

# Automated Reasoning

Georg Moser



Institute of Computer Science @ UIBK

Winter 2013

# Summary Last Lecture

```
Gilmore's Prover in Pseudo-Code
```

```
begin {
  contr := false;
  n := 0;
  while (not contr) do {
    D' := DNF(C'_n);
    contr := all constituents of D'
        contain complementary literals;
    n := n + 1;
  }
}
```

## Correction

## Definition (splitting rule)

suppose the clause set C' can be written as  $C' = \{A_1, \ldots, A_n, B_1, \ldots, B_m\} \cup D$  where

- **1**  $\exists$  literal *L*, such that neither *L* nor  $\neg L$  occurs in  $\mathcal{D}$
- **2** L occurs in any  $A_i$  (but in no  $B_j$ );  $A'_i$  is the result of removing L
- **3**  $\neg L$  occurs in any  $B_j$  (but in no  $A_i$ )  $B'_j$  is the result of removing  $\neg L$
- 4 rule consists in splitting C' into  $C'_1 := \{A'_1, \ldots, A'_n\} \cup D$  and  $C'_2 := \{B'_1, \ldots, B'_m\} \cup D$

#### Method of Davis and Putnam in Pseudo-Code

```
if \mathcal C does not contain function symbols
then apply DPLL(a)-DPLL(c) on \mathcal{C}'_0
else {
  n := 0;
  contr := false;
  while (\neg contr) do {
    apply DPLL(a)-DPLL(c) on C'_n;
    if the decision tree proves unsatisfiability,
    then contr := true
    else contr := false;
    n := n + 1;
  }}
```

## Definition

 $\begin{array}{c} \text{resolution} & \text{factoring} \\ \hline C \lor A & D \lor \neg B \\ \hline (C \lor D)\sigma & \hline (C \lor A)\sigma \end{array}$ 

 $\sigma$  is a mgu of the atomic formulas A and B

let C be a set of clauses; define resolution operator Res(C)

- Res(C) = {D | D is resolvent or factor with premises in C}
- $\operatorname{Res}^{0}(\mathcal{C}) = \mathcal{C}$ ;  $\operatorname{Res}^{n+1}(\mathcal{C}) := \operatorname{Res}^{n}(\mathcal{C}) \cup \operatorname{Res}(\operatorname{Res}^{n}(\mathcal{C}))$
- $\operatorname{Res}^*(\mathcal{C}) := \bigcup_{n \ge 0} \operatorname{Res}^n(\mathcal{C})$

#### Theorem

#### resolution is sound and complete

# Outline of the Lecture

## Early Approaches in Automated Reasoning

short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

#### Starting Points

resolution, tableau provers, structural Skolemisation, redundancy and deletion

#### Automated Reasoning with Equality

ordered resolution, paramodulation, ordered completion and proof orders, superposition

## Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, ...

# Outline of the Lecture

## Early Approaches in Automated Reasoning

short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

#### Starting Points

resolution, tableau provers, structural Skolemisation, redundancy and deletion

#### Automated Reasoning with Equality

ordered resolution, paramodulation, ordered completion and proof orders, superposition

## Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, ...

# Tableau Expansion Rules

## Definition (uniform notation)

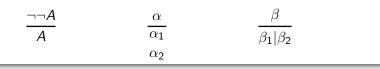
| conjunctive       |            |            | disjunctive                      |           |           |
|-------------------|------------|------------|----------------------------------|-----------|-----------|
| $\alpha$          | $\alpha_1$ | $\alpha_2$ | $\beta$                          | $\beta_1$ | $\beta_2$ |
| $A \wedge B$      | Α          | В          | $\neg (A \land B)$<br>$A \lor B$ | $\neg A$  | $\neg B$  |
| $\neg (A \lor B)$ | $\neg A$   | $\neg B$   | $A \lor B$                       | Α         | В         |
| eg (A 	o B)       | Α          | $\neg B$   | $A \rightarrow B$                | $\neg A$  | В         |

