

Automated Reasoning

Institute of Computer Science @ UIBK

Georg Moser

Winter 2013

Definition (splitting rule)

suppose the clause set C' can be written as $C' = \{A_1, \dots, A_n, B_1, \dots, B_m\} \cup D$ where $\blacksquare \exists$ literal L, such that neither L nor $\neg L$ occurs in D $\supseteq L$ occurs in any A_i (but in no B_j); A'_i is the result of removing L $\exists \neg L$ occurs in any B_j (but in no A_i) B'_j is the result of removing $\neg L$

4 rule consists in splitting C' into $C'_1 := \{A'_1, \dots, A'_n\} \cup D$ and $C'_2 := \{B'_1, \dots, B'_m\} \cup D$

ummary

Summary Last Lecture

Gilmore's Prover in Pseudo-Code

```
begin {
  contr := false;
  n := 0;
  while (not contr) do {
    D' := DNF(C'_n);
    contr := all constituents of D'
        contain complementary literals;
    n := n + 1;
  }
}
```

GM (Institute of Computer Science @ UIBK) Automated Reasoning

212/1

Summary

Method of Davis and Putnam in Pseudo-Code

```
if C does not contain function symbols
then apply DPLL(a)-DPLL(c) on C'_0
else {
    n := 0;
    contr := false;
    while (¬ contr) do {
        apply DPLL(a)-DPLL(c) on C'_n;
        if the decision tree proves unsatisfiability,
        then contr := true
        else contr := false;
        n := n + 1;
    }}
```

Definition

resolution	factoring		
$C \lor A D \lor \neg B$	$C \lor A \lor B$		
$(C \lor D)\sigma$	$(C \lor A)\sigma$		

σ is a mgu of the atomic formulas A and B

let C be a set of clauses; define resolution operator Res(C)

- $\operatorname{Res}(\mathcal{C}) = \{D \mid D \text{ is resolvent or factor with premises in } \mathcal{C}\}$
- $\operatorname{Res}^{0}(\mathcal{C}) = \mathcal{C}; \operatorname{Res}^{n+1}(\mathcal{C}) := \operatorname{Res}^{n}(\mathcal{C}) \cup \operatorname{Res}(\operatorname{Res}^{n}(\mathcal{C}))$
- $\operatorname{Res}^*(\mathcal{C}) := \bigcup_{n \ge 0} \operatorname{Res}^n(\mathcal{C})$

Theorem

resolution is sound and complete

GM (Institute of Computer Science @ UIBK)

215/1

Propositional Semantic Tableaux

Tableau Expansion Rules

Definition (uniform notation)

conjun	ctive		disjun	ctive		
α	α_1	α_2	β	β_1	β_2	
$A \wedge B$	Α	В	$\neg (A \land B)$ $A \lor B$	$\neg A$	$\neg B$	
$\neg (A \lor B)$	$\neg A$	$\neg B$	$A \lor B$	Α	В	
$\neg (A \rightarrow B)$	Α	$\neg B$	A ightarrow B	$\neg A$	В	

Automated Reasoning

Definition (tableau expansion rules)

$\neg \neg A$	$\frac{\alpha}{\alpha_1}$	eta	
A	$\overline{\alpha_1}$	$\overline{\beta_1 \beta_2}$	
	α_2	·	

Outline of the Lecture

Early Approaches in Automated Reasoning

short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Starting Points

resolution, tableau provers, structural Skolemisation, redundancy and deletion

Automated Reasoning with Equality

ordered resolution, paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, ...

Automated Reasoning

```
GM (Institute of Computer Science @ UIBK)
```

216/3

Propositional Semantic Tableaux

Propositional Semantic Tableaux

Definition

- let $\{A_1, \ldots, A_n\}$ be propositional formulas
 - the following tree T is a tableau for $\{A_1, \ldots, A_n\}$:
 - $\begin{array}{c} A_1 \\ A_2 \\ \vdots \\ A_n \end{array}$
 - suppose T is a tableau for $\{A_1, \ldots, A_n\}$ and T^* is obtained by applying a tableau expansion rule to T, then T^* is a tableau for $\{A_1, \ldots, A_n\}$

