s and t
be nodes in G, then there exists a path from s to t

Proof Sketch.
let A be a formula that expresses that node t is reachable from s
let B, express that =3 path of length n between s and t
C := AU{B, | n > 1} is unsatisfiable
Y finite Cy C C, Cp is satisfiable

contradiction to compactness H
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Limits of First-Order Logic

Lemma

given a directed graph G, we can not express the following: let s and t
be nodes in G, then there exists a path from s to t

Proof Sketch.
let A be a formula that expresses that node t is reachable from s
let B, express that =3 path of length n between s and t
C :=AU{B, | n> 1} is unsatisfiable
Y finite Cy C C, Cp is satisfiable

contradiction to compactness H

Corollary

reachability is not expressible in first-order logic
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Limits of First-Order Logic

Lemma

given a directed graph G, we can not express the following: let s and t
be nodes in G, then there exists a path from s to t

Proof Sketch.
let A be a formula that expresses that node t is reachable from s
let B, express that =3 path of length n between s and t
C :=AU{B, | n> 1} is unsatisfiable
Y finite Cy C C, Cp is satisfiable

contradiction to compactness H

Corollary

reachability is not expressible in first-order logic; i.e., there is no formula
F(x,y) such that F holds iff 3 path in graph G from {(x) to £(y)
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Question J

what about an infinite set of formulas?
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Question
what about an infinite set of formulas?

Definition
let H be a set of sentences (of £) and let
Mod(H) = {A | A is a structure (of L) and A = H}
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Question

what about an infinite set of formulas?

Definition
let H be a set of sentences (of £) and let
Mod(H) = {A | A is a structure (of L) and A = H}

let IC be a collection of structures
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Question

what about an infinite set of formulas?

Definition
let H be a set of sentences (of £) and let
Mod(H) = {A | A is a structure (of £) and A |= H}
let K be a collection of structures
e K is elementary if 3 sentence F and K = Mod(F)
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Question

what about an infinite set of formulas?

Definition
let H be a set of sentences (of £) and let
Mod(#H) = {A | A is a structure (of £) and A = H}
let K be a collection of structures
e K is elementary if 3 sentence F and K = Mod(F)
e K is A-elementary if 3 set of sentences H and K = Mod(H)
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Question

what about an infinite set of formulas?

Definition
let H be a set of sentences (of £) and let
Mod(#H) = {A | A is a structure (of £) and A = H}
let K be a collection of structures
e K is elementary if 3 sentence F and K = Mod(F)
e K is A-elementary if 3 set of sentences H and K = Mod(H)

Fact
e each elementary class is A-elementary
e every A-elementary class is the intersection of elementary classes:

Mod(F) = (7] Mod(F)
FeFr
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Example

reachability is not expressible in first-order logic; that is, the class K1 of
connected graphs is not A-elementary
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Example

reachability is not expressible in first-order logic; that is, the class K1 of
connected graphs is not A-elementary

Proof.
suppose K1 = Mod(#) for set of sentences H
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Example

reachability is not expressible in first-order logic; that is, the class K1 of
connected graphs is not A-elementary

Proof.
suppose K1 = Mod(#) for set of sentences H
set By, n>2asx=yV3dxg-Ixp_2 R(x,x1) A+ A R(xp—2,¥)
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Example

reachability is not expressible in first-order logic; that is, the class K1 of
connected graphs is not A-elementary

Proof.
suppose K1 = Mod(#) for set of sentences H
set By, n>2asx=yV3dxg-Ixp_2 R(x,x1) A+ A R(xp—2,¥)
V'm, HU{=B,|2< n< m} has a model, but HU {-B, |2 < n}
is unsatisfiable
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Example

reachability is not expressible in first-order logic; that is, the class K1 of
connected graphs is not A-elementary

Proof.
suppose K1 = Mod(#) for set of sentences H
set By, n>2asx=yV3dxg-Ixp_2 R(x,x1) A+ A R(xp—2,¥)
V'm, HU{=B,|2< n< m} has a model, but HU {-B, |2 < n}
is unsatisfiable

contradiction to compactness [ |
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Example

reachability is not expressible in first-order logic; that is, the class K1 of
connected graphs is not A-elementary