# Tableau Expansion Rules

## Definition (uniform notation)

| conjunctive       |            |            | disjunctive        |           |           |
|-------------------|------------|------------|--------------------|-----------|-----------|
| $\alpha$          | $\alpha_1$ | $\alpha_2$ | $\beta$            | $\beta_1$ | $\beta_2$ |
| $A \wedge B$      | Α          | В          | $\neg (A \land B)$ | $\neg A$  | $\neg B$  |
| $\neg (A \lor B)$ | $\neg A$   | $\neg B$   | $A \lor B$         | Α         | В         |
| eg (A 	o B)       | Α          | $\neg B$   | $A \rightarrow B$  | $\neg A$  | В         |

## Definition (tableau expansion rules)



# Propositional Semantic Tableaux

## Definition

## let $\{A_1, \ldots, A_n\}$ be propositional formulas

• the following tree T is a tableau for  $\{A_1, \ldots, A_n\}$ :



# Propositional Semantic Tableaux

Definition

let  $\{A_1, \ldots, A_n\}$  be propositional formulas

• the following tree T is a tableau for  $\{A_1, \ldots, A_n\}$ :

$$\begin{array}{c} A_1 \\ A_2 \\ \vdots \\ A_n \end{array}$$

• suppose T is a tableau for  $\{A_1, \ldots, A_n\}$  and  $T^*$  is obtained by applying a tableau expansion rule to T, then  $T^*$  is a tableau for  $\{A_1, \ldots, A_n\}$ 

#### Example

consider the tableau proof of  $(P \rightarrow (Q \rightarrow R)) \rightarrow (P \lor S \rightarrow (Q \rightarrow R) \lor S)$ 

$$\neg ((P \rightarrow (Q \rightarrow R)) \rightarrow (P \lor S \rightarrow (Q \rightarrow R) \lor S))$$

$$P \rightarrow (Q \rightarrow R)$$

$$\neg (P \lor S \rightarrow (Q \rightarrow R) \lor S)$$

$$P \lor S$$

$$\neg ((Q \rightarrow R) \lor S)$$

$$\neg ((Q \rightarrow R)$$

$$\neg S$$

$$Q \rightarrow R$$

$$P \qquad S$$

Example

consider  $\mathsf{P} \land (\mathsf{Q} \to \mathsf{R} \lor \mathsf{S}) \to \mathsf{P} \lor \mathsf{Q}$  and the following tableau proof

 $\neg \left(\mathsf{P} \land (\mathsf{Q} \to \mathsf{R} \lor \mathsf{S}) \to \mathsf{P} \lor \mathsf{Q}\right)$ 





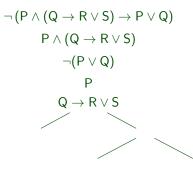
Example

consider  $\mathsf{P} \land (\mathsf{Q} \to \mathsf{R} \lor \mathsf{S}) \to \mathsf{P} \lor \mathsf{Q}$  and the following tableau proof

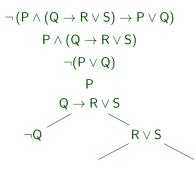
$$\label{eq:product} \begin{split} \neg \left( \mathsf{P} \land (\mathsf{Q} \to \mathsf{R} \lor \mathsf{S}) \to \mathsf{P} \lor \mathsf{Q} \right) \\ & \mathsf{P} \land (\mathsf{Q} \to \mathsf{R} \lor \mathsf{S}) \\ & \neg (\mathsf{P} \lor \mathsf{Q}) \end{split}$$



