

Einführung in die Theoretische Informatik Woche 7

Harald Zankl

Institut für Informatik @ UIBK Wintersemester 2014/2015

Definition (Schaltalgebra)

Sei $\mathbb{B} = \{0,1\}$, wir betrachten die Algebra

$$\langle \mathbb{B}; +, \cdot, ^-, 0, 1 \rangle$$

wobei die Operationen +, \cdot , - wie folgt definiert sind:

Diese Algebra ist eine Boolesche Boolesche und heißt Schaltalgebra.

Definition (Schaltnetz)

- Ein logischer Schaltkreis (Schaltnetz) ist ein algebraischer Ausdruck der Schaltalgebra
- Die Operationen +, ·, werden als logische Gatter dargestellt

Zusammenfassung

Zusammenfassung der letzten LV

Beispiel

1 Wir betrachten die folgende Signatur $F = \{+, \cdot, -, 0, 1\}$ sodass

- Stelligkeit von 0, 1 ist 0
- Stelligkeit von ist 1
- Stelligkeit von +, · ist 2
- $V = \{x, y, \dots\}$
- 3 Wir betrachten die Gleichungen E

$$(x + y) + z \approx x + (y + z)$$
 $\overline{x} + x \approx 1$ $x + x \approx x$

- 4 Dann gilt $E \vdash 1 + x \approx 1$
- **5** Dann gilt $E \not\vdash x + 1 \approx 1$

Satz (Satz von Birkhoff)

Für beliebige Terme s, t gilt: $E \models s \approx t$ gdw. $E \vdash s \approx t$.

HZ (IFI) ETI - Woche 7 104/217

Überblick

Inhalte der Lehrveranstaltung

Einführung in die Logik

Syntax & Semantik der Aussagenlogik, Formales Beweisen, Konjunktive und Disjunktive Normalformen

Einführung in die Algebra

Boolesche Algebra, Universelle Algebra, Logische Schaltkreise

Einführung in die Theorie der Formalen Sprachen

Grammatiken und Formale Sprachen, Reguläre Sprachen, Kontextfreie Sprachen

Einführung in die Berechenbarkeitstheorie

Algorithmisch unlösbare Probleme, Turing Maschinen, Registermaschinen

Einführung in die Programmverifikation

Prinzipien der Analyse von Programmen, Verifikation nach Hoare, Verschlüsselung und Sicherheit

Sprach

Definition

Eine Teilmenge L von Σ^* heißt eine formale Sprache über Alphabet Σ

Beispiel

• Die Menge aller Wörter, die aus n Nullen gefolgt von n Einsen bestehen, wobei $n \ge 0$:

$$\{\epsilon, 01, 0011, 000111, \ldots\}$$

 Die Menge aller Wörter, die jeweils die selbe Anzahl Nullen und Einsen enthalten:

$$\{\epsilon, 01, 10, 0011, 0101, \ldots\}$$

- Für jedes Alphabet Σ ist
 - Σ^* eine formale Sprache
 - Ø eine formale Sprache (die leere Sprache)
 - $\{\epsilon\}$ eine formale Sprache (beachte: $\emptyset \neq \{\epsilon\}$)

HZ (IFI) ETI - Woche 7 107/217

Sprachen

Abschluss einer Formalen Sprache

Definition

Sei L eine formale Sprache und $k \in \mathbb{N}$

Die k-te Potenz von L ist definiert als:

$$L^k = egin{cases} \{\epsilon\} & \text{falls } k = 0 \\ L & \text{falls } k = 1 \\ \underbrace{LL \cdots L}_{k\text{-mal}} & \text{falls } k > 1 \end{cases}$$

Definition

Der Kleene-Stern * oder Abschluss von L ist wie folgt definiert:

$$L^* = \bigcup_{k \ge 0} L^k = \{x_1 \cdots x_k \mid x_1, \dots, x_k \in L \text{ und } k \in \mathbb{N}, k \geqslant 0\}$$

