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Summary

Summary Last Lecture

Example

reachability is not expressible in first-order logic; that is, the class K1 of
connected graphs is not ∆-elementary

Theorem

1 compactness fails for second-order logic

2 Löwenheim-Skolem fails for second-order logic

3 ¬ ∃ a calculus that is complete for second-order logic, in particular
the set of valid second-order sentences is not recursively enumerable

Example

∃ set H of second-order sentences, such that Modfin(H) = NP
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Summary

Outline of the Lecture

Early Approaches in Automated Reasoning

short recollection of Herbrand’s theorem, Gilmore’s prover, method of
Davis and Putnam

Starting Points

resolution, tableau provers, structural Skolemisation, redundancy and dele-
tion

Automated Reasoning with Equality

ordered resolution, paramodulation, ordered completion and proof orders,
superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, Robbins problem, resolu-
tion and paramodulation as decision procedure, . . .
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Summary

Recall

Applications

1 Program Analysis
logical products of interpretations allows the automated combination
of simple interpreters

2 Databases, in particular datalog
datalog is a declarative language and syntactically it is a subset of
Prolog; used in knowledge representation systems

3 Types as Formulas
the type checking in simple λ-calculus is equivalent to derivability in
intuitionistic logic

4 Complexity Theory
NP can be characterised as the class of existential second-order
sentence
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Summary

Additional Applications

Application Ä: Issues of Security

• security protocols are small programs that aim at securing
communications over a public network

• design of such protocols is difficult and error-prone

• we will study the use of a first-order theorem prover to show that
the Neuman-Stubblebine key exchange protocol can be broken

Application Å: Software Verification

• termination of programs is undecidable (Alan Turing)

• so what: termination of imperative programs can be shown by

AProVE, Terminator, Julia, COSTA, . . .

fully automatically . . .

• Terminator uses model-checking
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Summary

Software Verification

• in the early years of model-checking mainly hardware was analysed
like integrated circuits

• in the last decade the approach was extended to the verification of
properties of software

• initially only safety properties could be analysed (“nothing bad
happens”)

• recently liveness properties (“something good will happen”) became
of interest

• termination of a program is a liveness property

Terminator research project

• developed by Microsoft Research Cambridge

• employs transition invariants, given a program step relation →P find
finitely many well-founded relations U1, . . . ,Un whose union
contains the transitive closure of →P
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Summary

A Bit More on Java

Example

public static int div(int x, int y) {

int res = 0;

while (x >= y && y > 0) {

x = x-y;

res = res + 1;

}

return res;

}

Termination of the example could be proven.

GM (Institute of Computer Science @ UIBK) Automated Reasoning 185/1

Summary

A Bit More on Java (cont’d)

Example

public static void test(int n, int m){

if (0 < n && n < m) {

int j = n+1;

while(j<n || j > n){

if (j>m) j=0 else j=j+1;

}

}

}

We were unable to show termination of the example.
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Summary

Herbrand’s Theorem

Jacques Herbrand (1908–1931)
proposed to

• transform first-order into
propositional logic

• basis of Gilmore’s prover

G a set of universal sentences (of L) without =

Theorem

G is satisfiable iff G has a Herbrand model (over L)
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Gilmore’s Prover

Gilmore’s Prover (declarative version)

1 F be an arbitrary sentence in language L
2 consider its negation ¬F

wlog ¬F = ∀x1 · · · ∀xnG (x1, . . . , xn) in SNF

3 consider all possible Herbrand interpretations of L
4 F is valid if ∃ finite unsatisfiable subset S ⊆ Gr(¬F )

A = {A0,A1,A2, . . . } be atomic formulas over Herbrand universe of L

Definition (Semantic Tree)

the semantic tree T for F :

• the root is a semantic tree

• let I be a node in T of height n; then I is either a

1 leaf node or
2 the edges e1, e2 leaving node I are labelled by An and ¬An

GM (Institute of Computer Science @ UIBK) Automated Reasoning 188/1

Gilmore’s Prover

Fact

path in T gives rise to a (partial) Herbrand interpretation I of F ′

Definition
• let I ∈ T , Herbrand interpretation induced by I is denoted as I
• I is closed, if ∃ G ∈ Gr(¬F ) such that I 6|= G and thus I 6|= ¬F

Lemma

if all nodes in T are closed then F is valid

Proof.
• all nodes in T are closed

• ∃ finite unsatisfiable S ⊆ Gr(¬F )

• by Herbrand’s theorem ¬F is unsatisfiable, hence F is valid
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Gilmore’s Prover

