
Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

Summary

Summary Last Lecture

Definition
• intuitionistic logic is a restriction of classical logic, where certain

formulas are no longer derivable

• for example A ∨ ¬A is no longer valid

Definition (Curry-Howard)

the Curry-Howard correspondence (aka Curry-Howard isomorphism)
consists of the following parts:

1 formulas = types

2 proof = programs

3 normalisation = computation

GM (Institute of Computer Science @ UIBK) Automated Reasoning 157/1

Summary

Example
Π1
...

Γ, x : σ ⇒ M : τ

Γ⇒ λx .M : σ → τ

Π2
...

Γ⇒ N : τ
Γ⇒ (λx .M)N : τ

=⇒
Π1[x\Π2]

...

Γ⇒ M[x := N]

the proof Π1[x\Π2] represents the proof that is obtained from Π1 by
replacing assumptions corresponding to the variable x by Π2

Remark

the Curry-Howard correspondence extends to many systems:

• intuitionistic logic and λ-calculus

• Hilbert axioms and combinatory logic

• . . .

GM (Institute of Computer Science @ UIBK) Automated Reasoning 158/1

Summary

Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Löwenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness, sequent calculus, normalisation

Properties of First Order Logic

Craig’s Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand’s Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 159/1

http://cl-informatik.uibk.ac.at

Limits

Limits of First-Order Logic

Lemma

given a directed graph G, we can not express the following: let s and t
be nodes in G, then there exists a path from s to t

Proof Sketch.

1 let A be a formula that expresses that node t is reachable from s

2 let Bn express that ¬∃ path of length n between s and t

3 C := A ∪ {Bn | n > 1} is unsatisfiable

4 ∀ finite C0 ⊂ C, C0 is satisfiable

5 contradiction to compactness

Corollary

reachability is not expressible in first-order logic; i.e., there is no formula
F (x , y) such that F holds iff ∃ path in graph G from `(x) to `(y)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 160/1

Limits

Question

what about an infinite set of formulas?

Definition

let H be a set of sentences (of L) and let

Mod(H) = {A | A is a structure (of L) and A |= H}

let K be a collection of structures

• K is elementary if ∃ sentence F and K = Mod(F)

• K is ∆-elementary if ∃ set of sentences H and K = Mod(H)

Fact
• each elementary class is ∆-elementary

• every ∆-elementary class is the intersection of elementary classes:

Mod(F) =
⋂
F∈F

Mod(F)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 161/1

Limits

Example

reachability is not expressible in first-order logic; that is, the class K1 of
connected graphs is not ∆-elementary

Proof.

1 suppose K1 = Mod(H) for set of sentences H
2 set Bn, n > 2 as x = y ∨ ∃x1 · · · ∃xn−2 R(x , x1) ∧ · · · ∧ R(xn−2, y)

3 ∀ m, H ∪ {¬Bn | 2 6 n 6 m} has a model, but H ∪ {¬Bn | 2 6 n}
is unsatisfiable

4 contradiction to compactness

Answer

infinite set of formulas are not enough

Example

finiteness is not expressible in first-order logic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 162/1

Second-Order Logic

The Language of Second-Order Logic

a second-order language extends a first-order language as follows

Definition

1 first-order variables individual variables

2 relation (or predicate) variables
V i

0,V
i
1, . . . ,V

i
j , . . . denoted X , Y , Z , etc.

3 function variables
ui

0, u
i
1, . . . , u

i
j , . . . denoted u, v , w , etc.

Definition

second-order terms are defined like first-order terms together with the
following clause

4 if t1, . . . , tn are second-order terms, u an n-ary function variable,
then u(t1, . . . , tn) is a second-order term

a second-order terms without function variables is first-order

GM (Institute of Computer Science @ UIBK) Automated Reasoning 163/1

Second-Order Logic

Definition

second-order formulas are defined as follows

1 first-order formulas are second-order formula

2 if t1, . . . , tn are second-order terms, X an n-ary predicate variable,
then X (t1, . . . , tn) is a second-order formula

3 If A(f) is a second-order formula, f a function constant, u a
function variable, then

∀u A(u) ∃u A(u)

are second-order formulas

4 if A(P) a formula, P a predicate constant, X a predicate variable,
then

∀X A(X) ∃X A(X)

are second-order formulas

5 a second-order formula without predicate and function variables is
first-order

GM (Institute of Computer Science @ UIBK) Automated Reasoning 164/1

Second-Order Logic

Example

let u denote a function variable, X a predicate variable

∀x f (x) = x ∃u∀x u(x) = x

1 the first formulas expresses a property of the identity function

2 the 2nd asserts existence of an identity function

Example

consider

x = y → (P(x)↔ P(y)) x = y ↔ ∀X (X (x)↔ X (y))

