

Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

Summary Last Lecture

Definition

- intuitionistic logic is a restriction of classical logic, where certain formulas are no longer derivable
- for example $A \vee \neg A$ is no longer valid

Definition (Curry-Howard)

the Curry-Howard correspondence (aka Curry-Howard isomorphism) consists of the following parts:

- formulas = types
- proof = programs
- 3 normalisation = computation

$$\begin{array}{cccc}
\Pi_{1} & & & \Pi_{2} & & \Pi_{1}[x \backslash \Pi_{2}] \\
\underline{\Gamma, x : \sigma \Rightarrow M : \tau} & \vdots & \Longrightarrow & \vdots \\
\underline{\Gamma \Rightarrow \lambda x.M : \sigma \rightarrow \tau} & \Gamma \Rightarrow N : \tau & & \Gamma \Rightarrow M[x := N] \\
\hline
\Gamma \Rightarrow (\lambda x.M)N : \tau & & & & & & & & \\
\end{array}$$

the proof $\Pi_1[x \backslash \Pi_2]$ represents the proof that is obtained from Π_1 by replacing assumptions corresponding to the variable x by Π_2

Remark

the Curry-Howard correspondence extends to many systems:

- intuitionistic logic and λ -calculus
- Hilbert axioms and combinatory logic
- •

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem, natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-Skolem, compactness, model existence theorem, natural deduction, completeness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson's Joint Consistency Theorem, Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order Logic

Lemma

given a directed graph G, we can <u>not</u> express the following: let s and t be nodes in G, then there exists a path from s to t

Lemma

given a directed graph G, we can **not** express the following: let s and t be nodes in G, then there exists a path from s to t

Proof Sketch.

 \blacksquare let A be a formula that expresses that node t is reachable from s

Lemma

given a directed graph G, we can <u>not</u> express the following: let s and t be nodes in G, then there exists a path from s to t

- I let A be a formula that expresses that node t is reachable from s
- 2 let B_n express that $\neg \exists$ path of length n between s and t

Lemma

given a directed graph G, we can **not** express the following: let s and t be nodes in G, then there exists a path from s to t

- I let A be a formula that expresses that node t is reachable from s
- 2 let B_n express that $\neg \exists$ path of length n between s and t
- $\mathcal{C} := A \cup \{B_n \mid n \geqslant 1\}$ is unsatisfiable

Lemma

given a directed graph G, we can **not** express the following: let s and t be nodes in G, then there exists a path from s to t

- \blacksquare let A be a formula that expresses that node t is reachable from s
- 2 let B_n express that $\neg \exists$ path of length n between s and t
- $\mathcal{C} := A \cup \{B_n \mid n \geqslant 1\}$ is unsatisfiable
- 4 \forall finite $C_0 \subset C$, C_0 is satisfiable

Lemma

given a directed graph G, we can **not** express the following: let s and t be nodes in G, then there exists a path from s to t

- \blacksquare let A be a formula that expresses that node t is reachable from s
- **2** let B_n express that ¬∃ path of length n between s and t
- $\mathcal{C} := A \cup \{B_n \mid n \geqslant 1\}$ is unsatisfiable
- 4 \forall finite $C_0 \subset C$, C_0 is satisfiable
- 5 contradiction to compactness

Lemma

given a directed graph G, we can <u>not</u> express the following: let s and t be nodes in G, then there exists a path from s to t

Proof Sketch.

- \blacksquare let A be a formula that expresses that node t is reachable from s
- **2** let B_n express that $\neg \exists$ path of length n between s and t
- $\mathcal{C} := A \cup \{B_n \mid n \geqslant 1\}$ is unsatisfiable
- 4 \forall finite $C_0 \subset C$, C_0 is satisfiable
- 5 contradiction to compactness

Corollary

reachability is not expressible in first-order logic

Lemma

given a directed graph G, we can **not** express the following: let s and t be nodes in G, then there exists a path from s to t

Proof Sketch.

- I let A be a formula that expresses that node t is reachable from s
- **2** let B_n express that ¬∃ path of length n between s and t
- $\mathcal{C} := A \cup \{B_n \mid n \geqslant 1\}$ is unsatisfiable
- 4 \forall finite $C_0 \subset C$, C_0 is satisfiable
- 5 contradiction to compactness

Corollary

reachability is not expressible in first-order logic; i.e., there is no formula F(x,y) such that F holds iff \exists path in graph G from $\ell(x)$ to $\ell(y)$

what about an infinite set of formulas?

what about an infinite set of formulas?

Definition

let ${\mathcal H}$ be a set of sentences (of ${\mathcal L}$) and let

$$\mathsf{Mod}(\mathcal{H}) = \{\mathcal{A} \mid \mathcal{A} \text{ is a structure (of } \mathcal{L}) \text{ and } \mathcal{A} \models \mathcal{H}\}$$

what about an infinite set of formulas?

Definition

let \mathcal{H} be a set of sentences (of \mathcal{L}) and let

$$\mathsf{Mod}(\mathcal{H}) = \{ \mathcal{A} \mid \mathcal{A} \text{ is a structure (of } \mathcal{L}) \text{ and } \mathcal{A} \models \mathcal{H} \}$$

let K be a collection of structures

what about an infinite set of formulas?

Definition

let $\mathcal H$ be a set of sentences (of $\mathcal L$) and let

$$\mathsf{Mod}(\mathcal{H}) = \{ \mathcal{A} \mid \mathcal{A} \text{ is a structure (of } \mathcal{L}) \text{ and } \mathcal{A} \models \mathcal{H} \}$$

let $\mathcal K$ be a collection of structures

• K is elementary if \exists sentence F and K = Mod(F)

what about an infinite set of formulas?