Gilmore’s Prover

Definition

the Herbrand universe for a language L can be constructed iteratively as
follows:

H0 :=

{
{c | c is a constant in L} ∃ constants

{c} otherwise

Hn+1 := {f (t1, . . . , tk) | f k ∈ L, t1, . . . , tk ∈ Hn}

finally H :=
⋃

n>0 Hn denotes the Herbrand universe for L

Definition

let C denote a set of clauses over L; define C′n as the ground instances of
C using only terms from Hn

a

aa clause is a disjunction of literals
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Gilmore’s Prover

Gilmore’s Prover in Pseudo-Code

begin {

contr := false;

n := 0;

while (not contr) do {

D ′ := DNF(C′n);
contr := all constituents of D ′

contain complementary literals;

n := n + 1;

}

}

Disadvantages

• generation of all C′n
• transformation to DNF

• did not yield actual proofs of simple (predicate logic) formulas
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Method of Davis and Putnam

Definitions
• a clause C is called reduced, if every literal occurs at most once in C

• a clause set C is called reduced for tautologies, if every clause in C is
reduced and does not contain complementary literals

Definition (tautology rule)

delete all clauses containing complementary literals

let C′ be ground and reduced for tautologies

Definition (one-literal rule)

let C ∈ C′ and suppose

1 C consists of just one literal L

2 remove all clauses D ∈ C′ such that L occurs in D

3 remove ¬L from all remaining clauses in C′
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Method of Davis and Putnam

Definition (pure literal rule)

let D′ ⊆ C′ such that

1 ∃ literal L that appears in all clauses in D′

2 ¬L doesn’t appear in C′

3 replace C′ by C′ \ D′

Definition (splitting rule)

suppose the clause set C′ can be written as
C′ = {A1, . . . ,An,B1, . . . ,Bm} ∪ D where

1 ∃ literal L, such that neither L nor ¬L occurs in D
2 L occurs in any Ai (but in no Bj); A′i is the result of removing L

3 ¬L occurs in any Bj (but in no Ai ) B ′j is the result of removing ¬L

4 rule consists in splitting C′ into C′1 := {A′1, . . . ,A′n} ∪ D and
C′2 := {B ′1, . . . ,B ′m} ∪ D
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Method of Davis and Putnam

The Method of Davis and Putnam

Definition (DPLL Method)

the method encompasses the above defined four rules

• tautology rule

• one-literal rule

• pure literal rule

• splitting rule

Theorem

1 the rules of the DPLL-method are correct

2 that is, if D is a set of ground clauses and either D′ or D1 and D2

are obtained by the above rules, then D is satisfiable if D′ (D1 or
D2) is satisfiable
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Method of Davis and Putnam

DPLL-tree and DPLL-decision tree

let C′ be a set of reduced ground clauses

Definition

• T consists only of the root, labelled by C′
• let N be a node in T , labelled by D; then N is either a

1 leaf node,
2 N has one successor N ′, labelled by D′, where D′ is obtained as the

application of tautology, one-literal, pure literal rule to D, or
3 N has two successors N1, N2 labelled by the clause sets obtained by

an application of the split rule to D

Definition (DPLL-decision tree)

a DPLL-tree is a decision tree for C′ if

1 all leafs are labelled by the empty clause 2, or

2 ∃ leaf labelled by the empty clause set ∅
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Method of Davis and Putnam

Theorem

• let C′ be a reduced set of ground clauses and let T be a decision
tree proving satisfiability or unsatisfiability for C′

• then C′ is satisfiable or unsatisfiable, respectively

Theorem

• let C′ be as above and let T be a DPLL-tree for C′

• then T can be extended to a decision tree for C′

Proof

by induction on the number ` of atoms in C′

1 ` = 0: C′ is either empty or contains 2, T is already a decision tree

2 ` > 0: we distinguish
• T consists only of the root, labelled by C′
• T contains more than one node
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Method of Davis and Putnam

Proof (cont’d).

• T consists only of the root, labelled by C′
we employ a one-literal, pure literal rule, or a splitting rule; extend
T such that the successors nodes are labelled with smaller clause
sets; induction hypothesis becomes applicable

• T contains more than one node
let D1, . . . ,Dn denote all leaf nodes of T ; for at least one of these
nodes we can emply one-literal, pure literal rule, or a splitting rule;
then we argue as in the first sub-case

Definition

DPLL(a) remove multiple occurrences of literals in C′ to obtain a
reduced clause set D1

DPLL(b) apply the tautology rule exhaustively to D1 to obtain a
reduced clause set D2 that is reduced for tautologies
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Method of Davis and Putnam

Definition

DPLL(c) construct a decision tree for D2.