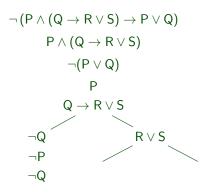
Example



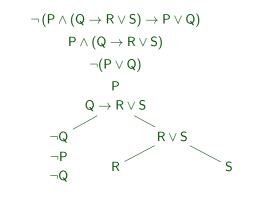
Example



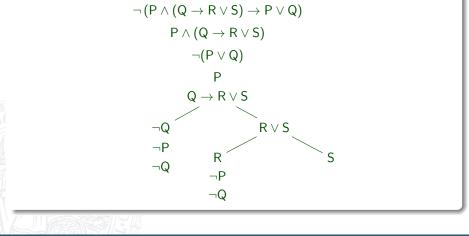
Example



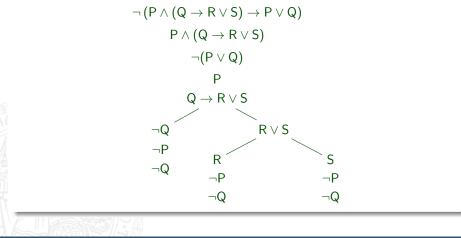
Example



Example



Example



#### Example (cont'd)

now consider the following tableau proof

```
\neg \left( \left( \mathsf{P} \land \left( \mathsf{Q} \rightarrow \mathsf{R} \lor \mathsf{S} \right) \right) \rightarrow \mathsf{P} \lor \mathsf{Q} \right) \\ \mathsf{P} \land \left( \mathsf{Q} \rightarrow \mathsf{R} \lor \mathsf{S} \right) \\ \neg \left( \mathsf{P} \lor \mathsf{Q} \right) \\ \mathsf{P} \\ \mathsf{Q} \rightarrow \mathsf{R} \lor \mathsf{S} \\ \neg \mathsf{P} \\ \neg \mathsf{Q} \end{array}
```

# Soundness and Completeness

## Definitions

- a branch is closed if the formulas F and  $\neg F$  occur on it
- if F is atomic, then the branch is said to be atomically closed
- a tableau is closed if every branch is closed
- a tableau proof of F is a closed tableau for  $\neg F$
- in a strict tableau no formula is expanded twice on the same branch



# Soundness and Completeness

## Definitions

- a branch is closed if the formulas F and  $\neg F$  occur on it
- if F is atomic, then the branch is said to be atomically closed
- a tableau is closed if every branch is closed
- a tableau proof of F is a closed tableau for  $\neg F$
- in a strict tableau no formula is expanded twice on the same branch

#### Theorem

the tableau procedure is sound and complete:

F is a tautology  $\iff F$  has a tableau proof

# Soundness and Completeness

## Definitions

- a branch is closed if the formulas F and  $\neg F$  occur on it
- if F is atomic, then the branch is said to be atomically closed
- a tableau is closed if every branch is closed
- a tableau proof of F is a closed tableau for  $\neg F$
- in a strict tableau no formula is expanded twice on the same branch

#### Theorem

the tableau procedure is sound and complete:

F is a tautology  $\iff F$  has a tableau proof

#### Lemma

any application of a tableau expansion rule to a satisfiable tableau yields another satisfiable tableau

GM (Institute of Computer Science @ UIBK)

# Strong Propositional Completeness

#### Lemma

suppose F is a valid; a strict tableau construction for  $\neg$ F that is continued as long as possible must terminate in an atomically closed tableau



# Strong Propositional Completeness

#### Lemma

suppose F is a valid; a strict tableau construction for  $\neg F$  that is continued as long as possible must terminate in an atomically closed tableau

## Proof.

- **1** any strict tableau construction for  $\neg F$  has to terminate
- **2** suppose T is a strict tableau for  $\neg F$  that is not atomically closed
- **3**  $\exists$  a branch in T which does not contain conflicting literals
- 4  $\forall$  non-literals, all possible expansion rules have been applied
- **5** an assignment for  $\neg F$  can be read off from the branch
- $\mathbf{6}$  contradiction to validity of F

# Strong Propositional Completeness

#### Lemma

suppose F is a valid; a strict tableau construction for  $\neg F$  that is continued as long as possible must terminate in an atomically closed tableau

## Proof.

- **1** any strict tableau construction for  $\neg F$  has to terminate
- **2** suppose T is a strict tableau for  $\neg F$  that is not atomically closed
- **3**  $\exists$  a branch in T which does not contain conflicting literals
- 4  $\forall$  non-literals, all possible expansion rules have been applied
- **5** an assignment for  $\neg F$  can be read off from the branch
- $\mathbf{6}$  contradiction to validity of F

## Implementation of Semantic Tableaux

## Implementation of Semantic Tableaux

```
Slightly More Efficient
tableau_prover2(X) :-
        expand([[neg X]],Y),
        !,
        closed(Y).
```

## Implementation of Semantic Tableaux

```
Slightly More Efficient
tableau_prover2(X) :-
        expand([[neg X]],Y),
        !,
        closed(Y).
```

```
A Bit More Efficient
tableau_prover3(X) :-
expand_and_close([[neg X]]).
```