Example

consider the tableau proof of $(P \rightarrow (Q \rightarrow R)) \rightarrow (P \lor S \rightarrow (Q \rightarrow R) \lor S)$ $\neg ((P \rightarrow (Q \rightarrow R)) \rightarrow (P \lor S \rightarrow (Q \rightarrow R) \lor S))$ $P \rightarrow (Q \rightarrow R)$ $\neg (P \lor S \rightarrow (Q \rightarrow R) \lor S)$ $P \lor S$ $\neg ((Q \rightarrow R) \lor S)$ $\neg ((Q \rightarrow R)$ $\neg P$ $Q \rightarrow R$ PS

Automated Reasoning

(Institute of Computer Science @ UIBK

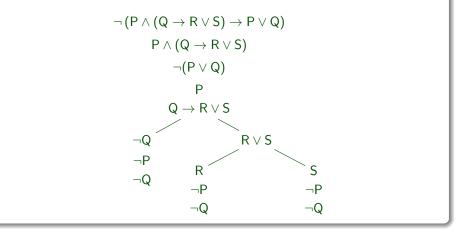
Propositional Semantic Tableaux

Example (cont'd) now consider the following tableau proof $\neg ((P \land (Q \rightarrow R \lor S)) \rightarrow P \lor Q)$ $P \land (Q \rightarrow R \lor S)$ $\neg (P \lor Q)$ P $Q \rightarrow R \lor S$ $\neg P$ $\neg Q$

Heuristics Matters

Example

consider $\mathsf{P} \land (\mathsf{Q} \to \mathsf{R} \lor \mathsf{S}) \to \mathsf{P} \lor \mathsf{Q}$ and the following tableau proof



GM (Institute of Computer Science @ UIBK)

220/

Propositional Semantic Tableaux

Soundness and Completeness

Definitions

- a branch is closed if the formulas F and $\neg F$ occur on it
- if F is atomic, then the branch is said to be atomically closed

Automated Reasonin

- a tableau is closed if every branch is closed
- a tableau proof of F is a closed tableau for $\neg F$
- in a strict tableau no formula is expanded twice on the same branch

Theorem

the tableau procedure is sound and complete:

F is a tautology \iff F has a tableau proof

Lemma

any application of a tableau expansion rule to a satisfiable tableau yields another satisfiable tableau

Automated Reason

219/1

GM (Institute of Computer Science @ UIBK)

Strong Propositional Completeness

Lemma

suppose F is a valid; a strict tableau construction for $\neg F$ that is continued as long as possible must terminate in an atomically closed tableau

Proof.

- **1** any strict tableau construction for $\neg F$ has to terminate
- **2** suppose T is a strict tableau for $\neg F$ that is not atomically closed

Automated Reasoning

- **3** \exists a branch in T which does not contain conflicting literals
- 4 \forall non-literals, all possible expansion rules have been applied
- **5** an assignment for $\neg F$ can be read off from the branch
- $\mathbf{6}$ contradiction to validity of F

```
GM (Institute of Computer Science @ UIBK)
```

223/1

225/1

First-Order Semantic Tableaux

First-Order Semantic Tableaux

Definition (uniform notation)

unive	rsal	existential		
γ	$\gamma(t)$	δ	$\delta(t)$	
$\forall x A(x)$	A(t)	$\exists x A(x)$	A(t)	
$\neg \exists x A(x)$	$\neg A(t)$	$\neg \forall x A(x)$	$\neg A(t)$	

Definition (tableau expansion rules)

$$rac{\gamma}{\gamma(t)}$$
 t term in \mathcal{L}^+ $rac{\delta}{\delta(k)}$ k fresh constant in \mathcal{L}^+

- 1 \mathcal{L}^+ denotes extension of base language \mathcal{L}
- **2** new individual constants are introduced in δ rules
- 3 fresh means new to the branch of the tableau

Implementation of Semantic Tableaux

```
Naive Approach
tableau_prover(X) :-
        expand([[neg X]],Y),
        closed(Y).
```

```
Slightly More Efficient
tableau_prover2(X) :-
    expand([[neg X]],Y),
    !,
    closed(Y).
```

```
A Bit More Efficient
tableau_prover3(X) :-
expand_and_close([[neg X]]).
```

