

Functional Programming WS 2014/15

Cezary Kaliszyk (VO+PS) Yann Savoye (PS)

Computational Logic Institute of Computer Science University of Innsbruck

week 10

Overview

- Week 10 Types
 - Summary of Week 9
 - Core ML
 - Type Checking
 - Type Inference

Overview

- Week 10 Types
 - Summary of Week 9
 - Core ML
 - Type Checking

Type Inference

Combinator Parsing

Notes

- decompose linear sequence (text) into structure (type)
- type ('a,'t)Parser.t is 't list -> ('a * 't list)option
- primitive parser accepts/rejects single token
- parser combinators compose parsers, e.g., (>>=), (>>), (<|>), many

Combinator Parsing

Notes

- decompose linear sequence (text) into structure (type)
- type ('a,'t)Parser.t is 't list -> ('a * 't list)option
- primitive parser accepts/rejects single token
- parser combinators compose parsers, e.g., (>>=), (>>), (<|>), many

Combinator Parsing

Notes

- decompose linear sequence (text) into structure (type)
- type ('a, 't) Parser.t is 't list -> ('a * 't list) option
- primitive parser accepts/rejects single token
- parser combinators compose parsers, e.g., (>>=), (>>), (<|>), many

Combinator Parsing

Notes

- decompose linear sequence (text) into structure (type)
- type ('a, 't) Parser.t is 't list -> ('a * 't list) option
- primitive parser accepts/rejects single token
- parser combinators compose parsers, e.g., (>>=), (>>), (<|>), many then

HZ (ICS@UIBK)

Combinator Parsing

Notes

- decompose linear sequence (text) into structure (type)
- type ('a, 't) Parser.t is 't list -> ('a * 't list) option
- primitive parser accepts/rejects single token
- parser combinators compose parsers, e.g., (>>=), (>>), (<|>), many choice

HZ (ICS@UIBK) FP 4/26

Overview

- Week 10 Types
 - Summary of Week 9
 - Core ML
 - Type Checking

Type Inference

This Week

Practice I

OCaml introduction, lists, strings, trees

Theory I

lambda-calculus, evaluation strategies, induction, reasoning about functional programs

Practice II

efficiency, tail-recursion, combinator-parsing, dynamic programming

Theory II

type checking, type inference

Advanced Topics

lazy evaluation, infinite data structures, monads, ...

Overview

- Week 10 Types
 - Summary of Week 9
 - Core ML
 - Type Checking

ck 10 - Types Core ML

Core ML

eek 10 - Types Core MI

Core ML

$$e := x \mid e \mid \lambda x.e \mid c \mid \text{let } x = e \text{ in } e \mid \text{if } e \text{ then } e \text{ else } e$$

eek 10 - Types Core ML

Core ML

$$e := x \mid e \mid \lambda x.e \mid c \mid \text{let } x = e \text{ in } e \mid \text{if } e \text{ then } e \text{ else } e$$

primitives/constants

ek 10 - Types Core ML

Core ML

ek 10 - Types Core ML

Core ML

ek 10 - Types Core ML

Core ML

Definition (Expressions)

$$e := x \mid e \mid e \mid \lambda x.e \mid c \mid \text{let } x = e \text{ in } e \mid \text{if } e \text{ then } e \text{ else } e$$

Primitives

Boolean: true, false, <, >, ...

Arithmetic: \times , +, \div , -, 0, 1, ...

Tuples: pair, fst, snd Lists: nil, cons, hd, tl

HZ (ICS@UIBK) FP 8/26

ek 10 - Types Type Checking

Overview

- Week 10 Types
 - Summary of Week 9
 - Core ML
 - Type Checking

Week 10 - Types Type Checking

What is Type Checking?

Given some environment (assigning types to primitives) together with a core ML expression and a type, check whether the expression really has that type with respect to the environment.

Veek 10 - Types Type Checking

Preliminaries

Definition (Types)

$$au ::= \underbrace{\alpha} \mid au
ightarrow au \mid g(au, \dots, au)$$
type variable

Convention

- type variables α , α_0 , α_1 , ..., β , β_0 , ...
- function type constructor '→' is right associative
- base data type constructors: int, bool (instead of int(), bool())

Week 10 - Types Type Checking

Preliminaries

Definition (Types)

function type constructor

$$\tau ::= \alpha \mid \widehat{\tau \to \tau} \mid g(\tau, \dots, \tau)$$

Convention

- type variables α , α_0 , α_1 , ..., β , β_0 , ...
- function type constructor '→' is right associative
- base data type constructors: int, bool (instead of int(), bool())