Proof.
suppose K1 = Mod(#) for set of sentences H
set By, n>2asx=yV3dxg-Ixp_2 R(x,x1) A+ A R(xp—2,¥)
V'm, HU{=B,|2< n< m} has a model, but HU {-B, |2 < n}
is unsatisfiable

contradiction to compactness [ |

Answer

infinite set of formulas are not enough
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Example

reachability is not expressible in first-order logic; that is, the class K1 of
connected graphs is not A-elementary

Proof.
suppose K1 = Mod(#) for set of sentences H
set By, n>2asx=yV3dxg-Ixp_2 R(x,x1) A+ A R(xp—2,¥)
V'm, HU{=B,|2< n< m} has a model, but HU {-B, |2 < n}
is unsatisfiable

contradiction to compactness [ |

Answer
infinite set of formulas are not enough

Example

finiteness is not expressible in first-order logic
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The Language of Second-Order Logic

a second-order language extends a first-order language as follows
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The Language of Second-Order Logic
a second-order language extends a first-order language as follows

Definition

first-order variables individual variables
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The Language of Second-Order Logic
a second-order language extends a first-order language as follows

Definition
first-order variables individual variables

relation (or predicate) variables
VO, Vl,.. V’ . denoted X, Y, Z, etc.
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The Language of Second-Order Logic

a second-order language extends a first-order language as follows

Definition
first-order variables individual variables
relation (or predicate) variables
VO, Vl,.. V’ .. denoted X, Y, Z, etc.
functlon varlables
uo,ul,.. J,... denoted u, v, w, etc.
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The Language of Second-Order Logic

a second-order language extends a first-order language as follows

Definition
first-order variables individual variables
relation (or predicate) variables
VO, Vl,.. V’ .. denoted X, Y, Z, etc.
functlon varlables
uo,ul,..., J,... denoted u, v, w, etc.
Definition

second-order terms are defined like first-order terms together with the
following clause
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The Language of Second-Order Logic

a second-order language extends a first-order language as follows

Definition
first-order variables individual variables
relation (or predicate) variables
VO, Vl,.. V’ .. denoted X, Y, Z, etc.
functlon varlables
u07u1,..., J,... denoted u, v, w, etc.
Definition

second-order terms are defined like first-order terms together with the
following clause
if t1, ..., t, are second-order terms, u an n-ary function variable,
then u(ty, ..., t,) is a second-order term
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The Language of Second-Order Logic

a second-order language extends a first-order language as follows

Definition
first-order variables individual variables
relation (or predicate) variables
VO, Vl,.. V’ .. denoted X, Y, Z, etc.
functlon varlables
u07u1,..., J,... denoted u, v, w, etc.
Definition

second-order terms are defined like first-order terms together with the
following clause
if t1, ..., t, are second-order terms, u an n-ary function variable,
then u(ty, ..., t,) is a second-order term
a second-order terms without function variables is first-order
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Second-Order Logic

Definition
second-order formulas are defined as follows
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Second-Order Logic

Definition
second-order formulas are defined as follows
first-order formulas are second-order formula
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Second-Order Logic

Definition
second-order formulas are defined as follows
first-order formulas are second-order formula

if t1, ..., t, are second-order terms, X an n-ary predicate variable,
then X(t1,...,t,) is a second-order formula
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Second-Order Logic

Definition
second-order formulas are defined as follows
first-order formulas are second-order formula

if t1, ..., t, are second-order terms, X an n-ary predicate variable,
then X(t1,...,t,) is a second-order formula

If A(f) is a second-order formula, f a function constant, u a
function variable, then

Yu A(u) Ju A(u)
are second-order formulas
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Second-Order Logic