Definition

let ${\mathcal H}$ be a set of sentences (of ${\mathcal L}$) and let

$$\mathsf{Mod}(\mathcal{H}) = \{ \mathcal{A} \mid \mathcal{A} \text{ is a structure (of } \mathcal{L}) \text{ and } \mathcal{A} \models \mathcal{H} \}$$

let K be a collection of structures

- K is elementary if \exists sentence F and K = Mod(F)
- K is Δ -elementary if \exists set of sentences H and $K = \mathsf{Mod}(H)$

what about an infinite set of formulas?

Definition

let ${\mathcal H}$ be a set of sentences (of ${\mathcal L}$) and let

$$\mathsf{Mod}(\mathcal{H}) = \{ \mathcal{A} \mid \mathcal{A} \text{ is a structure (of } \mathcal{L}) \text{ and } \mathcal{A} \models \mathcal{H} \}$$

let K be a collection of structures

- K is elementary if \exists sentence F and K = Mod(F)
- K is Δ -elementary if \exists set of sentences H and $K = \mathsf{Mod}(H)$

Fact

- each elementary class is ∆-elementary
- every Δ -elementary class is the intersection of elementary classes:

$$\mathsf{Mod}(\mathcal{F}) = \bigcap_{F \in \mathcal{F}} \mathsf{Mod}(F)$$

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_1 of connected graphs is not Δ -elementary

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_1 of connected graphs is not Δ -elementary

Proof.

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_1 of connected graphs is not Δ -elementary

Proof.

- **1** suppose $\mathcal{K}_1 = \mathsf{Mod}(\mathcal{H})$ for set of sentences \mathcal{H}
- 2 set B_n , $n \ge 2$ as $x = y \lor \exists x_1 \cdots \exists x_{n-2} \ R(x, x_1) \land \cdots \land R(x_{n-2}, y)$

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_1 of connected graphs is not Δ -elementary

Proof.

- **1** suppose $\mathcal{K}_1 = \mathsf{Mod}(\mathcal{H})$ for set of sentences \mathcal{H}
- 2 set B_n , $n \geqslant 2$ as $x = y \lor \exists x_1 \cdots \exists x_{n-2} \ R(x, x_1) \land \cdots \land R(x_{n-2}, y)$
- $\exists \forall m, \mathcal{H} \cup \{\neg B_n \mid 2 \leqslant n \leqslant m\}$ has a model, but $\mathcal{H} \cup \{\neg B_n \mid 2 \leqslant n\}$ is unsatisfiable

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_1 of connected graphs is not Δ -elementary

Proof.

- **1** suppose $\mathcal{K}_1 = \mathsf{Mod}(\mathcal{H})$ for set of sentences \mathcal{H}
- 2 set B_n , $n \geqslant 2$ as $x = y \lor \exists x_1 \cdots \exists x_{n-2} \ R(x, x_1) \land \cdots \land R(x_{n-2}, y)$
- $\forall m, \mathcal{H} \cup \{\neg B_n \mid 2 \leqslant n \leqslant m\}$ has a model, but $\mathcal{H} \cup \{\neg B_n \mid 2 \leqslant n\}$ is unsatisfiable
- 4 contradiction to compactness

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_1 of connected graphs is not Δ -elementary

Proof.

- **1** suppose $\mathcal{K}_1 = \mathsf{Mod}(\mathcal{H})$ for set of sentences \mathcal{H}
- 2 set B_n , $n \geqslant 2$ as $x = y \lor \exists x_1 \cdots \exists x_{n-2} \ R(x, x_1) \land \cdots \land R(x_{n-2}, y)$
- **3** \forall m, $\mathcal{H} \cup \{\neg B_n \mid 2 \leqslant n \leqslant m\}$ has a model, but $\mathcal{H} \cup \{\neg B_n \mid 2 \leqslant n\}$ is unsatisfiable
- 4 contradiction to compactness

Answer

infinite set of formulas are not enough

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_1 of connected graphs is not Δ -elementary

Proof.

- **1** suppose $\mathcal{K}_1 = \mathsf{Mod}(\mathcal{H})$ for set of sentences \mathcal{H}
- 2 set B_n , $n \geqslant 2$ as $x = y \lor \exists x_1 \cdots \exists x_{n-2} \ R(x, x_1) \land \cdots \land R(x_{n-2}, y)$
- 3 \forall m, $\mathcal{H} \cup \{\neg B_n \mid 2 \leqslant n \leqslant m\}$ has a model, but $\mathcal{H} \cup \{\neg B_n \mid 2 \leqslant n\}$ is unsatisfiable
- 4 contradiction to compactness

Answer

infinite set of formulas are not enough

Example

finiteness is not expressible in first-order logic

a second-order language extends a first-order language as follows

a second-order language extends a first-order language as follows

Definition

first-order variables

individual variables

a second-order language extends a first-order language as follows

Definition

first-order variables

individual variables

2 relation (or predicate) variables $V_0^i, V_1^i, \dots, V_i^i, \dots$

denoted X, Y, Z, etc.

a second-order language extends a first-order language as follows

Definition

first-order variables

individual variables

2 relation (or predicate) variables $V_0^i, V_1^i, \dots, V_i^i, \dots$

denoted X, Y, Z, etc.

3 function variables $u_0^i, u_1^i, \ldots, u_i^i, \ldots$

denoted u, v, w, etc.

a second-order language extends a first-order language as follows

Definition

first-order variables

individual variables

2 relation (or predicate) variables $V_0^i, V_1^i, \dots, V_i^i, \dots$

denoted X, Y, Z, etc.

3 function variables $u_0^i, u_1^i, \ldots, u_i^i, \ldots$

denoted u, v, w, etc.

Definition

second-order terms are defined like first-order terms together with the following clause

a second-order language extends a first-order language as follows

Definition

first-order variables

individual variables

2 relation (or predicate) variables $V_0^i, V_1^i, \dots, V_i^i, \dots$

denoted X, Y, Z, etc.

3 function variables $u_0^i, u_1^i, \ldots, u_i^i, \ldots$

denoted u, v, w, etc.