Veek 10 - Types Type Checking

Preliminaries

Definition (Types)

$$\tau ::= \alpha \mid \tau \to \tau \mid \underline{g(\tau, \dots, \tau)}$$
data type constructor

Convention

- type variables α , α_0 , α_1 , ..., β , β_0 , ...
- function type constructor '→' is right associative
- base data type constructors: int, bool (instead of int(), bool())

eek 10 - Types Type Checking

Preliminaries

Definition (Types)

$$\tau ::= \alpha \mid \tau \to \tau \mid g(\tau, \dots, \tau)$$

Convention

- type variables α , α_0 , α_1 , ..., β , β_0 , ...
- function type constructor '→' is right associative
- base data type constructors: int, bool (instead of int(), bool())

Example

 $\mathsf{int} \to \mathsf{bool}, \, (\mathsf{int} \to \mathsf{list}(\mathsf{int})) \to \mathsf{bool}, \, \mathsf{list}(\alpha_0) \to \mathsf{int}, \, \dots$

Veek 10 - Types Type Checking

Preliminaries (cont'd)

```
(Typing) environment E: maps (variables and) primitives to types (e:\tau) \in E "e is of type \tau in E"
```

Veek 10 - Types Type Checking

Preliminaries (cont'd)

```
(Typing) environment E: maps (variables and) primitives to types e: \tau \in E "e is of type \tau in E"
```

Week 10 - Types Type Checking

Preliminaries (cont'd)

```
(Typing) environment E: maps (variables and) primitives to types e: \tau \in E "e is of type \tau in E"

(Typing) judgment: E \vdash e: \tau "it can be proved that expression e has type \tau in environment E"
```

Week 10 - Types Type Checking

Preliminaries (cont'd)

```
(Typing) environment E: maps (variables and) primitives to types e: \tau \in E "e is of type \tau in E"

(Typing) judgment: E \vdash e: \tau "it can be proved that expression e has type \tau in environment E"
```

Example

- environment $P = \{+ : \mathsf{int} \to \mathsf{int}, \mathsf{nil} : \mathsf{list}(\alpha), \mathsf{true} : \mathsf{bool}, \ldots\}$
- judgement P ⊢ true : bool
- judgement P ⊬ true : int

eek 10 - Types Type Checking

Preliminaries (cont'd)

```
(Typing) environment E: maps (variables and) primitives to types e: \tau \in E "e is of type \tau in E"

(Typing) judgment: E \vdash e: \tau "it can be proved that expression e has type \tau in environment E"
```

Example

- environment $P = \{+ : \mathsf{int} \to \mathsf{int}, \mathsf{nil} : \mathsf{list}(\alpha), \mathsf{true} : \mathsf{bool}, \ldots\}$
- judgement P ⊢ true : bool
- judgement P ⊬ true : int

Convention

 $E, e : \tau$ abbreviates $E \cup \{e : \tau\}$

eek 10 - Types Type Checking

The Type Checking System $\mathcal C$

$$\frac{E \vdash e_1 : \tau_2 \to \tau_1 \quad E \vdash e_2 : \tau_2}{E \vdash e_1 : \tau_2 \to \tau_1 \quad E \vdash e_2 : \tau_2} \text{ (app)}$$

$$\frac{E, x : \tau_1 \vdash e : \tau_2}{E \vdash \lambda x.e : \tau_1 \to \tau_2} \text{ (abs)} \qquad \frac{E \vdash e_1 : \tau_1 \quad E, x : \tau_1 \vdash e_2 : \tau_2}{E \vdash \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2 : \tau_2} \text{ (let)}$$

$$\frac{E \vdash e_1 : \mathbf{bool} \quad E \vdash e_2 : \tau \quad E \vdash e_3 : \tau}{E \vdash \mathbf{if} \ e_1 \ \mathbf{then} \ e_2 \ \mathbf{else} \ e_3 : \tau} \text{ (ite)}$$

Veek 10 - Types Type Checking

Example

- environment $E = \{ true : bool, + : int \rightarrow int \rightarrow int \}$
- judgment $E \vdash (\lambda x.x)$ true : bool

Proof.

$$\frac{E, x : \mathsf{bool} \vdash x : \mathsf{bool}}{\underbrace{E \vdash \lambda x. x : \mathsf{bool} \to \mathsf{bool}}^{\mathsf{(abs)}}} \underbrace{E \vdash \mathsf{true} : \mathsf{bool}}_{\mathsf{(app)}} (\mathsf{app})$$

$$E \vdash (\lambda x. x) \mathsf{true} : \mathsf{bool}$$

Veek 10 - Types Type Checking

Example

- environment $E = \{ \mathsf{true} : \mathsf{bool}, + : \mathsf{int} \to \mathsf{int} \to \mathsf{int} \}$
- judgment $E \vdash \lambda x.x + x : \mathsf{int} \to \mathsf{int}$

Proof.