Definition
second-order formulas are defined as follows
first-order formulas are second-order formula
if t1, ..., t, are second-order terms, X an n-ary predicate variable,
then X(t1,...,t,) is a second-order formula
If A(f) is a second-order formula, f a function constant, u a
function variable, then
Yu A(u) Ju A(u)
are second-order formulas

if A(P) a formula, P a predicate constant, X a predicate variable,
then
VX A(X) IX A(X)

are second-order formulas
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Second-Order Logic

Definition
second-order formulas are defined as follows
first-order formulas are second-order formula

if t1, ..., t, are second-order terms, X an n-ary predicate variable,
then X(t1,...,t,) is a second-order formula
If A(f) is a second-order formula, f a function constant, u a
function variable, then
Yu A(u) Ju A(u)
are second-order formulas

if A(P) a formula, P a predicate constant, X a predicate variable,

then
VX A(X) IX A(X)

are second-order formulas

a second-order formula without predicate and function variables is
first-order
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Second-Order Logic

Example
let u denote a function variable, X a predicate variable

Vx f(x) = x Ju¥x u(x) = x
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Second-Order Logic

Example
let u denote a function variable, X a predicate variable

Vx f(x) = x Ju¥x u(x) = x

the first formulas expresses a property of the identity function
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Second-Order Logic

Example
let u denote a function variable, X a predicate variable

Vx f(x) = x Ju¥x u(x) = x

the first formulas expresses a property of the identity function

the 2nd asserts existence of an identity function
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Second-Order Logic

Example
let u denote a function variable, X a predicate variable

Vx f(x) = x Ju¥x u(x) = x

the first formulas expresses a property of the identity function

the 2nd asserts existence of an identity function

Example

consider

x=y—=(P(x) & P(y))  x=y < YX(X(x) < X(y))
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Second-Order Logic

Example
let u denote a function variable, X a predicate variable

Vx f(x) = x Ju¥x u(x) = x

the first formulas expresses a property of the identity function

the 2nd asserts existence of an identity function

Example

consider

x=y—=(P(x)+ Py)) x=y<VX(X(x) e X(y))

the first formulas expresses a property of equality

GM (Institute of Computer Science @ UIBK) Automated Reasoning



Second-Order Logic

Example
let u denote a function variable, X a predicate variable

Vx f(x) = x Ju¥x u(x) = x

the first formulas expresses a property of the identity function

the 2nd asserts existence of an identity function

Example

consider

x=y—=(P(x)+ Py)) x=y<VX(X(x) < X(y))

the first formulas expresses a property of equality

the 2nd asserts defines equality
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Second-Order Logic

Second-Order Interpretation

Definition
a second-order environment ¢ for A is a mapping
0 {{x, | ne N} —» A} U
{{ul|i,ne N} — (A" — AYU{{V] | i,ne N} - A’}
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Second-Order Logic

Second-Order Interpretation
Definition
a second-order environment ¢ for A is a mapping
0 {{x, | ne N} —» A} U
{{ul|i,ne N} — (A" = AYU{{V] | i,ne N} - A}

/H{X — A’} maps X to relation A’ C A" if X is n-ary; all other maps are
unchanged; similarly for function variables
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Second-Order Logic

Second-Order Interpretation
Definition
a second-order environment ¢ for A is a mapping
0 {{x, | ne N} —» A} U
{{ul|i,ne N} — (A" = AYU{{V] | i,ne N} - A}

/H{X — A’} maps X to relation A’ C A" if X is n-ary; all other maps are
unchanged; similarly for function variables

Definition

a second-order interpretation Z is a pair (A, ¢) such that
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Second-Order Logic

Second-Order Interpretation
Definition
a second-order environment ¢ for A is a mapping
0 {{x, | ne N} —» A} U
{{ul|i,ne N} — (A" = AYU{{V] | i,ne N} - A}

/H{X — A’} maps X to relation A’ C A" if X is n-ary; all other maps are
unchanged; similarly for function variables

Definition
a second-order interpretation Z is a pair (A, ¢) such that
e Ais a structure
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Second-Order Logic