Definition

Seien L, M formale Sprachen über dem Alphabet Σ

• Die Vereinigung von L und M ist wie folgt definiert

$$L \cup M := \{x \mid x \in L \text{ oder } x \in M\}$$

• Wir definieren das Komplement von L:

$$\sim L = \Sigma^* \setminus L := \{ x \in \Sigma^* \mid x \notin L \}$$

• Der Durchschnitt von L und M ist wie folgt definiert:

$$L \cap M := \{x \mid x \in L \text{ und } x \in M\}$$

• Das Produkt (oder die Verkettung) von L und M ist definiert als:

$$LM := \{xy \mid x \in L, y \in M\}$$

Lemma

Seien L, L_1, L_2, L_3 formale Sprachen, dann gilt

$$(L_1L_2)L_3 = L_1(L_2L_3)$$
 $L\{\epsilon\} = \{\epsilon\}L = L$ $L\varnothing = \varnothing L = \varnothing$

HZ (IFI) ETI - Woche 7 108/21

Sprachen

Definition

Schließlich definieren wir:

$$L^+ = \bigcup_{k \geqslant 1} L^k = \{x_1 \cdots x_k \mid x_1, \dots, x_k \in L \text{ und } k \in \mathbb{N}, k \geqslant 1\}$$

Beispiel

• Sei $\Sigma = \{0, 1\}$ und betrachte die formale Sprache L aller Wörter, die aus n Nullen gefolgt von n Einsen bestehen, wobei $n \ge 0$, also

$$L = \{0^n 1^n \mid n \geqslant 0\}$$

- Es gilt $010101 \not\in L$, aber $010011 \in L^2$
- Allgemein erhalten wir:

$$L^2 = \{0^n 1^n 0^k 1^k \mid n, k \geqslant 0\}$$

IZ (IFI) ETI - Woche 7 109/217

ETI - Woche 7

110/217

Grammatiken und Formale Sprachen

Beispiel

 $S \rightarrow \text{Pronomen Nomen Verb Adjektiv}$

Nomen → Lehrveranstaltungsleiter

Nomen \rightarrow Vortragender

Pronomen → Unser | Mein

 $\mathsf{Verb} \to \mathsf{ist}$

 $\mathsf{Adjektiv} \to \mathsf{l\ddot{a}stig} \mid \mathsf{nett} \mid \mathsf{streng} \mid \mathsf{monoton} \mid \mathsf{anspruchsvoll}$

Es gilt:

 $S \stackrel{*}{\Rightarrow} Unser Lehrveranstaltungsleiter ist anspruchsvoll$

HZ (IFI) ETI - Woche 7 111/2

Ableitungen in einer Grammatik

Sei $G = (V, \Sigma, R, S)$ eine Grammatik und seien $x, y \in (V \cup \Sigma)^*$

Definition

1 Wir sagen y ist aus x in G direkt ableitbar, wenn gilt:

$$\exists u, v \in (V \cup \Sigma)^*, \exists (P \to Q) \in R \text{ sodass } (x = uPv \text{ und } y = uQv)$$

- 2 In diesem Fall schreiben wir kurz $x \Rightarrow y$
- **3** Wenn *G* aus dem Kontext folgt schreiben wir $x \Rightarrow y$

→ Beispiel

Definition (Ableitbar)

Wir sagen y ist aus x in G ableitbar, wenn $k \in \mathbb{N}$ und $w_0, w_1, \ldots, w_k \in (V \cup \Sigma)^*$ existieren, sodass

$$x = w_0 \Rightarrow w_1 \Rightarrow \ldots \Rightarrow w_k = y$$

Wir schreiben $x \stackrel{*}{\underset{G}{\rightleftharpoons}} y$, beziehungsweise $x \stackrel{*}{\Rightarrow} y$

Definition

Eine Grammatik G ist ein Quadrupel $G = (V, \Sigma, R, S)$, wobei

- 1 V eine endliche Menge von Variablen (oder Nichtterminale)
- **2** Σ ein Alphabet, die Terminale, $V \cap \Sigma = \emptyset$
- 3 R eine endliche Menge von Regeln
- $S \in V$ das Startsymbol

Eine Regel ist ein Paar $P \to Q$ von Wörtern $P, Q \in (V \cup \Sigma)^*$, sodass in P mindestens eine Variable vorkommt

P nennen wir auch die Prämisse und Q die Konklusion der Regel

Konvention

- Variablen werden groß geschrieben, Terminale klein
- Statt $P o Q_1$, $P o Q_2$, $P o Q_3$ schreiben wir $P o Q_1 \mid Q_2 \mid Q_3$

