Automated Reasoning

Georg Moser
Institute of Computer Science @ UIBK

Winter 2013

Summary Last Lecture

Example

reachability is not expressible in first-order logic; that is, the class \mathcal{K}_{1} of connected graphs is not Δ-elementary

Theorem
1 compactness fails for second-order logic
2 Löwenheim-Skolem fails for second-order logic
$3 \neg \exists$ a calculus that is complete for second-order logic, in particular the set of valid second-order sentences is not recursively enumerable

Example

\exists set \mathcal{H} of second-order sentences, such that $\operatorname{Mod}^{\text {fin }}(\mathcal{H})=$ NP

Outline of the Lecture

Early Approaches in Automated Reasoning
short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points
resolution, tableau provers, structural Skolemisation, redundancy and deletion

Automated Reasoning with Equality
ordered resolution, paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem, resolution and paramodulation as decision procedure, ...

Outline of the Lecture

Early Approaches in Automated Reasoning
short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points
resolution, tableau provers, structural Skolemisation, redundancy and deletion

Automated Reasoning with Equality
ordered resolution, paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning
Neuman-Stubblebinde Key Exchange Protocol, Robbins problem, resolution and paramodulation as decision procedure, ...

Recall

Applications
1 Program Analysis
logical products of interpretations allows the automated combination of simple interpreters

Recall

Applications
1 Program Analysis
logical products of interpretations allows the automated combination of simple interpreters
2 Databases, in particular datalog datalog is a declarative language and syntactically it is a subset of Prolog; used in knowledge representation systems

Recall

Applications
1 Program Analysis
logical products of interpretations allows the automated combination of simple interpreters
2 Databases, in particular datalog datalog is a declarative language and syntactically it is a subset of Prolog; used in knowledge representation systems
3 Types as Formulas
the type checking in simple λ-calculus is equivalent to derivability in intuitionistic logic

Recall

Applications
1 Program Analysis
logical products of interpretations allows the automated combination of simple interpreters
2 Databases, in particular datalog datalog is a declarative language and syntactically it is a subset of Prolog; used in knowledge representation systems
3 Types as Formulas
the type checking in simple λ-calculus is equivalent to derivability in intuitionistic logic
4 Complexity Theory
NP can be characterised as the class of existential second-order sentence

Additional Applications

Application (5): Issues of Security

- security protocols are small programs that aim at securing communications over a public network
- design of such protocols is difficult and error-prone
- we will study the use of a first-order theorem prover to show that the Neuman-Stubblebine key exchange protocol can be broken

Additional Applications

Application (5): Issues of Security

- security protocols are small programs that aim at securing communications over a public network
- design of such protocols is difficult and error-prone
- we will study the use of a first-order theorem prover to show that the Neuman-Stubblebine key exchange protocol can be broken

Application (6): Software Verification

- termination of programs is undecidable (Alan Turing)
- so what: termination of imperative programs can be shown by AProVE, Terminator, Julia, COSTA, ... fully automatically ...
- Terminator uses model-checking

Software Verification

- in the early years of model-checking mainly hardware was analysed like integrated circuits

Software Verification

- in the early years of model-checking mainly hardware was analysed like integrated circuits
- in the last decade the approach was extended to the verification of properties of software

Software Verification

- in the early years of model-checking mainly hardware was analysed like integrated circuits
- in the last decade the approach was extended to the verification of properties of software
- initially only safety properties could be analysed ("nothing bad happens")

Software Verification

- in the early years of model-checking mainly hardware was analysed like integrated circuits
- in the last decade the approach was extended to the verification of properties of software
- initially only safety properties could be analysed ("nothing bad happens")
- recently liveness properties ("something good will happen") became of interest
- termination of a program is a liveness property

Software Verification

- in the early years of model-checking mainly hardware was analysed like integrated circuits
- in the last decade the approach was extended to the verification of properties of software
- initially only safety properties could be analysed ("nothing bad happens")
- recently liveness properties ("something good will happen") became of interest
- termination of a program is a liveness property

Terminator research project

Software Verification

- in the early years of model-checking mainly hardware was analysed like integrated circuits
- in the last decade the approach was extended to the verification of properties of software
- initially only safety properties could be analysed ("nothing bad happens")
- recently liveness properties ("something good will happen") became of interest
- termination of a program is a liveness property

Terminator research project

- developed by Microsoft Research Cambridge

Software Verification

- in the early years of model-checking mainly hardware was analysed like integrated circuits
- in the last decade the approach was extended to the verification of properties of software
- initially only safety properties could be analysed ("nothing bad happens")
- recently liveness properties ("something good will happen") became of interest
- termination of a program is a liveness property

Terminator research project

- developed by Microsoft Research Cambridge
- employs transition invariants, given a program step relation \rightarrow_{P} find finitely many well-founded relations U_{1}, \ldots, U_{n} whose union contains the transitive closure of $\rightarrow \mathrm{p}$

A Bit More on Java

Example

 Bit More on Java
 ample
public static int div(int $x, \quad i n t \quad y)$ \{
int res $=0 ;$
Bit More on Java
ample
public static int div(int x, int y) \{
\quad int res $=0 ;$

$$
\mathrm{v}=\mathrm{v}-\mathrm{T} \text {. }
$$

```
public static int div（int \(x\) ，int \(y) ~\{\)
```
```

$$
1+110
$$

```
```

$\square$

```


\title{
－
}
```

$$
\text { res }=\text { res }
$$

```
```

```
 while (x >= y && y > 0) {
```

```
```

    while (x >= y && y > 0) {
    ```
```

```
 while (x >= y && y > 0) {
```

```
```

    while (x >= y && y > 0) {
    ```
```

```
 while (x >= y && y > 0) {
 x = x-y;
 res = res + 1;
```

```
```

        res = res + 1;
    ```
```

```
 res = res + 1;
```

```
```

        res = res + 1;
    ```
```

```
 res = res + 1;
```

```
```








```
```

```
 return res;
```

```
```

    return res;
    ```
```

```
 return res;
```

```
```

    return res;
    ```
```

```
 return res;
```

```
```

    return res;
    }

```
```

```
}
```

```
```

}

```
```

```
}
```

```
```

}

```
```

```



```

    Wh}x=x-y
    ```
 Wh}x=x-y
```

    Wh}x=x-y
    ```
 Wh}x=x-y
```

    Wh}x=x-y
    C

```
C
```

C

```
C
```

C

```
C
```

                            Bit More on Java
    ample
public static int div(int $x, \quad$ int $\quad$ y $)$ \{
int $\quad$ ins $=0 ;$
$\qquad$
Bit More on Java
ample
public static int div(int $x, \quad$ int $\quad$ y ) $\{$
int $\quad$ ins $=0 ;$
$\qquad$
$\qquad$




## A Bit More on Java

## Example

```
public static int div(int x, int y) {
 int res = 0;
 while (x >= y && y > 0) {
 x = x-y;
 res = res + 1;
 }
 return res;
}
```

Termination of the example could be proven.

## A Bit More on Java (cont'd)

## Example

```
public static void test (int \(n\), int m)\{ if \((0<n\) \& \(\mathrm{n}<\mathrm{m}\)) \{
\}
 if (0 < n && n < m) {
 }
```

```
int \(j=n+1\); while (j<n || \(j>n)\{\)
if (\(j>m\)) \(j=0\) else \(j=j+1\); \}
\}
 int j = n+1;
 int j = n+1;
 if (j>m) j=0 else j=j+1,
 if (j>m) j=0 else j=j+1,
 }
 }
 }
 }
```

        while(j<n || j > n){
    ```
 while(j<n || j > n){
 if (j>m) j=0 else j=j+1;
```