Second-Order Interpretation
Definition
a second-order environment ¢ for A is a mapping
0 {{x, | ne N} —» A} U
{{ul|i,ne N} — (A" = AYU{{V] | i,ne N} - A}

/H{X — A’} maps X to relation A’ C A" if X is n-ary; all other maps are
unchanged; similarly for function variables

Definition
a second-order interpretation Z is a pair (A, ¢) such that
e Ais a structure

e / is a second-order environment
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Second-Order Logic

Example

consider the structure A with domain N; ¢(u) = succ and ¢(x) = 0 and
let Z = (A, 1)

u(x)* = succ(0) = 1
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Second-Order Logic

Example

consider the structure A with domain N; ¢(u) = succ and ¢(x) = 0 and
let Z = (A, Y1)

u(x)* = succ(0) = 1

Definition

the value of a second-order term t:

£(t) if t an individual variable

A ift=c

c
fAtE, ..., tE)  if t =f(t1,...,t,), f a function constant

Nu)(t, ... th) if t =u(ts,...,t,), ua function variable
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Second-Order Logic

Satisfaction relation

Definition
T = (A, {) an interpretation; F a formula
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Second-Order Logic

Satisfaction relation

Definition
T = (A, {) an interpretation; F a formula

T P(ty,... t,) = if(t,...,t5)ePA

Tl F = fTEF

IEFVG <~ fIEFoZIlEG

T E=Vx F(x) <= if Z{x — a} = F(x) holds for all a € A
Z = 3x F(x) <= if Z{x — a} = F(x) holds for some a € A
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Second-Order Logic

Satisfaction relation

Definition
T = (A, {) an interpretation; F a formula

T P(ty,... t,) = if(t,...,t5)ePA

T-F = fTEF

IEFVG <~ fIEFoZIlEG

T E=Vx F(x) <= if Z{x — a} = F(x) holds for all a € A
Z = 3x F(x) <= if Z{x — a} = F(x) holds for some a € A
TEX(t,. .. ty) = UX)=Aand (t,...,t5) c A

GM (Institute of Computer Science @ UIBK) Automated Reasoning



Second-Order Logic

Satisfaction relation

Definition
T = (A, {) an interpretation; F a formula

T P(ty,... t,) = if(t,...,t5)ePA

T-F = fTEF

IEFVG <~ fIEFoZIlEG

T E=Vx F(x) <= if Z{x — a} = F(x) holds for all a € A
Z = 3x F(x) <= if Z{x — a} = F(x) holds for some a € A
TEX(t,. .. ty) = UX)=Aand (t,...,t5) c A

T =YX F(X) = fZ{X — A} = F(X) for all A/ C A7
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Second-Order Logic

Satisfaction relation

Definition
T = (A, {) an interpretation; F a formula

T P(ty,... t,) = if(t,...,t5)ePA

Tl F = fTEF

IEFVG <~ fIEFoZIlEG

T E=Vx F(x) <= if Z{x — a} = F(x) holds for all a € A
Z = 3x F(x) <= if Z{x — a} = F(x) holds for some a € A
TEX(t,. .. ty) = UX)=Aand (t,...,t5) c A

T = ¥X F(X) = if T{X > A} = F(X) for all A’ C A”

7 = 3IX F(X) = if Z{X — A’} E F(X) for some A’ C A"
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Second-Order Logic

Satisfaction relation

Definition

Z = (A, £) an interpretation; F a formula
T P(ty,... t,) = if(t,...,t5)ePA
Tl F = fTEF
IEFVG <~ fIEFoZIlEG
T E=Vx F(x) <= if Z{x — a} = F(x) holds for all a € A
Z = 3x F(x) <= if Z{x — a} = F(x) holds for some a € A
TEX(t,. .. ty) = UX)=Aand (t,...,t5) c A
T = ¥X F(X) = if T{X > A} = F(X) for all A’ C A”
7 = 3IX F(X) = if Z{X — A’} E F(X) for some A’ C A"
Z =Vu F(u) <= ifZ{u— f} = F(u) forall f: A" - A
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Second-Order Logic