Method of Davis and Putnam in Pseudo-Code
if C does not contain function symbols

then apply DPLL(a)-DPLL(c) on C′0
else {

n := 0;

contr := false;

while (¬ contr) do {

apply DPLL(a)-DPLL(c) on C′n;
if the decision tree proves unsatisfiability ,

then contr := true

else contr := false;

n := n + 1;

}}
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Clause Logic

The Language of Clause Logic (with Equality)

Definition
• individual constants

k0, k1, . . . , kj , . . . denoted c , d , etc.

• function constants with i arguments
f i
0 , f

i
1 , . . . , f

i
j , . . . denoted f , g , h, etc.

• predicate constants with i arguments
R i

0,R
i
1, . . . ,R

i
j , . . . denoted P,Q,R, etc.

• variables, collected in V
x0, x1, . . . , xj , . . . denoted x , y , z , etc.

Definition
• propositional connectives ¬, ∨
• equality sign =
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Clause Logic

Definition
1 P(t1, . . . , tn) is called an atomic formula if t1, . . . , tn are terms, P a

predicate constant

2 a literal is an atomic formula or its negation

3 a clause is disjunction of literals

Theorem

∀ first-order sentence F , ∃ set of clauses C = {C1, . . . ,Cm}
F ≈ ∀x1 · · · ∀xn(C1 ∧ · · · ∧ Cm)

Proof.
• let F be a sentence (in standard first-order language)

• there exists G ≈ F such that

G = ∀x1 · · · ∀xn(H1(x1, . . . , xn) ∧ · · · ∧ Hm(x1, . . . , xn))

• each Hi (i = 1, . . . ,m) is a disjunction of literals, hence a clause
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Clause Logic

Definition
1 2 is a clause

2 literals are clauses

3 if C , D are clauses, then C ∨ D is a clause

Convention
we use (i) the equivalences A ≡ ¬¬A, A atomic formula, that (ii) dis-
junction ∨ is associative and commutative, and (iii) 2 ∨ 2 = 2, and
C ∨2 = 2 ∨ C = C

Definition
• let T denote the set of terms in our language

• Var(E ) denotes set of variables occurring in E

• a substitution σ is a mapping V → T
such that σ(x) = x , for almost all x

• we write σ = {x1 7→ t1, . . . , xn 7→ tn}; empty subst. denoted by ε
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Most General Unifier

Most General Unifier

application of a substitution σ to expression E is denoted as Eσ; Eσ is
called an instance of E

Definition
• σ = {x1 7→ t1, . . . , xn 7→ tn}, τ = {y1 7→ r1, . . . , y1 7→ rm}
• composition of σ and τ denoted as στ :

{x1 7→ t1τ, . . . , xn 7→ tnτ} ∪ {yi 7→ ri | for all j = 1, . . . , n, yi 6= xj}

• σ is more general than a substitution τ , if there exists a substitution
ρ such that σρ = τ Eτ is instance of Eσ

Definition
• a substitution σ such that Eσ = Fσ is unifier of E , F

generalises to sets U of expressions (= terms or atomic formulas)

• unifier σ is most general if σ is more general than any other unifier
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Most General Unifier

Example
consider U = {P(x , f(x)),P(y , f(x)),P(x ′, y ′)}
• σ = {x 7→ 0, y 7→ 0, x ′ 7→ 0, y ′ 7→ f(0)} is a unifier of U

• τ = {y 7→ x , x ′ 7→ x , y ′ 7→ f(x)} is most general

Definition

• sequence E = u1
?
= v1, . . . , un

?
= vn is called an equality problem

• unifier of E is the unifier of {u1 = v1, . . . , un = vn}

• If E = x1
?
= v1, . . . , xn

?
= vn, with xi pairwise distinct and

xi 6∈ Var(vj), then E is in solved form

Example

U becomes P(x , f(x))
?
= P(y , f(x)),P(y , f(x))

?
= P(x ′, y ′)

τ becomes y
?
= x , x ′

?
= x , y ′

?
= f(x)
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Most General Unifier