Definition

second-order terms are defined like first-order terms together with the following clause

4 if t_1, \ldots, t_n are second-order terms, u an n-ary function variable, then $u(t_1, \ldots, t_n)$ is a second-order term

a second-order language extends a first-order language as follows

Definition

first-order variables

individual variables

2 relation (or predicate) variables $V_0^i, V_1^i, \dots, V_i^i, \dots$

denoted X, Y, Z, etc.

3 function variables $u_0^i, u_1^i, \ldots, u_i^i, \ldots$

denoted u, v, w, etc.

Definition

second-order terms are defined like first-order terms together with the following clause

- 4 if t_1, \ldots, t_n are second-order terms, u an n-ary function variable, then $u(t_1, \ldots, t_n)$ is a second-order term
- a second-order terms without function variables is first-order

Definition

second-order formulas are defined as follows

Definition

second-order formulas are defined as follows

1 first-order formulas are second-order formula

Definition

second-order formulas are defined as follows

- first-order formulas are second-order formula
- 2 if t_1, \ldots, t_n are second-order terms, X an n-ary predicate variable, then $X(t_1, \ldots, t_n)$ is a second-order formula

second-order formulas are defined as follows

- 1 first-order formulas are second-order formula
- 2 if t_1, \ldots, t_n are second-order terms, X an n-ary predicate variable, then $X(t_1, \ldots, t_n)$ is a second-order formula
- If A(f) is a second-order formula, f a function constant, u a function variable, then

$$\forall u \ A(u) \qquad \exists u \ A(u)$$

are second-order formulas

second-order formulas are defined as follows

- first-order formulas are second-order formula
- 2 if t_1, \ldots, t_n are second-order terms, X an n-ary predicate variable, then $X(t_1, \ldots, t_n)$ is a second-order formula
- If A(f) is a second-order formula, f a function constant, u a function variable, then

$$\forall u \ A(u) \qquad \exists u \ A(u)$$

are second-order formulas

4 if A(P) a formula, P a predicate constant, X a predicate variable, then

$$\forall X \ A(X) \qquad \exists X \ A(X)$$

are second-order formulas

second-order formulas are defined as follows

- first-order formulas are second-order formula
- 2 if t_1, \ldots, t_n are second-order terms, X an n-ary predicate variable, then $X(t_1, \ldots, t_n)$ is a second-order formula
- If A(f) is a second-order formula, f a function constant, u a function variable, then

$$\forall u \ A(u) \qquad \exists u \ A(u)$$

are second-order formulas

4 if A(P) a formula, P a predicate constant, X a predicate variable, then

$$\forall X \ A(X) \qquad \exists X \ A(X)$$

are second-order formulas

5 a second-order formula without predicate and function variables is first-order

let u denote a function variable, X a predicate variable

$$\forall x \ f(x) = x \qquad \exists u \forall x \ u(x) = x$$

let u denote a function variable, X a predicate variable

$$\forall x \ f(x) = x \qquad \exists u \forall x \ u(x) = x$$

1 the first formulas expresses a property of the identity function

let u denote a function variable, X a predicate variable

$$\forall x \ f(x) = x \qquad \exists \mathbf{u} \forall x \ \mathbf{u}(x) = x$$

- 1 the first formulas expresses a property of the identity function
- 2 the 2nd asserts existence of an identity function

let u denote a function variable, X a predicate variable

$$\forall x \ f(x) = x \qquad \exists \mathbf{u} \forall x \ \mathbf{u}(x) = x$$

- 1 the first formulas expresses a property of the identity function
- 2 the 2nd asserts existence of an identity function

Example

consider

$$x = y \to (P(x) \leftrightarrow P(y))$$
 $x = y \leftrightarrow \forall X(X(x) \leftrightarrow X(y))$

let u denote a function variable, X a predicate variable

$$\forall x \ f(x) = x \qquad \exists \mathbf{u} \forall x \ \mathbf{u}(x) = x$$

- 1 the first formulas expresses a property of the identity function
- 2 the 2nd asserts existence of an identity function

Example

consider

$$x = y \to (P(x) \leftrightarrow P(y))$$
 $x = y \leftrightarrow \forall X(X(x) \leftrightarrow X(y))$

1 the first formulas expresses a property of equality

let u denote a function variable, X a predicate variable

$$\forall x \ f(x) = x \qquad \exists \mathbf{u} \forall x \ \mathbf{u}(x) = x$$

- 1 the first formulas expresses a property of the identity function
- 2 the 2nd asserts existence of an identity function

Example

consider

$$x = y \to (P(x) \leftrightarrow P(y))$$
 $x = y \leftrightarrow \forall X(X(x) \leftrightarrow X(y))$

- 1 the first formulas expresses a property of equality
- 2 the 2nd asserts defines equality

Definition

a second-order environment ℓ for $\mathcal A$ is a mapping

$$\ell \colon \{\{x_n \mid n \in \mathbb{N}\} \to A\} \cup \{\{u_n^i \mid i, n \in \mathbb{N}\} \to (A^i \to A)\} \cup \{\{V_n^i \mid i, n \in \mathbb{N}\} \to A^i\}$$

Definition

a second-order environment ℓ for $\mathcal A$ is a mapping

$$\ell \colon \{\{x_n \mid n \in \mathbb{N}\} \to A\} \cup \{\{u_n^i \mid i, n \in \mathbb{N}\} \to (A^i \to A)\} \cup \{\{V_n^i \mid i, n \in \mathbb{N}\} \to A^i\}$$

 $\ell\{X \mapsto A'\}$ maps X to relation $A' \subseteq A^n$ if X is n-ary; all other maps are unchanged; similarly for function variables

Definition

a second-order environment ℓ for ${\mathcal A}$ is a mapping

$$\ell \colon \{\{x_n \mid n \in \mathbb{N}\} \to A\} \cup \{\{u_n^i \mid i, n \in \mathbb{N}\} \to (A^i \to A)\} \cup \{\{V_n^i \mid i, n \in \mathbb{N}\} \to A^i\}$$

