

Automated Reasoning

Georg Moser

Institute of Computer Science @ UIBK

Winter 2013

Theorem if the sentence F has a free-variable tableau proof, then F is valid

Definition

a strategy S is fair if ...

Theorem

1 *S* be a fair strategy

- **2** *F* be a valid sentence
- **3** *F* has a tableau proof with the following properties:
 - all tableau expansion rules are considered first and follow strategy S
 - a block of atomic closure rules closes the tableau

ummary

Summary Last Lecture

Definition (expansion rules)

$$\frac{\gamma}{\gamma(x)}$$
 x a free variable $\frac{\delta}{\delta(f(x_1,...,x_n))}$ f a Skolem function

- x_1, \ldots, x_n denote all free variables of the formula δ
- Skolem function *f* must be new on the branch

Definition (atomic closure rule)

- **1** \exists branch in tableau *T* that contains two literals *A* and $\neg B$
- **2** \exists mgu σ of A and B
- **3** then $T\sigma$ is also a tableau

GM (Institute of Computer Science @ UIBK)

Summary

Outline of the Lecture

Early Approaches in Automated Reasoning

short recollection of Herbrand's theorem, Gilmore's prover, method of Davis and Putnam

Automated Reasoning

Starting Points

resolution, tableau provers, Skolemisation, redundancy and deletion

Automated Reasoning with Equality

ordered resolution, paramodulation, ordered completion and proof orders, superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution and paramodulation as decision procedure, ...

Herbrand Complexity and Proof Length

Recall

 $\mathsf{Gr}(\mathcal{G}) = \{ G(t_1, \ldots, t_n) \mid \forall x_1 \cdots \forall x_n G(x_1, \ldots, x_n) \in \mathcal{G}, t_i \text{ closed terms} \}$

Definition

- let $\ensuremath{\mathcal{C}}$ be an unsatisfiable set of clauses
- $Gr(\mathcal{C})$ denotes the ground instances of \mathcal{C}
- the Herbrand complexity of $\ensuremath{\mathcal{C}}$ is:

 $\mathsf{HC}(\mathcal{C}) = \min\{|\mathcal{C}'| \colon \mathcal{C}' \text{ is unsatisfiable and } \mathcal{C}' \subseteq \mathsf{Gr}(\mathcal{C})\}$

Example

consider $C = \{P(x), \neg P(f(x)) \lor \neg P(g(x))\}$ and we see $HC(C) \leq 3$; furthermore all $C' \subseteq Gr(C)$ with $|C'| \leq 2$ are satisfiable: HC(C) = 3

Automated Reasoning

M (Institute of Computer Science @ UIBK)

Herbrand Complexity and Proof Length

Proof (cont'd).

- **5** in Γ suppose the last step is a resolution of $E\sigma \lor F\sigma$ from $E \lor A$ and $F \lor \neg B$, where σ is the mgu of A and B
- **6** \exists ground substitution τ such that $A\tau = B\tau$
- **7** \exists derivations Γ'_1 , Γ'_2 of $E\tau \lor A\tau$ and $F\tau \lor \neg B\tau$
- 8 $|\Gamma'_1| \leqslant 2^{2n}; |\Gamma'_2| \leqslant 2^{2n}$
- 9 then there exists a derivation of $C'_{n+1} = E\tau \vee F\tau$ from $\mathcal{C}' \subseteq Gr(\mathcal{C})$ of length $\leq 2 \cdot 2^{2n} + 1 \leq 2^{2(n+1)}$
- \blacksquare similarly for factoring

Theorem

 \exists a sequence of clause sets C_n , refutable with a resolution refutation of length O(n), such that $HC(C_n) > 2^n$

244/

Theorem

- let Γ be a resolution refutation of a clause set ${\mathcal C}$
- let n denote the length |Γ| of this refutation (counting the number of clauses in the refutation)
- then $HC(\mathcal{C}) \leq 2^{2n}$

Proof.