Blackboard

Overview

- Week 10 Types
 - Summary of Week 9
 - Core ML
 - Type Checking
 - Type Inference

What is Type Inference?

Given some environment together with a core ML expression and a type, infer a unifier (type substitution)—if possible—such that the most general type of the expression is obtained.

Preliminaries

Type variables:

$$\mathcal{TV}\mathsf{ar}(\tau) \stackrel{\mathsf{def}}{=} \begin{cases} \{\alpha\} & \text{if } \tau = \alpha \\ \mathcal{TV}\mathsf{ar}(\tau_1) \cup \mathcal{TV}\mathsf{ar}(\tau_2) & \text{if } \tau = \tau_1 \to \tau_2 \\ \bigcup_{1 \le i \le n} \mathcal{TV}\mathsf{ar}(\tau_i) & \text{if } \tau = g(\tau_1, \dots, \tau_n) \end{cases}$$

Preliminaries

Type variables:

$$\mathcal{TV}\mathsf{ar}(\tau) \stackrel{\mathsf{def}}{=} \begin{cases} \{\alpha\} & \text{if } \tau = \alpha \\ \mathcal{TV}\mathsf{ar}(\tau_1) \cup \mathcal{TV}\mathsf{ar}(\tau_2) & \text{if } \tau = \tau_1 \to \tau_2 \\ \bigcup_{1 \le i \le n} \mathcal{TV}\mathsf{ar}(\tau_i) & \text{if } \tau = g(\tau_1, \dots, \tau_n) \end{cases}$$

Type substitution: σ is mapping from type variables to types

Preliminaries

Type variables:

$$\mathcal{TV}ar(\tau) \stackrel{\text{def}}{=} \begin{cases} \{\alpha\} & \text{if } \tau = \alpha \\ \mathcal{TV}ar(\tau_1) \cup \mathcal{TV}ar(\tau_2) & \text{if } \tau = \tau_1 \to \tau_2 \\ \bigcup_{1 \le i \le n} \mathcal{TV}ar(\tau_i) & \text{if } \tau = g(\tau_1, \dots, \tau_n) \end{cases}$$

Type substitution: σ is mapping from type variables to types Application:

$$\tau \sigma \stackrel{\text{def}}{=} \begin{cases} \sigma(\alpha) & \text{if } \tau = \alpha \\ \tau_1 \sigma \to \tau_2 \sigma & \text{if } \tau = \tau_1 \to \tau_2 \\ g(\tau_1 \sigma, \dots, \tau_n \sigma) & \text{if } \tau = g(\tau_1, \dots, \tau_n) \end{cases}$$

$$E \sigma \stackrel{\text{def}}{=} \{ e : \tau \sigma \mid e : \tau \in E \}$$

Preliminaries

Type variables:

$$\mathcal{TV}\mathsf{ar}(\tau) \stackrel{\mathsf{def}}{=} \begin{cases} \{\alpha\} & \text{if } \tau = \alpha \\ \mathcal{TV}\mathsf{ar}(\tau_1) \cup \mathcal{TV}\mathsf{ar}(\tau_2) & \text{if } \tau = \tau_1 \to \tau_2 \\ \bigcup_{1 \le i \le n} \mathcal{TV}\mathsf{ar}(\tau_i) & \text{if } \tau = g(\tau_1, \dots, \tau_n) \end{cases}$$

Type substitution: σ is mapping from type variables to types Application:

$$\tau \sigma \stackrel{\text{def}}{=} \begin{cases} \sigma(\alpha) & \text{if } \tau = \alpha \\ \tau_1 \sigma \to \tau_2 \sigma & \text{if } \tau = \tau_1 \to \tau_2 \\ g(\tau_1 \sigma, \dots, \tau_n \sigma) & \text{if } \tau = g(\tau_1, \dots, \tau_n) \end{cases}$$

$$E \sigma \stackrel{\text{def}}{=} \{ e : \tau \sigma \mid e : \tau \in E \}$$

Composition: $\sigma_1 \sigma_2 \stackrel{\text{def}}{=} \sigma_2 \circ \sigma_1$, i.e., $\alpha \mapsto \sigma_2(\sigma_1(\alpha))$