HZ(IFI) ETI - Woche 7 112/217

Sprache einer Grammatik

Sprache einer Grammatik

Definition

- Die vom Startsymbol S ableitbaren Wörter heißen Satzformen
- Elemente von Σ* heißen Terminalwörter
- Satzformen, die Terminalwörter sind, heißen Sätze

Definition (Sprache einer Grammatik)

Die Menge aller Sätze

$$\mathsf{L}(G) = \{x \in \Sigma^* \mid S \underset{G}{\overset{*}{\Rightarrow}} x\}$$

heißt die von der Grammatik G erzeugte Sprache

Definition (Äquivalenz)

Zwei Grammatiken G_1 und G_2 heißen äquivalent, wenn $L(G_1) = L(G_2)$

Klassen von Grammatiken

Definition (rechtslinear)

Grammatik $G = (V, \Sigma, R, S)$ heißt rechtslinear, wenn für alle Regeln $P \to Q$ gilt:

- **1** *P* ∈ *V*
- 2 $Q \in \Sigma^* \cup \Sigma^+ V$

Beispiel

Grammatik $G_1 = (\{B\}, \{0, 1\}, R, B)$ mit Regeln R:

$$B \to 0 | 1 | 0B | 1B$$

Es gilt:

- $B \Rightarrow_G 0B \Rightarrow_G 01B \Rightarrow_G 010$
- ullet G_1 ist rechtslinear
- $L(G_1) = \{0,1\}^+$

HZ (IFI)

TI - Woche 7

115/217

Klassen von Grammatiken

Definition (beschränkt)

Grammatik $G = (V, \Sigma, R, S)$ heißt beschränkt, wenn für alle Regeln $P \to Q$ gilt:

- 1 entweder $|P| \leq |Q|$
- 2 oder P = S, $Q = \epsilon$ und S kommt in keiner Konklusion einer Regel vor

Beispiel

$$G_3 = (\{S, B, C\}, \{a, b, c\}, R, S)$$
 mit Regeln R :
 $S \to aSBC \mid aBC$
 $CB \to BC$
 $aB \to ab$ $bB \to bb$ $bC \to bc$ $cC \to cc$

Es gilt

- G₃ ist beschränkt
- $L(G_3) = \{a^n b^n c^n \mid n \geqslant 1\}$

Definition (kontextfrei)

Grammatik $G = (V, \Sigma, R, S)$ heißt kontextfrei, wenn für alle Regeln $P \to Q$ gilt:

- **1** *P* ∈ *V*
- $Q \in (V \cup \Sigma)^*$

Beispiel

Grammatik $G_2 = (\{S\}, \{(,)\}, R, S)$ mit Regeln R:

$$S \rightarrow \epsilon \mid (S) \mid SS$$

Es gilt:

- G₂ ist kontextfrei
- $S \Rightarrow SS \Rightarrow (S)S \Rightarrow (\epsilon)S = ()S \Rightarrow ()(S) \Rightarrow ()(SS) \stackrel{*}{\Rightarrow} ()(()(()))$
- L(G₂) beschreibt die Menge der balancierten Klammerausdrücke

4Z (IFI) ETI - Woche 7 116/217

Klassen von Grammatiken

Definition (kontextsensitiv)

Grammatik $G = (V, \Sigma, R, S)$ heißt kontextsensitiv, wenn für alle Regeln $P \to Q$ gilt:

1 entweder es existieren $u, v, w \in (V \cup \Sigma)^*$ und $A \in V$, sodass

$$P = uAv$$
 und $Q = uwv$ wobei $|w| \geqslant 1$

2 oder P = S, $Q = \epsilon$ und S kommt in keiner Konklusion einer Regel vor

Beispiel

$$G_3 = (\{S,B,C\},\{\mathsf{a},\mathsf{b},\mathsf{c}\},R,S)$$
 mit Regeln R :
$$S \to \mathsf{a}SBC \mid \mathsf{a}BC$$

$$CB \to BC$$

$$\mathsf{a}B \to \mathsf{a}\mathsf{b} \qquad \mathsf{b}B \to \mathsf{b}\mathsf{b} \qquad \mathsf{b}C \to \mathsf{b}\mathsf{c} \qquad \mathsf{c}C \to \mathsf{c}\mathsf{c}$$

ETI - Woche

Es gilt:

- G₃ ist nicht kontextsensitiv
- $L(G_3) = \{a^n b^n c^n \mid n \ge 1\}$

Definition (kontextsensitiv)

Grammatik $G = (V, \Sigma, R, S)$ heißt kontextsensitiv, wenn für alle Regeln $P \rightarrow Q$ gilt:

1 entweder es existieren $u, v, w \in (V \cup \Sigma)^*$ und $A \in V$, sodass

$$P = uAv$$
 und $Q = uwv$ wobei $|w| \geqslant 1$

2 oder P = S, $Q = \epsilon$ und S kommt in keiner Konklusion einer Regel vor

Beispiel

$$G_4 = (\{S, B, C, H\}, \{a, b, c\}, R, S) \text{ mit Regeln } R:$$
 $S \to aSBC \mid aBC$
 $CB \to HB \qquad HB \to HC \qquad HC \to BC$
 $aB \to ab \qquad bB \to bb \qquad bC \to bc \qquad cC \to cc$

Es gilt:

- G₄ ist kontextsensitiv
- $L(G_4) = \{a^n b^n c^n \mid n \geqslant 1\}$

Klassen von Grammatiken

Beobachtung

Grammatik G_2 ist kontextfrei, aber nicht kontextsensitiv, wegen der Regeln $S \to \epsilon$ und $S \to (S)$. G_2 kann in eine äquivalente kontextsensitive Grammatik umgeschrieben werden.

Satz

Für jede kontextfreie Grammatik gibt es eine äquivalente kontextsensitive Grammatik.

Beobachtung

Grammatik G_3 ist nicht beschränkt, aber die äguivalente Grammatik G_4 ist beschränkt.

Satz

- Jede kontextsensitive Grammatik ist beschränkt.
- Für jede beschränkte Grammatik gibt es eine äquivalente kontextsensitive Grammatik.

Beispiel

Grammatik $G_5 = (\{S, Y, T\}, \{a\}, R, S)$ mit Regeln R:

$$S o YST \mid a$$
 $Ya o aaY$ $YaT o aa$

$$Ya \rightarrow aaY$$

$$Y$$
a $T o$ aa

Es gilt:

- G₅ ist nicht beschränkt
- $L(G_5) = \{a^{2^n} \mid n \ge 0\} = \{a, aa, aaaa, aaaaaaaa, \ldots\}$

Beispiel

Grammatik $G_6 = (\{S, Y, T\}, \{a\}, R, S)$ mit Regeln R:

$$S o YST \mid \mathsf{a} \mid \mathsf{aa} \qquad \qquad Y\mathsf{a} o \mathsf{aa}Y \qquad \qquad Y\mathsf{aa}T o \mathsf{aaaa}$$

$$Ya \rightarrow aa Y$$

$$Y$$
aa $T \rightarrow$ aaaa

Es gilt:

- G₆ ist beschränkt
- $L(G_6) = \{a^{2^n} \mid n \geqslant 0\} = \{a, aa, aaaa, aaaaaaaa, \ldots\}$

Definition

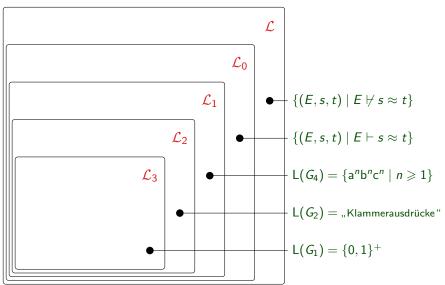
Eine formale Sprache L heißt

- regulär (vom Typ 3) wenn \exists rechtslineare Grammatik G mit L = L(G)
- kontextfrei (vom Typ 2) wenn \exists kontextfreie Grammatik G mit L = L(G)
- kontextsensitiv (vom Typ 1) wenn \exists kontextsensitive Grammatik G mit L = L(G)
- rekursiv aufzählbar (vom Typ 0) wenn \exists Grammatik G mit L = L(G)

Satz (Chomsky-Hierarchie)

Sei \mathcal{L}_i die Klasse der Sprachen vom Typ i und \mathcal{L} die Klasse aller Sprachen. $\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_0 \subseteq \mathcal{L}$ Dann gilt:

Chomsky-Hierarchie



HZ (IFI) ETI - Woche 7 122/217