            if (j>m) j=0 else j=j+1;
    ```


```

        *)
    ```
 *)
```

        *)
        C
    ```
 C
```


## A Bit More on Java (cont'd)

## Example

public static void test (int $n$, int m)\{ if $(0<n$ \&\& $n<m)$ \{ int $j=n+1$; while (j<n || $\mathrm{j}>\mathrm{n})\{$
if ( $j>m$ ) $j=0$ else $j=j+1$;
\}
\}
\}
We were unable to show termination of the example.

## Herbrand's Theorem

Jacques Herbrand (1908-1931) proposed to

- transform first-order into propositional logic
- basis of Gilmore's prover

$\mathcal{G}$ a set of universal sentences (of $\mathcal{L}$ ) without $=$
Theorem
$\mathcal{G}$ is satisfiable iff $\mathcal{G}$ has a Herbrand model (over $\mathcal{L}$ )


## Gilmore's Prover (declarative version)

$1 F$ be an arbitrary sentence in language $\mathcal{L}$

Gilmore's Prover (declarative version)
$11 F$ be an arbitrary sentence in language $\mathcal{L}$
2 consider its negation $\neg F$ wlog $\neg F=\forall x_{1} \cdots \forall x_{n} G\left(x_{1}, \ldots, x_{n}\right)$ in SNF

Gilmore's Prover (declarative version)
$11 F$ be an arbitrary sentence in language $\mathcal{L}$
2 consider its negation $\neg F$ wlog $\neg F=\forall x_{1} \cdots \forall x_{n} G\left(x_{1}, \ldots, x_{n}\right)$ in SNF
${ }_{3}$ consider all possible Herbrand interpretations of $\mathcal{L}$

Gilmore's Prover (declarative version)
$11 F$ be an arbitrary sentence in language $\mathcal{L}$
2 consider its negation $\neg F$ wlog $\neg F=\forall x_{1} \cdots \forall x_{n} G\left(x_{1}, \ldots, x_{n}\right)$ in SNF
3 consider all possible Herbrand interpretations of $\mathcal{L}$
$4 F$ is valid if $\exists$ finite unsatisfiable subset $S \subseteq \operatorname{Gr}(\neg F)$

## Gilmore's Prover (declarative version)

$1 F$ be an arbitrary sentence in language $\mathcal{L}$
2 consider its negation $\neg F$ wlog $\neg F=\forall x_{1} \cdots \forall x_{n} G\left(x_{1}, \ldots, x_{n}\right)$ in SNF
3 consider all possible Herbrand interpretations of $\mathcal{L}$
4. $F$ is valid if $\exists$ finite unsatisfiable subset $S \subseteq \operatorname{Gr}(\neg F)$
$\mathcal{A}=\left\{A_{0}, A_{1}, A_{2}, \ldots\right\}$ be atomic formulas over Herbrand universe of $\mathcal{L}$

## Gilmore's Prover (declarative version)

$1 F$ be an arbitrary sentence in language $\mathcal{L}$
2 consider its negation $\neg F$ wlog $\neg F=\forall x_{1} \cdots \forall x_{n} G\left(x_{1}, \ldots, x_{n}\right)$ in SNF
3 consider all possible Herbrand interpretations of $\mathcal{L}$
$4 F$ is valid if $\exists$ finite unsatisfiable subset $S \subseteq \operatorname{Gr}(\neg F)$
$\mathcal{A}=\left\{A_{0}, A_{1}, A_{2}, \ldots\right\}$ be atomic formulas over Herbrand universe of $\mathcal{L}$

## Definition (Semantic Tree)

the semantic tree $T$ for $F$ :

- the root is a semantic tree
- let $/$ be a node in $T$ of height $n$; then $/$ is either a

1 leaf node or
$\boxed{2}$ the edges $e_{1}, e_{2}$ leaving node $I$ are labelled by $A_{n}$ and $\neg A_{n}$

## Fact

path in $T$ gives rise to a (partial) Herbrand interpretation $\mathcal{I}$ of $F^{\prime}$

## Fact

path in $T$ gives rise to a (partial) Herbrand interpretation $\mathcal{I}$ of $F^{\prime}$

## Definition

## Fact

path in $T$ gives rise to a (partial) Herbrand interpretation $\mathcal{I}$ of $F^{\prime}$

## Definition

- let $I \in T$, Herbrand interpretation induced by $I$ is denoted as $\mathcal{I}$


## Fact

path in $T$ gives rise to a (partial) Herbrand interpretation $\mathcal{I}$ of $F^{\prime}$

## Definition

- let $I \in T$, Herbrand interpretation induced by $I$ is denoted as $\mathcal{I}$
- $I$ is closed, if $\exists G \in \operatorname{Gr}(\neg F)$ such that $\mathcal{I} \not \vDash G$ and thus $\mathcal{I} \not \vDash \neg F$


## Fact

path in $T$ gives rise to a (partial) Herbrand interpretation $\mathcal{I}$ of $F^{\prime}$

## Definition

- let $I \in T$, Herbrand interpretation induced by $I$ is denoted as $\mathcal{I}$
- $I$ is closed, if $\exists G \in \operatorname{Gr}(\neg F)$ such that $\mathcal{I} \not \vDash G$ and thus $\mathcal{I} \not \vDash \neg F$


## Lemma

if all nodes in $T$ are closed then $F$ is valid

## Fact

path in $T$ gives rise to a (partial) Herbrand interpretation $\mathcal{I}$ of $F^{\prime}$

## Definition

- let $I \in T$, Herbrand interpretation induced by $I$ is denoted as $\mathcal{I}$
- $I$ is closed, if $\exists G \in \operatorname{Gr}(\neg F)$ such that $\mathcal{I} \not \vDash G$ and thus $\mathcal{I} \not \vDash \neg F$


## Lemma

if all nodes in $T$ are closed then $F$ is valid

## Proof.

- all nodes in $T$ are closed
- $\exists$ finite unsatisfiable $S \subseteq \operatorname{Gr}(\neg F)$
- by Herbrand's theorem $\neg F$ is unsatisfiable, hence $F$ is valid


## Gilmore's Prover

Definition
the Herbrand universe for a language $\mathcal{L}$ can be constructed iteratively as follows:

$$
\begin{aligned}
H_{0} & := \begin{cases}\{c \mid c \text { is a constant in } \mathcal{L}\} & \exists \text { constants } \\
\{c\} & \text { otherwise }\end{cases} \\
H_{n+1} & :=\left\{f\left(t_{1}, \ldots, t_{k}\right) \mid f^{k} \in \mathcal{L}, t_{1}, \ldots, t_{k} \in H_{n}\right\}
\end{aligned}
$$

finally $H:=\bigcup_{n \geqslant 0} H_{n}$ denotes the Herbrand universe for $\mathcal{L}$

## Gilmore's Prover

## Definition

the Herbrand universe for a language $\mathcal{L}$ can be constructed iteratively as follows:

$$
\begin{aligned}
H_{0} & := \begin{cases}\{c \mid c \text { is a constant in } \mathcal{L}\} & \exists \text { constants } \\
\{c\} & \text { otherwise }\end{cases} \\
H_{n+1} & :=\left\{f\left(t_{1}, \ldots, t_{k}\right) \mid f^{k} \in \mathcal{L}, t_{1}, \ldots, t_{k} \in H_{n}\right\}
\end{aligned}
$$

finally $H:=\bigcup_{n \geqslant 0} H_{n}$ denotes the Herbrand universe for $\mathcal{L}$

## Definition

let $\mathcal{C}$ denote a set of clauses over $\mathcal{L}$; define $\mathcal{C}_{n}^{\prime}$ as the ground instances of $\mathcal{C}$ using only terms from $H_{n}{ }^{a}$

[^0]
## Gilmore＇s Prover in Pseudo－Code

```
```

```
begin {
```

```
```

begin {

```
```

```
begin {
```

        contr := false;
    ```
 contr := false;
```

        contr := false;
    ```
 contr := false;
 n := 0;
 n := 0;
 n := 0;
 n := 0;
 while (not contr) do {
```

    while (not contr) do {
    ```
 while (not contr) do {
```

    while (not contr) do {
    ```
```

    D':= DNF (C)
    ```
 D':= DNF (C)
```

    D':= DNF (C)
    ```
 D':= DNF (C)
 contr := all constituents of D'
 contain complementary literals;
 contain complementary literals;
 contain complementary literals;
 contain complementary literals;
 n := n + 1;
 n := n + 1;
 n := n + 1;
 n := n + 1;
\[
{ }_{2} \mathrm{n}:=\mathrm{n}+1
\]
 }
 }
 }
 }
 }
```

```
 }
```

```
 }
```

```
 }
```

```
conls :- a\&t consliluenls of D
```

```
contr ：false， begin \｛
```

```
 n
```

        n
    ```
 n
```

        n
    }
    ```
 }
```

    }
    ```
 }
```






```
 *
```

        *
    ```
 *
```

        *
    *
    *
    *
    *
        contr .= all
        contr .= all
        contr .= all
        contr .= all
        onstituents of D'
        onstituents of D'
        onstituents of D'
        onstituents of D'
        literals;
        literals;
        literals;
        literals;
        *)
        *)
        *)
        *)
        *)
    ```
 *)
```

