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Summary

Summary Last Lecture

Definition (expansion rules)

γ

γ(x)
x a free variable

δ

δ(f (x1, . . . , xn))
f a Skolem function

• x1, . . . , xn denote all free variables of the formula δ

• Skolem function f must be new on the branch

Definition (atomic closure rule)

1 ∃ branch in tableau T that contains two literals A and ¬B

2 ∃ mgu σ of A and B

3 then Tσ is also a tableau
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Summary

Theorem

if the sentence F has a free-variable tableau proof, then F is valid

Definition

a strategy S is fair if . . .

Theorem

1 S be a fair strategy

2 F be a valid sentence

3 F has a tableau proof with the following properties:
• all tableau expansion rules are considered first and follow strategy S
• a block of atomic closure rules closes the tableau
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Summary

Outline of the Lecture

Early Approaches in Automated Reasoning

short recollection of Herbrand’s theorem, Gilmore’s prover, method of
Davis and Putnam

Starting Points

resolution, tableau provers, Skolemisation, redundancy and deletion

Automated Reasoning with Equality

ordered resolution, paramodulation, ordered completion and proof orders,
superposition

Applications of Automated Reasoning

Neuman-Stubblebinde Key Exchange Protocol, group theory, resolution
and paramodulation as decision procedure, . . .
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Herbrand Complexity and Proof Length

Herbrand Complexity and Proof Length

Recall

Gr(G) = {G (t1, . . . , tn) | ∀x1 · · · ∀xnG (x1, . . . , xn) ∈ G, ti closed terms}

Definition
• let C be an unsatisfiable set of clauses

• Gr(C) denotes the ground instances of C
• the Herbrand complexity of C is:

HC(C) = min{|C′| : C′ is unsatisfiable and C′ ⊆ Gr(C)}

Example

consider C = {P(x),¬P(f(x)) ∨ ¬P(g(x))} and we see HC(C) 6 3;
furthermore all C′ ⊆ Gr(C) with |C′| 6 2 are satisfiable: HC(C) = 3
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Herbrand Complexity and Proof Length

Theorem
• let Γ be a resolution refutation of a clause set C
• let n denote the length |Γ| of this refutation (counting the number

of clauses in the refutation)

• then HC(C) 6 22n

Proof.

1 it suffices to define a suitable grounding Γ′ of the refutation, as
HC(C) 6 |Γ′|

2 we show: let Γ be a derivation of Cn from C with |Γ| 6 n
∃ ground derivation Γ′ of a ground instance C ′n of Cn

from C′ ⊆ Gr(C) of length 6 22n

3 we argue inductively

4 assuming induction hypothesis, we fix a derivation of length n + 1
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Herbrand Complexity and Proof Length

Proof (cont’d).

5 in Γ suppose the last step is a resolution of Eσ ∨ Fσ from E ∨A and
F ∨ ¬B, where σ is the mgu of A and B

6 ∃ ground substitution τ such that Aτ = Bτ

7 ∃ derivations Γ′1, Γ′2 of Eτ ∨ Aτ and F τ ∨ ¬Bτ

8 |Γ′1| 6 22n; |Γ′2| 6 22n

9 then there exists a derivation of C ′n+1 = Eτ ∨ F τ from C′ ⊆ Gr(C)

of length 6 2 · 22n + 1 6 22(n+1)

10 similarly for factoring

Theorem

∃ a sequence of clause sets Cn, refutable with a resolution refutation of
length O(n), such that HC(Cn) > 2n
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Herbrand Complexity and Proof Length

Proof.