1 the first formulas expresses a property of equality

2 the 2nd asserts defines equality

GM (Institute of Computer Science @ UIBK) Automated Reasoning 165/1

Second-Order Logic

Second-Order Interpretation

Definition

a second-order environment ` for A is a mapping

` : {{xn | n ∈ N} → A} ∪
{{ui

n | i , n ∈ N} → (Ai → A)} ∪ {{V i
n | i , n ∈ N} → Ai}

`{X 7→ A′} maps X to relation A′ ⊆ An if X is n-ary; all other maps are
unchanged; similarly for function variables

Definition

a second-order interpretation I is a pair (A, `) such that

• A is a structure

• ` is a second-order environment

GM (Institute of Computer Science @ UIBK) Automated Reasoning 166/1

Second-Order Logic

Example

consider the structure A with domain N; `(u) = succ and `(x) = 0 and
let I = (A, `)

u(x)I = succ(0) = 1

Definition

the value of a second-order term t:

tI =



`(t) if t an individual variable

cA if t = c

f A(tI1 , . . . , t
I
n) if t = f (t1, . . . , tn), f a function constant

`(u)(tI1 , . . . , t
I
n) if t = u(t1, . . . , tn), u a function variable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 167/1

Second-Order Logic

Satisfaction relation

Definition

I = (A, `) an interpretation; F a formula

I |= P(t1, . . . , tn) :⇐⇒ if (tI1 , . . . , t
I
n) ∈ PA

I |= ¬F :⇐⇒ if I 6|= F

I |= F ∨ G :⇐⇒ if I |= F or I |= G

I |= ∀x F (x) :⇐⇒ if I{x 7→ a} |= F (x) holds for all a ∈ A

I |= ∃x F (x) :⇐⇒ if I{x 7→ a} |= F (x) holds for some a ∈ A

I |= X (t1, . . . , tn) :⇐⇒ `(X) = A′ and (tI1 , . . . , t
I
n) ∈ A′

I |= ∀X F (X) :⇐⇒ if I{X 7→ A′} |= F (X) for all A′ ⊆ An

I |= ∃X F (X) :⇐⇒ if I{X 7→ A′} |= F (X) for some A′ ⊆ An

I |= ∀u F (u) :⇐⇒ if I{u 7→ f } |= F (u) for all f : An → A

I |= ∃u F (u) :⇐⇒ if I{u 7→ f } |= F (u) for some f : An → A

GM (Institute of Computer Science @ UIBK) Automated Reasoning 168/1

Reachability

Reachability is Expressible in Second-Order Logic

Example

• let G be a structure defined over the language L = {R} with the
domain G

• R represents the (directed) edge relation of the graph G
• consider the second order formula F (x , y)

∃P
(
∀z1∀z2∀z3

(
¬P(z1, z1) ∧

∧ (P(z1, z2) ∧ P(z2, z3)→ P(z1, z3))) ∧
∧ ∀z1∀z2((P(z1, z2) ∧ ¬∃z3(P(z1, z3) ∧ P(z3, z2))→ R(z1, z2)

)
∧

∧ P(x , y)
)

• suppose I |= F (x , y), then ∃ path in G from `(x) to `(y)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 169/1

The Bad News

More examples

Example

consider Whitehead-Russel definition of equality:

x = y ⇐⇒ ∀X (X (x)→ X (y))

Lemma

Leibnitz’s equality and Whitehead-Russel’s equality are equivalent

Example

consider the following “axiom” of enumerability (Enum)

∃z∃u∀X ((X (z) ∧ ∀x(X (x)→ X (u(x))))→ ∀xX (x))

which is true in an interpretation iff its domain is countable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 170/1

The Bad News

Example

consider the following “axiom” of infinity (Inf)

∃z∃u(∀xz 6= u(x) ∧ ∀x∀y(u(x) = u(y)→ x = y))

which is true in an interpretation iff the domain it infinite

Lemma

Löwenheim-Skolem fails for second-order logic

Proof.