        *)
    ```
 *)
```

 $0+0$

- +2

都
震



.
－

$\square$
教（2，

$\qquad$

```
 _
```

$\square$

.






Gilmore's Prover in Pseudo-Code

```
begin {
 contr := false;
 n := 0;
 while (not contr) do {
 D' := DNF (C)
 contr := all constituents of D'
 contain complementary literals;
 n := n + 1;
 }
}
```

Disadvantages

- generation of all $\mathcal{C}_{n}^{\prime}$
- transformation to DNF
- did not yield actual proofs of simple (predicate logic) formulas


## Definitions

- a clause $C$ is called reduced, if every literal occurs at most once in $C$
- a clause set $\mathcal{C}$ is called reduced for tautologies, if every clause in $\mathcal{C}$ is reduced and does not contain complementary literals


## Definitions

- a clause $C$ is called reduced, if every literal occurs at most once in $C$
- a clause set $\mathcal{C}$ is called reduced for tautologies, if every clause in $\mathcal{C}$ is reduced and does not contain complementary literals

Definition (tautology rule) delete all clauses containing complementary literals

## Definitions

- a clause $C$ is called reduced, if every literal occurs at most once in $C$
- a clause set $\mathcal{C}$ is called reduced for tautologies, if every clause in $\mathcal{C}$ is reduced and does not contain complementary literals

Definition (tautology rule)
delete all clauses containing complementary literals
let $\mathcal{C}^{\prime}$ be ground and reduced for tautologies

## Definitions

- a clause $C$ is called reduced, if every literal occurs at most once in $C$
- a clause set $\mathcal{C}$ is called reduced for tautologies, if every clause in $\mathcal{C}$ is reduced and does not contain complementary literals


## Definition (tautology rule)

delete all clauses containing complementary literals
let $\mathcal{C}^{\prime}$ be ground and reduced for tautologies
Definition (one-literal rule)
let $C \in \mathcal{C}^{\prime}$ and suppose
$1 C$ consists of just one literal $L$
2 remove all clauses $D \in \mathcal{C}^{\prime}$ such that $L$ occurs in $D$
3 remove $\neg L$ from all remaining clauses in $\mathcal{C}^{\prime}$

## Definition (pure literal rule)

let $\mathcal{D}^{\prime} \subseteq \mathcal{C}^{\prime}$ such that
$1 \exists$ literal $L$ that appears in all clauses in $\mathcal{D}^{\prime}$

- $\neg L$ doesn't appear in $\mathcal{C}^{\prime}$

3 replace $\mathcal{C}^{\prime}$ by $\mathcal{C}^{\prime} \backslash \mathcal{D}^{\prime}$

## Definition (pure literal rule)

let $\mathcal{D}^{\prime} \subseteq \mathcal{C}^{\prime}$ such that
$1 \exists$ literal $L$ that appears in all clauses in $\mathcal{D}^{\prime}$
$\sqrt[2]{ } \neg L$ doesn't appear in $\mathcal{C}^{\prime}$
3 replace $\mathcal{C}^{\prime}$ by $\mathcal{C}^{\prime} \backslash \mathcal{D}^{\prime}$

Definition (splitting rule)
suppose the clause set $\mathcal{C}^{\prime}$ can be written as
$\mathcal{C}^{\prime}=\left\{A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right\} \cup \mathcal{D}$ where
$1 \exists$ literal $L$, such that neither $L$ nor $\neg L$ occurs in $\mathcal{D}$
$2 L$ occurs in any $A_{i}$ (but in no $B_{j}$ ); $A_{i}^{\prime}$ is the result of removing $L$
$3 \neg L$ occurs in any $B_{j}$ (but in no $A_{i}$ ) $B_{j}^{\prime}$ is the result of removing $\neg L$
4 rule consists in splitting $\mathcal{C}^{\prime}$ into $\mathcal{C}_{1}^{\prime}:=\left\{A_{1}^{\prime}, \ldots, A_{n}^{\prime}\right\} \cup \mathcal{D}$ and $\mathcal{C}_{2}^{\prime}:=\left\{B_{1}^{\prime}, \ldots, B_{m}^{\prime}\right\} \cup \mathcal{D}$

## The Method of Davis and Putnam

Definition (DPLL Method)
the method encompasses the above defined four rules

- tautology rule
- one-literal rule
- pure literal rule
- splitting rule


## The Method of Davis and Putnam

Definition (DPLL Method)
the method encompasses the above defined four rules

- tautology rule
- one-literal rule
- pure literal rule
- splitting rule


## Theorem

1 the rules of the DPLL-method are correct
$\sqrt{2}$ that is, if $\mathcal{D}$ is a set of ground clauses and either $\mathcal{D}^{\prime}$ or $\mathcal{D}_{1}$ and $\mathcal{D}_{2}$ are obtained by the above rules, then $\mathcal{D}$ is satisfiable if $\mathcal{D}^{\prime}\left(\mathcal{D}_{1}\right.$ or $\mathcal{D}_{2}$ ) is satisfiable

## DPLL-tree and DPLL-decision tree

let $\mathcal{C}^{\prime}$ be a set of reduced ground clauses

## Definition

- $T$ consists only of the root, labelled by $\mathcal{C}^{\prime}$
- let $N$ be a node in $T$, labelled by $\mathcal{D}$; then $N$ is either a

1 leaf node,
$2 N$ has one successor $N^{\prime}$, labelled by $\mathcal{D}^{\prime}$, where $\mathcal{D}^{\prime}$ is obtained as the application of tautology, one-literal, pure literal rule to $\mathcal{D}$, or
$3 N$ has two successors $N_{1}, N_{2}$ labelled by the clause sets obtained by an application of the split rule to $\mathcal{D}$

## DPLL-tree and DPLL-decision tree

let $\mathcal{C}^{\prime}$ be a set of reduced ground clauses

## Definition

- $T$ consists only of the root, labelled by $\mathcal{C}^{\prime}$
- let $N$ be a node in $T$, labelled by $\mathcal{D}$; then $N$ is either a

1 leaf node,
$2 N$ has one successor $N^{\prime}$, labelled by $\mathcal{D}^{\prime}$, where $\mathcal{D}^{\prime}$ is obtained as the application of tautology, one-literal, pure literal rule to $\mathcal{D}$, or
$3 N$ has two successors $N_{1}, N_{2}$ labelled by the clause sets obtained by an application of the split rule to $\mathcal{D}$

Definition (DPLL-decision tree)
a DPLL-tree is a decision tree for $\mathcal{C}^{\prime}$ if
1 all leafs are labelled by the empty clause $\square$, or
$2 \exists$ leaf labelled by the empty clause set $\varnothing$

Theorem

- let $\mathcal{C}^{\prime}$ be a reduced set of ground clauses and let $T$ be a decision tree proving satisfiability or unsatisfiability for $\mathcal{C}^{\prime}$
- then $\mathcal{C}^{\prime}$ is satisfiable or unsatisfiable, respectively


## Theorem

- let $\mathcal{C}^{\prime}$ be a reduced set of ground clauses and let $T$ be a decision tree proving satisfiability or unsatisfiability for $\mathcal{C}^{\prime}$
- then $\mathcal{C}^{\prime}$ is satisfiable or unsatisfiable, respectively

Theorem

- let $\mathcal{C}^{\prime}$ be as above and let $T$ be a DPLL-tree for $\mathcal{C}^{\prime}$
- then $T$ can be extended to a decision tree for $\mathcal{C}^{\prime}$


## Theorem

- let $\mathcal{C}^{\prime}$ be a reduced set of ground clauses and let $T$ be a decision tree proving satisfiability or unsatisfiability for $\mathcal{C}^{\prime}$
- then $\mathcal{C}^{\prime}$ is satisfiable or unsatisfiable, respectively

Theorem

- let $\mathcal{C}^{\prime}$ be as above and let $T$ be a DPLL-tree for $\mathcal{C}^{\prime}$
- then $T$ can be extended to a decision tree for $\mathcal{C}^{\prime}$

Proof
by induction on the number $\ell$ of atoms in $\mathcal{C}^{\prime}$

## Theorem

- let $\mathcal{C}^{\prime}$ be a reduced set of ground clauses and let $T$ be a decision tree proving satisfiability or unsatisfiability for $\mathcal{C}^{\prime}$
- then $\mathcal{C}^{\prime}$ is satisfiable or unsatisfiable, respectively


## Theorem

- let $\mathcal{C}^{\prime}$ be as above and let $T$ be a DPLL-tree for $\mathcal{C}^{\prime}$
- then $T$ can be extended to a decision tree for $\mathcal{C}^{\prime}$

Proof
by induction on the number $\ell$ of atoms in $\mathcal{C}^{\prime}$
$1 \ell=0: \mathcal{C}^{\prime}$ is either empty or contains $\square, T$ is already a decision tree

## Theorem

- let $\mathcal{C}^{\prime}$ be a reduced set of ground clauses and let $T$ be a decision tree proving satisfiability or unsatisfiability for $\mathcal{C}^{\prime}$
- then $\mathcal{C}^{\prime}$ is satisfiable or unsatisfiable, respectively


## Theorem

- let $\mathcal{C}^{\prime}$ be as above and let $T$ be a DPLL-tree for $\mathcal{C}^{\prime}$
- then $T$ can be extended to a decision tree for $\mathcal{C}^{\prime}$


## Proof

by induction on the number $\ell$ of atoms in $\mathcal{C}^{\prime}$
$1 \ell=0: \mathcal{C}^{\prime}$ is either empty or contains $\square, T$ is already a decision tree
$2 \ell>0$ : we distinguish

- $T$ consists only of the root, labelled by $\mathcal{C}^{\prime}$
- $T$ contains more than one node


## Proof (cont'd).

- $T$ consists only of the root, labelled by $\mathcal{C}^{\prime}$


## Proof (cont'd).

- $T$ consists only of the root, labelled by $\mathcal{C}^{\prime}$ we employ a one-literal, pure literal rule, or a splitting rule; extend $T$ such that the successors nodes are labelled with smaller clause sets; induction hypothesis becomes applicable


## Proof (cont'd).

- $T$ consists only of the root, labelled by $\mathcal{C}^{\prime}$ we employ a one-literal, pure literal rule, or a splitting rule; extend $T$ such that the successors nodes are labelled with smaller clause sets; induction hypothesis becomes applicable
- $T$ contains more than one node


## Proof (cont'd).

- $T$ consists only of the root, labelled by $\mathcal{C}^{\prime}$ we employ a one-literal, pure literal rule, or a splitting rule; extend $T$ such that the successors nodes are labelled with smaller clause sets; induction hypothesis becomes applicable
- $T$ contains more than one node let $\mathcal{D}_{1}, \ldots, \mathcal{D}_{n}$ denote all leaf nodes of $T$; for at least one of these nodes we can emply one-literal, pure literal rule, or a splitting rule; then we argue as in the first sub-case


## Proof (cont'd).

- $T$ consists only of the root, labelled by $\mathcal{C}^{\prime}$
we employ a one-literal, pure literal rule, or a splitting rule; extend $T$ such that the successors nodes are labelled with smaller clause sets; induction hypothesis becomes applicable
- $T$ contains more than one node let $\mathcal{D}_{1}, \ldots, \mathcal{D}_{n}$ denote all leaf nodes of $T$; for at least one of these nodes we can emply one-literal, pure literal rule, or a splitting rule; then we argue as in the first sub-case


## Proof (cont'd).

- $T$ consists only of the root, labelled by $\mathcal{C}^{\prime}$ we employ a one-literal, pure literal rule, or a splitting rule; extend $T$ such that the successors nodes are labelled with smaller clause sets; induction hypothesis becomes applicable
- $T$ contains more than one node let $\mathcal{D}_{1}, \ldots, \mathcal{D}_{n}$ denote all leaf nodes of $T$; for at least one of these nodes we can emply one-literal, pure literal rule, or a splitting rule; then we argue as in the first sub-case


## Definition

DPLL(a) remove multiple occurrences of literals in $\mathcal{C}^{\prime}$ to obtain a reduced clause set $\mathcal{D}_{1}$
DPLL(b) apply the tautology rule exhaustively to $\mathcal{D}_{1}$ to obtain a reduced clause set $\mathcal{D}_{2}$ that is reduced for tautologies

## Definition

DPLL(c) construct a decision tree for $\mathcal{D}_{2}$.

## Definition

## DPLL(c) construct a decision tree for $\mathcal{D}_{2}$.

## Method of Davis and Putnam in Pseudo-Code