# First-Order Semantic Tableaux

## Definition (uniform notation)

| universal             |             | existential           |             |  |
|-----------------------|-------------|-----------------------|-------------|--|
| $\gamma$              | $\gamma(t)$ | δ                     | $\delta(t)$ |  |
| $\forall x A(x)$      | A(t)        | $\exists x A(x)$      | A(t)        |  |
| $\neg \exists x A(x)$ | $\neg A(t)$ | $\neg \forall x A(x)$ | $\neg A(t)$ |  |



# First-Order Semantic Tableaux

## Definition (uniform notation)

| unive                 | rsal        | existential           |             |  |
|-----------------------|-------------|-----------------------|-------------|--|
| $\gamma$              | $\gamma(t)$ | δ                     | $\delta(t)$ |  |
| $\forall x A(x)$      | A(t)        | $\exists x A(x)$      | A(t)        |  |
| $\neg \exists x A(x)$ | $\neg A(t)$ | $\neg \forall x A(x)$ | $\neg A(t)$ |  |

Definition (tableau expansion rules)

$$rac{\gamma}{\gamma(t)}$$
  $t$  term in  $\mathcal{L}^+$   $rac{\delta}{\delta(k)}$   $k$  fresh constant in  $\mathcal{L}^+$ 

- 1  $\mathcal{L}^+$  denotes extension of base language  $\mathcal{L}$
- **2** new individual constants are introduced in  $\delta$  rules
- 3 fresh means new to the branch of the tableau

#### Example

consider  $\forall x (P(x) \lor Q(x)) \rightarrow \exists x P(x) \lor \forall x Q(x)$ we give a tableau proof

```
\neg (\forall x (P(x) \lor Q(x)) \to \exists x P(x) \lor \forall x Q(x)))
                     \forall x(P(x) \lor Q(x))
                  \neg(\exists x P(x) \lor \forall x Q(x))
                            \neg \exists x P(x)
                            \neg \forall x Q(x)
                              \neg Q(c)
                              \neg P(c)
                         P(c) \vee Q(c)
                                                 Q(c)
              P(c)
```

GM (Institute of Computer Science @ UIBK)

# First-Order Soundness

## Definitions

- a tableau proof of F is a closed tableau for  $\neg F$
- a tableau branch is satisfiable if the set  $\mathcal{G}$  of sentences on it is satisfiable, i.e., there exists a model of  $\mathcal{G}$
- a tableau is satisfiable if some branch is satisfiable



# First-Order Soundness

## Definitions

- a tableau proof of F is a closed tableau for  $\neg F$
- a tableau branch is satisfiable if the set  $\mathcal{G}$  of sentences on it is satisfiable, i.e., there exists a model of  $\mathcal{G}$
- a tableau is satisfiable if some branch is satisfiable

#### Theorem

if F has a tableau proof, then F is valid

## Proof.

if any tableau expansion rule is applied to a satisfiable tableau, the result is satisfiable

## First-Order Completeness

Theorem

if a sentence F is valid, then F has a tableau proof

Proof.



# First-Order Completeness

Theorem

if a sentence F is valid, then F has a tableau proof

Proof.

 $\blacksquare$  a set  ${\mathcal G}$  is tableau consistent if there is no closed tableau for  ${\mathcal G}$ 



# First-Order Completeness

Theorem if a sentence F is valid, then F has a tableau proof

#### Proof.

- $\ensuremath{ 1}$  a set  ${\mathcal G}$  is tableau consistent if there is no closed tableau for  ${\mathcal G}$
- 2 the collection of all tableau consistent sets fulfils the satisfaction properties



# Free-Variable Semantic Tableaux

Definition (expansion rules)

$$\frac{\gamma}{\gamma(x)}$$
 x a free variable  $\frac{\delta}{\delta(f(x_1, \dots, x_n))}$  f a Skolem function

- $x_1, \ldots, x_n$  denote all free variables of the formula  $\delta$
- Skolem function f must be new on the branch

# Free-Variable Semantic Tableaux

Definition (expansion rules)

$$\frac{\gamma}{\gamma(x)}$$
 x a free variable  $\frac{\delta}{\delta(f(x_1, \dots, x_n))}$  f a Skolem function