- 1 it suffices to define a suitable grounding Γ' of the refutation, as $HC(\mathcal{C})\leqslant |\Gamma'|$
- 2 we show: let Γ be a derivation of C_n from C with $|\Gamma| \leq n$ \exists ground derivation Γ' of a ground instance C'_n of C_n from $C' \subseteq \operatorname{Gr}(C)$ of length $\leq 2^{2n}$
- 3 we argue inductively
- **4** assuming induction hypothesis, we fix a derivation of length n+1

Automated Reasoni

M (Institute of Computer Science @ UIBK)

Herbrand Complexity and Proof Length

Proof.

define
$$C_n$$

 $P(a) \neg P(x) \lor P(f(x)) \neg P(f^{2^n}(a))$

2 the (non-ground) refutation makes use of self-resolvents

$$\frac{\neg \mathsf{P}(x) \lor \mathsf{P}(\mathsf{f}^m(x)) \quad \neg \mathsf{P}(x) \lor \mathsf{P}(\mathsf{f}^m(x))}{\neg \mathsf{P}(x) \lor \mathsf{P}(\mathsf{f}^{2m}(x))}$$

3 this is impossible for a ground refutation

Definition

$$= 1 \qquad 2_{n+1} = 2^{2_n}$$

Automated Reason

NB: note that 2_n is a non-elementary function

2

Theorem

 \exists a (finite) set of clauses C_n such that $HC(C_n) \ge \frac{1}{2} \cdot 2_n$

Statman's Example

Example

consider the following clause set:

$$C_n = ST \cup ID \cup \{p \cdot q \neq p \cdot ((T_n \cdot q) \cdot q)\}$$

$$ST = \{Sxyz = (xz)(yz), Bxyz = x(yz), Cxyz = (xz)y,$$

$$Ix = x, px = p(qx)\}$$

$$ID = "equality axioms"$$

$$T = (SB)((CB)I)$$

$$T_1 = T$$

$$T_{k+1} = T_kT$$

Herbrand Complexity and Proof Length

GM (Institute of Computer Science @ UIBK

Lemma

 $H_{m+1}(y) \rightarrow H_{m+1}(Ty)$ and $\forall y (H_{m+1}(y) \rightarrow H_{m+1}(Ty)) (= H_{m+2}(T))$ are derivable

Automated Reasoning

Proof.

1 $\forall x \ (A(x) \rightarrow A(yx)) \rightarrow \forall x (A(x) \rightarrow A(y(yx)))$ is derivable 2 using y(yx) = Tyx and setting $A = H_m$ we have $H_{m+1}(y) \rightarrow H_{m+1}(Ty) \qquad \forall y \ (H_{m+1}(y) \rightarrow H_{m+1}(Ty))$

Corollary

 $H_2(T), \ldots, H_{n+1}(T)$ are derivable by short proofs

NB: "short" refers to proofs whose length is independent on n

248/1

246/1

Lemma

Tyx = y(yx) is derivable

Proof.

$$(SB)((CB)I)yx = (By)((CB)Iy)x =$$
$$= (By)((By)I)x = y((ByI)x) = y(y(Ix)) = y(yx)$$

Definition

$$\mathsf{H}_1(y) = \forall x \ \mathsf{p}x = \mathsf{p}(yx) \qquad \mathsf{H}_{m+1}(y) = \forall x \ (\mathsf{H}_m(x) \to \mathsf{H}_m(yx))$$

Lemma

$$\begin{split} &\mathsf{H}_1(y) \to \mathsf{H}_1(\mathsf{T} y) \text{ and } \forall y \; (\mathsf{H}_1(y) \to \mathsf{H}_1(\mathsf{T} y)) \; (=\mathsf{H}_2(\mathsf{T})) \text{ are derivable} \\ \\ & \text{GM (Institute of Computer Science @ UIBK)} & \text{Automated Reasoning} \end{split}$$

Herbrand Complexity and Proof Length

Lemma

Statman's example is unsatisfiable; which can be shown with a proof linear in n

Proof.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} & \begin{array}{c} \forall x \ (\mathsf{H}_n(x) \to \mathsf{H}_n(\mathsf{T}x)) \ (= \mathsf{H}_{n+1}(\mathsf{T})) \\ & \begin{array}{c} \mathsf{H}_n(\mathsf{T}) & \begin{array}{c} \mathsf{H}_n(\mathsf{T}) \to \mathsf{H}_n(\mathsf{T}_2) \\ \hline \mathsf{H}_n(\mathsf{T}) \to \mathsf{H}_n(\mathsf{T}) \\ \hline \mathsf{H}_n(\mathsf{T}) \to \mathsf{H}_n(\mathsf{T}) \\ \hline \mathsf{H}_n(\mathsf{T}) \\ \hline \mathsf{H}_n(\mathsf{T}) \to \mathsf{H}_n(\mathsf{T}) \\ \hline \mathsf{H}_n(\mathsf{T}) \to \mathsf{H}_n(\mathsf{T}) \\ \hline \mathsf$$

Theorem

 \exists clause sets whose refutation in resolution is non-elementarily longer than its refutation in natural deduction

Proof.