```
if \mathcal{C does not contain function symbols}
then apply DPLL(a)-DPLL(c) on C
else {
n := 0;
contr := false;
while (\neg contr) do {
 apply DPLL(a)-DPLL(c) on C
 if the decision tree proves unsatisfiability,
 then contr := true
 else contr := false;
 n}:=n+1
}}
```


## The Language of Clause Logic (with Equality)

Definition

- individual constants

```
k},\mp@subsup{k}{1}{},\ldots,\mp@subsup{k}{j}{},
- function constants with \(i\) arguments \(f_{0}^{i}, f_{1}^{i}, \ldots, f_{j}^{i}, \ldots\) denoted \(f, g, h\), etc.
- predicate constants with \(i\) arguments \(R_{0}^{i}, R_{1}^{i}, \ldots, R_{j}^{i}, \ldots\)
denoted \(P, Q, R\), etc.
- variables, collected in \(\mathcal{V}\)
\[
x_{0}, x_{1}, \ldots, x_{j}, \ldots \quad \text { denoted } x, y, z, \text { etc. }
\]

\section*{The Language of Clause Logic (with Equality)}

Definition
- individual constants
\(k_{0}, k_{1}, \ldots, k_{j}, \ldots\)
- function constants with \(i\) arguments
\(f_{0}^{i}, f_{1}^{i}, \ldots, f_{j}^{i}, \ldots\)
- predicate constants with \(i\) arguments \(R_{0}^{i}, R_{1}^{i}, \ldots, R_{j}^{i}, \ldots\)
- variables, collected in \(\mathcal{V}\)
\[
x_{0}, x_{1}, \ldots, x_{j}, \ldots \quad \text { denoted } x, y, z, \text { etc. }
\]

\section*{Definition}
- propositional connectives \(\neg, \vee\)
- equality sign \(=\)

\section*{Definition}
\(1 P\left(t_{1}, \ldots, t_{n}\right)\) is called an atomic formula if \(t_{1}, \ldots, t_{n}\) are terms, \(P\) a predicate constant

Definition
\(1 P\left(t_{1}, \ldots, t_{n}\right)\) is called an atomic formula if \(t_{1}, \ldots, t_{n}\) are terms, \(P\) a predicate constant
2 a literal is an atomic formula or its negation

Definition
\(1 P\left(t_{1}, \ldots, t_{n}\right)\) is called an atomic formula if \(t_{1}, \ldots, t_{n}\) are terms, \(P\) a predicate constant
2 a literal is an atomic formula or its negation
3 a clause is disjunction of literals

\section*{Definition}
\(1 P\left(t_{1}, \ldots, t_{n}\right)\) is called an atomic formula if \(t_{1}, \ldots, t_{n}\) are terms, \(P\) a predicate constant
2 a literal is an atomic formula or its negation
3 a clause is disjunction of literals

Theorem
\(\forall\) first-order sentence \(F, \exists\) set of clauses \(\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}\)
\[
F \approx \forall x_{1} \cdots \forall x_{n}\left(C_{1} \wedge \cdots \wedge C_{m}\right)
\]

\section*{Definition}
\(1 P\left(t_{1}, \ldots, t_{n}\right)\) is called an atomic formula if \(t_{1}, \ldots, t_{n}\) are terms, \(P\) a predicate constant
2 a literal is an atomic formula or its negation
3 a clause is disjunction of literals

Theorem
\(\forall\) first-order sentence \(F, \exists\) set of clauses \(\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}\)
\[
F \approx \forall x_{1} \cdots \forall x_{n}\left(C_{1} \wedge \cdots \wedge C_{m}\right)
\]

Proof.
- let \(F\) be a sentence (in standard first-order language)
- there exists \(G \approx F\) such that
\[
G=\forall x_{1} \cdots \forall x_{n}\left(H_{1}\left(x_{1}, \ldots, x_{n}\right) \wedge \cdots \wedge H_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
\]
- each \(H_{i}(i=1, \ldots, m)\) is a disjunction of literals, hence a clause

Definition
\(1 \square\) is a clause
2 literals are clauses
3 if \(C, D\) are clauses, then \(C \vee D\) is a clause

Definition
\(1 \square\) is a clause
2 literals are clauses
3 if \(C, D\) are clauses, then \(C \vee D\) is a clause

Convention
we use (i) the equivalences \(A \equiv \neg \neg A, A\) atomic formula, that (ii) disjunction \(\vee\) is associative and commutative, and (iii) \(\square \vee \square=\square\), and \(C \vee \square=\square \vee C=C\)

\section*{Definition}
\(1 \square\) is a clause
2 literals are clauses
3 if \(C, D\) are clauses, then \(C \vee D\) is a clause

\section*{Convention}
we use (i) the equivalences \(A \equiv \neg \neg A, A\) atomic formula, that (ii) disjunction \(\vee\) is associative and commutative, and (iii) \(\square \vee \square=\square\), and \(C \vee \square=\square \vee C=C\)