- $x_1, \ldots, x_n$  denote all free variables of the formula  $\delta$
- Skolem function f must be new on the branch

Remark

- $\delta$ -rule leaves a lot of room for improvement
- requirement that f must be new on the branch forces the introduction of inefficiently many new Skolem functions
- prevented with cleverer notions of the  $\delta$ -rule

### Definition (atomic closure rule)

- **1**  $\exists$  branch in tableau *T* that contains two literals *A* and  $\neg B$
- **2**  $\exists$  mgu  $\sigma$  of A and B
- **3** then  $T\sigma$  is also a tableau



## Definition (atomic closure rule)

- **1**  $\exists$  branch in tableau *T* that contains two literals *A* and  $\neg B$
- **2**  $\exists$  mgu  $\sigma$  of A and B
- **3** then  $T\sigma$  is also a tableau

## Definition

consider the following tableau substitution rule:

- **1** T is a tableau for G
- **2**  $\sigma$  is free for any sentence in  $\mathcal{G}$
- 3 then  $T\sigma$  is also a tableau

## Definition (atomic closure rule)

- **1**  $\exists$  branch in tableau *T* that contains two literals *A* and  $\neg B$
- **2**  $\exists$  mgu  $\sigma$  of A and B
- 3 then  $T\sigma$  is also a tableau

## Definition

consider the following tableau substitution rule:

- **1** T is a tableau for G
- **2**  $\sigma$  is free for any sentence in  $\mathcal{G}$
- 3 then  $T\sigma$  is also a tableau

#### Remark

completeness of free-variable tableaux follows again via model existence

# Soundness of Free-Variable Tableaux

## Definition

- a branch in a free-variable tableau is called satisfiable, if  $\exists$  structure  $\mathcal{A}$  and  $\forall$  environment  $\ell$ :  $(\mathcal{A}, \ell) \models \mathcal{G}$
- a free-variable tableau is satisfiable, if there exists a satisfiable branch



# Soundness of Free-Variable Tableaux

## Definition

- a branch in a free-variable tableau is called satisfiable, if  $\exists$  structure  $\mathcal{A}$  and  $\forall$  environment  $\ell$ :  $(\mathcal{A}, \ell) \models \mathcal{G}$
- a free-variable tableau is satisfiable, if there exists a satisfiable branch

#### Lemma

- **1** T be a satisfiable (free-variable) tableau
- 2 propositional or (free-variable) first-order expansion rule is applied
- 3 then the result is satisfiable

# Soundness of Free-Variable Tableaux

## Definition

- a branch in a free-variable tableau is called satisfiable, if  $\exists$  structure  $\mathcal{A}$  and  $\forall$  environment  $\ell$ :  $(\mathcal{A}, \ell) \models \mathcal{G}$
- a free-variable tableau is satisfiable, if there exists a satisfiable branch

#### Lemma

- **1** *T* be a satisfiable (free-variable) tableau
- 2 propositional or (free-variable) first-order expansion rule is applied
- 3 then the result is satisfiable

## Proof

the lemma follows by case-distinction on the applied expansion rule, it suffices to consider the  $\delta\text{-rule}$  all other cases are similar

#### **1** suppose *B* is a satisfiable branch in *T* such that $\delta$ occurs on *B*

- **1** suppose *B* is a satisfiable branch in *T* such that  $\delta$  occurs on *B*
- **2** extend *B* with  $\delta(f(x_1, \ldots, x_n))$  and call the result *B*'; *T*' denotes the corresponding tableau

- **1** suppose *B* is a satisfiable branch in *T* such that  $\delta$  occurs on *B*
- 2 extend B with  $\delta(f(x_1, \dots, x_n))$  and call the result B'; T' denotes the corresponding tableau
- 3  $\mathcal G$  collects all formulas on B and assume  $(\mathcal A, \ell) \models \mathcal G$

- **1** suppose *B* is a satisfiable branch in *T* such that  $\delta$  occurs on *B*
- 2 extend B with  $\delta(f(x_1, \dots, x_n))$  and call the result B'; T' denotes the corresponding tableau
- **3**  $\mathcal{G}$  collects all formulas on B and assume  $(\mathcal{A}, \ell) \models \mathcal{G}$
- 4 let x denote the existentially bound variable x replaced by the term  $f(x_1, \ldots, x_n)$

