Functional Programming Exercises Week 4

(for November 8, 2013)

Numbers in parentheses refer to the 6th edition of the course notes. Exercises marked with \star are optional and can be ignored. Please have your .ml files accessible (e.g. on zid-gpl.uibk.ac.at).

- **1.** Read Chapter 4 of the lecture notes.
- 2. (Exercise 4.2) Compute (on paper) the Huffman encoding for the text: DON'T PANIC
- 3. (Exercise 4.4) Consider the module Huffman. The function table (see Section 4.3.3¹) performs a top to bottom construction of the code table, i.e., it builds the code when descending in the tree and when arriving at a leaf the code (for a single character) is already computed.

A bottom to top function first descends in the tree and then generates the codes from right to left by adding 0/1 in the code table for the left/right subtree at the front of the codes.

- a) Extend the module Huffman by a function table2 : t \rightarrow table, which generates the code table bottom to top.
- b) Which version is more efficient?
- 4. (Exercise 4.6) Follow the computation of sample ['h';'e';'l';'o'] by evaluating (on paper) the results of all function calls starting at sample ['h';'e';'l';'o'].
- 5. (Exercise 4.11) Implement depth-first-search and breadth-first-search for trees:

dfs : 'a tree -> 'a -> bool bfs : 'a tree -> 'a -> bool

The functions should return true if and only if the tree contains the sought element.

 \star . (Exercise 4.12) Use search trees to implement the module St for finite sets where the signature is given by

```
type 'a t
val diff : 'a t -> 'a t -> 'a t
val empty : 'a t
val insert : 'a -> 'a t -> 'a t
val is_empty : 'a t -> bool
val mem : 'a -> 'a t -> bool
val of_list : 'a list -> 'a t
val singleton : 'a -> 'a t
val to_list : 'a t -> 'a list
val union : 'a t -> 'a t -> 'a t
```

i.e., internally the type 'a t is 'a btree as defined above but that fact is hidden from the user. The operations have following specifications (where S and T are sets and s and

¹Here you really need the 6th edition of the course notes.

t are elements):

diff
$$S T = S \setminus T$$

empty = \emptyset
insert $s S = \{s\} \cup S$
mem $s S = s \in S$
singleton $s = \{s\}$
union $S T = S \cup T$