\section*{Definition}
- let \(\mathcal{T}\) denote the set of terms in our language
- \(\operatorname{Var}(E)\) denotes set of variables occurring in \(E\)
- a substitution \(\sigma\) is a mapping \(\mathcal{V} \rightarrow \mathcal{T}\) such that \(\sigma(x)=x\), for almost all \(x\)
- we write \(\sigma=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}\); empty subst. denoted by \(\epsilon\)

\section*{Most General Unifier}
application of a substitution \(\sigma\) to expression \(E\) is denoted as \(E \sigma ; E \sigma\) is called an instance of \(E\)

Definition
- \(\sigma=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}, \tau=\left\{y_{1} \mapsto r_{1}, \ldots, y_{1} \mapsto r_{m}\right\}\)
- composition of \(\sigma\) and \(\tau\) denoted as \(\sigma \tau\) :
\[
\left\{x_{1} \mapsto t_{1} \tau, \ldots, x_{n} \mapsto t_{n} \tau\right\} \cup\left\{y_{i} \mapsto r_{i} \mid \text { for all } j=1, \ldots, n, y_{i} \neq x_{j}\right\}
\]
- \(\sigma\) is more general than a substitution \(\tau\), if there exists a substitution \(\rho\) such that \(\sigma \rho=\tau\)

\section*{Most General Unifier}
application of a substitution \(\sigma\) to expression \(E\) is denoted as \(E \sigma ; E \sigma\) is called an instance of \(E\)

Definition
- \(\sigma=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}, \tau=\left\{y_{1} \mapsto r_{1}, \ldots, y_{1} \mapsto r_{m}\right\}\)
- composition of \(\sigma\) and \(\tau\) denoted as \(\sigma \tau\) :
\[
\left\{x_{1} \mapsto t_{1} \tau, \ldots, x_{n} \mapsto t_{n} \tau\right\} \cup\left\{y_{i} \mapsto r_{i} \mid \text { for all } j=1, \ldots, n, y_{i} \neq x_{j}\right\}
\]
- \(\sigma\) is more general than a substitution \(\tau\), if there exists a substitution \(\rho\) such that \(\sigma \rho=\tau\)
\(E \tau\) is instance of \(E \sigma\)

\section*{Most General Unifier}
application of a substitution \(\sigma\) to expression \(E\) is denoted as \(E \sigma\); \(E \sigma\) is called an instance of \(E\)

Definition
- \(\sigma=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}, \tau=\left\{y_{1} \mapsto r_{1}, \ldots, y_{1} \mapsto r_{m}\right\}\)
- composition of \(\sigma\) and \(\tau\) denoted as \(\sigma \tau\) :
\[
\left\{x_{1} \mapsto t_{1} \tau, \ldots, x_{n} \mapsto t_{n} \tau\right\} \cup\left\{y_{i} \mapsto r_{i} \mid \text { for all } j=1, \ldots, n, y_{i} \neq x_{j}\right\}
\]
- \(\sigma\) is more general than a substitution \(\tau\), if there exists a substitution \(\rho\) such that \(\sigma \rho=\tau\) \(E \tau\) is instance of \(E \sigma\)

\section*{Definition}
- a substitution \(\sigma\) such that \(E \sigma=F \sigma\) is unifier of \(E, F\) generalises to sets \(U\) of expressions (\(=\) terms or atomic formulas)
- unifier \(\sigma\) is most general if \(\sigma\) is more general than any other unifier
- \(\sigma=\left\{x \mapsto 0, y \mapsto 0, x^{\prime} \mapsto 0, y^{\prime} \mapsto \mathrm{f}(0)\right\}\) is a unifier of \(U\)
- \(\tau=\left\{y \mapsto x, x^{\prime} \mapsto x, y^{\prime} \mapsto \mathrm{f}(x)\right\}\) is most general
 - \(\tau=\left\{y \rightarrow x, x^{\prime} \rightarrow x, y^{\prime} \rightarrow f(x)\right\}\) is mot
e

\section*{}

 -

\section*{Example}
consider \(U=\left\{\mathrm{P}(x, \mathrm{f}(x)), \mathrm{P}(y, \mathrm{f}(x)), \mathrm{P}\left(x^{\prime}, y^{\prime}\right)\right\}\)
- \(\sigma=\left\{x \mapsto 0, y \mapsto 0, x^{\prime} \mapsto 0, y^{\prime} \mapsto \mathrm{f}(0)\right\}\) is a unifier of \(U\)
- \(\tau=\left\{y \mapsto x, x^{\prime} \mapsto x, y^{\prime} \mapsto \mathrm{f}(x)\right\}\) is most general

\section*{Definition}
- sequence \(E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}\) is called an equality problem

\section*{Example}
consider \(U=\left\{\mathrm{P}(x, \mathrm{f}(x)), \mathrm{P}(y, \mathrm{f}(x)), \mathrm{P}\left(x^{\prime}, y^{\prime}\right)\right\}\)
- \(\sigma=\left\{x \mapsto 0, y \mapsto 0, x^{\prime} \mapsto 0, y^{\prime} \mapsto \mathrm{f}(0)\right\}\) is a unifier of \(U\)
- \(\tau=\left\{y \mapsto x, x^{\prime} \mapsto x, y^{\prime} \mapsto \mathrm{f}(x)\right\}\) is most general

\section*{Definition}
- sequence \(E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}\) is called an equality problem
- unifier of \(E\) is the unifier of \(\left\{u_{1}=v_{1}, \ldots, u_{n}=v_{n}\right\}\)

\section*{Example}
consider \(U=\left\{\mathrm{P}(x, \mathrm{f}(x)), \mathrm{P}(y, \mathrm{f}(x)), \mathrm{P}\left(x^{\prime}, y^{\prime}\right)\right\}\)
- \(\sigma=\left\{x \mapsto 0, y \mapsto 0, x^{\prime} \mapsto 0, y^{\prime} \mapsto \mathrm{f}(0)\right\}\) is a unifier of \(U\)
- \(\tau=\left\{y \mapsto x, x^{\prime} \mapsto x, y^{\prime} \mapsto \mathrm{f}(x)\right\}\) is most general

\section*{Definition}
- sequence \(E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}\) is called an equality problem
- unifier of \(E\) is the unifier of \(\left\{u_{1}=v_{1}, \ldots, u_{n}=v_{n}\right\}\)
- If \(E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}\), with \(x_{i}\) pairwise distinct and \(x_{i} \notin \operatorname{Var}\left(v_{j}\right)\), then \(E\) is in solved form

\section*{Example}
consider \(U=\left\{\mathrm{P}(x, \mathrm{f}(x)), \mathrm{P}(y, \mathrm{f}(x)), \mathrm{P}\left(x^{\prime}, y^{\prime}\right)\right\}\)
- \(\sigma=\left\{x \mapsto 0, y \mapsto 0, x^{\prime} \mapsto 0, y^{\prime} \mapsto \mathrm{f}(0)\right\}\) is a unifier of \(U\)
- \(\tau=\left\{y \mapsto x, x^{\prime} \mapsto x, y^{\prime} \mapsto \mathrm{f}(x)\right\}\) is most general

\section*{Definition}
- sequence \(E=u_{1} \stackrel{?}{=} v_{1}, \ldots, u_{n} \stackrel{?}{=} v_{n}\) is called an equality problem
- unifier of \(E\) is the unifier of \(\left\{u_{1}=v_{1}, \ldots, u_{n}=v_{n}\right\}\)
- If \(E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}\), with \(x_{i}\) pairwise distinct and \(x_{i} \notin \operatorname{Var}\left(v_{j}\right)\), then \(E\) is in solved form

\section*{Example}
\(U\) becomes \(\quad \mathrm{P}(x, \mathrm{f}(x)) \stackrel{?}{=} \mathrm{P}(y, \mathrm{f}(x)), \mathrm{P}(y, \mathrm{f}(x)) \stackrel{?}{=} \mathrm{P}\left(x^{\prime}, y^{\prime}\right)\)
\(\tau\) becomes \(\quad y \stackrel{?}{=} x, x^{\prime} \stackrel{?}{=} x, y^{\prime} \stackrel{?}{=} f(x)\)

\(\qquad\)
\(\square\)
\(\qquad\)
\(\square\) (2)

\section*{\(\qquad\)}

\section*{}

都
[

\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Unification Algorithm}
\[
u \stackrel{?}{=} u, E \Rightarrow E
\]

\section*{Unification Algorithm}
\[
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E
\end{aligned}
\]