Satisfaction relation

Definition

Z = (A, £) an interpretation; F a formula
T P(ty,... t,) = if(t,...,t5)ePA
Tl F = fTEF
IEFVG <~ fIEFoZIlEG
T E=Vx F(x) <= if Z{x — a} = F(x) holds for all a € A
Z = 3x F(x) <= if Z{x — a} = F(x) holds for some a € A
TEX(t,. .. ty) = UX)=Aand (t,...,t5) c A
T = ¥X F(X) = if T{X > A} = F(X) for all A’ C A”
7 = 3IX F(X) = if Z{X — A’} E F(X) for some A’ C A"
Z =Vu F(u) <= ifZ{u— f} = F(u) forall f: A" - A
Z = 3Ju F(u) <= ifZ{u— f} E F(u) for some f: A" — A
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Reachability is Expressible in Second-Order Logic

Example

e let G be a structure defined over the language £ = {R} with the
domain G
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Reachability is Expressible in Second-Order Logic

Example

e let G be a structure defined over the language £ = {R} with the
domain G

e R represents the (directed) edge relation of the graph G
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Reachability is Expressible in Second-Order Logic

Example
e let G be a structure defined over the language £ = {R} with the
domain G
e R represents the (directed) edge relation of the graph G

e consider the second order formula F(x, y)

HP(V21V22VZ3 (—|P(zl, 1) A
A (P(z1,22) A P(z2,23) = P(z1,23))) A
AV21Vzy((P(z1, 22) A =3z3(P(z1, z3) A P(z3, 22)) = R(z1,22)) A
A P(X,y))
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Reachability is Expressible in Second-Order Logic

Example

e let G be a structure defined over the language £ = {R} with the
domain G

e R represents the (directed) edge relation of the graph G

e consider the second order formula F(x, y)

HP(V21V22VZ3 (—|P(zl, 1) A
A (P(z1,22) A P(z2,23) = P(z1,23))) A
AV21Vzy((P(z1, 22) A =3z3(P(z1, z3) A P(z3, 22)) = R(z1,22)) A
A P(X,y))

e suppose Z = F(x,y), then 3 path in G from ¢(x) to £(y)

GM (Institute of Computer Science @ UIBK) Automated Reasoning



More examples
Example

consider Whitehead-Russel definition of equality:
x =y < VX(X(x) = X(y))
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The Bad News

More examples

Example
consider Whitehead-Russel definition of equality:
x =y < VX(X(x) = X(y))

Lemma

Leibnitz's equality and Whitehead-Russel’s equality are equivalent
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More examples
Example

consider Whitehead-Russel definition of equality:
x =y < VX(X(x) = X(y))

Lemma
Leibnitz's equality and Whitehead-Russel’s equality are equivalent

Example
consider the following “axiom” of enumerability (Enum)
FzIFuVX((X(z2) A Ix(X(x) = X(u(x)))) — ¥VxX(x))

which is true in an interpretation iff its domain is countable
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The Bad News

Example
consider the following “"axiom” of infinity (Inf)
Jz3u(Vxz # u(x) AVxVy(u(x) = u(y) > x=y))

which is true in an interpretation iff the domain it infinite
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Example
consider the following “"axiom” of infinity (Inf)
Jz3u(Vxz # u(x) AVxVy(u(x) = u(y) > x=y))

which is true in an interpretation iff the domain it infinite

Lemma J

Léwenheim-Skolem fails for second-order logic
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The Bad News

Example
consider the following “"axiom” of infinity (Inf)
Jz3u(Vxz # u(x) AVxVy(u(x) = u(y) > x=y))

which is true in an interpretation iff the domain it infinite

Lemma
Léwenheim-Skolem fails for second-order logic

Proof.

recall that Lowenheim-Skolem asserts that if a set of sentences G
has a model, then G has a countable model

consider G = {=Enum, Inf}
then G is satisfiable, but only with uncountable models

contradiction
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The Bad News

Example
consider the following “"axiom” of infinity (Inf)
Jz3u(Vxz # u(x) AVxVy(u(x) = u(y) > x=y))

which is true in an interpretation iff the domain it infinite

Lemma
Léwenheim-Skolem fails for second-order logic

Proof.

