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Example
My
M, M1 [x\M2]

Mx:o=M:71 : -
[=XxM:c0=>7 IT=N:71
M= (MM)N:1

M= l\/ltx = N]

the proof INy[x\lM] represents the proof that is obtained from [y by
replacing assumptions corresponding to the variable x by [y

Remark

the Curry-Howard correspondence extends to many systems:
e intuitionistic logic and A-calculus
e Hilbert axioms and combinatory logic
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Summary Last Lecture

Definition
e intuitionistic logic is a restriction of classical logic, where certain
formulas are no longer derivable

e for example AV —A is no longer valid

Definition (Curry-Howard)

the Curry-Howard correspondence (aka Curry-Howard isomorphism)
consists of the following parts:

formulas = types
proof = programs

normalisation = computation
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Outline of the Lecture

Propositional Logic

short reminder of propositional logic, soundness and completeness theorem,
natural deduction, propositional resolution

First Order Logic

introduction, syntax, semantics, undecidability of first-order, Léwenheim-
Skolem, compactness, model existence theorem, natural deduction, com-
pleteness, sequent calculus, normalisation

Properties of First Order Logic

Craig's Interpolation Theorem, Robinson’s Joint Consistency Theorem,
Herbrand's Theorem

Limits and Extensions of First Order Logic

Intuitionistic Logic, Curry-Howard Isomorphism, Limits, Second-Order
Logic
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Limits of First-Order Logic Question
what about an infinite set of formulas?
Lemma .
given a directed graph G, we can not express the following: let s and t Definition
be nodes in G, then there exists a path from s to t let 7 be a set of sentences (of £) and let
Proof Sketch Mod(H) = {A | A is a structure (of £) and A = H}
let A be a formula that expresses that node t is reachable from s let X be a collection of structures
let B, express that —3 path of length n between s and t e K is elementary if 3 sentence F and K = Mod(F)
C :=AU{B, | n > 1} is unsatisfiable e K is A-elementary if 3 set of sentences H and K = Mod(H)
Y finite Cy C C, Cy is satisfiable
contradiction to compactness m Fact
e each elementary class is A-elementary
Corollary o every A-elementary class is the intersection of elementary classes:
reachability is not expressiblle in first-o.rder logic; i.e., there is no formula Mod(F) = ﬂ Mod(F)
F(x,y) such that F holds iff 3 path in graph G from {(x) to {(y) Fer
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Example The Language of Second-Order Logic
reachability is not expressible in first-order logic; that is, the class Ky of a second-order language extends a first-order language as follows
connected graphs is not A-elementary o
Definition
Proof. first-order variables individual variables
suppose K1 = Mod(H) for set of sentences H r‘ill_at\'/‘i“ (or [\)/rlgdmate) variables ; ix vy 2
enoted X, Y, Z, etc.
set By, n>2asx=yV3xg--Ixp_2 R(x,x1) A+ A R(Xn—2,¥) an .17 ,-Jb]
unction variables
BV m -B, |2 < n< m} has a model, but B,|2<n P i
I.V HU{ nl2<n<m but HU{=B, [2< n} Uy UL,y UL, denoted u, v, w, etc.
is unsatisfiable J
7 contradiction to compactness | A
a P Definition
Answer second-order terms are defined like first-order terms together with the
infinite set of formulas are not enough following clause
if t1, ..., t, are second-order terms, u an n-ary function variable,
Example then u(ty, ..., t,) is a second-order term
finiteness is not expressible in first-order logic a second-order terms without function variables is first-order
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Second-Order Logic Second-Order Logic

Definition Example
second-order formulas are defined as follows let u denote a function variable, X a predicate variable
first-order formulas are second-order formula Wx f(x) = x Juvx u(x) = x
if t1, ..., t, are second-order terms, X an n-ary predicate variable,
then X(t1,...,t,) is a second-order formula the first formulas expresses a property of the identity function
If A(f) is a second-order formula, f a function constant, u a the 2nd asserts existence of an identity function

function variable, then
Yu A(u) Ju A(u)

are second-order formulas Example
. . . . consider
if A(P) a formula, P a predicate constant, X a predicate variable,
then x=y = (P(x) & P(y)) x=y < VX(X(x) < X(y))
VX A(X) IX A(X)
are second-order formulas the first formulas expresses a property of equality
a second-order formula without predicate and function variables is the 2nd asserts defines equality
first-order
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Second-Order Interpretation Example
Definition consider the structure A with domain N; ¢(u) = succ and ¢(x) = 0 and
. . . let Z = (A,¥)
a second-order environment ¢ for A is a mapping
u(x)* = succ(0) = 1
C:{{x, | ne N} = A} U
{{ul | i,ne N} = (A" = A}U{{V!|ineN} — A}
Definition
H{X +— A’} maps X to relation A' C A" if X is n-ary; all other maps are the value of a second-order term ¢
unchanged; similarly for function variables
£(t) if t an individual variable
A ; _
Definition L ¢ ift=c
a second-order interpretation Z is a pair (A4, ¢) such that FA(,...,tF) if t =f(t1,...,ta), f a function constant
o Ais a structure (u)(tf,. .. th) if t = u(t1,...,tn), u a function variable

e / is a second-order environment
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Second-Order Logic Reachability