\section*{Unification Algorithm}
\[
\begin{aligned}
& u \stackrel{?}{=} u, E \Rightarrow E \\
& f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
& f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E \Rightarrow \perp \quad f \neq g
\end{aligned}
\]

\section*{Unification Algorithm}
\[
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
x \stackrel{?}{=} v, E & \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \operatorname{Var}(E), x \notin \operatorname{V} \operatorname{ar}(v)
\end{aligned}
\]

\section*{Unification Algorithm}
\[
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{\stackrel{ }{g}} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
x \stackrel{?}{=} v, E & \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \operatorname{Var}(E), x \notin \operatorname{V} \operatorname{ar}(v) \\
x \stackrel{?}{=} v, E & \Rightarrow \perp \quad x \neq v, x \in \mathcal{V} \operatorname{ar}(v)
\end{aligned}
\]

\section*{Unification Algorithm}
\[
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
x \stackrel{?}{=} v, E & \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \operatorname{V} \operatorname{ar}(E), x \notin \operatorname{V} \operatorname{ar}(v) \\
x \stackrel{?}{=} v, E & \Rightarrow \perp \quad x \neq v, x \in \mathcal{V} \operatorname{ar}(v) \\
v \stackrel{?}{=} x, E & \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}
\end{aligned}
\]

\section*{Unification Algorithm}
\[
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
x \stackrel{?}{=} v, E & \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \operatorname{V} \operatorname{ar}(E), x \notin \operatorname{V} \operatorname{ar}(v) \\
x \stackrel{?}{=} v, E & \Rightarrow \perp \quad x \neq v, x \in \mathcal{V} \operatorname{ar}(v) \\
v \stackrel{?}{=} x, E & \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}
\end{aligned}
\]

\section*{Example}
\[
\mathrm{f}(x, \mathrm{~g}(y), x) \stackrel{?}{\stackrel{?}{\mathrm{f}}} \mathrm{f}\left(z, \mathrm{~g}\left(x^{\prime}\right), \mathrm{h}\left(x^{\prime}\right)\right) \Rightarrow x \stackrel{?}{=} z, \mathrm{~g}(y) \stackrel{?}{\stackrel{?}{\mathrm{~g}}} \mathrm{~g}\left(x^{\prime}\right), x \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right)
\]

\section*{Unification Algorithm}
\[
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
x \stackrel{?}{=} v, E & \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \operatorname{V} \operatorname{ar}(E), x \notin \operatorname{V} \operatorname{ar}(v) \\
x \stackrel{?}{=} v, E & \Rightarrow \perp \quad x \neq v, x \in \mathcal{V} \operatorname{ar}(v) \\
v \stackrel{?}{=} x, E & \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}
\end{aligned}
\]

\section*{Example}
\[
\begin{aligned}
\mathrm{f}(x, \mathrm{~g}(y), x) \stackrel{?}{=} \mathrm{f}\left(z, \mathrm{~g}\left(x^{\prime}\right), \mathrm{h}\left(x^{\prime}\right)\right) & \Rightarrow x \stackrel{?}{=} z, \mathrm{~g}(y) \stackrel{?}{=} \mathrm{g}\left(x^{\prime}\right), x \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right) \\
& \Rightarrow x \stackrel{?}{=} z, \mathrm{~g}(y) \stackrel{?}{=} \mathrm{g}\left(x^{\prime}\right), \mathrm{z} \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right)
\end{aligned}
\]

Unification Algorithm
\[
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
x \stackrel{?}{=} v, E & \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \operatorname{Var}(E), x \notin \operatorname{Var}(v) \\
x \stackrel{?}{=} v, E & \Rightarrow \perp \quad x \neq v, x \in \operatorname{V} \operatorname{ar}(v) \\
v \stackrel{?}{=} x, E & \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}
\end{aligned}
\]

Example
\[
\begin{aligned}
& \left.\left.f(x, g(y), x) \stackrel{?}{=} f\left(z, g\left(x^{\prime}\right), h\left(x^{\prime}\right)\right) \Rightarrow x=z=\frac{?}{=} \Rightarrow(y)=x^{\prime}=\frac{?}{=}\right), x^{\prime}\right) \\
& \Rightarrow x^{?} \mathrm{l}, \mathrm{~g}(\mathrm{y}) \stackrel{?}{=} \mathrm{g}\left(x^{\prime}\right), z^{\stackrel{?}{=}} \mathrm{h}\left(x^{\prime}\right) \\
& \Rightarrow x \stackrel{?}{=} z, y \stackrel{?}{\underline{?}} x^{\prime}, z \stackrel{?}{=} h\left(x^{\prime}\right)
\end{aligned}
\]

Unification Algorithm
\[
\begin{aligned}
u \stackrel{?}{=} u, E & \Rightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} f\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n}, E \\
f\left(s_{1}, \ldots, s_{n}\right) \stackrel{?}{=} g\left(t_{1}, \ldots, t_{n}\right), E & \Rightarrow \perp \quad f \neq g \\
x \stackrel{?}{=} v, E & \Rightarrow x \stackrel{?}{=} v, E\{x \mapsto v\} \quad x \in \operatorname{V} \operatorname{ar}(E), x \notin \operatorname{V} \operatorname{ar}(v) \\
x \stackrel{?}{=} v, E & \Rightarrow \perp \quad x \neq v, x \in \operatorname{V} \operatorname{ar}(v) \\
v \stackrel{?}{=} x, E & \Rightarrow x \stackrel{?}{=} v, E \quad v \notin \mathcal{V}
\end{aligned}
\]

Example
\[
\begin{aligned}
& \mathrm{f}(x, \mathrm{~g}(y), x) \stackrel{?}{=} \mathrm{f}\left(z, \mathrm{~g}\left(x^{\prime}\right), \mathrm{h}\left(x^{\prime}\right)\right) \Rightarrow x \stackrel{?}{=} z, \mathrm{~g}(y) \stackrel{?}{=} \mathrm{g}\left(x^{\prime}\right), x \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right) \\
& \Rightarrow x^{?} z, \mathrm{~g}(y) \stackrel{?}{\stackrel{?}{ }} \mathrm{~g}\left(x^{\prime}\right), z^{?} \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right) \\
& \Rightarrow x \stackrel{?}{=} z, y \stackrel{?}{=} x^{\prime}, z \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right) \\
& \Rightarrow x^{?} \mathrm{l} \mathrm{~h}\left(x^{\prime}\right), y \stackrel{?}{=} x^{\prime}, z \stackrel{?}{=} \mathrm{h}\left(x^{\prime}\right)
\end{aligned}
\]

\section*{Definition}
let \(E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}\) be a equality problem in solved form \(E\) induces substitution \(\sigma_{E}=\left\{x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right\}\)

\section*{Definition}
let \(E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}\) be a equality problem in solved form \(E\) induces substitution \(\sigma_{E}=\left\{x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right\}\)

\section*{Theorem}

1 equality problems \(E\) is unifiable iff the unification algorithm stops with a solved form

2 if \(E \Rightarrow^{*} E^{\prime}\) such that \(E^{\prime}\) is a solved form, then \(\sigma_{E^{\prime}}\) is a most general unifier (mgu for short) of \(E\);

\section*{Definition}
let \(E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}\) be a equality problem in solved form \(E\) induces substitution \(\sigma_{E}=\left\{x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right\}\)

Theorem
1 equality problems \(E\) is unifiable iff the unification algorithm stops with a solved form

2 if \(E \Rightarrow^{*} E^{\prime}\) such that \(E^{\prime}\) is a solved form, then \(\sigma_{E^{\prime}}\) is a most general unifier (mgu for short) of \(E\);

\section*{Proof.}
in proof, we verify the following three facts:

\section*{Definition}
let \(E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}\) be a equality problem in solved form \(E\) induces substitution \(\sigma_{E}=\left\{x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right\}\)

\section*{Theorem}

1 equality problems \(E\) is unifiable iff the unification algorithm stops with a solved form

2 if \(E \Rightarrow^{*} E^{\prime}\) such that \(E^{\prime}\) is a solved form, then \(\sigma_{E^{\prime}}\) is a most general unifier (mgu for short) of \(E\);

\section*{Proof.}
in proof, we verify the following three facts:
- if \(E \Rightarrow E^{\prime}\), then \(\sigma\) is a unifier of \(E\) iff \(\sigma\) is a unifier of \(E^{\prime}\)

\section*{Definition}
let \(E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}\) be a equality problem in solved form \(E\) induces substitution \(\sigma_{E}=\left\{x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right\}\)

\section*{Theorem}

1 equality problems \(E\) is unifiable iff the unification algorithm stops with a solved form