- **1** consider Statman's example C_n
- **2** the shortest resolution refutation is $\Omega(2_{n-1})$
- 3 the length of the above refutation is O(n) and can be formalised in natural deduction

Definitions

- a formula is called rectified if different quantifiers bind different variables
- if $\forall x$ occurs positively (negatively) then $\forall x$ is called strong (weak)
- dual for $\exists x$

```
GM (Institute of Computer Science @ UIBK) Automated Reasoning
```

Structural Skolemisation

Prenex and Antiprenex Skolem Form

Definitions

- let *A* be a sentence and *A'* a prenex normal form of *A*; then rsk(*A'*) is the prenex Skolem form of *A*
- the antiprenex form of A is obtained my minimising the quantifier range by quantifier shifting rules
- if A' is the antiprenex form of A, then rsk(A') is the antiprenex Skolem form

Theorem

let A be a closed formula, then $A \sim rsk(A)$

Definition

- let A be a rectified formula and $Q \times G$ a subformula of A
- for any subformula Q'y H of G we say Q'y is in scope of Qx; denoted as Qx <_A Q'y

Definition

- let A be closed and rectified
- we define the mapping rsk as follows:

$$\mathsf{rsk}(A) = \begin{cases} A & \text{no existential quant. in } A \\ \mathsf{rsk}(A_{-\exists y}) \{ y \mapsto f(x_1, \dots, x_n) \} & \forall x_1, \dots, \forall x_n <_A \exists y \end{cases}$$

• the formula rsk(A) is the (refutational) structural Skolem form of A GM (Institute of Computer Science @ UIBK) Automated Reasoning 25

ructural Skolemisation

Example

consider $F = \forall x (\exists y \mathsf{P}(x, y) \land \exists z \mathsf{Q}(z)) \land \forall u (\neg \mathsf{P}(\mathsf{a}, u) \lor \neg \mathsf{Q}(u))$

$$\begin{split} G_1 &= \forall x (\mathsf{P}(x,\mathsf{f}(x)) \land \mathsf{Q}(\mathsf{g}(x))) \land \forall u (\neg P(\mathsf{a},u) \lor \neg \mathsf{Q}(u)) \\ G_2 &= \forall x \mathsf{P}(x,\mathsf{f}(x)) \land \mathsf{Q}(\mathsf{c}) \land \forall u (\neg P(\mathsf{a},u) \lor \neg \mathsf{Q}(u)) \\ G_3 &= \forall x \forall u (\mathsf{P}(x,\mathsf{h}(x,u)) \land \mathsf{Q}(\mathsf{i}(x,u)) \land \neg P(\mathsf{a},u) \lor \neg \mathsf{Q}(u)) \end{split}$$

 G_1 denotes the refutational structural Skolemisation, G_2 the antiprenex refutational Skolemisation, and G_3 is the prenex refutational Skolemisation

Theorem

GM (Institute of Computer Science @ UIBK)

■ ∃ a set of sentences \mathcal{D}_n with $HC(\mathcal{D}'_n) = 2^{2^{2^{O(n)}}}$ for the structural Skolem form \mathcal{D}'_n

Automated Reaso

2 HC(\mathcal{D}''_n) $\geq \frac{1}{2}2_n$ for the prenex Skolem form

.