 $\ell\{X \mapsto A'\}$ maps X to relation $A' \subseteq A^n$ if X is n-ary; all other maps are unchanged; similarly for function variables

Definition

a second-order interpretation \mathcal{I} is a pair (\mathcal{A}, ℓ) such that

Definition

a second-order environment ℓ for ${\mathcal A}$ is a mapping

$$\ell \colon \{\{x_n \mid n \in \mathbb{N}\} \to A\} \cup \{\{u_n^i \mid i, n \in \mathbb{N}\} \to (A^i \to A)\} \cup \{\{V_n^i \mid i, n \in \mathbb{N}\} \to A^i\}$$

 $\ell\{X \mapsto A'\}$ maps X to relation $A' \subseteq A^n$ if X is n-ary; all other maps are unchanged; similarly for function variables

- a second-order interpretation \mathcal{I} is a pair (\mathcal{A}, ℓ) such that
 - A is a structure

Definition

a second-order environment ℓ for ${\mathcal A}$ is a mapping

$$\ell \colon \{\{x_n \mid n \in \mathbb{N}\} \to A\} \cup \{\{u_n^i \mid i, n \in \mathbb{N}\} \to (A^i \to A)\} \cup \{\{V_n^i \mid i, n \in \mathbb{N}\} \to A^i\}$$

 $\ell\{X \mapsto A'\}$ maps X to relation $A' \subseteq A^n$ if X is n-ary; all other maps are unchanged; similarly for function variables

- a second-order interpretation \mathcal{I} is a pair (\mathcal{A}, ℓ) such that
 - \mathcal{A} is a structure
 - ℓ is a second-order environment

consider the structure $\mathcal A$ with domain $\mathbb N$; $\ell(u)=\operatorname{succ}$ and $\ell(x)=0$ and let $\mathcal I=(\mathcal A,\ell)$

$$u(x)^{\mathcal{I}} = \operatorname{succ}(0) = 1$$

consider the structure $\mathcal A$ with domain $\mathbb N$; $\ell(u)=\operatorname{succ}$ and $\ell(x)=0$ and let $\mathcal I=(\mathcal A,\ell)$

$$u(x)^{\mathcal{I}} = \operatorname{succ}(0) = 1$$

Definition

the value of a second-order term t:

$$t^{\mathcal{I}} = \begin{cases} \ell(t) & \text{if } t \text{ an individual variable} \\ c^{\mathcal{A}} & \text{if } t = c \\ f^{\mathcal{A}}(t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) & \text{if } t = f(t_1, \dots, t_n), \ f \text{ a function constant} \\ \ell(u)(t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) & \text{if } t = u(t_1, \dots, t_n), \ u \text{ a function variable} \end{cases}$$

Definition

 $\mathcal{I} = (\mathcal{A}, \ell)$ an interpretation; F a formula

$$\mathcal{I} = (\mathcal{A}, \ell)$$
 an interpretation; F a formula

$$\mathcal{I} \models P(t_1,\ldots,t_n) :\iff \text{if } (t_1^{\mathcal{I}},\ldots,t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$$

$$\mathcal{I} \models \neg F \qquad :\iff \text{if } \mathcal{I} \not\models F$$

$$\mathcal{I} \models F \lor G$$
 : \iff if $\mathcal{I} \models F$ or $\mathcal{I} \models G$

$$\mathcal{I} \models \forall x \ F(x)$$
 : \iff if $\mathcal{I}\{x \mapsto a\} \models F(x)$ holds for all $a \in A$

$$\mathcal{I} \models \exists x \ F(x)$$
 : \iff if $\mathcal{I}\{x \mapsto a\} \models F(x)$ holds for some $a \in A$

$$\mathcal{I} = (\mathcal{A}, \ell)$$
 an interpretation; F a formula $\mathcal{I} \models P(t_1, \dots, t_n) :\iff \text{if } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$ $\mathcal{I} \models \neg F :\iff \text{if } \mathcal{I} \not\models F$ $\mathcal{I} \models F \lor G :\iff \text{if } \mathcal{I} \models F \text{ or } \mathcal{I} \models G$ $\mathcal{I} \models \forall x \ F(x) :\iff \text{if } \mathcal{I}\{x \mapsto a\} \models F(x) \text{ holds for all } a \in A$ $\mathcal{I} \models \exists x \ F(x) :\iff \text{if } \mathcal{I}\{x \mapsto a\} \models F(x) \text{ holds for some } a \in A$ $\mathcal{I} \models X(t_1, \dots, t_n) :\iff \ell(X) = A' \text{ and } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in A'$

$$\mathcal{I} = (\mathcal{A}, \ell)$$
 an interpretation; F a formula $\mathcal{I} \models P(t_1, \dots, t_n)$: \iff if $(t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$ $\mathcal{I} \models \neg F$: \iff if $\mathcal{I} \not\models F$ $\mathcal{I} \models F \lor G$: \iff if $\mathcal{I} \models F \lor G$ or $\mathcal{I} \models G$ $\mathcal{I} \models \forall x F(x)$: \iff if $\mathcal{I}\{x \mapsto a\} \models F(x) \lor f$ holds for all $a \in A$ $\mathcal{I} \models \exists x F(x)$: \iff if $\mathcal{I}\{x \mapsto a\} \models F(x) \lor f$ holds for some $a \in A$ $\mathcal{I} \models X(t_1, \dots, t_n)$: $\iff \ell(X) = A' \lor f$ and $(t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in A'$ $\mathcal{I} \models \forall X F(X)$: \iff if $\mathcal{I}\{X \mapsto A'\} \models F(X) \lor f$ for all $A' \subseteq A^n$

$$\mathcal{I} = (\mathcal{A}, \ell) \text{ an interpretation; } F \text{ a formula}$$

$$\mathcal{I} \models P(t_1, \dots, t_n) \quad :\iff \text{ if } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$$

$$\mathcal{I} \models \neg F \qquad :\iff \text{ if } \mathcal{I} \not\models F$$