2 if \(E \Rightarrow^{*} E^{\prime}\) such that \(E^{\prime}\) is a solved form, then \(\sigma_{E^{\prime}}\) is a most general unifier (mgu for short) of \(E\);

\section*{Proof.}
in proof, we verify the following three facts:
- if \(E \Rightarrow E^{\prime}\), then \(\sigma\) is a unifier of \(E\) iff \(\sigma\) is a unifier of \(E^{\prime}\)
- if \(E \Rightarrow^{*} \perp\), then \(E\) is not unifiable

\section*{Definition}
let \(E=x_{1} \stackrel{?}{=} v_{1}, \ldots, x_{n} \stackrel{?}{=} v_{n}\) be a equality problem in solved form \(E\) induces substitution \(\sigma_{E}=\left\{x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right\}\)

\section*{Theorem}

1 equality problems \(E\) is unifiable iff the unification algorithm stops with a solved form

2 if \(E \Rightarrow^{*} E^{\prime}\) such that \(E^{\prime}\) is a solved form, then \(\sigma_{E^{\prime}}\) is a most general unifier (mgu for short) of \(E\);

\section*{Proof.}
in proof, we verify the following three facts:
- if \(E \Rightarrow E^{\prime}\), then \(\sigma\) is a unifier of \(E\) iff \(\sigma\) is a unifier of \(E^{\prime}\)
- if \(E \Rightarrow^{*} \perp\), then \(E\) is not unifiable
- if \(E \Rightarrow^{*} E^{\prime}\) such that \(E^{\prime}\) is a solved form, then \(\sigma_{E^{\prime}}\) is a mgu of \(E\)

\section*{Resolution Calculus for First-Order Logic}

Definition
\[
\begin{array}{cc}
\begin{array}{c}
\text { resolution } \\
C \vee A D \vee \neg B \\
(C \vee D) \sigma
\end{array} & \begin{array}{l}
\text { factoring } \\
(C \vee A) \sigma
\end{array}
\end{array}
\]
\(\sigma\) is a mgu of the atomic formulas \(A\) and \(B\)

Resolution Calculus for First-Order I aoir restricted to atoms
Definition
\[
\begin{array}{cc}
\text { resolution } & \text { factoring } \\
\frac{C \vee A D \vee \neg B}{(C \vee D) \sigma} & \frac{C \vee A \vee B}{(C \vee A) \sigma}
\end{array}
\]
\(\sigma\) is a mgu of the atomic formulas \(A\) and \(B\)

\section*{Resolution Calculus for First-Order Logic}

Definition
\[
\begin{array}{cc}
\text { resolution } & \text { factoring } \\
C \vee A D \vee \neg B & \frac{C \vee A \vee B}{(C \vee A) \sigma}
\end{array}
\]
\(\sigma\) is a mgu of the atomic formulas \(A\) and \(B\)
let \(\mathcal{C}\) be a set of clauses; define resolution operator \(\operatorname{Res}(\mathcal{C})\)

\section*{Resolution Calculus for First-Order Logic}

Definition
resolution
\[
\frac{C \vee A \quad D \vee \neg B}{(C \vee D) \sigma}
\]
factoring
\(\frac{C \vee A \vee B}{(C \vee A) \sigma}\)
\(\sigma\) is a mgu of the atomic formulas \(A\) and \(B\)
let \(\mathcal{C}\) be a set of clauses; define resolution operator \(\operatorname{Res}(\mathcal{C})\)
- \(\operatorname{Res}(\mathcal{C})=\{D \mid D\) is resolvent or factor with premises in \(\mathcal{C}\}\)
- \(\operatorname{Res}^{0}(\mathcal{C})=\mathcal{C} ; \operatorname{Res}^{n+1}(\mathcal{C}):=\operatorname{Res}^{n}(\mathcal{C}) \cup \operatorname{Res}\left(\operatorname{Res}^{n}(\mathcal{C})\right)\)
- \(\operatorname{Res}^{*}(\mathcal{C}):=\bigcup_{n \geqslant 0} \operatorname{Res}^{n}(\mathcal{C})\)

\section*{Resolution Calculus for First-Order Logic}

Definition
\[
\begin{array}{cc}
\text { resolution } & \text { factoring } \\
\frac{C \vee A D \vee \neg B}{(C \vee D) \sigma} & \frac{C \vee A \vee B}{(C \vee A) \sigma}
\end{array}
\]
\(\sigma\) is a mgu of the atomic formulas \(A\) and \(B\) let \(\mathcal{C}\) be a set of clauses; define resolution operator \(\operatorname{Res}(\mathcal{C})\)
- \(\operatorname{Res}(\mathcal{C})=\{D \mid D\) is resolvent or factor with premises in \(\mathcal{C}\}\)
- \(\operatorname{Res}^{0}(\mathcal{C})=\mathcal{C} ; \operatorname{Res}^{n+1}(\mathcal{C}):=\operatorname{Res}^{n}(\mathcal{C}) \cup \operatorname{Res}\left(\operatorname{Res}^{n}(\mathcal{C})\right)\)
- \(\operatorname{Res}^{*}(\mathcal{C}):=\bigcup_{n \geqslant 0} \operatorname{Res}^{n}(\mathcal{C})\)

Example
\[
\frac{\mathrm{P}(\mathrm{x}) \vee \mathrm{Q}(\mathrm{f}(x, \mathrm{~g}(y), x)) \quad \mathrm{R}(\mathrm{a}, \mathrm{~b}) \vee \neg \mathrm{Q}\left(\mathrm{f}\left(z, \mathrm{~g}\left(x^{\prime}\right), \mathrm{h}\left(x^{\prime}\right)\right)\right)}{\mathrm{P}\left(\mathrm{~h}\left(x^{\prime}\right)\right) \vee \mathrm{R}(\mathrm{a}, \mathrm{~b})}\left\{x \mapsto \mathrm{~h}\left(x^{\prime}\right)\right\}
\]

\section*{Soundness of Resolution}

\section*{Definition}
- if \(\operatorname{Res}(\mathcal{C}) \subseteq \mathcal{C}\), then the clause set \(\mathcal{C}\) is called saturated

\section*{Soundness of Resolution}

\section*{Definition}
- if \(\operatorname{Res}(\mathcal{C}) \subseteq \mathcal{C}\), then the clause set \(\mathcal{C}\) is called saturated
- let \(\square \notin \operatorname{Res}^{*}(\mathcal{C})\), then \(\mathcal{C}\) is consistent

\section*{Soundness of Resolution}

Definition
- if \(\operatorname{Res}(\mathcal{C}) \subseteq \mathcal{C}\), then the clause set \(\mathcal{C}\) is called saturated
- let \(\square \notin \operatorname{Res}^{*}(\mathcal{C})\), then \(\mathcal{C}\) is consistent

Theorem resolution is sound: if \(F\) a sentence and \(\mathcal{C}\) its clause form such that \(\square \in \operatorname{Res}^{*}(\mathcal{C})\), then \(F\) is unsatisfiable

\section*{Soundness of Resolution}

\section*{Definition}
- if \(\operatorname{Res}(\mathcal{C}) \subseteq \mathcal{C}\), then the clause set \(\mathcal{C}\) is called saturated
- let \(\square \notin \operatorname{Res}^{*}(\mathcal{C})\), then \(\mathcal{C}\) is consistent

Theorem
resolution is sound: if \(F\) a sentence and \(\mathcal{C}\) its clause form such that \(\square \in \operatorname{Res}^{*}(\mathcal{C})\), then \(F\) is unsatisfiable

\section*{Proof.}
- the theorem follows by case-distinction on the inferences

\section*{Soundness of Resolution}

\section*{Definition}
- if \(\operatorname{Res}(\mathcal{C}) \subseteq \mathcal{C}\), then the clause set \(\mathcal{C}\) is called saturated
- let \(\square \notin \operatorname{Res}^{*}(\mathcal{C})\), then \(\mathcal{C}\) is consistent

\section*{Theorem}
resolution is sound: if \(F\) a sentence and \(\mathcal{C}\) its clause form such that \(\square \in \operatorname{Res}^{*}(\mathcal{C})\), then \(F\) is unsatisfiable

\section*{Proof.}
- the theorem follows by case-distinction on the inferences
- for each inference one verifies that if the assumptions (as formulas) are modelled by an interpretation \(\mathcal{M}\), then the consequence holds in \(\mathcal{M}\) as well

\section*{Soundness of Resolution}

\section*{Definition}
- if \(\operatorname{Res}(\mathcal{C}) \subseteq \mathcal{C}\), then the clause set \(\mathcal{C}\) is called saturated
- let \(\square \notin \operatorname{Res}^{*}(\mathcal{C})\), then \(\mathcal{C}\) is consistent