Definition (Andrew's Skolem form)

let A be a rectified sentence; (refutational) Andrew's Skolem form is defined as follows:

$$\mathsf{rsk}_{\mathcal{A}}(\mathcal{A}) = \begin{cases} \mathcal{A} & \text{no existential quantifiers} \\ \mathsf{rsk}_{\mathcal{A}}(\mathcal{A}_{-\exists y}) \{ y \mapsto f(\vec{x}) \} & \forall x_1, \dots, \forall x_n <_{\mathcal{A}} \exists y \end{cases}$$

- 4 $\exists y B$ is a subformula of A and $\exists y$ is the first existential quantifer in Α
- **5** all x_1, \ldots, x_n occur free in $\exists y B$

Example

consider $\forall z, y \ (\exists x \ \mathsf{P}(y, x) \lor \mathsf{Q}(y, z))$; Andrew's Skolem form is given as follows: $\forall z, y \ (\mathsf{P}(y, \mathsf{g}(y)) \lor \mathsf{Q}(y, z))$

on the other hand consider $\forall y, z \exists x (P(y, x) \lor Q(y, z))$

GM (Institute of Computer Science @ UIBK) Automated Reasoning

ner Skolemisation

Definition (Optimised Skolemisation)

- let A be a sentence in NNF and $B = \exists x_1 \cdots x_k (E \land F)$ a subformula of A with $\mathcal{FV}ar(\exists \vec{x}(E \land F)) = \{y_1, \ldots, y_n\}$
- suppose A = C[B]
- suppose $A \rightarrow \forall y_1, \ldots, y_n \exists x_1 \cdots x_k E$ is valid
- we define an optimised Skolemisation step as follows

 $\mathsf{opt_step}(A) = \forall \vec{y} E\{\dots, x_i \mapsto f_i(\vec{y}), \dots\} \land C[F\{\dots, x_i \mapsto f_i(\vec{y}), \dots\}]$ where f_1, \ldots, f_k are new Skolem function symbols

Example

consider a subformula of a sentence A

$$\forall x, y, z(\mathsf{R}(x, y) \land \mathsf{R}(x, z) \to \exists u(\mathsf{R}(y, u) \land \mathsf{R}(z, u)))$$

we assume $\forall y \exists u R(y, u)$ is provable from A; we obtain

$$\mathsf{R}(y,\mathsf{f}(y,z)) \qquad \neg \mathsf{R}(x,y) \lor \neg \mathsf{R}(x,z) \lor \mathsf{R}(z,\mathsf{f}(y,z))$$

Inner and Outer (Refutational) Skolemisation

Definition

- let A be rectified sentence in negation normal form (NNF)
- let $\exists xB$ a subformula of A at position p
- let $\{y_1, \ldots, y_k\} = \{y \mid \forall y <_A \exists x\}$ and let $\{z_1,\ldots,z_l\} = \mathcal{FV}ar(\exists xB)$
- $A[B\{x \mapsto f(y_1, \dots, y_k)\}]$ is obtained by an outer Skolemisation step
- $A[B\{x \mapsto f(z_1, \ldots, z_l)\}]$ is obtained by an inner Skolemisation step

Example

- structural Skolemisation is a variation of outer Skolemisation
- 2 Andrew's Skolemisation is a variation of inner and outer Skolemisation

the following variants of Skolemisation improve inner Skolemisation Automated Reasoning

GM (Institute of Computer Science @ UIBK)

254/1

Theorem

optimised Skolemisation preserves satisfiability

Proof Sketch.

- **1** suppose A is satisfiable with some interpretation \mathcal{I}
- **2** we extent \mathcal{I} to the Skolem functions such that we obtain for the extention \mathcal{T}'

 $\mathcal{I}' \models \forall \vec{v} E\{\dots, x_i \mapsto f_i(\vec{v}), \dots\} \qquad \mathcal{I}' \models C[F\{\dots, x_i \mapsto f_i(\vec{v}), \dots\}]$

If for this the extra condition is exploited

Remark

in comparison to (standard) inner Skolemisation is that some literals from clauses are deleted

Definition

- a clause C subsumes clause D, if ∃ σ such that the multiset of literals of Cσ is contained in the multiset of literals of D (denoted Cσ ⊆ D)
- *C* is a condensation of *D* if *C* is a proper (multiple) factor of *D* that subsumes *D*

Example

consider the clause $P(x) \vee R(b) \vee P(a) \vee R(z)$; its condensation is $R(b) \vee P(a)$

NB: condensation forms a strong normalisation technique that is essential to remove redundancy in clauses

Example

```
note that the clause R(x, x) \vee R(y, y) does not subsume R(a, a)
```

```
GM (Institute of Computer Science @ UIBK) Automated Reasoning
```

nner Skolemisation

Definition (Strong Skolemisation)