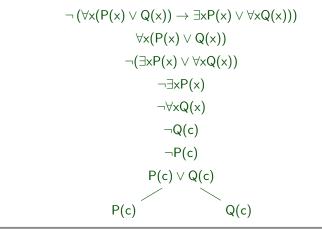
GM (Institute of Computer Science @ UIBK)

224/1

First-Order Semantic Tableaux

Example

```
consider \forall x(P(x) \lor Q(x)) \rightarrow \exists x P(x) \lor \forall x Q(x)
we give a tableau proof
```



Automated Reasoning

First-Order Soundness

Definitions

- a tableau proof of F is a closed tableau for $\neg F$
- a tableau branch is satisfiable if the set \mathcal{G} of sentences on it is satisfiable, i.e., there exists a model of \mathcal{G}
- a tableau is satisfiable if some branch is satisfiable

Theorem

if F has a tableau proof, then F is valid

Proof.

if any tableau expansion rule is applied to a satisfiable tableau, the result is satisfiable $\hfill\blacksquare$

Automated Reasoning

GM (Institute of Computer Science @ UIBK)

227/1

First-Order Semantic Tableaux

Free-Variable Semantic Tableaux

 $\frac{\gamma}{\gamma(x)}$ x a free variable $\frac{\delta}{\delta(f(x_1,...,x_n))}$ f a Skolem function

- x_1, \ldots, x_n denote all free variables of the formula δ
- Skolem function *f* must be new on the branch

Remark

- δ -rule leaves a lot of room for improvement
- requirement that *f* must be new on the branch forces the introduction of inefficiently many new Skolem functions
- prevented with cleverer notions of the $\delta\text{-rule}$

First-Order Completeness

Theorem

if a sentence F is valid, then F has a tableau proof

Proof.

- 1 a set ${\mathcal G}$ is tableau consistent if there is no closed tableau for ${\mathcal G}$
- 2 the collection of all tableau consistent sets fulfils the satisfaction properties

GM (Institute of Computer Science @ UIBK

Automated Reasoning

228/1

First-Order Semantic Tableaux

- Definition (atomic closure rule)
 - **1** \exists branch in tableau *T* that contains two literals *A* and $\neg B$
 - **2** \exists mgu σ of A and B
 - **3** then $T\sigma$ is also a tableau

Definition

consider the following tableau substitution rule:

- **1** T is a tableau for \mathcal{G}
- **2** σ is free for any sentence in \mathcal{G}
- **3** then $T\sigma$ is also a tableau

Remark

completeness of free-variable tableaux follows again via model existence

Soundness of Free-Variable Tableaux

Definition

- a branch in a free-variable tableau is called satisfiable, if \exists structure \mathcal{A} and \forall environment ℓ : $(\mathcal{A}, \ell) \models \mathcal{G}$
- a free-variable tableau is satisfiable, if there exists a satisfiable branch

Lemma

- **1** *T* be a satisfiable (free-variable) tableau
- 2 propositional or (free-variable) first-order expansion rule is applied
- 3 then the result is satisfiable

Proof

the lemma follows by case-distinction on the applied expansion rule, it suffices to consider the $\delta\text{-rule}$ all other cases are similar

```
GM (Institute of Computer Science @ UIBK)
```

Automated Reasoning

First-Order Semantic Tableaux

Lemma

if the atomic closure rule is applicable to a tableau T and T is satisfiable, then the result is also satisfiable

Proof.

1 we show a more general statement:

if the substitution rule is applied to a satisfiable tableau \mathcal{T} , then its result is satisfiable

- **2** \forall environments ℓ , \exists environment ℓ' such that $t^{(\mathcal{A},\ell')} = t\sigma^{(\mathcal{A},\ell)}$
- 3 we have to show that $T\sigma$ is satisfiable
- 4 this follows from the observation and definition of satisfiability

Theorem

if the sentence F has a free-variable tableau proof, then F is valid

231/1

Proof (cont'd).