1 we define Cn
P(a) ¬P(x) ∨ P(f(x)) ¬P(f2

n
(a))

2 the (non-ground) refutation makes use of self-resolvents

¬P(x) ∨ P(fm(x)) ¬P(x) ∨ P(fm(x))

¬P(x) ∨ P(f2m(x))

3 this is impossible for a ground refutation

Definition
20 = 1 2n+1 = 22n

NB: note that 2n is a non-elementary function

Theorem

∃ a (finite) set of clauses Cn such that HC(Cn) > 1
2 · 2n
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Herbrand Complexity and Proof Length

Statman’s Example

Example

consider the following clause set:

Cn = ST ∪ ID ∪ {p · q 6= p · ((Tn · q) · q)}

ST = {Sxyz = (xz)(yz),Bxyz = x(yz),Cxyz = (xz)y ,

Ix = x , px = p(qx)}

ID = ”equality axioms”

T = (SB)((CB)I)

T1 = T

Tk+1 = TkT
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Herbrand Complexity and Proof Length

Lemma

Tyx = y(yx) is derivable

Proof.
(SB)((CB)I)yx = (By)((CB)Iy)x =

= (By)((By)I)x = y((By I)x) = y(y(Ix)) = y(yx)

Definition

H1(y) = ∀x px = p(yx) Hm+1(y) = ∀x (Hm(x)→ Hm(yx))

Lemma

H1(y)→ H1(Ty) and ∀y (H1(y)→ H1(Ty)) (= H2(T)) are derivable
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Herbrand Complexity and Proof Length

Lemma

Hm+1(y)→ Hm+1(Ty) and ∀y (Hm+1(y)→ Hm+1(Ty)) (= Hm+2(T))
are derivable

Proof.

1 ∀x (A(x)→ A(yx))→ ∀x(A(x)→ A(y(yx))) is derivable

2 using y(yx) = Tyx and setting A = Hm we have

Hm+1(y)→ Hm+1(Ty) ∀y (Hm+1(y)→ Hm+1(Ty))

Corollary

H2(T), . . . , Hn+1(T) are derivable by short proofs

NB: “short” refers to proofs whose length is independent on n
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Herbrand Complexity and Proof Length

Lemma

Statman’s example is unsatisfiable; which can be shown with a proof
linear in n

Proof.

pq 6= p(Tnq)q

∀x px = p(qx)

Hn(T)

∀x (Hn(x)→ Hn(Tx)) (= Hn+1(T))

Hn(T)→ Hn(T2)

∀x (Hn−1(x)→ Hn−1(T2x)) (= Hn(T2))

H2(Tn)

∀x px = p(qx)→ ∀x px = p(Tnq)x

∀x px = p(Tnq)x

pq = p(Tnq)q
2
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Structural Skolemisation

Theorem

∃ clause sets whose refutation in resolution is non-elementarily longer
than its refutation in natural deduction

Proof.

1 consider Statman’s example Cn
2 the shortest resolution refutation is Ω(2n−1)

3 the length of the above refutation is O(n) and can be formalised in
natural deduction

Definitions
• a formula is called rectified if different quantifiers bind different

variables

• if ∀x occurs positively (negatively) then ∀x is called strong (weak)

• dual for ∃x
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Structural Skolemisation

Definition
• let A be a rectified formula and Qx G a subformula of A

• for any subformula Q′y H of G we say Q′y is in scope of Qx ;
denoted as Qx <A Q′y

Definition
• let A be closed and rectified

• we define the mapping rsk as follows:

rsk(A) =

{
A no existential quant. in A

rsk(A−∃y ){y 7→ f (x1, . . . , xn)} ∀x1, . . . ,∀xn <A ∃y

1 ∃y is the first existential quantifier in A
2 A−∃y denotes A after omission of ∃y
3 the Skolem function symbol f is fresh

• the formula rsk(A) is the (refutational) structural Skolem form of A
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Structural Skolemisation

Prenex and Antiprenex Skolem Form

Definitions

• let A be a sentence and A′ a prenex normal form of A; then rsk(A′)
is the prenex Skolem form of A

• the antiprenex form of A is obtained my minimising the quantifier
range by quantifier shifting rules

• if A′ is the antiprenex form of A, then rsk(A′) is the antiprenex
Skolem form

Theorem

let A be a closed formula, then A ∼ rsk(A)
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Structural Skolemisation