$$\mathcal{I} \models F \vee G \qquad :\iff \text{ if } \mathcal{I} \models F \text{ or } \mathcal{I} \models G$$

$$\mathcal{I} \models \forall x \ F(x) \qquad :\iff \text{ if } \mathcal{I}\{x \mapsto a\} \models F(x) \text{ holds for all } a \in A$$

$$\mathcal{I} \models \exists x \ F(x) \qquad :\iff \text{ if } \mathcal{I}\{x \mapsto a\} \models F(x) \text{ holds for some } a \in A$$

$$\mathcal{I} \models X(t_1, \dots, t_n) \qquad :\iff \ell(X) = A' \text{ and } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in A'$$

$$\mathcal{I} \models \forall X \ F(X) \qquad :\iff \text{ if } \mathcal{I}\{X \mapsto A'\} \models F(X) \text{ for all } A' \subseteq A^n$$

$$\mathcal{I} \models \exists X \ F(X) \qquad :\iff \text{ if } \mathcal{I}\{X \mapsto A'\} \models F(X) \text{ for some } A' \subseteq A^n$$

$$\mathcal{I} = (\mathcal{A}, \ell) \text{ an interpretation; } F \text{ a formula}$$

$$\mathcal{I} \models P(t_1, \dots, t_n) \quad :\iff \text{ if } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$$

$$\mathcal{I} \models \neg F \qquad :\iff \text{ if } \mathcal{I} \not\models F$$

$$\mathcal{I} \models F \vee G \qquad :\iff \text{ if } \mathcal{I} \models F \text{ or } \mathcal{I} \models G$$

$$\mathcal{I} \models \forall x \ F(x) \qquad :\iff \text{ if } \mathcal{I}\{x \mapsto a\} \models F(x) \text{ holds for all } a \in A$$

$$\mathcal{I} \models \exists x \ F(x) \qquad :\iff \text{ if } \mathcal{I}\{x \mapsto a\} \models F(x) \text{ holds for some } a \in A$$

$$\mathcal{I} \models X(t_1, \dots, t_n) \qquad :\iff \ell(X) = A' \text{ and } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in A'$$

$$\mathcal{I} \models \forall X \ F(X) \qquad :\iff \text{ if } \mathcal{I}\{X \mapsto A'\} \models F(X) \text{ for all } A' \subseteq A^n$$

$$\mathcal{I} \models \exists X \ F(X) \qquad :\iff \text{ if } \mathcal{I}\{X \mapsto A'\} \models F(X) \text{ for some } A' \subseteq A^n$$

$$\mathcal{I} \models \forall u \ F(u) \qquad :\iff \text{ if } \mathcal{I}\{u \mapsto f\} \models F(u) \text{ for all } f : A^n \to A$$

$$\mathcal{I} = (\mathcal{A}, \ell) \text{ an interpretation; } F \text{ a formula}$$

$$\mathcal{I} \models P(t_1, \dots, t_n) \quad :\iff \text{ if } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in P^{\mathcal{A}}$$

$$\mathcal{I} \models \neg F \qquad :\iff \text{ if } \mathcal{I} \not\models F$$

$$\mathcal{I} \models F \vee G \qquad :\iff \text{ if } \mathcal{I} \models F \text{ or } \mathcal{I} \models G$$

$$\mathcal{I} \models \forall x \ F(x) \qquad :\iff \text{ if } \mathcal{I}\{x \mapsto a\} \models F(x) \text{ holds for all } a \in A$$

$$\mathcal{I} \models \exists x \ F(x) \qquad :\iff \text{ if } \mathcal{I}\{x \mapsto a\} \models F(x) \text{ holds for some } a \in A$$

$$\mathcal{I} \models X(t_1, \dots, t_n) \qquad :\iff \ell(X) = A' \text{ and } (t_1^{\mathcal{I}}, \dots, t_n^{\mathcal{I}}) \in A'$$

$$\mathcal{I} \models \forall X \ F(X) \qquad :\iff \text{ if } \mathcal{I}\{X \mapsto A'\} \models F(X) \text{ for all } A' \subseteq A^n$$

$$\mathcal{I} \models \exists X \ F(X) \qquad :\iff \text{ if } \mathcal{I}\{X \mapsto A'\} \models F(X) \text{ for some } A' \subseteq A^n$$

$$\mathcal{I} \models \forall u \ F(u) \qquad :\iff \text{ if } \mathcal{I}\{u \mapsto f\} \models F(u) \text{ for all } f : A^n \to A$$

$$\mathcal{I} \models \exists u \ F(u) \qquad :\iff \text{ if } \mathcal{I}\{u \mapsto f\} \models F(u) \text{ for some } f : A^n \to A$$

Example

• let $\mathcal G$ be a structure defined over the language $\mathcal L=\{R\}$ with the domain $\mathcal G$

Example

- let $\mathcal G$ be a structure defined over the language $\mathcal L=\{R\}$ with the domain $\mathcal G$
- ullet R represents the (directed) edge relation of the graph ${\cal G}$

Example

- let ${\cal G}$ be a structure defined over the language ${\cal L}=\{R\}$ with the domain ${\cal G}$
- ullet R represents the (directed) edge relation of the graph ${\cal G}$
- consider the second order formula F(x, y)

$$\exists P \big(\forall z_1 \forall z_2 \forall z_3 \big(\neg P(z_1, z_1) \land \\ \land \big(P(z_1, z_2) \land P(z_2, z_3) \rightarrow P(z_1, z_3) \big) \big) \land \\ \land \forall z_1 \forall z_2 \big(\big(P(z_1, z_2) \land \neg \exists z_3 \big(P(z_1, z_3) \land P(z_3, z_2) \big) \rightarrow R(z_1, z_2) \big) \land \\ \land P(x, y) \big)$$