1 recall that Löwenheim-Skolem asserts that if a set of sentences G
has a model, then G has a countable model

2 consider G = {¬Enum, Inf}
3 then G is satisfiable, but only with uncountable models

4 contradiction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 171/1

The Bad News

Definition

consider (the following variant of) Robinson’s Q

N1 : s(v1) = s(v2)→ v1 = v2

N2 : 0 6= s(v1)

N3 : (v1 + 0) = v1

N4 : (v1 + s(v2)) = s(v1 + v2)

N5 : (v1 · 0) = 0

N6 : (v1 · s(v2)) = ((v1 · v2) + v1)

N7 : (v1 6 0)⇐⇒ (v1 = 0)

N8 : (v1 6 s(v2))⇐⇒ (v1 6 v2 ∨ v1 = s(v2))

N9 : (v1 6 v2) ∨ (v2 6 v1)

Fact

Q is complete for quantifier-free sentences of the language of arithmetic

GM (Institute of Computer Science @ UIBK) Automated Reasoning 172/1

The Bad News

Example

let P2 be the axioms in Q together with the following axiom of induction

∀X ((X (0) ∧ ∀x(X (x)→ X (s(x))))→ ∀xX (x))

then any interpretation of the language of arithmetic is a model of P2 iff
it is isomorphic to the standard interpretation

Lemma

compactness fails for second-order logic

Proof.

1 add a constant c to the language of arithmetic

2 consider G = {P2, c 6= 0, c 6= 1, c 6= 2, . . . }
3 any finite subset of G is satisfiable, while G is not

4 contradiction

GM (Institute of Computer Science @ UIBK) Automated Reasoning 173/1

The Bad News

Summary of Bad News

Lemma

the set of valid second-order sentences is not recursively enumerable

Proof Sketch.

the proof essentially employs that P2 exactly confirms to number theory,
as the later is incomplete ¬ ∃ a calculus complete for second-order

Theorem

1 compactness fails for second-order logic

2 Löwenheim-Skolem fails for second-order logic

3 ¬ ∃ a calculus that is complete for second-order logic, in particular
the set of valid second-order sentences is not recursively enumerable

GM (Institute of Computer Science @ UIBK) Automated Reasoning 174/1

Complexity Theory via Logic

Good News

Example

∃ set H of second-order sentences, such that Modfin(H) = NP

finite models

Definition

• Let K be a set of finite structures and let F be a (second-order)
sentence

• suppose M is a (second-order) structure in K

then the F−K problem asks, whether M |= F holds

GM (Institute of Computer Science @ UIBK) Automated Reasoning 175/1

Complexity Theory via Logic

Definition (existential second-order formula (∃SO))

we call a second-order formula F existential if F has the following form:

∃X1∃X2 · · · ∃Xn G

where G is essentially a first-order formula that may contain the free
second-order variables X1, . . . ,Xn

Lemma À

if F is ∃SO, then the F−K problem is in NP

Lemma Á

if F−K is decidable by a NTM M that runs in polynomial time then F is
equivalent to an existential second-order sentence

GM (Institute of Computer Science @ UIBK) Automated Reasoning 176/1

Complexity Theory via Logic

An Implicit Characterisation of a Complexity Class

Theorem (Fagin’s Theorem)

1 a sentence F is equivalent to a sentence in ∃SO iff F−K ∈ NP

2 if F−K ∈ NP, then it can be assumed that the first-order part of F
is a universal formula

Proof.

1 suppose F is an existential second-order sentence; by Lemma À,
F−K ∈ NP

2 suppose F−K ∈ NP; ∃ NTM N that decides F−K
3 by Lemma Á, F is equivalent to an ∃SO-formula G

4 the proof of the second lemma even yields that the first-order part
of G is universal

GM (Institute of Computer Science @ UIBK) Automated Reasoning 177/1

Complexity Theory via Logic

Corollary

SAT is NP-complete (wrt. the polytime reducibility relation)

Proof.

1 SAT ∈ NP follows from Lemma À, as SAT can be easily encoded as
∃SO-formula

2 thus let A ∈ NP

3 by Fagin’s theorem, there exists an ∃SO-formula F and some finite
structures K, such that A is equivalent to the F−K problem;
moreover the first-order part of F is univeral

4 let M∈ K be a finite; the universal part of F can be represented as
propositional formula B

5 any interpretation of F is conceivable as an assignment of B (and
vice versa)

6 thus A is reducible to a SAT problem

GM (Institute of Computer Science @ UIBK) Automated Reasoning 178/1

Complexity Theory via Logic

Corollary

the following is equivalent:

• NP = coNP and

• ∃SO is equivalent to (full) second-order logic

Proof.

1 any problem in coNP is representable as ∀SO formula

2 thus, if NP = coNP, then ∃SO ≡ ∀SO

3 hence, ∃SO would be closed under negation and thus equivalent to
full second-order logic

We leave it to the reader to verify and expand upon the claims
in this section and to resolve the problems whether
P = NP = coNP (S. Hedman, A First (sic!) Course in Logic)

GM (Institute of Computer Science @ UIBK) Automated Reasoning 179/1