Example

$$\begin{split} \sigma_2 &= \{\alpha_3/\alpha_4, \alpha_2/\alpha, \alpha/\alpha_1\} \\ \mathcal{TV}\mathsf{ar}(\tau) &= \{\alpha, \alpha_1, \alpha_3\} \\ \tau\sigma &= (\mathsf{int} \to \mathsf{int}) \to (\mathsf{list}(\alpha_2) \to \alpha_3) \\ \mathcal{TV}\mathsf{ar}(\tau\sigma) &= \{\alpha_2, \alpha_3\} \\ \sigma\sigma_2 &= \{\alpha/\mathsf{int} \to \mathsf{int}, \alpha_1/\mathsf{list}(\alpha), \alpha_3/\alpha_4, \alpha_2/\alpha\} \end{split}$$

 $\sigma = \{\alpha/\text{int} \to \text{int}, \alpha_1/\text{list}(\alpha_2)\}\$

 $\tau = \alpha \rightarrow (\alpha_1 \rightarrow \alpha_3)$

Unification Problems

Definition

unification problem is (finite) sequence of equations

$$\tau_1 \approx \tau_1'; \ldots; \tau_n \approx \tau_n'$$

- □ denotes empty sequence
- type substitution σ is unifier of unification problem if

$$\tau_1 \sigma = \tau'_1 \sigma; \dots; \tau_n \sigma = \tau'_n \sigma$$

Unification Problems

Definition

• unification problem is (finite) sequence of equations

$$\tau_1 \approx \tau_1'; \ldots; \tau_n \approx \tau_n'$$

- □ denotes empty sequence
- type substitution σ is unifier of unification problem if

$$\tau_1 \sigma = \tau_1' \sigma; \dots; \tau_n \sigma = \tau_n' \sigma$$

Unification Problems

Definition

• unification problem is (finite) sequence of equations

$$\tau_1 \approx \tau_1'; \ldots; \tau_n \approx \tau_n'$$

- □ denotes empty sequence
- type substitution σ is unifier of unification problem if

$$\tau_1 \sigma = \tau_1' \sigma; \dots; \tau_n \sigma = \tau_n' \sigma$$

Unification Problems

Definition

• unification problem is (finite) sequence of equations

$$\tau_1 \approx \tau_1'; \ldots; \tau_n \approx \tau_n'$$

- □ denotes empty sequence
- type substitution σ is unifier of unification problem if

$$\tau_1 \sigma = \tau_1' \sigma; \dots; \tau_n \sigma = \tau_n' \sigma$$

The Unification System ${\cal U}$

$$\begin{split} &\frac{E_{1};g(\tau_{1},\ldots,\tau_{n})\approx g(\tau_{1}',\ldots,\tau_{n}');E_{2}}{E_{1};\tau_{1}\approx\tau_{1}';\ldots;\tau_{n}\approx\tau_{n}';E_{2}}~_{(d_{1})}\\ &\frac{E_{1};\tau_{1}\to\tau_{2}\approx\tau_{1}'\to\tau_{2}';E_{2}}{E_{1};\tau_{1}\approx\tau_{1}';\tau_{2}\approx\tau_{2}';E_{2}}~_{(d_{2})}\\ &\frac{E_{1};\alpha\approx\tau;E_{2}~~\alpha\not\in\mathcal{TV}ar(\tau)}{(E_{1};E_{2})\{\alpha/\tau\}}~_{(v_{1})}\\ &\frac{E_{1};\tau\approx\alpha;E_{2}~~\alpha\not\in\mathcal{TV}ar(\tau)}{(E_{1};E_{2})\{\alpha/\tau\}}~_{(v_{2})}\\ &\frac{E_{1};\tau\approx\alpha;E_{2}~~\alpha\not\in\mathcal{TV}ar(\tau)}{(E_{1};E_{2})\{\alpha/\tau\}}~_{(v_{2})} \end{split}$$

Unification Problem (cont'd)

Notation

$$E \Rightarrow_{\sigma}^{(r)} E'$$

if rule r from $\mathcal U$ applied to equations E yields E'

Unification Problem (cont'd)

Notation

$$E \Rightarrow_{\sigma}^{(r)} E'$$
 if rule r from \mathcal{U} applied to equations E yields E'

Theorem

if
$$E_1 \Rightarrow_{\sigma_1}^{(r_1)} E_2 \Rightarrow_{\sigma_2}^{(r_2)} \ldots \Rightarrow_{\sigma_{n-1}}^{(r_{n-1})} \square$$
 then E_1 has unifier $\sigma_1 \cdots \sigma_{n-1}$