\section*{Theorem}
resolution is sound: if \(F\) a sentence and \(\mathcal{C}\) its clause form such that \(\square \in \operatorname{Res}^{*}(\mathcal{C})\), then \(F\) is unsatisfiable

\section*{Proof.}
- the theorem follows by case-distinction on the inferences
- for each inference one verifies that if the assumptions (as formulas) are modelled by an interpretation \(\mathcal{M}\), then the consequence holds in \(\mathcal{M}\) as well

\section*{Completeness of Resolution}

\section*{Definitions}
- a clause is called ground if it doesn't contain variables
- a ground substitution is a substitution whose range contains only terms without variables
- let \(\square \notin \operatorname{Res}^{*}(\mathcal{C})\), then \(\mathcal{C}\) is consistent

\section*{Completeness of Resolution}

\section*{Definitions}
- a clause is called ground if it doesn't contain variables
- a ground substitution is a substitution whose range contains only terms without variables
- let \(\square \notin \operatorname{Res}^{*}(\mathcal{C})\), then \(\mathcal{C}\) is consistent

\section*{Lemma}
- let \(S\) denote the set of all consistent ground clause sets
- then \(S\) has the satisfaction properties

\section*{Completeness of Resolution}

\section*{Definitions}
- a clause is called ground if it doesn't contain variables
- a ground substitution is a substitution whose range contains only terms without variables
- let \(\square \notin \operatorname{Res}^{*}(\mathcal{C})\), then \(\mathcal{C}\) is consistent

\section*{Lemma}
- let \(S\) denote the set of all consistent ground clause sets
- then \(S\) has the satisfaction properties

Proof.
(sort of) homework

\section*{Lifting Lemmas}

\section*{Lemma}
- let \(\tau_{1}\) and \(\tau_{2}\) be a ground and consider
\[
\frac{C \tau_{1} \vee A \tau_{1} \quad D \tau_{2} \vee \neg B \tau_{2}}{C \tau_{1} \vee D \tau_{2}}
\]
where \(A \tau_{1}=B \tau_{2}\)
- \(\exists\) mgu \(\sigma\) of \(A\) and \(B\), such that \(\sigma\) is more general then \(\tau_{1}\) and \(\tau_{2}\) and the following resolution step is valid:
\[
\frac{C \vee A \quad D \vee \neg B}{(C \vee D) \sigma}
\]

\section*{Lemma}
- let \(\tau\) be a ground substitutions and consider the following ground factoring step:
\[
\frac{C \tau \vee A \tau \vee B \tau}{C \tau \vee A \tau}
\]
where \(A \tau=B \tau\)
- \(\exists\) mgu \(\sigma\), such that \(\sigma\) is more general then \(\tau\) and the following resolution step is valid:
\[
\frac{C \vee A \quad D \vee \neg B}{(C \vee D) \sigma}
\]

\section*{Lemma}
- let \(\tau\) be a ground substitutions and consider the following ground factoring step:
\[
\frac{C \tau \vee A \tau \vee B \tau}{C \tau \vee A \tau}
\]
where \(A \tau=B \tau\)
- \(\exists\) mgu \(\sigma\), such that \(\sigma\) is more general then \(\tau\) and the following resolution step is valid:
\[
\frac{C \vee A \quad D \vee \neg B}{(C \vee D) \sigma}
\]

Proof.
the lemmas essentially follows from the properties of an mgu

Theorem
resolution is complete; if \(F\) a sentence and \(\mathcal{C}\) its clause form, then \(\square \in \operatorname{Res}^{*}(\mathcal{C})\) if \(F\) is unsatisfiable

Theorem
resolution is complete; if \(F\) a sentence and \(\mathcal{C}\) its clause form, then \(\square \in \operatorname{Res}^{*}(\mathcal{C})\) if \(F\) is unsatisfiable

Proof.
1 suppose \(F\) is unsatisfiable

\section*{Theorem}
resolution is complete; if \(F\) a sentence and \(\mathcal{C}\) its clause form, then \(\square \in \operatorname{Res}^{*}(\mathcal{C})\) if \(F\) is unsatisfiable

\section*{Proof.}

1 suppose \(F\) is unsatisfiable
\(2 \exists\) a set of ground clauses \(\mathcal{C}^{\prime}\) that are instances of the clauses in \(\mathcal{C}\) such that \(\mathcal{C}^{\prime}\) is unsatisfiable

\section*{Theorem}
resolution is complete; if \(F\) a sentence and \(\mathcal{C}\) its clause form, then \(\square \in \operatorname{Res}^{*}(\mathcal{C})\) if \(F\) is unsatisfiable

\section*{Proof.}

1 suppose \(F\) is unsatisfiable
\(2 \exists\) a set of ground clauses \(\mathcal{C}^{\prime}\) that are instances of the clauses in \(\mathcal{C}\) such that \(\mathcal{C}^{\prime}\) is unsatisfiable

3 suppose \(\square \notin \operatorname{Res}^{*}\left(\mathcal{C}^{\prime}\right)\)

\section*{Theorem}
resolution is complete; if \(F\) a sentence and \(\mathcal{C}\) its clause form, then \(\square \in \operatorname{Res}^{*}(\mathcal{C})\) if \(F\) is unsatisfiable

\section*{Proof.}

1 suppose \(F\) is unsatisfiable
\(2 \exists\) a set of ground clauses \(\mathcal{C}^{\prime}\) that are instances of the clauses in \(\mathcal{C}\) such that \(\mathcal{C}^{\prime}\) is unsatisfiable
3 suppose \(\square \notin \operatorname{Res}^{*}\left(\mathcal{C}^{\prime}\right)\)
4 by definition \(\mathcal{C}^{\prime}\) is consistent

\section*{Theorem}
resolution is complete; if \(F\) a sentence and \(\mathcal{C}\) its clause form, then \(\square \in \operatorname{Res}^{*}(\mathcal{C})\) if \(F\) is unsatisfiable

\section*{Proof.}

1 suppose \(F\) is unsatisfiable
\(2 \exists\) a set of ground clauses \(\mathcal{C}^{\prime}\) that are instances of the clauses in \(\mathcal{C}\) such that \(\mathcal{C}^{\prime}\) is unsatisfiable
3 suppose \(\square \notin \operatorname{Res}^{*}\left(\mathcal{C}^{\prime}\right)\)
4 by definition \(\mathcal{C}^{\prime}\) is consistent
5 by model existence \(\mathcal{C}^{\prime}\) is satisfiable

\section*{Theorem}
resolution is complete; if \(F\) a sentence and \(\mathcal{C}\) its clause form, then \(\square \in \operatorname{Res}^{*}(\mathcal{C})\) if \(F\) is unsatisfiable

\section*{Proof.}

1 suppose \(F\) is unsatisfiable
\(2 \exists\) a set of ground clauses \(\mathcal{C}^{\prime}\) that are instances of the clauses in \(\mathcal{C}\) such that \(\mathcal{C}^{\prime}\) is unsatisfiable
3 suppose \(\square \notin \operatorname{Res}^{*}\left(\mathcal{C}^{\prime}\right)\)
4 by definition \(\mathcal{C}^{\prime}\) is consistent
5 by model existence \(\mathcal{C}^{\prime}\) is satisfiable
б contradiction to our assumption, hence \(\square \in \operatorname{Res}^{*}\left(\mathcal{C}^{\prime}\right)\)

\section*{Theorem}
resolution is complete; if \(F\) a sentence and \(\mathcal{C}\) its clause form, then \(\square \in \operatorname{Res}^{*}(\mathcal{C})\) if \(F\) is unsatisfiable

\section*{Proof.}

1 suppose \(F\) is unsatisfiable
\(2 \exists\) a set of ground clauses \(\mathcal{C}^{\prime}\) that are instances of the clauses in \(\mathcal{C}\) such that \(\mathcal{C}^{\prime}\) is unsatisfiable
3 suppose \(\square \notin \operatorname{Res}^{*}\left(\mathcal{C}^{\prime}\right)\)
4 by definition \(\mathcal{C}^{\prime}\) is consistent
5 by model existence \(\mathcal{C}^{\prime}\) is satisfiable
6 contradiction to our assumption, hence \(\square \in \operatorname{Res}^{*}\left(\mathcal{C}^{\prime}\right)\)
7 the lifting lemmas allows to lift this derivation to show \(\square \in \operatorname{Res}^{*}(\mathcal{C})\)```

[^0]: ${ }^{a}$ a clause is a disjunction of literals