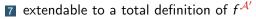
- **1** suppose *B* is a satisfiable branch in *T* such that  $\delta$  occurs on *B*
- **2** extend *B* with  $\delta(f(x_1, \ldots, x_n))$  and call the result *B*'; *T*' denotes the corresponding tableau
- **3**  $\mathcal{G}$  collects all formulas on B and assume  $(\mathcal{A}, \ell) \models \mathcal{G}$
- 4 let x denote the existentially bound variable x replaced by the term  $f(x_1, \ldots, x_n)$
- **5**  $\exists$  witness  $a \in \mathcal{A}$  for x such that  $(\mathcal{A}, \ell\{x \mapsto a\}) \models \delta(x)$

- **1** suppose *B* is a satisfiable branch in *T* such that  $\delta$  occurs on *B*
- **2** extend *B* with  $\delta(f(x_1, \ldots, x_n))$  and call the result *B*'; *T*' denotes the corresponding tableau
- **3**  $\mathcal{G}$  collects all formulas on B and assume  $(\mathcal{A}, \ell) \models \mathcal{G}$
- 4 let x denote the existentially bound variable x replaced by the term  $f(x_1, \ldots, x_n)$
- **5**  $\exists$  witness  $a \in \mathcal{A}$  for x such that  $(\mathcal{A}, \ell\{x \mapsto a\}) \models \delta(x)$
- 6 construct  $\mathcal{A}'$  such that

$$f^{\mathcal{A}'}(\ell(x_1),\ldots,\ell(x_n)):=a$$

- **1** suppose *B* is a satisfiable branch in *T* such that  $\delta$  occurs on *B*
- **2** extend *B* with  $\delta(f(x_1, \ldots, x_n))$  and call the result *B*'; *T*' denotes the corresponding tableau
- **3**  $\mathcal{G}$  collects all formulas on B and assume  $(\mathcal{A}, \ell) \models \mathcal{G}$
- 4 let x denote the existentially bound variable x replaced by the term  $f(x_1, \ldots, x_n)$
- **5**  $\exists$  witness  $a \in \mathcal{A}$  for x such that  $(\mathcal{A}, \ell \{x \mapsto a\}) \models \delta(x)$
- 6 construct  $\mathcal{A}'$  such that

$$f^{\mathcal{A}'}(\ell(x_1),\ldots,\ell(x_n)):=a$$



- **1** suppose *B* is a satisfiable branch in *T* such that  $\delta$  occurs on *B*
- **2** extend *B* with  $\delta(f(x_1, \ldots, x_n))$  and call the result *B*'; *T*' denotes the corresponding tableau
- **3**  $\mathcal{G}$  collects all formulas on B and assume  $(\mathcal{A}, \ell) \models \mathcal{G}$
- 4 let x denote the existentially bound variable x replaced by the term  $f(x_1, \ldots, x_n)$
- **5**  $\exists$  witness  $a \in \mathcal{A}$  for x such that  $(\mathcal{A}, \ell\{x \mapsto a\}) \models \delta(x)$
- 6 construct  $\mathcal{A}'$  such that

$$f^{\mathcal{A}'}(\ell(x_1),\ldots,\ell(x_n)):=a$$

- **7** extendable to a total definition of  $f^{\mathcal{A}'}$
- 8 we conclude

$$(\mathcal{A},\ell) \models \delta \implies (\mathcal{A}',\ell) \models \delta(f(x_1,\ldots,x_n))$$

if the atomic closure rule is applicable to a tableau T and T is satisfiable, then the result is also satisfiable



if the atomic closure rule is applicable to a tableau T and T is satisfiable, then the result is also satisfiable

Proof.

- we show a more general statement: if the substitution rule is applied to a satisfiable tableau T, then its result is satisfiable
- **2**  $\forall$  environments  $\ell$ ,  $\exists$  environment  $\ell'$  such that  $t^{(\mathcal{A},\ell')} = t\sigma^{(\mathcal{A},\ell)}$
- 3 we have to show that  $T\sigma$  is satisfiable
- 4 this follows from the observation and definition of satisfiability

if the atomic closure rule is applicable to a tableau T and T is satisfiable, then the result is also satisfiable

Proof.