recall that Lowenheim-Skolem asserts that if a set of sentences G
has a model, then G has a countable model

consider G = {=Enum, Inf}
then G is satisfiable, but only with uncountable models

contradiction -
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The Bad News

Definition

consider (the following variant of) Robinson's Q
Ny : s(i) =s(v) > vi =w
N> : 0 #s(v1)
Ns: (n+0)=w
Ny : (vi +s(v2)) =s(vi + v2)
Ns : (v1-0)=0
Ne:  (vi-s(v2)) = ((v1-v2) +v1)
N7 : (v €0) <= (v1 =0)
Ng : (vi <s(n)) <= (i < v Vv =s(n))
No: (1< w)V(z<w)
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The Bad News

Definition
consider (the following variant of) Robinson's Q
Ny : s(i) =s(v) > vi =w
N> : 0 #s(v1)
Ns: (n+0)=w
Ny : (vi +s(v2)) =s(vi + v2)
Ns : (v1-0)=0
Ne:  (vi-s(v2)) = ((v1-v2) +v1)
N7 : (v €0) <= (v1 =0)
Ng : (vi <s(n)) <= (i < v Vv =s(n))
No: (1< w)V(z<w)
Fact
Q is complete for quantifier-free sentences of the language of arithmetic
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The Bad News

Example
let P2 be the axioms in Q together with the following axiom of induction
YX((X(0) AVx(X(x) — X(s(x)))) = VxX(x))

then any interpretation of the language of arithmetic is a model of P? iff
it is isomorphic to the standard interpretation
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Example
let P2 be the axioms in Q together with the following axiom of induction
YX((X(0) AVx(X(x) — X(s(x)))) = VxX(x))

then any interpretation of the language of arithmetic is a model of P? iff
it is isomorphic to the standard interpretation

Lemma
compactness fails for second-order logic
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The Bad News

Example
let P2 be the axioms in Q together with the following axiom of induction
YX((X(0) AVx(X(x) — X(s(x)))) = VxX(x))

then any interpretation of the language of arithmetic is a model of P? iff
it is isomorphic to the standard interpretation

Lemma

compactness fails for second-order logic

Proof.
add a constant c to the language of arithmetic
consider G = {P?,c #0,c£A1,c#2,...}
any finite subset of G is satisfiable, while G is not
contradiction
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The Bad News

Summary of Bad News

the set of valid second-order sentences is not recursively enumerable

Lemma J
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The Bad News

Summary of Bad News

Lemma
the set of valid second-order sentences is not recursively enumerable

Proof Sketch.
the proof essentially employs that P? exactly confirms to number theory,
as the later is incomplete = 3 a calculus complete for second-order |
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The Bad News

Summary of Bad News

Lemma
the set of valid second-order sentences is not recursively enumerable

Proof Sketch.

the proof essentially employs that P? exactly confirms to number theory,
as the later is incomplete = 3 a calculus complete for second-order |
Theorem

compactness fails for second-order logic
Léwenheim-Skolem fails for second-order logic

— 1 a calculus that is complete for second-order logic
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The Bad News

Summary of Bad News

Lemma
the set of valid second-order sentences is not recursively enumerable

Proof Sketch.

the proof essentially employs that P? exactly confirms to number theory,
as the later is incomplete = 3 a calculus complete for second-order |
Theorem

compactness fails for second-order logic
Léwenheim-Skolem fails for second-order logic

— 1 a calculus that is complete for second-order logic, in particular
the set of valid second-order sentences is not recursively enumerable
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Complexity Theory via Logic

Good News

Example

3 set H of second-order sentences, such that Mod™(#) = NP
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Good News

Example

3 set H of second-order sentences, such that Mod™(#) = NP
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Complexity Theory via Logic