Example

- let $\mathcal G$ be a structure defined over the language $\mathcal L=\{R\}$ with the domain $\mathcal G$
- ullet R represents the (directed) edge relation of the graph ${\cal G}$
- consider the second order formula F(x, y)

$$\exists P (\forall z_1 \forall z_2 \forall z_3 (\neg P(z_1, z_1) \land \land (P(z_1, z_2) \land P(z_2, z_3) \rightarrow P(z_1, z_3))) \land \land \forall z_1 \forall z_2 ((P(z_1, z_2) \land \neg \exists z_3 (P(z_1, z_3) \land P(z_3, z_2)) \rightarrow R(z_1, z_2)) \land \land P(x, y))$$

• suppose $\mathcal{I} \models F(x,y)$, then \exists path in \mathcal{G} from $\ell(x)$ to $\ell(y)$

More examples

Example

consider Whitehead-Russel definition of equality:

$$x = y \Longleftrightarrow \forall X(X(x) \to X(y))$$

More examples

Example

consider Whitehead-Russel definition of equality:

$$x = y \Longleftrightarrow \forall X(X(x) \rightarrow X(y))$$

Lemma

Leibnitz's equality and Whitehead-Russel's equality are equivalent

More examples

Example

consider Whitehead-Russel definition of equality:

$$x = y \Longleftrightarrow \forall X(X(x) \rightarrow X(y))$$

Lemma

Leibnitz's equality and Whitehead-Russel's equality are equivalent

Example

consider the following "axiom" of enumerability (Enum)

$$\exists z \exists u \forall X ((X(z) \land \forall x (X(x) \to X(u(x)))) \to \forall x X(x))$$

which is true in an interpretation iff its domain is countable

consider the following "axiom" of infinity (Inf)

$$\exists z \exists u (\forall xz \neq u(x) \land \forall x \forall y (u(x) = u(y) \rightarrow x = y))$$

which is true in an interpretation iff the domain it infinite

consider the following "axiom" of infinity (Inf)

$$\exists z \exists u (\forall xz \neq u(x) \land \forall x \forall y (u(x) = u(y) \rightarrow x = y))$$

which is true in an interpretation iff the domain it infinite

Lemma

Löwenheim-Skolem fails for second-order logic

consider the following "axiom" of infinity (Inf)

$$\exists z \exists u (\forall xz \neq u(x) \land \forall x \forall y (u(x) = u(y) \rightarrow x = y))$$

which is true in an interpretation iff the domain it infinite

Lemma

Löwenheim-Skolem fails for second-order logic

Proof.

- f I recall that Löwenheim-Skolem asserts that if a set of sentences $\cal G$ has a model, then $\cal G$ has a countable model
- **2** consider $\mathcal{G} = {\neg Enum, Inf}$
- ${f 3}$ then ${\cal G}$ is satisfiable, but only with uncountable models
- 4 contradiction

consider the following "axiom" of infinity (Inf)

$$\exists z \exists u (\forall xz \neq u(x) \land \forall x \forall y (u(x) = u(y) \rightarrow x = y))$$

which is true in an interpretation iff the domain it infinite

Lemma

Löwenheim-Skolem fails for second-order logic

Proof.

- I recall that Löwenheim-Skolem asserts that if a set of sentences $\mathcal G$ has a model, then $\mathcal G$ has a countable model
- **2** consider $\mathcal{G} = {\neg Enum, Inf}$
- \Im then $\mathcal G$ is satisfiable, but only with uncountable models
- 4 contradiction

consider (the following variant of) Robinson's Q

$$N_1$$
: $s(v_1) = s(v_2) \rightarrow v_1 = v_2$

$$N_2$$
: $0 \neq s(v_1)$

$$N_3$$
: $(v_1+0)=v_1$

$$N_4$$
: $(v_1 + s(v_2)) = s(v_1 + v_2)$

$$N_5: \qquad (v_1 \cdot 0) = 0$$

$$N_6$$
: $(v_1 \cdot s(v_2)) = ((v_1 \cdot v_2) + v_1)$

$$N_7$$
: $(v_1 \leqslant 0) \iff (v_1 = 0)$

$$N_8$$
: $(v_1 \leqslant \mathsf{s}(v_2)) \Longleftrightarrow (v_1 \leqslant v_2 \lor v_1 = \mathsf{s}(v_2))$

$$N_9$$
: $(v_1 \leqslant v_2) \lor (v_2 \leqslant v_1)$

consider (the following variant of) Robinson's Q

$$N_1:$$
 $s(v_1) = s(v_2) \rightarrow v_1 = v_2$
 $N_2:$ $0 \neq s(v_1)$
 $N_3:$ $(v_1 + 0) = v_1$
 $N_4:$ $(v_1 + s(v_2)) = s(v_1 + v_2)$
 $N_5:$ $(v_1 \cdot 0) = 0$
 $N_6:$ $(v_1 \cdot s(v_2)) = ((v_1 \cdot v_2) + v_1)$

$$N_7$$
: $(v_1 \leqslant 0) \iff (v_1 = 0)$

$$N_8$$
: $(v_1 \leqslant \mathsf{s}(v_2)) \Longleftrightarrow (v_1 \leqslant v_2 \lor v_1 = \mathsf{s}(v_2))$

$$N_9$$
: $(v_1 \leqslant v_2) \lor (v_2 \leqslant v_1)$

Fact

Q is complete for quantifier-free sentences of the language of arithmetic

Example

let \mathbf{P}^2 be the axioms in \mathbf{Q} together with the following axiom of induction

$$\forall X((X(0) \land \forall x(X(x) \to X(s(x)))) \to \forall xX(x))$$

then any interpretation of the language of arithmetic is a model of \mathbf{P}^2 iff it is isomorphic to the standard interpretation

Example

let ${f P}^2$ be the axioms in ${f Q}$ together with the following axiom of induction

$$\forall X((X(0) \land \forall x(X(x) \to X(s(x)))) \to \forall xX(x))$$

then any interpretation of the language of arithmetic is a model of ${\bf P}^2$ iff it is isomorphic to the standard interpretation