- **1** suppose *B* is a satisfiable branch in *T* such that δ occurs on *B*
- **2** extend *B* with $\delta(f(x_1, \ldots, x_n))$ and call the result *B'*; *T'* denotes the corresponding tableau
- **3** \mathcal{G} collects all formulas on B and assume $(\mathcal{A}, \ell) \models \mathcal{G}$
- 4 let x denote the existentially bound variable x replaced by the term $f(x_1, \ldots, x_n)$
- **5** \exists witness $a \in \mathcal{A}$ for x such that $(\mathcal{A}, \ell\{x \mapsto a\}) \models \delta(x)$
- 6 construct \mathcal{A}' such that

$$f^{\mathcal{A}'}(\ell(x_1),\ldots,\ell(x_n)):=a$$

- **7** extendable to a total definition of $f^{\mathcal{A}'}$
- 8 we conclude

$$(\mathcal{A},\ell) \models \delta \implies (\mathcal{A}',\ell) \models \delta(f(x_1,\ldots,x_n))$$

GM (Institute of Computer Science @ UIBK) Automated Reasoning

First-Order Semantic Tableaux

Strong Completeness of Free-Variable Tableaux

NB: may consider a sequence of atomic closure rules that leads to an (atomically closed) tableau as one block

Definition

- T be a tableau with branches B_1, \ldots, B_n
- $\forall i A_i$ and $\neg B_i$ are literals on B_i
- if σ is a mgu of $A_1 = B_1, \ldots, A_n = B_n$
- \bullet then σ is called most general atomic closure substitution

Lemma (Lifting Lemma)

- **1** τ a substitution free for tableau T such that each branch in $T\tau$ is atomically closed
- **2** then \exists a most general atomic closure substitution σ and
- **3** $T\sigma$ is closed by n applications of the atomic closure rule

Definition

a strategy S details:

1 which expansion rule is supposed to be applied

2 or that no expansion rule can be applied

a strategy may use extra information which is updated

Definition

a strategy S is fair if for sequence of tableaux T_1, T_2, \ldots following S:

- **1** any non-literal formula in T_i is eventually expanded, and
- **2** any γ -formula occurrence in T_i has the γ -rule applied to it arbitrarily often

Example

strategy employed in the implementation of free-variable tableaux is fair

Automated Reasoning

```
GM (Institute of Computer Science @ UIBK)
```

First-Order Semantic Tableaux

Theorem (Strong Completeness)

1 *S* be a fair strategy

- **2** *F* be a valid sentence
- **3** *F* has a tableau proof with the following properties:
 - all tableau expansion rules are considered first and follow strategy S
 - a block of atomic closure rules closes the tableau

Proof Sketch.

- we argue indirectly and suppose that a given formula F does not admit a tableau proof
- **2** \exists open branch starting with $\neg F$
- 3 set of formulas $\mathcal G$ on this branch admit the closure properties
- 4 hence $\neg F$ is satisfiable

First-Order Semantic Tableaux

Example

- for each tableau the extra information includes
 - 1 which formula occurrences have been used on which branch
 - 2 priority order for formula occurrences on each branch
 - **3** priority order for branches
- extra information for initial tableau
 - 1 $\neg F$ is not used
 - **2** $\neg F$ has top priority
 - **3** single branch has top priority
- select branch of highest priority with unused formula
- select formula occurrence on this branch of highest priority
- apply expansion rule; give formula occurrence and branch lowest priority
- if every non-literal formula has been used on any branch no continuation is possible
- this strategy is not fair

GM (Institute of Computer Science @ UIBK) Automated Reason

236/3

First-Order Semantic Tableaux

Implementation of $\gamma\text{-}\mathsf{Rule}$

γ -rule (simplified)

```
singlestep([OldBranch | Rest], NewTree) :-
   member(NotatedGamma, OldBranch),
   notation(NotatedGamma, Free),
   fmla(NotatedGamma, Gamma),
   is_universal(Gamma),
   remove(NotatedGamma, OldBranch, TempBranch),
   NewFree = [V | Free],
   instance(Gamma, V, GammaInstance),
   notation(NotatedGammaInstance, NewFree),
   fmla(NotatedGammaInstance, GammaInstance),
   append([NotatedGammaInstance | TempBranch],
        [NotatedGamma], NewBranch),
   append(Rest, [NewBranch], NewTree).
```