Unification Problem (cont'd)

Notation

$$E \Rightarrow_{\sigma}^{(r)} E'$$

if rule r from $\mathcal U$ applied to equations E yields E'

Theorem

if
$$E_1 \Rightarrow_{\sigma_1}^{(r_1)} E_2 \Rightarrow_{\sigma_2}^{(r_2)} \ldots \Rightarrow_{\sigma_{n-1}}^{(r_{n-1})} \square$$
 then E_1 has unifier $\sigma_1 \cdots \sigma_{n-1}$

Example

$$\mathsf{list}(\mathsf{bool}) \approx \mathsf{list}(\alpha) \quad \Rightarrow_{\iota}^{(\mathsf{d}_1)} \quad \mathsf{bool} \approx \alpha$$
$$\Rightarrow_{\{\alpha/\mathsf{bool}\}}^{(\mathsf{v}_2)} \quad \Box$$

Unification Problem (cont'd)

Notation

 $E \Rightarrow_{\sigma}^{(r)} E'$ if rule r from \mathcal{U} applied to equations E yields E'

Theorem

if
$$E_1 \Rightarrow_{\sigma_1}^{(r_1)} E_2 \Rightarrow_{\sigma_2}^{(r_2)} \ldots \Rightarrow_{\sigma_{n-1}}^{(r_{n-1})} \square$$
 then E_1 has unifier $\sigma_1 \cdots \sigma_{n-1}$

Example

$$\begin{aligned}
\operatorname{list}(\mathsf{bool}) &\approx \operatorname{list}(\alpha) &\Rightarrow_{\iota}^{(\mathsf{d}_1)} & \mathsf{bool} &\approx \alpha \\
&\Rightarrow_{\{\alpha/\mathsf{bool}\}}^{(\mathsf{v}_2)} & \square
\end{aligned}$$

Remarks

- unification always terminates
- the order of applying inference rules has no (dramatic) effect

Type Inference Problems

- $E \triangleright e : \alpha_0$ is type inference problem
- σ s.t., $E\sigma \vdash e : \alpha_0\sigma$ (if exists) is solution (otherwise: e not typable)

Type Inference Problems

- $E \triangleright e : \alpha_0$ is type inference problem
- σ s.t., $E\sigma \vdash e : \alpha_0\sigma$ (if exists) is solution (otherwise: e not typable)

The Type Inference System ${\mathcal I}$

$$\frac{E, e: \tau_0 \rhd e: \tau_1}{\tau_0 \approx \tau_1} \text{ (con)} \qquad \frac{E \rhd e_1 \ e_2: \tau}{E \rhd e_1: \alpha \to \tau; E \rhd e_2: \alpha} \text{ (app)}$$

$$\frac{E \rhd \lambda x.e: \tau}{E, x: \alpha_1 \rhd e: \alpha_2; \tau \approx \alpha_1 \to \alpha_2} \text{ (abs)} \qquad \frac{E \rhd \textbf{let} \ x = e_1 \ \textbf{in} \ e_2: \tau}{E \rhd e_1: \alpha; E, x: \alpha \rhd e_2: \tau} \text{ (let)}$$

$$\frac{E \rhd \textbf{if} \ e_1 \ \textbf{then} \ e_2 \ \textbf{else} \ e_3: \tau}{E \rhd e_1: \text{bool}; E \rhd e_2: \tau; E \rhd e_3: \tau} \text{ (ite)}$$

Recipe - Type Inference

Input

core ML expression e and typing environment E

Recipe - Type Inference

Input

core ML expression e and typing environment E

Algorithm

- 1. start with $E \triangleright e : \alpha_0$ (fresh type variable α_0)
- 2. use \mathcal{I} to transform $E \triangleright e : \alpha_0$ into unification problem u (if at any point no rule applicable Not Typable)
- 3. if possible solve u (obtaining unifier σ) otherwise Not Typable

Recipe - Type Inference

Input

core ML expression e and typing environment E

Algorithm

- 1. start with $E \triangleright e : \alpha_0$ (fresh type variable α_0)
- 2. use \mathcal{I} to transform $E \triangleright e : \alpha_0$ into unification problem u (if at any point no rule applicable Not Typable)
- 3. if possible solve u (obtaining unifier σ) otherwise Not Typable

Output

the most general type of e w.r.t. E is $\alpha_0 \sigma$

Example

find most general type of let $id = \lambda x.x$ in id 1 w.r.t. P

Proof.

Blackboard