Lemma

compactness fails for second-order logic

Example

let P^2 be the axioms in Q together with the following axiom of induction

$$\forall X((X(0) \land \forall x(X(x) \to X(s(x)))) \to \forall xX(x))$$

then any interpretation of the language of arithmetic is a model of \mathbf{P}^2 iff it is isomorphic to the standard interpretation

Lemma

compactness fails for second-order logic

- 1 add a constant c to the language of arithmetic
- 2 consider $\mathcal{G} = \{ \mathbf{P}^2, c \neq 0, c \neq 1, c \neq 2, \dots \}$
- 3 any finite subset of \mathcal{G} is satisfiable, while \mathcal{G} is not
- 4 contradiction

Lemma

the set of valid second-order sentences is not recursively enumerable

Lemma

the set of valid second-order sentences is not recursively enumerable

Proof Sketch.

the proof essentially employs that \mathbf{P}^2 exactly confirms to number theory, as the later is incomplete $\neg \exists$ a calculus complete for second-order

Lemma

the set of valid second-order sentences is not recursively enumerable

Proof Sketch.

the proof essentially employs that P^2 exactly confirms to number theory, as the later is incomplete $\neg \exists$ a calculus complete for second-order

Theorem

- 1 compactness fails for second-order logic
- 2 Löwenheim-Skolem fails for second-order logic
- $\exists \neg \exists$ a calculus that is complete for second-order logic

Lemma

the set of valid second-order sentences is not recursively enumerable

Proof Sketch.

the proof essentially employs that P^2 exactly confirms to number theory, as the later is incomplete $\neg \exists$ a calculus complete for second-order

Theorem

- 1 compactness fails for second-order logic
- 2 Löwenheim-Skolem fails for second-order logic
- $\exists \neg \exists$ a calculus that is complete for second-order logic, in particular the set of valid second-order sentences is not recursively enumerable

Good News

Example

 \exists set \mathcal{H} of second-order sentences, such that $\mathsf{Mod}^\mathsf{fin}(\mathcal{H}) = \mathsf{NP}$

Good News

Example

finite models

 \exists set $\mathcal H$ of second-order sentences, such that $\mathsf{Mod}^\mathsf{fin}(\mathcal H) = \mathsf{NP}$

Good News

Example

finite models

 \exists set $\mathcal H$ of second-order sentences, such that $\mathsf{Mod}^\mathsf{fin}(\mathcal H) = \mathsf{NP}$

Definition

- Let K be a set of finite structures and let F be a (second-order) sentence
- ullet suppose ${\mathcal M}$ is a (second-order) structure in ${\mathcal K}$

then the F - K problem asks, whether $M \models F$ holds

we call a second-order formula F existential if F has the following form:

$$\exists X_1 \exists X_2 \cdots \exists X_n \ G$$

we call a second-order formula F existential if F has the following form:

$$\exists X_1 \exists X_2 \cdots \exists X_n \ G$$

where G is essentially a first-order formula that may contain the free second-order variables X_1, \ldots, X_n

we call a second-order formula F existential if F has the following form:

$$\exists X_1 \exists X_2 \cdots \exists X_n \ G$$

where G is essentially a first-order formula that may contain the free second-order variables X_1, \ldots, X_n

Lemma ①

if F is $\exists SO$, then the $F-\mathcal{K}$ problem is in NP

we call a second-order formula F existential if F has the following form:

$$\exists X_1 \exists X_2 \cdots \exists X_n \ G$$

where G is essentially a first-order formula that may contain the free second-order variables X_1, \ldots, X_n

Lemma ①

if F is $\exists SO$, then the $F-\mathcal{K}$ problem is in NP

Lemma 2

if $F-\mathcal{K}$ is decidable by a NTM M that runs in polynomial time then F is equivalent to an existential second-order sentence

Theorem (Fagin's Theorem)

1 a sentence F is equivalent to a sentence in $\exists SO$ iff $F - \mathcal{K} \in \mathsf{NP}$

Theorem (Fagin's Theorem)

- **1** a sentence F is equivalent to a sentence in $\exists SO$ iff $F \mathcal{K} \in \mathsf{NP}$
- 2 if $F K \in NP$, then it can be assumed that the first-order part of F is a universal formula

Theorem (Fagin's Theorem)

- **1** a sentence F is equivalent to a sentence in $\exists SO$ iff $F \mathcal{K} \in \mathsf{NP}$
- 2 if $F K \in NP$, then it can be assumed that the first-order part of F is a universal formula

Proof.

1 suppose F is an existential second-order sentence; by Lemma ①, $F - \mathcal{K} \in \mathsf{NP}$

Theorem (Fagin's Theorem)

- **1** a sentence F is equivalent to a sentence in $\exists SO$ iff $F \mathcal{K} \in \mathsf{NP}$
- 2 if $F K \in NP$, then it can be assumed that the first-order part of F is a universal formula

- I suppose F is an existential second-order sentence; by Lemma ①, $F \mathcal{K} \in \mathsf{NP}$
- **2** suppose F K ∈ NP; \exists NTM N that decides F K

Theorem (Fagin's Theorem)

- **1** a sentence F is equivalent to a sentence in $\exists SO$ iff $F \mathcal{K} \in \mathsf{NP}$
- 2 if $F K \in NP$, then it can be assumed that the first-order part of F is a universal formula

- **1** suppose F is an existential second-order sentence; by Lemma ①, $F \mathcal{K} \in \mathsf{NP}$
- **2** suppose F K ∈ NP; \exists NTM N that decides F K
- **3** by Lemma @, F is equivalent to an $\exists SO$ -formula G

Theorem (Fagin's Theorem)

- **1** a sentence F is equivalent to a sentence in $\exists SO$ iff $F \mathcal{K} \in \mathsf{NP}$
- 2 if $F K \in NP$, then it can be assumed that the first-order part of F is a universal formula