- let A be a sentence in NNF and $B = \exists \vec{x} (E_1 \land \dots \land E_\ell)$ a subformula such that A = C[B]
- let $\langle \{ ec{z}_1 \}, \dots, \{ ec{z}_\ell \}
 angle$ be a free variable splitting of B
- a strong Skolemisation step is defined as str_step(A) = C[D] where D is defined as

 $\forall \vec{w}_2, \dots, \vec{w}_\ell E_1\{x_i \mapsto f_i(\vec{z}_1, \vec{w}_2, \dots, \vec{w}_\ell)\} \land \dots \\ \dots \land E_\ell\{x_i \mapsto f_i(\vec{z}_1, \vec{z}_2, \dots, \vec{z}_\ell)\}$

Example

consider the formula $\forall x, y, z(R(x, y) \land R(x, z) \rightarrow \exists u(R(y, u) \land R(z, u)))$ strong Skolemisation yields the following clauses

 $\neg \mathsf{R}(x, y) \lor \neg \mathsf{R}(x, z) \lor \mathsf{R}(y, \mathsf{f}(y, w)) \qquad \neg \mathsf{R}(x, y) \lor \neg \mathsf{R}(x, z) \lor \mathsf{R}(z, \mathsf{f}(y, z))$ condensation yields: $\neg \mathsf{R}(x, y) \lor \mathsf{R}(y, \mathsf{f}(y, w))$

Definition

- let $B = \exists \vec{x} (E_1 \land \dots \land E_\ell)$ be a formula
- let $\{\vec{z}_1\} = \mathcal{FV}ar(E_1) \setminus \{\vec{x}\}$
- let $\{\vec{z}_i\} = \mathcal{FV}ar(E_i) \setminus \left(\bigcup_{j < i} \mathcal{FV}ar(E_j) \cup \{\vec{x}\}\right)$
- we call $\langle \{\vec{z}_1\}, \ldots, \{\vec{z}_\ell\} \rangle$ the (free variable) splitting of *B*

Example

consider $\exists u(\mathsf{R}(y, u) \land \mathsf{R}(z, u))$; its splitting is $\langle \{y\}, \{z\} \rangle$

Observation

- let $\langle \{\vec{z}_1\}, \ldots, \{\vec{z}_\ell\} \rangle$ be a splitting of $\exists \vec{x} (E_1 \land \cdots \land E_\ell)$
- each conjunction E_i contains at least one of the variables from \vec{x}

Automated Reasoning

• $\langle \{\vec{z}_1, \vec{z}_2\}, \dots, \{\vec{z}_\ell\} \rangle$ is a splitting of $\exists \vec{v} (E_2 \land \dots \land E_\ell) \{x_i \mapsto f_i(\vec{z}_1, \vec{v})\}$ where \vec{v} are new

M (Institute of Computer Science @ UIBK)

259/

ner Skolemisation

Lemma

if $\exists x_1, \ldots, x_k (E \land F)$ is satisfiable, then the following formula is satisfiable as well

 $\forall w_1, \ldots, w_k E\{x_i \mapsto f_i(\vec{y}, \vec{w})\} \land \exists v_1, \ldots, v_k F\{x_i \mapsto f_i(\vec{y}, \vec{v})\}$ where $\{y_1, \ldots, y_n\} = \mathcal{FV}ar(E) \setminus \{x_1, \ldots, x_k\}$

Theorem

strong Skolemisation preserves satisfiability

Proof Sketch.

- suppose A is satisfiable
- one shows satisfiability of str_step(A) by main induction on A and side induction on ℓ

Automated Reaso

• the base case exploits the above lemma

Assessment

structural Skolemisation

- structural (outer) Skolemisation can lead to non-elementary speed-up over prenex Skolemisation
- structural Skolemisation requires non-trivial formula transformations, in particular quantifier shiftings
- how to implement?

inner Skolemisation

- standard inner Skolemisation techniques are straightforward to implement
- optimised Skolemisation requires proof of $A \to \forall \vec{y} \exists \vec{x} E$ as pre-condition
- strong Skolemisation is incomparable to optimised Skolemisation, as larger, but more general clauses may be produced

GM (Institute of Computer Science @ UIBK) Automated Reasoning

262/1