Example

consider F = ∀x(∃yP(x , y) ∧ ∃zQ(z)) ∧ ∀u(¬P(a, u) ∨ ¬Q(u))

G1 = ∀x(P(x , f(x)) ∧ Q(g(x))) ∧ ∀u(¬P(a, u) ∨ ¬Q(u))

G2 = ∀xP(x , f(x)) ∧ Q(c) ∧ ∀u(¬P(a, u) ∨ ¬Q(u))

G3 = ∀x∀u(P(x , h(x , u)) ∧ Q(i(x , u)) ∧ ¬P(a, u) ∨ ¬Q(u))

G1 denotes the refutational structural Skolemisation, G2 the antiprenex
refutational Skolemisation, and G3 is the prenex refutational
Skolemisation

Theorem

1 ∃ a set of sentences Dn with HC(D′n) = 22
2O(n)

for the structural
Skolem form D′n

2 HC(D′′n) > 1
22n for the prenex Skolem form
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Structural Skolemisation

Definition (Andrew’s Skolem form)

let A be a rectified sentence; (refutational) Andrew’s Skolem form is
defined as follows:

rskA(A) =

{
A no existential quantifiers

rskA(A−∃y ){y 7→ f (~x)} ∀x1, . . . ,∀xn <A ∃y

4 ∃y B is a subformula of A and ∃y is the first existential quantifer in
A

5 all x1, . . . , xn occur free in ∃y B

Example

consider ∀z , y (∃x P(y , x) ∨ Q(y , z)); Andrew’s Skolem form is given as
follows:

∀z , y (P(y , g(y)) ∨ Q(y , z))

on the other hand consider ∀y , z ∃x(P(y , x) ∨ Q(y , z))
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Inner Skolemisation

Inner and Outer (Refutational) Skolemisation

Definition

• let A be rectified sentence in negation normal form (NNF)

• let ∃xB a subformula of A at position p

• let {y1, . . . , yk} = {y | ∀y <A ∃x} and let
{z1, . . . , zl} = FVar(∃xB)

• A[B{x 7→ f (y1, . . . , yk)}] is obtained by an outer Skolemisation step

• A[B{x 7→ f (z1, . . . , zl)}] is obtained by an inner Skolemisation step

Example

1 structural Skolemisation is a variation of outer Skolemisation

2 Andrew’s Skolemisation is a variation of inner and outer
Skolemisation

the following variants of Skolemisation improve inner Skolemisation
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Inner Skolemisation

Definition (Optimised Skolemisation)

• let A be a sentence in NNF and B = ∃x1 · · · xk(E ∧ F ) a subformula
of A with FVar(∃~x(E ∧ F )) = {y1, . . . , yn}

• suppose A = C [B]

• suppose A→ ∀y1, . . . , yn∃x1 · · · xkE is valid

• we define an optimised Skolemisation step as follows

opt step(A) = ∀~yE{. . . , xi 7→ fi (~y), . . . }∧C [F{. . . , xi 7→ fi (~y), . . . }]

where f1, . . . , fk are new Skolem function symbols

Example

consider a subformula of a sentence A

∀x , y , z(R(x , y) ∧ R(x , z)→ ∃u(R(y , u) ∧ R(z , u)))

we assume ∀y∃uR(y , u) is provable from A; we obtain

R(y , f(y , z)) ¬R(x , y) ∨ ¬R(x , z) ∨ R(z , f(y , z))
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Inner Skolemisation

Theorem

optimised Skolemisation preserves satisfiability

Proof Sketch.

