Week 8 - Efficiency Summary of Week 7

ogic

Mathematical Induction

Induction Principle
(P(m) AVk > m.(P(k) — P(k +1))) — ¥Yn > m.P(n)
N ARN J

g
base case step case

Functional Programming
WS 2013/14

Example

» first domino will fall
Harald Zankl (VO+PS)

Cezary Kaliszyk (PS)

Computational Logic -
Institute of Computer Science

University of Innsbruck

» if a domino falls also its right neighbor falls

week 8
HZ (ICS@UIBK) FP 2/17
Induction on Lists Structural Induction
Induction Principle (without Types)
(P([1) ANVx.¥xs.(P(xs) = P(x :: xs))) — ViIs.P(Is)
—— ~ 2 Usage

base case step case

. . > i
Lemma (append is associative) can be used on every variant type

» base cases correspond to non-recursive constructors

x50 (ys@zs) = (xs Qys) @ zs > step cases correspond to recursive constructors

where
Example
let rec (@) xs ys = match xs with
| [1 -> ys > lists
| x::xs -> x :: (xs Q@ ys) > trees
Proof > A-terms
Blackboard O o

HZ (ICS@UIBK) FP 3/17 HZ (ICS@UIBK) FP 4/17

http://cl-informatik.uibk.ac.at

This Week Mathematical

Definition (n-th Fibonacci number)

Practice |

OCaml introducti lists, stri t f-b()def 1 ifn<1
| n)=
aml introauction, lists, strings, trees flb(n B 1) . flb(n - 2) Ctheris

Theory |
lambda-calculus, evaluation strategies, induction, Graph

reasoning about functional programs

Practice Il fib(n) 2"

efficiency, tail-recursion, combinator-parsing, dynamic programming

Theory Il /
type checking, type inference

Advanced Topics
lazy evaluation, infinite data structures, monads, ...

HZ (ICS@UIBK) FP 5/17 HZ (ICS@UIBK) FP 6/17

Wl 9~ ifciency Fivonace Number
Mathematical (cont'd) OCaml

Definition
let rec fib n = if n < 2 then 1 else fib(n-1) + fib(n-2)

Example
1,1,2 3,5 8 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, Example .
4181 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, £ib
317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, - T
0227465, 14930352, 24157817, 39088169, 63245986, 102334155, fib 4 fib 3
165580141, 267914206, 433494437, 701408733, 1134903170, N N
1836311903, 2971215073, . .. ;ib < ;ib < ;ib < £ib 1
fib 2 fib 1l fib 1 fib 0 fib 1 fib 0
fib1£fib 0

HZ (ICS@UIBK) FP 7/17 HZ (ICS@UIBK) FP 8/17

Week 8 - Efcency Tupng
Tupling Fibonacci Numbers

Example

let rec fibpair n = if n < 1 then (0,1) else (
if n = 1 then (1,1)

Idea else let (f1,£2) = fibpair (n-1) in (£2,f1+£2)
> use tuples to return more than one result)
> make results available as return values instead of recomputing them » this function is linear
Lemma

fibpair(n+4 1) = (fib n,fib(n + 1))

Proof.
Blackboard O
HZ (ICS@UIBK) FP 9/17 HZ (ICS@UIBK) FP 10/17
Week 8 - Efficiency Tupling Week 8 - Efficiency Tail Recursion
A Second Example Recursion vs. Tail Recursion
Goal
compute average value of an integer list (module IntLst) Idea
Naive Approach » a function calling itself is recursive

R : .
> let average xs = sum xs / Lst.length xs functions that mutually call each other are mutually recursive

» special kind of recursion is tail recursion
» 2 traversals of xs are done

Definition (Tail recursion)

Combined Function) . L
a function is called tail recursive if the recursive call is last action in the

» let rec sumlen = function function body
| -> (0,0)
| x::xs -> let (sum,len) = sumlen xs in (sum+x,len+1) Reward

http://xkcd.com/1270
» let averagel xs = let (sum,len) = sumlen xs in sum/len p:// / /

» one traversal of xs suffices

HZ (ICS@UIBK) FP 11/17 HZ (ICS@UIBK) FP 12/17

http://xkcd.com/1270/

Week 8 - Efficiency Tail Recursion Week 8 - Efficiency Tail Recursion

Examples Parameter Accumulation

Length

» let rec length = function [] -> 0
| _::xs -> 1 + length xs

Idea
» not tail recursive _) _
» make function tail recursive

Even/Odd » provide data as input instead of computing it before recursive call

» Why? (tail recursive functions can automatically be transformed

-> true into space-efficient loops)

-> false
-> is_odd(n-1)
-> false
-> true
-> is_even(n-1)

> let rec is_even = function
|
I
function
|
I

0
1
n
and is_odd 0
1
n

» mutually recursive (btw: also tail recursive)
HZ (ICS@UIBK) FP 13/17 HZ (ICS@UIBK) FP 14/17

Week 8 - Efficiency Tail Recursion Week 8 - Efficiency Tail Recursion

Example (Sumlen) Example (Range)

» let rec sumlen = function
[0 -> (0,0)

x::Xs —> let (sum,len) = sumlen xs in (sum+x,len+1 .
! (sum, Len) (’) » let rec range m n = if m >= n then []

else m::range (m+1) n

» not tail recursive
> let sumlen_tl xs = » not tail recursive
let rec sumlen sum len = function
» let range tl m n =
[] -> (sum,len)
| S 1 (sum+x) (len+1) let rec range acc m n =
x::xs —> sumlen (sum+x en Xs .
in if m >= n then acc else range ((n-1)::acc) m (n-1)
in
sumlen 0 0 xs
range [] m n
» tail recursive . .
» tail recursive

» let sumlen_fold xs =
Lst.foldl (fun (sum,len) x -> (sum+x,len+1)) (0,0) xs

> tail recursive

HZ (ICS@UIBK) FP 15/17 HZ (ICS@UIBK) FP 16/17

Week 8 - Efficiency Tail Recursion

Examples (Reverse)

» let rec reverse = function [1 -> 11
| x::xs —> (reverse xs) @ [x]

not tail recursive

v

» let rev xs =
let rec rev acc = function [] -> acc
| x::xs -> rev (x::acc) xs
in
rev [] xs

tail recursive

v

» let rev xs = Lst.foldl (fun acc x —-> x::acc) [] xs

\4

tail recursive

HZ (ICS@UIBK) FP 17/17

	Week 8 - Efficiency
	Summary of Week 7
	Fibonacci Numbers
	Tupling
	Tail Recursion