- we show a more general statement: if the substitution rule is applied to a satisfiable tableau T, then its result is satisfiable
- **2**  $\forall$  environments  $\ell$ ,  $\exists$  environment  $\ell'$  such that  $t^{(\mathcal{A},\ell')} = t\sigma^{(\mathcal{A},\ell)}$
- 3 we have to show that  $T\sigma$  is satisfiable
- 4 this follows from the observation and definition of satisfiability

if the atomic closure rule is applicable to a tableau T and T is satisfiable, then the result is also satisfiable

Proof.

- we show a more general statement: if the substitution rule is applied to a satisfiable tableau T, then its result is satisfiable
- **2**  $\forall$  environments  $\ell$ ,  $\exists$  environment  $\ell'$  such that  $t^{(\mathcal{A},\ell')} = t\sigma^{(\mathcal{A},\ell)}$
- 3 we have to show that  $T\sigma$  is satisfiable
- 4 this follows from the observation and definition of satisfiability

#### Theorem

if the sentence F has a free-variable tableau proof, then F is valid

GM (Institute of Computer Science @ UIBK)

# Strong Completeness of Free-Variable Tableaux

NB: may consider a sequence of atomic closure rules that leads to an (atomically closed) tableau as one block



# Strong Completeness of Free-Variable Tableaux

NB: may consider a sequence of atomic closure rules that leads to an (atomically closed) tableau as one block

Definition

- T be a tableau with branches  $B_1, \ldots, B_n$
- $\forall i A_i$  and  $\neg B_i$  are literals on  $B_i$
- if  $\sigma$  is a mgu of  $A_1 = B_1, \ldots, A_n = B_n$
- then  $\sigma$  is called most general atomic closure substitution

# Strong Completeness of Free-Variable Tableaux

NB: may consider a sequence of atomic closure rules that leads to an (atomically closed) tableau as one block

## Definition

- T be a tableau with branches  $B_1, \ldots, B_n$
- $\forall i A_i$  and  $\neg B_i$  are literals on  $B_i$
- if  $\sigma$  is a mgu of  $A_1 = B_1, \ldots, A_n = B_n$
- then  $\sigma$  is called most general atomic closure substitution

# Lemma (Lifting Lemma)

- **1**  $\tau$  a substitution free for tableau T such that each branch in  $T\tau$  is atomically closed
- **2** then  $\exists$  a most general atomic closure substitution  $\sigma$  and
- **3**  $T\sigma$  is closed by n applications of the atomic closure rule

- a strategy *S* details:
  - 1 which expansion rule is supposed to be applied
  - 2 or that no expansion rule can be applied
- a strategy may use extra information which is updated



- a strategy *S* details:
  - 1 which expansion rule is supposed to be applied
  - 2 or that no expansion rule can be applied
- a strategy may use extra information which is updated

### Definition

a strategy S is fair if for sequence of tableaux  $T_1, T_2, \ldots$  following S :



- a strategy *S* details:
  - 1 which expansion rule is supposed to be applied
  - 2 or that no expansion rule can be applied
- a strategy may use extra information which is updated

## Definition

a strategy S is fair if for sequence of tableaux  $T_1, T_2, \ldots$  following S :

**1** any non-literal formula in  $T_i$  is eventually expanded, and

- a strategy *S* details:
  - 1 which expansion rule is supposed to be applied
  - 2 or that no expansion rule can be applied
- a strategy may use extra information which is updated

## Definition

a strategy S is fair if for sequence of tableaux  $T_1, T_2, \ldots$  following S :

- **1** any non-literal formula in  $T_i$  is eventually expanded, and
- **2** any  $\gamma$ -formula occurrence in  $T_i$  has the  $\gamma$ -rule applied to it arbitrarily often

- a strategy *S* details:
  - 1 which expansion rule is supposed to be applied
  - 2 or that no expansion rule can be applied
- a strategy may use extra information which is updated

## Definition

a strategy S is fair if for sequence of tableaux  $T_1, T_2, \ldots$  following S :

- **1** any non-literal formula in  $T_i$  is eventually expanded, and
- **2** any  $\gamma$ -formula occurrence in  $T_i$  has the  $\gamma$ -rule applied to it arbitrarily often