1 suppose A is satisfiable with some interpretation I
2 we extent I to the Skolem functions such that we obtain for the

extention I ′

I ′ |= ∀~yE{. . . , xi 7→ fi (~y), . . . } I ′ |= C [F{. . . , xi 7→ fi (~y), . . . }]

3 for this the extra condition is exploited

Remark

in comparison to (standard) inner Skolemisation is that some literals from
clauses are deleted

GM (Institute of Computer Science @ UIBK) Automated Reasoning 257/1



Inner Skolemisation

Definition
• a clause C subsumes clause D, if ∃ σ such that the multiset of

literals of Cσ is contained in the multiset of literals of D (denoted
Cσ ⊆ D)

• C is a condensation of D if C is a proper (multiple) factor of D that
subsumes D

Example

consider the clause P(x) ∨ R(b) ∨ P(a) ∨ R(z); its condensation is
R(b) ∨ P(a)

NB: condensation forms a strong normalisation technique that is
essential to remove redundancy in clauses

Example

note that the clause R(x , x) ∨ R(y , y) does not subsume R(a, a)
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Inner Skolemisation

Definition

• let B = ∃~x(E1 ∧ · · · ∧ E`) be a formula

• let {~z1} = FVar(E1) \ {~x}

• let {~zi} = FVar(Ei ) \
(⋃

j<i FVar(Ej) ∪ {~x}
)

• we call 〈{~z1}, . . . , {~z`}〉 the (free variable) splitting of B

Example
consider ∃u(R(y , u) ∧ R(z , u)); its splitting is 〈{y}, {z}〉

Observation

• let 〈{~z1}, . . . , {~z`}〉 be a splitting of ∃~x(E1 ∧ · · · ∧ E`)

• each conjunction Ei contains at least one of the variables from ~x

• 〈{~z1,~z2}, . . . , {~z`}〉 is a splitting of ∃~v(E2 ∧ · · · ∧ E`){xi 7→ fi (~z1, ~v)}
where ~v are new
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Inner Skolemisation

Definition (Strong Skolemisation)

• let A be a sentence in NNF and B = ∃~x(E1 ∧ · · · ∧ E`) a subformula
such that A = C [B]

• let 〈{~z1}, . . . , {~z`}〉 be a free variable splitting of B

• a strong Skolemisation step is defined as str step(A) = C [D] where
D is defined as

∀~w2, . . . , ~w`E1{xi 7→ fi (~z1, ~w2, . . . , ~w`)} ∧ · · ·
· · · ∧ E`{xi 7→ fi (~z1,~z2, . . . ,~z`)}

Example

consider the formula ∀x , y , z(R(x , y) ∧ R(x , z)→ ∃u(R(y , u) ∧ R(z , u)))
strong Skolemisation yields the following clauses

¬R(x , y)∨¬R(x , z)∨R(y , f(y ,w)) ¬R(x , y)∨¬R(x , z)∨R(z , f(y , z))

condensation yields: ¬R(x , y) ∨ R(y , f(y ,w))
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Inner Skolemisation

Lemma

if ∃x1, . . . , xk(E ∧ F ) is satisfiable, then the following formula is
satisfiable as well

∀w1, . . . ,wkE{xi 7→ fi (~y , ~w)} ∧ ∃v1, . . . , vkF{xi 7→ fi (~y , ~v)}
where {y1, . . . , yn} = FVar(E ) \ {x1, . . . , xk}

Theorem

strong Skolemisation preserves satisfiability

Proof Sketch.
• suppose A is satisfiable

• one shows satisfiability of str step(A) by main induction on A and
side induction on `

• the base case exploits the above lemma
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Inner Skolemisation

Assessment

structural Skolemisation

• structural (outer) Skolemisation can lead to non-elementary
speed-up over prenex Skolemisation

• structural Skolemisation requires non-trivial formula transformations,
in particular quantifier shiftings

• how to implement?

inner Skolemisation

• standard inner Skolemisation techniques are straightforward to
implement

• optimised Skolemisation requires proof of A→ ∀~y∃~xE as
pre-condition

• strong Skolemisation is incomparable to optimised Skolemisation, as
larger, but more general clauses may be produced

GM (Institute of Computer Science @ UIBK) Automated Reasoning 262/1


