

Functional Programming

WS 2013/14

Harald Zankl (VO+PS)
Cezary Kaliszyk (PS)

Computational Logic
Institute of Computer Science
University of Innsbruck
week 8

Structural Induction

Usage

- can be used on every variant type
- base cases correspond to non-recursive constructors
- step cases correspond to recursive constructors

Example

- lists
- trees
- λ-terms
- ...

This Week

Practice I
OCaml introduction, lists, strings, trees
Theory I
lambda-calculus, evaluation strategies, induction,
reasoning about functional programs
Practice II
efficiency, tail-recursion, combinator-parsing, dynamic programming
Theory II
type checking, type inference
Advanced Topics
lazy evaluation, infinite data structures, monads, ...

Mathematical (cont'd)

Example

$1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584$, 4181 ,6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, 165580141, 267914296, 433494437, 701408733, 1134903170, 1836311903, 2971215073, ...

Mathematical
Definition (n-th Fibonacci number)

$$
\operatorname{fib}(n) \stackrel{\text { def }}{=} \begin{cases}1 & \text { if } n \leq 1 \\ \operatorname{fib}(n-1)+\operatorname{fib}(n-2) & \text { otherwise }\end{cases}
$$

Graph

OCaml
Definition
let rec fib $n=$ if $n<2$ then 1 else $f i b(n-1)+f i b(n-2)$
Example

Tupling

Idea

- use tuples to return more than one result
- make results available as return values instead of recomputing them

```
A Second Example
```

Goal
compute average value of an integer list (module IntLst)
Naive Approach

- let average $\mathrm{xs}=$ sum $\mathrm{xs} /$ Lst.length xs
- 2 traversals of xs are done

Combined Function

- let rec sumlen $=$ function
| [] -> $(0,0)$
| x::xs \rightarrow let (sum,len) $=$ sumlen $x s$ in (sum+x,len+1)
- let average1 $\mathrm{xs}=$ let (sum,len) $=$ sumlen xs in sum/len
- one traversal of xs suffices

Fibonacci Numbers

Example

```
let rec fibpair n = if n < 1 then (0,1) else (
    if n = 1 then (1,1)
        else let (f1,f2) = fibpair (n-1) in (f2,f1+f2)
)
```

- this function is linear

Lemma

$$
\operatorname{fibpair}(n+1)=(f i b n, f i b(n+1))
$$

Proof.
Blackboard

Recursion vs. Tail Recursion

Idea

- a function calling itself is recursive
- functions that mutually call each other are mutually recursive
- special kind of recursion is tail recursion

Definition (Tail recursion)
a function is called tail recursive if the recursive call is last action in the function body

Reward
http://xkcd.com/1270/

Length

- let rec length = function [] -> 0
| _::xs -> 1 + length xs
- not tail recursive

Even/Odd

- let rec is_even = function 0 -> true
| 1 -> false
| n -> is_odd ($\mathrm{n}-1$)
and is_odd
= function 0 -> false
| 1 -> true
| n -> is_even(n-1)
- mutually recursive (btw: also tail recursive)
Week 8 - Efficiency \quad Tail Recursion
Week 8 - Efficiency
Example (Range) Tail Recursion
- let rec sumlen = function
| [] $\quad \rightarrow(0,0)$
| x::xs -> let (sum,len) = sumlen $x s$ in (sum+x,len+1)
- not tail recursive
- let sumlen_tl xs =
let rec sumlen sum len = function
| [] $\quad-$ (sum,len)
| x::xs $->$ sumlen (sum+x) (len+1) xs
in
sumlen 00 xs
- tail recursive
- let sumlen_fold xs =

Lst.foldl (fun (sum,len) x-> (sum+x,len+1)) (0,0) xs

- tail recursive
- let rec reverse $=$ function [] -> []
| x::xs \rightarrow (reverse $x s$) @ [x]
- not tail recursive
- let rev xs =
let rec rev acc = function [] $\quad>$ acc
in
rev [] xs
- tail recursive
- let rev xs = Lst.foldl (fun acc x -> x::acc) [] xs
- tail recursive

