
Functional Programming
WS 2013/14

Harald Zankl (VO+PS)
Cezary Kaliszyk (PS)

Computational Logic
Institute of Computer Science

University of Innsbruck

week 8

Week 8 - Efficiency Summary of Week 7

Mathematical Induction

Induction Principle

(P(m)︸ ︷︷ ︸
base case

∧ ∀k ≥ m.(P(k)→ P(k + 1))︸ ︷︷ ︸
step case

)→ ∀n ≥ m.P(n)

Example

I first domino will fall

I if a domino falls also its right neighbor falls

· · ·

HZ (ICS@UIBK) FP 2/17

Week 8 - Efficiency Summary of Week 7

Induction on Lists
Induction Principle (without Types)

(P([])︸ ︷︷ ︸
base case

∧ ∀x .∀xs.(P(xs)→ P(x :: xs))︸ ︷︷ ︸
step case

)→ ∀ls.P(ls)

Lemma (append is associative)

xs @ (ys @ zs) = (xs @ ys) @ zs

where

let rec (@) xs ys = match xs with

| [] -> ys

| x::xs -> x :: (xs @ ys)

Proof.
Blackboard

HZ (ICS@UIBK) FP 3/17

Week 8 - Efficiency Summary of Week 7

Structural Induction

Usage

I can be used on every variant type

I base cases correspond to non-recursive constructors

I step cases correspond to recursive constructors

Example

I lists

I trees

I λ-terms

I . . .

HZ (ICS@UIBK) FP 4/17

http://cl-informatik.uibk.ac.at


Week 8 - Efficiency

This Week

Practice I
OCaml introduction, lists, strings, trees

Theory I

lambda-calculus, evaluation strategies, induction,
reasoning about functional programs

Practice II
efficiency, tail-recursion, combinator-parsing, dynamic programming

Theory II

type checking, type inference

Advanced Topics

lazy evaluation, infinite data structures, monads, . . .

HZ (ICS@UIBK) FP 5/17

Week 8 - Efficiency Fibonacci Numbers

Mathematical
Definition (n-th Fibonacci number)

fib(n)
def
=

{
1 if n ≤ 1

fib(n − 1) + fib(n − 2) otherwise

Graph

n

fib(n) 2n

HZ (ICS@UIBK) FP 6/17

Week 8 - Efficiency Fibonacci Numbers

Mathematical (cont’d)

Example

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584,
4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418,
317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887,
9227465, 14930352, 24157817, 39088169, 63245986, 102334155,
165580141, 267914296, 433494437, 701408733, 1134903170,
1836311903, 2971215073, . . .

HZ (ICS@UIBK) FP 7/17

Week 8 - Efficiency Fibonacci Numbers

OCaml

Definition

let rec fib n = if n < 2 then 1 else fib(n-1) + fib(n-2)

Example
fib 5

fib 4

fib 3

fib 2

fib 1 fib 0

fib 1

fib 2

fib 1 fib 0

fib 3

fib 2

fib 1 fib 0

fib 1

HZ (ICS@UIBK) FP 8/17



Week 8 - Efficiency Tupling

Tupling

Idea

I use tuples to return more than one result

I make results available as return values instead of recomputing them

HZ (ICS@UIBK) FP 9/17

Week 8 - Efficiency Tupling

Fibonacci Numbers

Example

let rec fibpair n = if n < 1 then (0,1) else (

if n = 1 then (1,1)

else let (f1,f2) = fibpair (n-1) in (f2,f1+f2)

)

I this function is linear

Lemma
fibpair(n + 1) = (fib n, fib(n + 1))

Proof.
Blackboard

HZ (ICS@UIBK) FP 10/17

Week 8 - Efficiency Tupling

A Second Example

Goal
compute average value of an integer list (module IntLst)

Naive Approach

I let average xs = sum xs / Lst.length xs

I 2 traversals of xs are done

Combined Function

I let rec sumlen = function

| [] -> (0,0)

| x::xs -> let (sum,len) = sumlen xs in (sum+x,len+1)

I let average1 xs = let (sum,len) = sumlen xs in sum/len

I one traversal of xs suffices

HZ (ICS@UIBK) FP 11/17

Week 8 - Efficiency Tail Recursion

Recursion vs. Tail Recursion

Idea

I a function calling itself is recursive

I functions that mutually call each other are mutually recursive

I special kind of recursion is tail recursion

Definition (Tail recursion)

a function is called tail recursive if the recursive call is last action in the
function body

Reward
http://xkcd.com/1270/

HZ (ICS@UIBK) FP 12/17

http://xkcd.com/1270/


Week 8 - Efficiency Tail Recursion

Examples

Length

I let rec length = function [] -> 0

| _::xs -> 1 + length xs

I not tail recursive

Even/Odd

I let rec is_even = function 0 -> true

| 1 -> false

| n -> is_odd(n-1)

and is_odd = function 0 -> false

| 1 -> true

| n -> is_even(n-1)

I mutually recursive (btw: also tail recursive)

HZ (ICS@UIBK) FP 13/17

Week 8 - Efficiency Tail Recursion

Parameter Accumulation

Idea

I make function tail recursive

I provide data as input instead of computing it before recursive call

I Why? (tail recursive functions can automatically be transformed
into space-efficient loops)

HZ (ICS@UIBK) FP 14/17

Week 8 - Efficiency Tail Recursion

Example (Sumlen)

I let rec sumlen = function

| [] -> (0,0)

| x::xs -> let (sum,len) = sumlen xs in (sum+x,len+1)

I not tail recursive

I let sumlen_tl xs =

let rec sumlen sum len = function

| [] -> (sum,len)

| x::xs -> sumlen (sum+x) (len+1) xs

in

sumlen 0 0 xs

I tail recursive

I let sumlen_fold xs =

Lst.foldl (fun (sum,len) x -> (sum+x,len+1)) (0,0) xs

I tail recursive

HZ (ICS@UIBK) FP 15/17

Week 8 - Efficiency Tail Recursion

Example (Range)

I let rec range m n = if m >= n then []

else m::range (m+1) n

I not tail recursive

I let range_tl m n =

let rec range acc m n =

if m >= n then acc else range ((n-1)::acc) m (n-1)

in

range [] m n

I tail recursive

HZ (ICS@UIBK) FP 16/17



Week 8 - Efficiency Tail Recursion

Examples (Reverse)

I let rec reverse = function [] -> []

| x::xs -> (reverse xs) @ [x]

I not tail recursive

I let rev xs =

let rec rev acc = function [] -> acc

| x::xs -> rev (x::acc) xs

in

rev [] xs

I tail recursive

I let rev xs = Lst.foldl (fun acc x -> x::acc) [] xs

I tail recursive

HZ (ICS@UIBK) FP 17/17


	Week 8 - Efficiency
	Summary of Week 7
	Fibonacci Numbers
	Tupling
	Tail Recursion