Unification Algorithm

u
?
= u,E ⇒ E

f (s1, . . . , sn)
?
= f (t1, . . . , tn),E ⇒ s1

?
= t1, . . . , sn

?
= tn,E

f (s1, . . . , sn)
?
= g(t1, . . . , tn),E ⇒⊥ f 6= g

x
?
= v ,E ⇒ x

?
= v ,E{x 7→ v} x ∈ Var(E ), x 6∈ Var(v)

x
?
= v ,E ⇒⊥ x 6= v , x ∈ Var(v)

v
?
= x ,E ⇒ x

?
= v ,E v 6∈ V

Example

f(x , g(y), x)
?
= f(z , g(x ′), h(x ′))⇒ x

?
= z , g(y)

?
= g(x ′), x

?
= h(x ′)

⇒ x
?
= z , g(y)

?
= g(x ′), z

?
= h(x ′)

⇒ x
?
= z , y

?
= x ′, z

?
= h(x ′)

⇒ x
?
= h(x ′), y

?
= x ′, z

?
= h(x ′)
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Most General Unifier

Definition

let E = x1
?
= v1, . . . , xn

?
= vn be a equality problem in solved form

E induces substitution σE = {x1 7→ v1, . . . , xn 7→ vn}

Theorem
1 equality problems E is unifiable iff the unification algorithm stops

with a solved form

2 if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a most general
unifier (mgu for short) of E ;

Proof.

in proof, we verify the following three facts:

• if E ⇒ E ′, then σ is a unifier of E iff σ is a unifier of E ′

• if E ⇒∗⊥, then E is not unifiable

• if E ⇒∗ E ′ such that E ′ is a solved form, then σE ′ is a mgu of E
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The Resolution Calculus

Resolution Calculus for First-Order Logic

Definition
resolution factoring

C ∨ A D ∨ ¬B
(C ∨ D)σ

C ∨ A ∨ B
(C ∨ A)σ

σ is a mgu of the atomic formulas A and B

let C be a set of clauses; define resolution operator Res(C)

• Res(C) = {D | D is resolvent or factor with premises in C}
• Res0(C) = C; Resn+1(C) := Resn(C) ∪ Res(Resn(C))

• Res∗(C) :=
⋃

n>0 Resn(C)

restricted to atoms

Example

P(x) ∨ Q(f(x , g(y), x)) R(a, b) ∨ ¬Q(f(z , g(x ′), h(x ′)))

P(h(x ′)) ∨ R(a, b)
{x 7→ h(x ′)}
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Soundness and Completeness

Soundness of Resolution

Definition
• if Res(C) ⊆ C, then the clause set C is called saturated

• let 2 6∈ Res∗(C), then C is consistent

Theorem

resolution is sound: if F a sentence and C its clause form such that
2 ∈ Res∗(C), then F is unsatisfiable

Proof.
• the theorem follows by case-distinction on the inferences

• for each inference one verifies that if the assumptions (as formulas)
are modelled by an interpretation M, then the consequence holds in
M as well
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Completeness of Resolution

Completeness of Resolution

Definitions
• a clause is called ground if it doesn’t contain variables

• a ground substitution is a substitution whose range contains only
terms without variables

• let 2 6∈ Res∗(C), then C is consistent

Lemma
• let S denote the set of all consistent ground clause sets

• then S has the satisfaction properties

Proof.

(sort of) homework
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Completeness of Resolution

Lifting Lemmas

Lemma
• let τ1 and τ2 be a ground and consider

Cτ1 ∨ Aτ1 Dτ2 ∨ ¬Bτ2

Cτ1 ∨ Dτ2

where Aτ1 = Bτ2

• ∃ mgu σ of A and B, such that σ is more general then τ1 and τ2

and the following resolution step is valid:

C ∨ A D ∨ ¬B
(C ∨ D)σ
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Completeness of Resolution

Lemma
• let τ be a ground substitutions and consider the following ground

factoring step:
Cτ ∨ Aτ ∨ Bτ

Cτ ∨ Aτ

where Aτ = Bτ

• ∃ mgu σ, such that σ is more general then τ and the following
resolution step is valid:

C ∨ A D ∨ ¬B
(C ∨ D)σ

Proof.

the lemmas essentially follows from the properties of an mgu
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Completeness of Resolution

Theorem

resolution is complete; if F a sentence and C its clause form, then
2 ∈ Res∗(C) if F is unsatisfiable

Proof.

1 suppose F is unsatisfiable

2 ∃ a set of ground clauses C′ that are instances of the clauses in C
such that C′ is unsatisfiable

3 suppose 2 6∈ Res∗(C′)
4 by definition C′ is consistent

5 by model existence C′ is satisfiable

6 contradiction to our assumption, hence 2 ∈ Res∗(C′)
7 the lifting lemmas allows to lift this derivation to show 2 ∈ Res∗(C)
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