## Example

strategy employed in the implementation of free-variable tableaux is fair

- for each tableau the extra information includes
  - 1 which formula occurrences have been used on which branch
  - 2 priority order for formula occurrences on each branch
  - 3 priority order for branches

- for each tableau the extra information includes
  - 1 which formula occurrences have been used on which branch
  - 2 priority order for formula occurrences on each branch
  - 3 priority order for branches
- extra information for initial tableau
  - **1**  $\neg F$  is not used
  - **2**  $\neg F$  has top priority
  - 3 single branch has top priority

- for each tableau the extra information includes
  - 1 which formula occurrences have been used on which branch
  - 2 priority order for formula occurrences on each branch
  - 3 priority order for branches
- extra information for initial tableau
  - **1**  $\neg F$  is not used
  - **2**  $\neg F$  has top priority
  - 3 single branch has top priority
- · select branch of highest priority with unused formula
- select formula occurrence on this branch of highest priority
- apply expansion rule; give formula occurrence and branch lowest priority

- for each tableau the extra information includes
  - 1 which formula occurrences have been used on which branch
  - 2 priority order for formula occurrences on each branch
  - 3 priority order for branches
- extra information for initial tableau
  - **1**  $\neg F$  is not used
  - **2**  $\neg F$  has top priority
  - 3 single branch has top priority
- · select branch of highest priority with unused formula
- select formula occurrence on this branch of highest priority
- apply expansion rule; give formula occurrence and branch lowest priority
- if every non-literal formula has been used on any branch no continuation is possible

- for each tableau the extra information includes
  - 1 which formula occurrences have been used on which branch
  - 2 priority order for formula occurrences on each branch
  - 3 priority order for branches
- extra information for initial tableau
  - **1**  $\neg F$  is not used
  - **2**  $\neg F$  has top priority
  - 3 single branch has top priority
- · select branch of highest priority with unused formula
- select formula occurrence on this branch of highest priority
- apply expansion rule; give formula occurrence and branch lowest priority
- if every non-literal formula has been used on any branch no continuation is possible

this strategy is not fair

## Theorem (Strong Completeness)

- **1** *S* be a fair strategy
- **2** *F* be a valid sentence
- **3** *F* has a tableau proof with the following properties:
  - all tableau expansion rules are considered first and follow strategy S
  - a block of atomic closure rules closes the tableau



## Theorem (Strong Completeness)

- **1** *S* be a fair strategy
- **2** *F* be a valid sentence
- **3** *F* has a tableau proof with the following properties:
  - all tableau expansion rules are considered first and follow strategy S
  - a block of atomic closure rules closes the tableau

## Proof Sketch.

- we argue indirectly and suppose that a given formula F does not admit a tableau proof
- **2**  $\exists$  open branch starting with  $\neg F$
- 3 set of formulas  $\mathcal G$  on this branch admit the closure properties
- 4 hence  $\neg F$  is satisfiable

## Theorem (Strong Completeness)

- **1** *S* be a fair strategy
- **2** *F* be a valid sentence
- **3** *F* has a tableau proof with the following properties:
  - all tableau expansion rules are considered first and follow strategy S
  - a block of atomic closure rules closes the tableau

## Proof Sketch.

- we argue indirectly and suppose that a given formula F does not admit a tableau proof
- **2**  $\exists$  open branch starting with  $\neg F$
- 3 set of formulas  $\mathcal G$  on this branch admit the closure properties
- 4 hence  $\neg F$  is satisfiable

## Implementation of $\gamma$ -Rule

```
\gamma-rule (simplified)
```

```
singlestep([OldBranch | Rest], NewTree) :-
   member(NotatedGamma, OldBranch),
   notation(NotatedGamma, Free),
   fmla(NotatedGamma, Gamma),
   is_universal(Gamma),
   remove(NotatedGamma, OldBranch, TempBranch),
   NewFree = [V | Free],
   instance(Gamma, V, GammaInstance),
   notation(NotatedGammaInstance, NewFree),
   fmla(NotatedGammaInstance, GammaInstance),
   append([NotatedGammaInstance | TempBranch],
          [NotatedGamma], NewBranch),
   append(Rest, [NewBranch], NewTree).
```