Good News

Example |

3 set H of second-order sentences, such that Mod™"(#) = NP

Definition
e Let K be a set of finite structures and let F be a (second-order)
sentence

e suppose M is a (second-order) structure in K

then the F—IC problem asks, whether M |= F holds
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Complexity Theory via Logic

Definition (existential second-order formula (3SO))

we call a second-order formula F existential if F has the following form:
IX13X---3X, G
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Complexity Theory via Logic

Definition (existential second-order formula (3S0))
we call a second-order formula F existential if F has the following form:
I3Xi3Xe---3X, G

where G is essentially a first-order formula that may contain the free
second-order variables Xi,..., X,
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Complexity Theory via Logic

Definition (existential second-order formula (3S0))
we call a second-order formula F existential if F has the following form:
I3Xi3Xe---3X, G

where G is essentially a first-order formula that may contain the free
second-order variables Xi,..., X,

Lemma ©
if F is 3S0, then the F —KC problem is in NP J
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Complexity Theory via Logic

Definition (existential second-order formula (3S0))
we call a second-order formula F existential if F has the following form:
I3Xi3Xe---3X, G

where G is essentially a first-order formula that may contain the free
second-order variables Xi,..., X,

Lemma ©
if F is 3S0, then the F —KC problem is in NP J

Lemma @

if F—IK is decidable by a NTM M that runs in polynomial time then F is
equivalent to an existential second-order sentence
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Complexity Theory via Logic

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)
a sentence F is equivalent to a sentence in 3SO iff F—K € NP
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Complexity Theory via Logic

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)
a sentence F is equivalent to a sentence in 3SO iff F—K € NP

if F—IC € NP, then it can be assumed that the first-order part of F
is a universal formula
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Complexity Theory via Logic

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)
a sentence F is equivalent to a sentence in 3SO iff F—K € NP

if F—IC € NP, then it can be assumed that the first-order part of F
is a universal formula

Proof.

suppose F is an existential second-order sentence; by Lemma @,
F—K € NP
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Complexity Theory via Logic

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)
a sentence F is equivalent to a sentence in 3SO iff F—K € NP

if F—IC € NP, then it can be assumed that the first-order part of F
is a universal formula

Proof.

suppose F is an existential second-order sentence; by Lemma @,
F—K € NP

suppose F—K € NP; 3 NTM N that decides F—/C
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Complexity Theory via Logic

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)

a sentence F is equivalent to a sentence in 3SO iff F—K € NP

if F—IC € NP, then it can be assumed that the first-order part of F
is a universal formula

Proof.

suppose F is an existential second-order sentence; by Lemma @,
F—K € NP

suppose F—K € NP; 3 NTM N that decides F—/C
by Lemma @, F is equivalent to an 3SO-formula G
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Complexity Theory via Logic

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)
a sentence F is equivalent to a sentence in 3SO iff F—K € NP

if F—IC € NP, then it can be assumed that the first-order part of F
is a universal formula

Proof.

suppose F is an existential second-order sentence; by Lemma @,
F—K € NP

suppose F—K € NP; 3 NTM N that decides F—/C
by Lemma @, F is equivalent to an 3SO-formula G

the proof of the second lemma even yields that the first-order part
of G is universal
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Complexity Theory via Logic

An Implicit Characterisation of a Complexity Class

Theorem (Fagin's Theorem)
a sentence F is equivalent to a sentence in 3SO iff F—K € NP

if F—IC € NP, then it can be assumed that the first-order part of F
is a universal formula

Proof.

suppose F is an existential second-order sentence; by Lemma @,
F—K € NP

suppose F—K € NP; 3 NTM N that decides F—/C
by Lemma @, F is equivalent to an 3SO-formula G

the proof of the second lemma even yields that the first-order part
of G is universal ]
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Complexity Theory via Logic

Corollary
SAT is NP-complete (wrt. the polytime reducibility relation)
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Complexity Theory via Logic

Corollary
SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

SAT € NP follows from Lemma @, as SAT can be easily encoded as
3SO-formula
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Complexity Theory via Logic