Satisfaction relation Reachability is Expressible in Second-Order Logic
Definition Example
Z = (A, {) an interpretation; F a formula e let G be a structure defined over the language £ = { R} with the
T P(ty,... t)) <= if(t,... t)e PA domain G
Il -F — HIWEF e R represents the (directed) edge relation of the graph G
IEFVG = fIE=ForIEG e consider the second order formula F(x,y)
T = V¥x F(x) <= if Z{x — a} = F(x) holds for all a € A 3P(V21V22V 23 (P21, 21) A
7 = 3x F(x) <= if Z{x — a} = F(x) holds for some a € A A(P(z1,2) A P22, 23) = P(z1,23))) A
A ):X(tla"’vtn) < e(X) = A" and (tiz:’tf) cA /\V21V22((P(21,22)/\—E|23(P(21,Z3)/\P(Z3,22)) — R(Z]_,Z2)) A
T =YX F(X) = if I{X — A’} = F(X) for all A’ C A" A P(x.y))
T = 3X F(X) = if T{X — A’} = F(X) for some A’ C A"
T =Vu F(u) = ifZ{urs f} = F(u) forall f: A" — A e suppose Z = F(x, y), then 3 path in G from £(x) to (y)
Z = 3u F(u) <= if Z{uw f} = F(u) for some f: A" — A
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More examples Example
Example consider the following “axiom” of infinity (Inf)
consider Whitehead-Russel definition of equality: 3z3u(Vxz # u(x) AYxVy(u(x) = u(y) = x = y))
x =y <= VX(X(x) = X(y)) which is true in an interpretation iff the domain it infinite
Lemma

Lemma . . . .
Léwenheim-Skolem fails for second-order logic

Leibnitz's equality and Whitehead-Russel’s equality are equivalent

Proof.

recall that Lowenheim-Skolem asserts that if a set of sentences G
has a model, then G has a countable model

consider G = {—Enum, Inf}

then G is satisfiable, but only with uncountable models

Example
consider the following “axiom” of enumerability (Enum)
FzIuvX((X(2) AVx(X(x) = X(u(x)))) = VxX(x))

which is true in an interpretation iff its domain is countable contradiction -
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The Bad News The Bad News

Definition Example
consider (the following variant of) Robinson’s Q let P? be the axioms in Q together with the following axiom of induction
Ni: s(v) =s(v2) > vi = YX((X(0) A Vx(X(x) = X(s(x)))) = VxX(x))
No: 0 #s(v1) then any interpretation of the language of arithmetic is a model of P? iff
Ns: (1+0)=w it is isomorphic to the standard interpretation
Ny : (V1+S(V2)) ZS(V]_—l—Vz)
Ns : (n-0)=0 Lemma
N : (vi-s(»2)) = ((v1-v2) +w1) compactness fails for second-order logic
N7 : (V1<0)<:>(V1:0)
Ng:  (vi <s(n)) <= (v < w2V =5s(n)) Proof.
N - (i < v2) V(v < 1) add a constant c to the language of arithmetic
consider G = {P?,c #0,c # 1,c #2,...}
Fact any finite subset of G is satisfiable, while G is not
Q is complete for quantifier-free sentences of the language of arithmetic contradiction m
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Summary of Bad News Good News
Lemma Example finite models
the set of valid second-order sentences is not recursively enumerable -
4 3 set H of second-order sentences, such that Mod"™(7{) = NP J
Proof Sketch.
the proof essentially employs that P? exactly confirms to number theory,
as the later is incomplete — 3 a calculus complete for second-order [ Definition
e Let KC be a set of finite structures and let F be a (second-order)
sentence
Theorem

e suppose M is a (second-order) structure in K

then the F—/C problem asks, whether M = F holds

compactness fails for second-order logic

Lowenheim-Skolem fails for second-order logic

— 3 a calculus that is complete for second-order logic, in particular
the set of valid second-order sentences is not recursively enumerable
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Definition (existential second-order formula (3SO)) An Implicit Characterisation of a Complexity Class
we call a second-order formula F existential if F has the following form:
X3 -+ 3X, G Theorem (Fagin's Theorem)
a sentence F is equivalent to a sentence in 3SO iff F—K € NP

where G is essentially a first-order formula that may contain the free ] ] )
if F—IC € NP, then it can be assumed that the first-order part of F

second-order variables Xi,..., X, ) -
is a universal formula )
Proof.
Lemma @ suppose F is an existential second-order sentence; by Lemma @,
if F is 3S0, then the F—K problem is in NP J F—-K € NP

suppose F—/C € NP; 3 NTM N that decides F—IC
by Lemma @, F is equivalent to an 3SO-formula G

Lemma @ the proof of the second lemma even yields that the first-order part
if F—IC is decidable by a NTM M that runs in polynomial time then F is of G is universal [ |
equivalent to an existential second-order sentence
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Corollary Corollary
SAT is NP-complete (wrt. the polytime reducibility relation) ) the following is equivalent:
e NP = coNP and
Proof. . . .
_ e 350 is equivalent to (full) second-order logic
SAT € NP follows from Lemma @, as SAT can be easily encoded as %
3SO-formula

Proof.

any problem in coNP is representable as VSO formula
thus, if NP = coNP, then 35S0 = VSO

hence, 35O would be closed under negation and thus equivalent to

. . full second-order logic
let M € K be a finite; the universal part of F can be represented as 8 |

propositional formula B

thus let A € NP

by Fagin's theorem, there exists an 3SO-formula F and some finite
structures KC, such that A is equivalent to the F—K problem;
moreover the first-order part of F is univeral

v

any interpretation of F is conceivable as an assignment of B (and

_ We leave it to the reader to verify and expand upon the claims
vice versa)

in this section and to resolve the problems whether
[@ thus A is reducible to a SAT problem P = NP =coNP  (S. Hedman, A First (sic!) Course in Logic)
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