- **1** suppose F is an existential second-order sentence; by Lemma ①, $F \mathcal{K} \in \mathsf{NP}$
- **2** suppose F K ∈ NP; \exists NTM N that decides F K
- 3 by Lemma @, F is equivalent to an $\exists SO$ -formula G
- 4 the proof of the second lemma even yields that the first-order part of *G* is universal

Theorem (Fagin's Theorem)

- **1** a sentence F is equivalent to a sentence in $\exists SO$ iff $F \mathcal{K} \in \mathsf{NP}$
- 2 if $F K \in NP$, then it can be assumed that the first-order part of F is a universal formula

- **1** suppose F is an existential second-order sentence; by Lemma ①, $F \mathcal{K} \in \mathsf{NP}$
- **2** suppose F K ∈ NP; \exists NTM N that decides F K
- **3** by Lemma @, F is equivalent to an $\exists SO$ -formula G
- 4 the proof of the second lemma even yields that the first-order part of *G* is universal

SAT is NP-complete (wrt. the polytime reducibility relation)

SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

 \blacksquare SAT \in NP follows from Lemma ①, as SAT can be easily encoded as $\exists SO\text{-formula}$

SAT is NP-complete (wrt. the polytime reducibility relation)

- \blacksquare SAT \in NP follows from Lemma ①, as SAT can be easily encoded as $\exists SO\text{-formula}$
- 2 thus let $A \in NP$

SAT is NP-complete (wrt. the polytime reducibility relation)

- \blacksquare SAT \in NP follows from Lemma ①, as SAT can be easily encoded as $\exists SO\text{-formula}$
- 2 thus let $A \in NP$
- 3 by Fagin's theorem, there exists an $\exists SO$ -formula F and some finite structures \mathcal{K} , such that A is equivalent to the $F-\mathcal{K}$ problem; moreover the first-order part of F is univeral

SAT is NP-complete (wrt. the polytime reducibility relation)

- \blacksquare SAT \in NP follows from Lemma ①, as SAT can be easily encoded as $\exists SO\text{-formula}$
- 2 thus let $A \in NP$
- 3 by Fagin's theorem, there exists an $\exists SO$ -formula F and some finite structures \mathcal{K} , such that A is equivalent to the $F-\mathcal{K}$ problem; moreover the first-order part of F is univeral
- 4 let $\mathcal{M} \in \mathcal{K}$ be a finite; the universal part of F can be represented as propositional formula B

SAT is NP-complete (wrt. the polytime reducibility relation)

- \blacksquare SAT \in NP follows from Lemma ①, as SAT can be easily encoded as $\exists SO\text{-formula}$
- 2 thus let $A \in NP$
- 3 by Fagin's theorem, there exists an $\exists SO$ -formula F and some finite structures \mathcal{K} , such that A is equivalent to the $F-\mathcal{K}$ problem; moreover the first-order part of F is univeral
- 4 let $\mathcal{M} \in \mathcal{K}$ be a finite; the universal part of F can be represented as propositional formula B
- f 5 any interpretation of F is conceivable as an assignment of B (and vice versa)

SAT is NP-complete (wrt. the polytime reducibility relation)

- \blacksquare SAT \in NP follows from Lemma ①, as SAT can be easily encoded as $\exists SO\text{-formula}$
- **1** thus let $A \in NP$
- 3 by Fagin's theorem, there exists an $\exists SO$ -formula F and some finite structures \mathcal{K} , such that A is equivalent to the $F-\mathcal{K}$ problem; moreover the first-order part of F is univeral
- 4 let $\mathcal{M} \in \mathcal{K}$ be a finite; the universal part of F can be represented as propositional formula B
- **5** any interpretation of F is conceivable as an assignment of B (and vice versa)
- 6 thus A is reducible to a SAT problem

SAT is NP-complete (wrt. the polytime reducibility relation)

- \blacksquare SAT \in NP follows from Lemma ①, as SAT can be easily encoded as $\exists SO\text{-formula}$
- 2 thus let $A \in NP$
- 3 by Fagin's theorem, there exists an $\exists SO$ -formula F and some finite structures \mathcal{K} , such that A is equivalent to the $F-\mathcal{K}$ problem; moreover the first-order part of F is univeral
- 4 let $\mathcal{M} \in \mathcal{K}$ be a finite; the universal part of F can be represented as propositional formula B
- \blacksquare any interpretation of F is conceivable as an assignment of B (and vice versa)
- 6 thus A is reducible to a SAT problem

the following is equivalent:

- NP = coNP and
- ∃SO is equivalent to (full) second-order logic

the following is equivalent:

- NP = coNP and
- ∃SO is equivalent to (full) second-order logic

Proof.

 \blacksquare any problem in coNP is representable as \forall SO formula

the following is equivalent:

- NP = coNP and
- ∃SO is equivalent to (full) second-order logic

- \blacksquare any problem in coNP is representable as \forall SO formula
- 2 thus, if NP = coNP, then $\exists SO \equiv \forall SO$

the following is equivalent:

- NP = coNP and
- ∃SO is equivalent to (full) second-order logic

- any problem in coNP is representable as ∀SO formula
- **2** thus, if NP = coNP, then \exists SO $\equiv \forall$ SO
- Is hence, ∃SO would be closed under negation and thus equivalent to full second-order logic

the following is equivalent:

- NP = coNP and
- ∃SO is equivalent to (full) second-order logic

- any problem in coNP is representable as ∀SO formula
- **2** thus, if NP = coNP, then \exists SO $\equiv \forall$ SO
- hence, ∃SO would be closed under negation and thus equivalent to full second-order logic

the following is equivalent:

- NP = coNP and
- ∃SO is equivalent to (full) second-order logic

Proof.

- \blacksquare any problem in coNP is representable as \forall SO formula
- 2 thus, if NP = coNP, then $\exists SO \equiv \forall SO$
- hence, ∃SO would be closed under negation and thus equivalent to full second-order logic

We leave it to the reader to verify and expand upon the claims in this section and to resolve the problems whether P = NP = coNP (S. Hedman, A First (sic!) Course in Logic)