Corollary
SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

SAT € NP follows from Lemma @, as SAT can be easily encoded as
3SO-formula

thus let A € NP
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Complexity Theory via Logic

Corollary
SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

SAT € NP follows from Lemma @, as SAT can be easily encoded as
3SO-formula

thus let A € NP

by Fagin's theorem, there exists an 3SO-formula F and some finite
structures K, such that A is equivalent to the F—K problem;
moreover the first-order part of F is univeral
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Complexity Theory via Logic

Corollary
SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

SAT € NP follows from Lemma @, as SAT can be easily encoded as
3SO-formula

thus let A € NP

by Fagin's theorem, there exists an 3SO-formula F and some finite
structures K, such that A is equivalent to the F—K problem;
moreover the first-order part of F is univeral

let M € K be a finite; the universal part of F can be represented as
propositional formula B

GM (Institute of Computer Science @ UIBK) Automated Reasoning



Complexity Theory via Logic

Corollary
SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

SAT € NP follows from Lemma @, as SAT can be easily encoded as
3SO-formula

thus let A € NP

by Fagin's theorem, there exists an 3SO-formula F and some finite
structures K, such that A is equivalent to the F—K problem;
moreover the first-order part of F is univeral

let M € K be a finite; the universal part of F can be represented as
propositional formula B

any interpretation of F is conceivable as an assignment of B (and
vice versa)
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Complexity Theory via Logic

Corollary
SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

SAT € NP follows from Lemma @, as SAT can be easily encoded as
3SO-formula

thus let A € NP

by Fagin's theorem, there exists an 3SO-formula F and some finite
structures K, such that A is equivalent to the F—K problem;
moreover the first-order part of F is univeral

let M € K be a finite; the universal part of F can be represented as
propositional formula B

any interpretation of F is conceivable as an assignment of B (and
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[ thus A is reducible to a SAT problem
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Corollary
SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

SAT € NP follows from Lemma @, as SAT can be easily encoded as
3SO-formula

thus let A € NP

by Fagin's theorem, there exists an 3SO-formula F and some finite
structures K, such that A is equivalent to the F—K problem;
moreover the first-order part of F is univeral

let M € K be a finite; the universal part of F can be represented as
propositional formula B

any interpretation of F is conceivable as an assignment of B (and
vice versa)

[ thus A is reducible to a SAT problem
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Complexity Theory via Logic

Corollary
the following is equivalent:
e NP = coNP and
e 35O is equivalent to (full) second-order logic
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Corollary
the following is equivalent:
e NP = coNP and
e 35O is equivalent to (full) second-order logic

Proof.
any problem in coNP is representable as VSO formula
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Complexity Theory via Logic

Corollary
the following is equivalent:
e NP = coNP and
e 35O is equivalent to (full) second-order logic

Proof.
any problem in coNP is representable as VSO formula

thus, if NP = coNP, then 3SO = VSO
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Complexity Theory via Logic

Corollary
the following is equivalent:
e NP = coNP and
e 35O is equivalent to (full) second-order logic

Proof.
any problem in coNP is representable as VSO formula
thus, if NP = coNP, then 3SO = VSO

hence, 9SO would be closed under negation and thus equivalent to
full second-order logic
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Corollary
the following is equivalent:
e NP = coNP and
e 35O is equivalent to (full) second-order logic

Proof.
any problem in coNP is representable as VSO formula
thus, if NP = coNP, then 3SO = VSO

hence, 9SO would be closed under negation and thus equivalent to
full second-order logic
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Complexity Theory via Logic

Corollary
the following is equivalent:
e NP = coNP and
e 35O is equivalent to (full) second-order logic

Proof.
any problem in coNP is representable as VSO formula
thus, if NP = coNP, then 3SO = VSO

hence, 9SO would be closed under negation and thus equivalent to

full second-order logic -

We leave it to the reader to verify and expand upon the claims
in this section and to resolve the problems whether
P = NP = coNP  (S. Hedman, A First (sic!) Course in Logic)
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